
Development of an Industry 4.0 Big Data Processing and

Management System

Francisco Vidal Cabrita Carneiro
francisco.carneiro@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

December 2020

Abstract

Industry 4.0, also known as the fourth industrial revolution, refers to the enhancement of au-
tomation, connectivity and intelligence of machines within a production environment. Its objectives
are increasing reactiveness, asset monitoring, decision making and value creation of manufacturing.
Industry 4.0 solutions are however challenging to implement as they rely on data systems capable
of handling massive amounts of data with low latency, high delivery guarantee, high fault tolerance
and high information throughput. This generally implies satisfying Big Data, cyber physical system,
Internet of Things and distributed computing system constraints. Understanding the high potential
associated to Industry 4.0 solutions, AKKA Technologies, an Engineering and Technology consulting
firm, decided to launch project ZORRO who’s initial aim was to develop a data system capable
of detecting manufacturing anomalies in real-time and to serve as a source of internal Industry 4.0
know-how. As a contribution to project ZORRO, in this work an Industry 4.0 Big Data solution,
capable of satisfying Industry 4.0 and project ZORRO’s objectives for automatic anomaly detection, is
proposed providing end-point solutions consisting in machine learning platforms for automatic anomaly
detection, data visualisation platforms for real-time dashboarding and monitoring, data science tools
for extraction of important production insights, and batch and stream processing engines to implement
virtual sensors, online predictions and other real-time calculations. The architecture was designed to
respond to the various constraints associated with these types of Big Data systems whilst remaining
modular, affordable using commodity hardware, scalable and microservice based.
Keywords: Industry 4.0, Big Data, Industrial Internet of Things (IIoT), Stream Processing, Real-time
Anomaly Detection.

1. Introduction

In an increasingly digital world, most complex and
large-scale production lines have adopted what is
called an Industry 3.0 method, where machines,
electronics and IT systems are aiding factories in
increasing the speed, efficiency, capacity and flexi-
bility of production through automation. Industry
3.0 gives way for monitoring and connecting these
machines and systems into a network known as an
Industrial Internet of Things (IIoT) environment or
Industry 4.0. An Industry 4.0 solution consists in
creating a connected network of machines, prod-
ucts and processes that make up the production
context, monitoring and or controlling their status,
and through this extract value and drive effective
actions and decisions. Access to the information
from this network allows for real-time production
anomaly detection, equipment predictive mainte-
nance and general forecasting, process optimisation,
cost accounting and supply/value chain resilience.

Industry 4.0 promises manufacturers additional

annual revenues of 2% to 3% on average [1]. De-
spite these clear advantages according to McKinsey
Digital [2], only 30% of technology suppliers and
16% of manufacturers have an overall Industry 4.0
strategy. McKinsey suggested that the main imple-
mentation barriers were difficulties in coordinating
actions across different organisational units, con-
cerns about cybersecurity, lack of courage to push
through a radical transformation and difficulties to
adopt new technologies. These results are under-
standable since Industry 4.0 solutions require the
implementation of complex data systems capable
handling huge amounts of data (Big Data), complex
network topologies (IoT) and large computational
capacities (cloud computing) [3].

In this context, AKKA Technologies, an Engi-
neering and Technology consulting firm, launched a
project named ZORRO with the initial aim of cre-
ating a system capable of detecting manufacturing
anomalies in real-time in an Industry 4.0 scenario.
With this project, AKKA also wishes to equip itself

1



with the know-how required to advise customers on
what an Industry 4.0 and Big Data solution consists
of (in terms of architecture, technology and cost),
but also understand what added value it can give
manufacturers. The ZORRO system alone does not
have the objective of being sold as a product. Nev-
ertheless, ZORRO still aims in becoming a Meta
solution, to be used as an Industry 4.0 internal ref-
erence for AKKA, capable of satisfying Industry 4.0
objectives and overcoming the constraints associ-
ated to these systems.

As a contribution to the ZORRO project, in this
work, a Big Data system for the collection, stor-
age and processing of real-time IIoT type data was
implemented. The system was conceived with the
following features:

• Data visualization / dashboarding tools sup-
porting dynamic and interactive queries.

• Real-time (streaming) and batch data process-
ing system.

• Machine Learning (ML) and Data Science plat-
forms for data exploration, data analytics and
general insight extraction.

• Real-time anomaly detection, and alerting sys-
tem, through ML algorithms.

The solution is designed to address the Big Data
constraints, data streaming constraints involving
message latency and message throughput whilst
guaranteeing the real-time analysis and reactiveness
that Industry 4.0 promises. Figure 1 illustrates a
high-level representation of the implemented sys-
tem.

Figure 1: High-level representation of implemented
system.

The ZORRO system was divided into three main
layers: the IoT data production layer, the Process-
ing layer and the serving layer. The IoT layer rep-
resents the physical data production layer. In the
context of this project it was simulated by a Python
coded factory simulator. The processing layer al-
lows for real-time and batch data processing, ML,
insight extraction and data storage. Anomaly de-
tection algorithms, trained using ML, were imple-
mented and deployed here. On the serving layer,

a series of tools were developed to extract value
from the developed platform. This layer includes
real-time data visualisation and dynamic querying
platforms, data science and ML development en-
vironments, and automatic knowledge enrichment
features including alerts and creation of virtual sen-
sors.

In this paper we shall present the work carried
out as follows. Section 2, describes the background
and context of this work and project ZORRO. The
technologies chosen and the main conclusions drawn
from the state-of-the-art study are described. Sec-
tion 3 focuses on the engineering work done dis-
cussing in more detail how the work’s mission and
objectives were accomplished and what systems
were added, improved, deployed and tested. The
results that were obtained in terms of performance
and system outputs are presented in section . Sec-
tion 5 concludes with a review of the work done
by analysing what was accomplished, what can be
improved and what were gains that were obtained
from this project.

2. Background
2.1. Project ZORRO

This work was carried out in the context of an
internship at AKKA Technologies. AKKA Tech-
nologies is an engineering and technology consult-
ing group founded in 1984. The firm is positioned
in a series of technological sectors most notably:
aeronautic, automotive, energy, information sys-
tems and telecommunications. Motivated by a clear
shift in market demands, AKKA wishes to expand
and diversify its operations towards the data and
digital domains.

Having understood the high potential of In-
dustry 4.0 for increasing efficiency of production
environments and wanting to increase its exper-
tise on digital transformation and data solutions,
the ZORRO project was created at AKKA. This
project emerged in the context of an European
H2020 project with the objective of responding to
the demand for European Industrial efficiency and
competitiveness.

Project ZORRO’s main goal is to develop an
Industrial IoT (IIoT) data platform solution in a
multi-production-line and multi-stage factory con-
text, capable of detecting production anomalies,
and other useful insights, in real-time and attain-
ing zero-defect production. These production envi-
ronments can produce large amounts of data from
various streaming data sources and thus, ZORRO
is an IIoT Big Data scale data processing platform,
Figure 2.

2.2. Industry 4.0 Today

Although today there is no standard on how to per-
form Industry 4.0, robust architecture proposals are

2



Figure 2: ZORRO industrial data platform solu-
tion.

starting to rise. One such proposal can be found in
[4] where a 5 layer Industry 4.0 architecture is de-
scribed as illustrated in Figure 3.

Figure 3: Industry 4.0 proposed architecture [4].

The layers can essentially be grouped into two
main components, a Cyber Physical System (CPS)
with advanced connectivity and real-time data ac-
quisition system and an intelligent data manage-
ment system who’s objective is to leverage the data
production and connectivity of the physical level to
extract useful insights from the data and perform
data-driven decisions. By Analysing Figure 3, we
can already better understand why Industry 4.0 is
difficult and complex to implement as it requires ex-
pertise on the physical and IoT domain, on the data
engineering domain due to the complexity associ-
ated to Big Data, data streaming and distributed
computing systems (cloud or edge computing), and
on the data science domain as algorithms for ma-
chine learning, analytics and insight extraction need
to be employed to be able to extract value from the
data.

In spite of the difficulties associated to Indus-
try 4.0, manufacturing companies require it to in-
crease the quality and speed of production. In the
Aeronautics sector for example, airbus has deliv-
ered in the past 40 years 10,000 aircraft’s and aims

in delivering 20,000 aircraft’s in the next 20 years
(2019 numbers before the COVID-19 pandemic).
To achieve this goal, airbus is investing in Indus-
try 4.0 technologies such as the mixed reality [5]
and Big Data platforms [6], due to the fact that in
Aerospace manufacturing, an increase in quality is
an increase in safety.

2.3. Big Data and Cloud Computing Platforms

Data processing platforms are an essential compo-
nent Industry 4.0 systems as they contribute to lay-
ers II, III and IV of Figure 3. In order to build
these industrial Big Data processing systems in a
scalable, felxible and affordable way, large amounts
of on demand computing resources are necessary.
In the context of Industry 4.0, cloud computing has
become a promising solution [7].

Cloud computing refers to the availability on de-
mand of computer system resources (data storage,
servers, networks, applications). Big Data applica-
tions require a microservice based architecture with
fast and flexible scalability. Cloud computing plat-
forms allow for this as they manage large data stor-
age and processing centres with flexible virtualisa-
tion tools.

Some of the Big Cloud providers such as Ama-
zon Web Services, Microsoft Azure and Google
Cloud Platform, also offer IoT, Big Data and Ar-
tificial Intelligence platform solutions for their cus-
tomers, which are precisely the type of solutions
that ZORRO aims to provide. These providers are
therefore ideal candidates for a state-of-the-art ref-
erence for this project.

By studying the solutions developed by these
cloud giants, the high-level architecture and build-
ing blocks of IoT and data platform solutions be-
came clearer. From this study, an initial logical
high-level architecture was proposed. It was de-
cided that the system must be composed of the fol-
lowing generic sub-systems: IoT data measurement
and production system; data collection and pipeline
system (message broker); long term data storage
system; data processing and analytics system; data
visualisation and insight extraction system. This
high-level architecture is illustrated in Figure 4.

Figure 4: High level ZORRO architecture.

3



In the following sections we will described the
individual technologies chosen to build each one of
these sub-systems.

2.4. Data Pipeline - Message Broker

Message broker systems, or message orientated mid-
dleware (MOM), are systems that receive and tem-
porarily retain data from various producers (pub-
lishers) and redirect the data to consumers (sub-
scribers) that wish to consume it. The concept be-
hind MOMs is illustrated in Figure 5.b. This type of
interaction is known as publish/subscribe commu-
nication. It is an alternative to creating dedicated
unique communication channels, like in Figure 5.a,
where not only the number of communication links
is significantly larger, but it will shift part of the
communication burden to the consumers and pro-
ducers abstracting communications while making
interoperability possible [8]. Concerning Industry
4.0 cyber-physical systems, MOMs are communica-
tion protocol agnostic, making the adoption of dif-
ferent machine protocols easier [9]. They allow for
entities in the production environment to produce
data, therefore making their status known, and con-
sume data allowing for them to be controlled.

(a) Communication
without a MOM.

(b) Concept of MOM.

Figure 5: MOM interest.

There are many message brokers available to-
day. Examples include Kafka, RabbitMQ, HiveMQ,
Mosquito etc. With regards to message brokerig at
Big Data scales, Apache Kafka is a reference [10].
Kafka was originally developed in LinkedIn to be-
come the unified central data pipeline of the ap-
plication. Kafka is a distributed publish-subscribe
based durable messaging system. It is distributed
because there is no central MOM (broker) entity,
instead, it is composed of a cluster of brokers. In
Kafka, messages are key-value pairs that are stored
in topics. Topics are class like groups of messages
managed by the brokers. Data is written to disk
in Kafka, but only for a specified retention period.
This data retention is what allows Kafka to provide
data replication and therefore high availability and
fault tolerance. Producers publish messages into
specific topics. If a consumer is interested in data
from a topic, it can subscribe to this topic and pull
the data from it. Topics are divided into partitions

allowing for data to be consumed in parallel.

2.5. Data Processing System

In the context of Big Data systems, a data process-
ing system is a distributed processing system of Big
Data sources. It is distributed in nature as it is not
possible to efficiently process Big Data sources in
a single node system. Examples of data processing
systems include Hadoop (Hive), Spark, Flink and
Storm. Traditionally these systems were used for
batch processing only. Nevertheless, the world of
Big Data has recently extended to stream process-
ing as well.

One of the most popular go to options for dis-
tributed and large-scale streaming and batch data-
processing is Apache Spark. Spark is a unified
multi-purpose stack for carrying out distributed cal-
culations and large scale data-processing. At its
core, Spark is a computing engine (built on a clus-
tered computer system). Spark offers rich libraries
allowing for SQL, machine learning, graphing and
streaming specific operations on data.

A Spark cluster consists of a master (cluster man-
ager) and worker nodes. The master node is re-
sponsible for resource allocation and task schedul-
ing on the workers. As a distributed system, Spark
also guarantees fault tolerance in its executions. As
of its second major release, Spark 2, Spark intro-
duced streaming libraries allowing for the process-
ing of data in real-time. Likewise, Spark’s original
ML library, MLlib, has evolved to Spark ML which
is faster and more data science friendly. Over-
all, Spark’s wide adoption, popularity, libraries and
performance makes it an excellent choice for Big
Data processing, analytics and machine learning.

2.6. Time Series System

One of the priorities of the ZORRO data storage
system is to be optimised for large scale times-
tamped data. Traditional relational databases are
not adapted for time series data mainly due to
scale, as time series data piles up fast, but also in
terms of timestamp orientated queries (data stored
in time-ascending order). Examples of time se-
ries databases include TimescaleDB, OpenTSDB,
TICK stack, Graphite and others. After investigat-
ing these different solutions the TICK stack was
found to be the leader in terms of performance
when it came to time series databases [11]. The
central piece of the TICK stack is the time se-
ries database InfluxDB (I). InfluxDB is a NoSQL
database purpose built for time series data. Data
is ingested into InfluxDB through their metrics col-
lection agent, Telegraf (T). Data visualisation capa-
bilities through dynamic dashboards and interactive
queries is provided by Chronograf (C). Finally, Ka-
pacitor (K) is the real-time data processing engine
for time series data.

4



2.7. Persistent Big Data Storage System
In order to be able to store large amounts of data
and process it efficiently using data processing sys-
tems (like Spark), Big Data information systems re-
quire special types of databases. When it comes to
Big Data systems, traditional relational databases
are built in such a way that they have limitations
in terms of scalability, fault tolerance and query
speed. This is mainly due to the fact that rela-
tional databases are designed to have data stored
in one node (no partitioning of data).

When investigating popular Big Data storage sys-
tems, many options are possible: Cassandra, Mon-
goDB, HBase and Neo4j. In this work, Apache
Cassandra was chosen as the main persistent stor-
age database solution because it significantly leads
in Big Data storage performance both in terms of
throughput and operation speed [12].

Cassandra is a distributed NoSQL database sys-
tem, originally developed at Facebook. It was
designed to satisfy: full scalable multi-master
database replication and global availability at low
latency. All data in Cassandra is associated to a
Token. The nodes in a Cassandra cluster share
the responsibility of data storage and occupy them-
selves with data from multiple ranges of token val-
ues. When new nodes are added, the token ranges
are simply further partitioned and free token ranges
are given to the new nodes.

2.8. Deployment and Virtualisation
Having chosen the main technologies to be used
in each one of the sub-systems, the next question
that must be answered is how to deploy these tech-
nologies. When it comes to deployment of Big
Data information systems, or most modern applica-
tions, containerised deployments are the most pop-
ular. Containers are essentially isolated processes
that contain a namespace (Bins/libs) and access
to a limited amount of hardware resources (con-
trol group). Containers allow for a microservice and
scalable based architecture as they are lightweight
(easy to bring up and down) and stateless (fault tol-
erant). To create, deploy and manage containers,
the Docker is the go-to container engine technology
as they are the original creators of containers as we
know them today.

2.9. Automatic Anomaly Detection
As seen so far, Industry 4.0 systems process data
and detect events to perform a series of actions:
anomaly detection, predictive maintenance, supply
chain resilience, machine control etc. A majority
of these events are inferred from numerous sensors
and their complex relationships. In order to process
this data and act at the desired speed, automatic
and intelligent algorithms are required.

In the ZORRO project, the first mission is to

be able to detect production anomalies in real-
time. This was done using Machine Learning
(ML), in particular supervised learning. In su-
pervised learning, the algorithm uses data from
a dataset (training dataset) containing input-label
pairs (x1, y1), ...(xn, yn), with input xn ∈ X, and
observed labels (outputs) yn ∈ Y , also quantitative

or qualitative, to create a model f̂ such that:

Y = f̂(X) + ε (1)

Where ε represents the measurement noise or error
made by the model. The objective of the model f̂ is
therefore to attempt to explain the variable Y based
on the observed features, X. The quality of the
model f̂ is determined by measuring the prediction
error ε. In the context of the ZORRO project, X is
the various sensor features of the machines on the
production environment and the value we wish to
predict, Y is the status of the machine (faulty 1 or
not faulty 0).

Focusing on the algorithms offered directly by
Apache Spark’s ML library, we chose to study the
following algorithms: Decision Tree, Random
Forest, Logistic Regression and Support Vec-
tor Machine (SVM). All these algorithms are

methods used for defining the function f̂ described
above.

3. Implementation

In this section we will describe the engineering work
done in terms of the implementations developed.

3.1. Deployment Strategy

Before building the system based on Figure 1, and
the chosen technologies, the deployment and vir-
tualisation strategy was defined so that a consis-
tent deployment model was follow throughout the
project. As described in section 2.8, the desired
deployment methodology is containers. In order to
be able to define deployment states docker-compose
was used. The idea behind docker-compose is to de-
fine a desired container deployment (state) for one
host OS through a configuration .yaml file. This
file can be used to define containers, the configura-
tions and the environment variables to be passed to
them as well as the networks the containers are in
and the (data) volumes they are connected to. A
docker-compose file was therefore defined for each
sub-system in ZORRO. All machines used in this
internship were OpenStack virtual machines, from
AKKA’s internal cloud. These machines contained
2 CPUs, an Ubuntu operating system and 4 or 6 GB
of RAM. We label these machines as either type 1
or 2 respectively. The machines belonged all to the
same network with 1.5 GB/s of bandwidth.

5



3.2. System Requirements Analysis
The adopted project methodology was the V-cycle
development. As a crucial element of this methodol-
ogy, the requirements of the system to be conceived
were defined. The requirements formed an exten-
sive list, of which the main system requirements
were the following: (1) The system must be hori-
zontally scalable on commodity hardware, meaning
that if the amount of data to process from one day
to another doubles, then the solution can roughly
double the instances/machines. (2) The system
must be fault tolerant. This implies that if any
sub-component or entity of each system fails, then
the whole system should continue to work. With
respect to data, this means that if one of these sub-
components or entities fails, no data is lost. (3)
The system architecture should be based on mi-
croservices. (4) The architecture must be generic
so that it can easily be adapted to fit future AKKA
customer requirements and use cases.

3.3. Deployed System
Figure 6 illustrates the final deployment state of this
work. Each box represents a machine that was used
(either of Type 1 of Type 2). A docker symbol is
included in the top left corner when all the deployed
technologies and tools were containerised for that
machine.

Figure 6: Final ZORRO system architecture.

The central piece of the deployment is Apache
Kafka. Kafka was deployed with 3 message bro-
kers. The Kafka deployment was complemented
with Kafka streams applications, which performed
quick online data processing jobs such as the im-
plementation of virtual sensors. It receives data
from the factory simulator, which as shown in Fig-
ure 6 was optimised and distributed across multiple
machines. For time series specific and data visu-
alisation purposes, the TICK stack was deployed
and made to ingest data from Kafka in real-time
(top left). For persistent storage, Kafka connectors
were coded to send data to Cassandra that was de-
ployed as a persistent storage data lake. A Zeppelin
notebook was installed on the serving layer to inter-

act with the raw data in Cassandra. With regards
to data processing, a two worker Spark cluster dis-
tributed across two machines was deployed. Spark
was connected both to Cassandra, in batch process-
ing mode, and to Kafka in stream-processing mode.
This is known as a lambda architecture. A Jupyter
notebook client was deployed on the serving layer
allowing for the interaction with the ZORRO data
processing system through the development of data
processing jobs such as table-to-table joins, data la-
belling for machine learning, data exploration, and
analytics for insight extraction.

All elements illustrated in the Figure were de-
ployed, used and tested. The developed system was
designed to reflect similar Big Data, stream pro-
cessing and IoT data systems analysed in the state-
of-the-art study. All technologies used to build
the core of the system are open source industry
used Big Data technologies guaranteeing scalabil-
ity and fault-tolerance. The system is modular as
the technologies chosen are easily integrated with
other technologies different from the ones used in
this work. This marked the satisfaction of the re-
quirements 1, 2, 3 and 4 described in section 3.2.
Allied to each architectural or technological feature,
documentation was produced for AKKA in order
to justify the design choices made. All files used
to build the developed solution were stored in the
functioning deployment environment and on a Git-
Lab code repository for future use.

4. Results

The results of the developed work in this disser-
tation can be divided into two main contributions.
First of all, the creation of know-how for AKKA
Technologies regarding Big Data Industry 4.0 sys-
tems. Secondly, the development of a meta architec-
ture and solution with quantitative and qualitative
proof of concept outputs and performance indica-
tors. In this section we will describe the results ob-
tained for both these contributions focusing mainly
on the results obtained from the developed Meta
solution.

4.1. Real-time Data Visualisation

The first end-point system that was deployed was
the real-time data visualisation and asset monitor-
ing tool. Figure 7 is an example of one of the dash-
boards that was produced.

Dashboards like these mark the completion of
the real-time data visualisation and asset monitor-
ing objectives which can clearly be applied in use
cases such as remote analysis (maintenance) and vi-
sual insight extraction. A latency analysis was per-
formed on this service to understand the extent to
which this visualisation was real-time. The latency
here measured refers to the time taken for the data
to be transferred from the simulator to Kafka to the

6



Figure 7: Example of a ZORRO Chronograf Dash-
board produced.

TICK stack.

The latency test carried out consisted in pro-
gressively increasing the data load on the system.
The load was increased by increasing the number
of production stages being simulated. Each stage
contained two equipments. For each test, an ex-
tra factory stage containing two equipments was
added. Each equipment contained 4 data producers
(on equipment, equipment surrounding on product
and product surrounding), each producing 5 mes-
sages per second (mes/s). Each group of 5 mes-
sages holds around 6 KB of data. Therefore, this
corresponds to around 6 × 4 × 2 ×nbstages KB/s of
data. For 19 stages for example, the amount of data
being transferred is 912 KB/s and 760 mes/s. Fig-
ure 8 illustrates the mean and maximum latency’s
obtained.

(a) Mean latency. (b) Maximum Latency.

Figure 8: Kafka latency obtained after optimisa-
tions.

Overall, the values obtained for the latency are
admissible, having obtained mean latency values al-
ways inferior to 0.1 s and consistent with some of the
state-of-the-art [13]. Despite the admissible laten-
cies obtained, it was discovered that the dynamics
of the latencies were highly effected by the factory
simulator. Indeed, large changes in the latency were
seen precisely when there was a significant change
in the load on a machine. Therefore, in order to
truly measure the latency more accurately, a more
efficient factory simulator is required.

4.2. Data Science and Exploration Tool
As seen in Figure 6, a Jupyter notebook was de-
ployed and connected to Spark, to allow for Big
Data analytics and data exploration. To test this
tool and demonstrate its potential, a series of data
exploration methods were used. Python statistics
and machine learning libraries were used to analyse
the data stored in Cassandra. Some of the outputs
from the data exploration obtained can be seen in
Figure 9.

Figure 9: Results from data visualisation - PCA,
histogram and correlation matrix.

Illustrated in this figure are the produced output
of 2D (2 primary components) Primary Component
Analysis (PCA) showing colour coded clusters cor-
responding to six different equipments, histogram
of the dust measurement on one of the equipments
and correlation matrix between measured variables
from one equipment.

All the results obtained from these diagrams al-
low us to understand, in a data driven fashion, what
nominal and non-nominal factory behaviour physi-
cally looks like. We can also use these outputs to
understand where optimisations can be carried out.
For example, using the correlation matrix, if we find
that temperature for a machine is highly correlated
with electric consumption, we can attempt to move
this machine to a cooler area or reduce the tempera-
ture of the section it is in. Essentially, our platform
is capable of using and manipulating tools which
allow for data driven insights to be extracted and
data driven decisions to be made.

4.3. Automatic Anomaly Detection
Once the data sources were prepared, the next step
was to train models to detect equipment anomalies.
Four supervised learning models referenced in sec-
tion 2.9 were used. The problem was therefore ap-

7



proached as a binary classification problem (faulty 1
vs non-faulty 0). In order to train supervised learn-
ing models to detect equipment anomalies, batch
jobs were done beforehand. The relevant data was
joined into a single table and labelled by associat-
ing to each row, a column indicating an equipment
status of faulty or non-faulty.

In this work, two anomaly criteria were chosen.
In the first criterion, a reading was considered an
anomaly if, at the same time both values of two dif-
ferent sensors were above or below a certain thresh-
old. The thresholds were defined depending on the
mean, the standard deviation and the distribution
of the sensor reading. For normally distributed sen-
sor readings, for example, the thresholds were de-
fined at three sigmas (3-sigma) to the left and to the
right of the mean (99.7% rule). An is defined by a
combination of two anomaly sensor measurements.
The idea behind this criterion is that anomalies are
related not to individual features but to a combina-
tion and relationship between features. The models
were trained in a data set where approximately 5%
of the points were labelled as anomalies. The data
corresponded to 20 minutes worth of simulation.

Following this data labelling criterion, the clas-
sical machine learning process was followed. The
data was divided into training and testing data sets
(75% to 25% respectively). The results obtained for
the model scores are available in Figure 10.

Figure 10: First anomaly criterion - model scores.

Three score metrics were chosen: Precision, Re-
call and overall accuracy. These are typical met-
rics used in binary classification based on the con-
fusion matrix. Recall refers to the ability of find-
ing anomalies when they exist (true positives) [14],
and is given by the ratio between true positives and
the total number of positives. Notice that in the
case of this paper, a positive refers to an equip-
ment anomaly. Precision refers to the quality of
the model in finding the positive class. It is thus
also known as the positive predictive value [14] and
is calculated by dividing the true positives by the
sum of the true positives and the false positives.

In order to obtain a more precise evaluation of
the models, precision vs recall and ROC curves were
plotted. The models studied, apart from SVM, can
predict a probability that a certain measurement
is an anomaly, rather than the class itself. This

provides model tuning flexibility, as the threshold of
probability with which a measurement is considered
an anomaly can be varied. The ROC curve plots
the false positive rate against the true positive rate
(recall) as a function of this threshold. Figure 11
illustrates the ROC curves plotted for this anomaly
scenario.

Figure 11: Sensor combination anomaly - model
ROC curves.

The area under the ROC curve (AUC) measures
how well a binary classification model separates the
two classes. The ROC curves confirm the satisfac-
tory model results obtained.

In the second anomaly criterion, we identify an
anomaly every time one of its features displays a
value that is above or below the defined thresholds.
In this case, the proportion of anomalies to non-
anomalies changed significantly. Around 33% of
points were anomalies. Figure 12 shows the model
scores obtained following the same process and us-
ing the same model parameters.

Figure 12: Second anomaly criterion - model scores.

In this second anomaly scenario, tree-based algo-
rithms shine (Random Forest and Decision Tree).
From this initial approach, we can already con-
clude that tree based algorithms seem to behave
better in data sets where the ratio between classes
approaches 50%. Also, it is clear that supervised
learning models are sensitive to the type of anomaly.

All the curves, results and notebooks in which
they were obtained, can serve as an important tool
for ZORRO PoC purposes but also for future work
to be done on the machine learning and anomaly de-
tection aspects of ZORRO. This contribution paves
the way for a new ZORRO ML Toolbox.

4.4. Anomaly Pipeline and Visualisation
Once the models were trained, they were deployed
in Spark for online real-time anomaly detection.
The detection pipeline was built so that when a

8



model identified an anomaly, it would signal that
anomaly by sending a message to the Kafka bro-
ker’s Anomaly topic. Given that the predictions
are written into Kafka, it is then easy to then insert
them into the TICK stack via Telegraf and visu-
alise them in real-time. In Figure 13, the Chrono-
graf dashboard on the right peaks every time an
anomaly is identified. The graph on the left shows
the probability with which the decision of labelling
the anomaly was made.

Figure 13: Visualisation of anomaly detection with
a Chronograf dashboard.

This was an important milestone in the ZORRO
project as it is a real-time visual representation of
the machine learning algorithms working to adding
insights on the production status. Most impor-
tantly, the anomaly information and alerts are dis-
play in a human interpretable fashion. The archi-
tecture can now also be considered event-driven.

With the anomaly detection streaming pipeline
tested and functioning correctly, the next aspect
studied was the latency of this pipeline. Given that
anomalies need to be identified in real-time so that
the responses to these events can also be done in
real-time, the levels of latency of this pipeline must
be understood and minimised.

The simulator was run, for each model separately,
with one equipment only (as each model should be
trained for one equipment only). The objective was
to be able to study the latency associated with each
individual model. For each model, the simulator
was run for 20 minutes and the results were cal-
culated on the final 15-minute window (to make
sure the system latency could stabilise at a certain
value). Given that only one equipment was run,
the amount of data the system was exposed to was
only around 32 KB/s or 20 mes/s. The simulator
was run using the exact same anomaly configura-
tion that the model was trained with. The model
scenario chosen for the latency study was the sen-
sor combination model. The results of the mean
latencies obtained are illustrated in Figure 14.

Each column represents a latency when compared
with the moment the timestamp of the reading was
created in the factory simulator. The orange col-
umn represents the time it took for the data to
arrive to Spark from the factory. This therefore

Figure 14: Mean latencies obtained for each model.

involves communication from the factory to Kafka
and then from Kafka to Spark. The blue column
represents the time it took for an anomaly to be
written into the TICK stack (displayed in the dash-
board). This is therefore the total time that it takes
to identify an anomaly and display it in a human
readable fashion.

Having obtained an average latency per model
of about 8s, it is clear that stream-to-stream joins
along with machine learning predictions take time.
We are no longer at the small communication la-
tencies we identified initially with the TICK stack
in section 4.1. The latency is also clearly affected
by the model chosen. As expected, the Random
Forest model is the one that takes the most time
given that it must consult the predictions of multi-
ple trees (300 were used). This latency could be re-
duced by attempting three things: scaling the Spark
cluster thus adding processing capacity, Scaling the
Kafka cluster or reducing the frequency (load) of
the data production in the factory. Even though
the obtained latencies are far from ZORRO’s ob-
jective of 5s, a platform and architecture is setup
and ready to be optimised so that the objectives
can be achieved.

In conclusion, Spark structured streaming appli-
cations capable of detecting anomalies in real-time
and displaying them as alerts in dashboards were
successfully produced. A lambda architecture ca-
pable of using machine learning to detect produc-
tion anomalies in real-time was built. This was the
original objective of project ZORRO.

5. Conclusions
In this work we have developed an Industrial IoT
data collection and processing system, respecting
Big Data constraints and allowing for both batch
and streaming data processing. We used the de-
veloped system to visualise manufacturing data in
real-time, perform data exploration and analytics,
and to detect manufacturing anomalies in real-time
using machine learning algorithms trained and de-
ployed on the same platform. Tests were performed
on the platform both to quantify its performance
but also to demonstrate its potential. Allied to the

9



developed IIoT Meta solution, an extensive docu-
mentation was done in order to create an internal
known-how for AKKA regarding Big Data and IIoT
systems.

Despite the advances made to the system, there
is a significant amount of work to be done for the
ZORRO system to be fully validated and ready to
be demonstrated as a Proof of Concept to potential
future clients and partners of AKKA. One of the
most important aspects to work on in this project
is the integration of the developed stack with a real
IoT layer. Given that the factory simulator was
coded using Python scripts, many aspects inherent
to a real IoT layer were not at all simulated. In a
real IoT layer, network connection may be limited,
and sensors may have unexpected behaviour that
was not simulated in our anomalies. On the deploy-
ment side of things, most of the developed architec-
ture was containerised, however, deploying it with
a cluster manager such as Kubernetes would make
the containerised deployment more micro-service,
fault tolerant and scalable. Regarding automatic
anomaly detection, new models, such as the auto-
encoder artificial neural network could be explored,
to obtain more robust models.

With this work, AKKA is better equipped both
from a technological and a know-how perspective in
aiding their manufacturing customers in their In-
dustry 4.0 strategies and implementations.

Acknowledgements
The author would like to thank Dr Absadeq Zougari
for the tutoring received in AKKA throughout this
project and Prof. João Nuno de Oliveira e Silva
for his supervision in the completion of this master
thesis.

References
[1] V. Koch R. Geissbauer, S. Schrauf and

S. Kuge. Industry 4.0 – opportunities and chal-
lenges of the industrial internet. Pricewater-
houseCoopers, December 2014.

[2] McKinsey. Industry 4.0 after the initial hype.
McKinsey Digital, 2016.

[3] Nancy Velásquez, Elsa Estevez, and Patricia
Pesado. Cloud computing, big data and the
industry 4.0 reference architectures. Journal of
Computer Science and Technology, 18(03):e29–
e29, 2018.

[4] Jay Lee, Behrad Bagheri, and Hung-An Kao. A
cyber-physical systems architecture for indus-
try 4.0-based manufacturing systems. Manu-
facturing letters, 3:18–23, 2015.

[5] Microsoft. Airbus reaches new heights.
[Online] https://news.microsoft.com/en-

my/2019/06/17/airbus-reaches-new-heights-
with-the-help-of-microsoft-mixed-reality-
technology/. Accessed: 10 12 2020.

[6] Airbus. Skywise, the leading data plat-
form for the aviation industry. [Online]
https://skywise.airbus.com/. Accessed: 13 12
2020.

[7] Waqas Ali Khan, Lukasz Wisniewski, Dorota
Lang, and Jürgen Jasperneite. Analysis of the
requirements for offering industrie 4.0 applica-
tions as a cloud service. In 2017 IEEE 26th in-
ternational symposium on industrial electron-
ics (ISIE), pages 1181–1188. IEEE, 2017.

[8] P Sommer, F Schellroth, M Fischer, and Jan
Schlechtendahl. Message-oriented middleware
for industrial production systems. In 2018
IEEE 14th International Conference on Au-
tomation Science and Engineering (CASE),
pages 1217–1223. IEEE, 2018.

[9] Emanuel Trunzer, Pedro Prata, Susana Vieira,
and Birgit Vogel-Heuser. Concept and eval-
uation of a technology-independent data col-
lection architecture for industrial automation.
In IECON 2019-45th Annual Conference of the
IEEE Industrial Electronics Society, volume 1,
pages 2830–2836. IEEE, 2019.

[10] Peter Heller, Dee Piziak, and Jeff Knudse. An
enterprise architect’s guide to big data: Ref-
erence architecture overview. Unpublished pa-
per. Oracle Enterprise Architecture White Pa-
per, 2015.

[11] Rui Liu and Jun Yuan. Benchmarking time
series databases with iotdb-benchmark for iot
scenarios. arXiv preprint arXiv:1901.08304,
2019.

[12] DataStax. Benchmarking top nosql databases
apache cassandra, couchbase, hbase, and mon-
godb. eBook, April 2014.

[13] P Sommer, F Schellroth, M Fischer, and Jan
Schlechtendahl. Message-oriented middleware
for industrial production systems. In 2018
IEEE 14th International Conference on Au-
tomation Science and Engineering (CASE),
pages 1217–1223. IEEE, 2018.

[14] Takaya Saito and Marc Rehmsmeier. The
precision-recall plot is more informative than
the roc plot when evaluating binary clas-
sifiers on imbalanced datasets. PloS one,
10(3):e0118432, 2015.

10


