
Development of an Industry 4.0 Big Data Processing and
Management System

Francisco Vidal Cabrita Carneiro

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisor(s): Prof. João Nuno de Oliveira e Silva
Dr. Abdessadeq Zougari Ben Elkhayat

Examination Committee

Chairperson: Prof. José Fernando Alves da Silva
Supervisor: Prof. João Nuno de Oliveira e Silva

Member of the Committee: Prof. João Carlos Antunes Leitão

December 2020

ii

To my grandfather, Victor Vidal.

iii

iv

Acknowledgments

I would firstly like to thank Dr. Sadeq ZOUGARI, my tutor in AKKA Technologies, for the excellent

orientation received throughout the project and the clear definition of the project objective and structure.

Also, for the kindness and friendliness of his orientation at the start and all throughout the project.

Sadeq allowed me not only to make the best of my work but also in understanding the world of technical

consulting and of AKKA.

I would also like to thank Prof. João Nuno de Oliveira e Silva, my tutor at Instı́tuo Superiro Técnico

(IST) for his orientation in this Master Thesis. I learned a lot with Prof. Oliveira e Silva and his help

and kindness were crucial for me to understand how to structure and present the work carried out in a

scientific and rigorous way.

A special thank you to Prof. Fernando Lau, not only for his help in this Master Thesis but primarily

for his in-valuable support throughout all of my two year Double Diploma at ISAE-SUPAERO. Prof. Lau

is an incredible driving force for the Masters in Aerospace Engineering at IST particularly when it comes

to the international influence and reach of the course.

To Prof. Isabel Ribeiro, a very special thank. Prof. Isabel has accompanied me through all the major

stages of my academic path. From showing me around the day I registered myself in my university,

Instituto Superior Técnico (IST), to helping me in my decision to study at ISAE-SUPAERO for my Double

Degree. Your support and genuine concern will never be forgotten. It has been an honour to have such a

dedicated and successful professional, teacher and researcher present in the presentation of this work.

I would also like to thank Benoit DALET for his crucial support in many technical matters, but also

for keeping the mood high at the office. Without his valuable IT and DevOps expertise, and electrifying

mood, the project would have been blocked multiple times.

To Benoit BAURENS, director of AKKA Research, thank you for helping me integrate not only in

AKKA Research but also in the company community. Benoit always made sure I, and all the other

collaborators at AKKA Research, had everything we needed to be comfortable and productive at work.

I would also like to thank IST and all the teachers and support staff who have made my academic

experience challenging yet fun and also for giving me the opportunity to embark in this international

experience at ISAE-SUPAERO in France which allowed me to learn another language, experience a dif-

ferent academic system and perform an excellent internship. I owe a great part of my accomplishments

in France and other areas of my life to the preparation that I received at IST.

Finally, I would like to thank my family and friends who have made my academic experience possible

and worthwhile. I would like to thank in particular my parents for all the help and love they have given me

in these last five years and in supporting me in my decision to come to France. Without them, I would

never have had the courage and opportunity to embark on my Double Degree. To my grandfather as

well I am grateful and who I know would have been proud of what I have accomplished these past five

years, and to whom I would like to dedicate this work to.

v

vi

Abstract

Industry 4.0, also known as the fourth industrial revolution, refers to the enhancement of automation,

connectivity and intelligence of machines within a production environment. Its objectives are increas-

ing reactiveness, asset monitoring, decision making and value creation of manufacturing. Industry 4.0

solutions are however challenging to implement as they rely on data systems capable of handling mas-

sive amounts of data with low latency, high delivery guarantee, high fault tolerance and high information

throughput. This generally implies satisfying Big Data, cyber physical system, Internet of Things and

distributed computing system constraints. Understanding the high potential associated to Industry 4.0

solutions, AKKA Technologies, an Engineering and Technology consulting firm, decided to launch project

ZORRO who’s initial aim was to develop a data system capable of detecting manufacturing anomalies

in real-time and to serve as a source of internal Industry 4.0 know-how. As a contribution to project

ZORRO, in this work an Industry 4.0 Big Data solution, capable of satisfying Industry 4.0 and project

ZORRO’s objectives for automatic anomaly detection, is proposed providing end-point solutions consist-

ing in machine learning platforms for automatic anomaly detection, data visualisation platforms for real-

time dashboarding and monitoring, data science tools for extraction of important production insights,

and batch and stream processing engines to implement virtual sensors, online predictions and other

real-time calculations. The architecture was designed to respond to the various constraints associated

with these types of Big Data systems whilst remaining modular, affordable using commodity hardware,

scalable and microservice based.

Keywords: Industry 4.0, Big Data, Industrial Internet of Things (IIoT), Stream Processing, Ma-

chine Learning, Real-time Anomaly Detection.

vii

viii

Resumo

A Indústria 4.0 refere-se ao aprimoramento da automação, conectividade e inteligência de máquinas

e sistemas informáticos num ambiente de fabricação. Indústria 4.0 consiste em monitorizar e contro-

lar o estado da produção com o objetivo de aumentar eficiência e eficácia da mesma. As soluções

de Industria 4.0 são difı́ceis de implementar pois envolvem sistemas de informação capazes de gerir

enormes volumes de dados, com uma baixa latência, alta garantia de transmissão, alta tolerância à

falha e alto fluxo de informação. Estas soluções têm portanto de satisfazer constrangimentos associa-

dos a sistemas Big Data, cı́ber fı́sicos, de computação distribuı́da e de Internet of Things. Identificando

o potencial da Indústria 4.0, a AKKA Technologies, uma empresa de consultoria em Engenharia e Tec-

nologia, lançou o projeto ZORRO cujo objetivo inicial era desenvolver um sistema capaz de detetar

anomalias de fabricação em tempo real e consequentemente equipar a AKKA com o conhecimento

necessário para acompanhar os seus clientes industriais nas suas estratégias e implementações da

Industria 4.0. Como contribuição ao projeto ZORRO, neste trabalho uma solução Big Data Industria

4.0, capaz de satisfazer múltiplos objetivos da Industria 4.0 é proposta. O sistema foi projetado com

mecanismos de machine learning para deteção automática de anomalias, plataformas de visualização

de dados em tempo real, ferramentas de ciência de dados para extração de informações relevantes e

plataformas de processamento de dados. A arquitetura foi projetada para responder às várias restrições

associadas a sistemas de Big Data, permanecendo modular, escalável e baseado em micro serviços.

Palavras-chave: Industria 4.0, Big Data, Industrial Internet of Things (IIoT), Processamento

steaming , Machine Learning, Deteção de Anomalias em Tempo Real.

ix

x

Contents

Acknowledgments . v

Abstract . vii

Resumo . ix

List of Tables . xv

List of Figures . xvii

Nomenclature . xix

1 Introduction 1

1.1 Motivation and Problem Statement . 1

1.2 Mission and Objectives . 3

1.3 Implementation and Results . 3

1.4 Thesis Outline . 4

2 Work Context and Industry 4.0 Big Data Systems 5

2.1 Context . 5

2.1.1 AKKA Research & Development . 6

2.1.2 Project ZORRO . 7

2.2 Industry 4.0 Today . 8

2.3 Big Data and Cloud Computing Processing Platforms . 10

2.3.1 Cloud Provider Solutions . 10

2.3.2 Message Broker Systems . 15

2.3.3 Data Processing System . 18

2.3.4 Time Series System . 19

2.3.5 Persistent Big Data Storage System . 21

2.3.6 Deployment and Virtualisation . 22

2.3.7 Data Architectures . 24

2.4 Automatic Anomaly Detection . 26

2.4.1 Decision Tree . 28

2.4.2 Random Forest . 29

2.4.3 Logistic Regression . 29

2.4.4 Support Vector Machine . 30

xi

2.4.5 Artificial Neural Network - Auto Encoder . 31

2.5 State-of-the-art and Background Conclusions . 32

3 Implementation of an Industry 4.0 Data Platform 33

3.1 Objectives . 33

3.2 Methodology . 34

3.3 System Requirement Analysis . 34

3.4 Analysis of the Previous System . 36

3.5 Architectural Proposal . 38

3.6 Deployment Strategy . 39

3.7 Developed Proposed System and Meta Architecture . 41

3.8 Message Brokering and Data Pipeline System . 42

3.8.1 Kafka Cluster Deployment . 43

3.8.2 Kafka Streams API . 45

3.8.3 Kafka Cassandra Connectors . 46

3.9 Time Series Database and Data Visualisation . 47

3.10 Data Lake Persistent Storage . 48

3.11 Data Processing and Machine Learning . 50

3.11.1 Deployment . 50

3.11.2 Spark Analytics . 50

3.11.3 Batch Processing . 51

3.11.4 Stream Processing . 53

4 Developed System Outputs and Performance Analysis 55

4.1 Real-time Data Visualisation . 55

4.1.1 Factory Dashboards and Monitoring . 55

4.1.2 Deployment Metric Collection . 56

4.1.3 Latency Performance . 57

4.2 Data Science and Exploration Tool . 59

4.2.1 Zeppelin Notebook . 59

4.2.2 Jupyter Notebook . 59

4.3 Automatic Anomaly Detection . 60

4.3.1 Model Training . 61

4.3.2 Anomaly Pipeline and Visualisation . 65

4.3.3 Anomaly Prediction Latency . 66

5 Conclusions 69

5.1 Overview of Deployed System and Work Developed . 69

5.2 Generation of Know-how for AKKA Technologies . 71

5.3 System and Work Evaluation . 71

xii

5.4 Future Work . 72

5.5 Applications on the Aerospace Sector . 73

Bibliography 75

xiii

xiv

List of Tables

3.1 ZORRO Properties measured. 38

3.2 OpenStack machine types available. 40

xv

xvi

List of Figures

1.1 The four industrial revolutions. 1

1.2 High-level representation of implemented system. 4

2.1 AKKA’s location and activity sectors. 6

2.2 ZORRO data streams overview. 7

2.3 ZORRO industrial data platform solution. 8

2.4 Industry 4.0 proposed general architecture. 9

2.5 AWS IoT Core concept. 11

2.6 AWS IoT services. 12

2.7 Azure IoT Hub high-level architecture. 12

2.8 Azure digital twins GUI. 13

2.9 GCP IoT data-platform. 14

2.10 High level ZORRO solution. 15

2.11 Message Orientated Middleware interest. 16

2.12 Kafka publish / subscribe model. 17

2.13 Spark ecosystem and comparison with Hadoop. 18

2.14 Spark cluster and execution architecture. 19

2.15 The TICK stack. 20

2.16 Cassandra primary key definition. 22

2.17 Virtual machines vs containers. 23

2.18 Docker daemon. 23

2.19 Lambda architecture – concept. 24

2.20 Kappa architecture – concept. 25

2.21 SMACK architecture – concept. 25

2.22 Lambda architecture – chosen Big Data architecture for ZORRO. 26

2.23 Regression over-fitting concept. 27

2.24 Two-dimensional concept of decision trees with quantitative features. 28

2.25 Illustration of a nine-decision tree random forest. 29

2.26 Logistic Regression one dimensional example. 30

2.27 Illustration of SVM concept optimally separating two classes. 30

2.28 Inner workings of an artificial neural network neuron. 32

xvii

2.29 Auto-encoder example for image reconstruction. 32

3.1 Initial V-cycle approach to system conception. 34

3.2 Proposed system in previous internship. 36

3.3 Factory simulator concept. 38

3.4 Proposed architecture. 39

3.5 Docker-compose idea and inner workings. 40

3.6 Final ZORRO system architecture. 41

3.7 Kafka cluster containerised deployment. 44

3.8 Kafka on equipment topic distribution and parallel consumption model. 44

3.9 Kafka streams ZORRO applications. 46

3.10 Kafka deployment with Cassandra Connectors. 47

3.11 TICK Stack – ZORRO deployment. 48

3.12 Cassandra cluster setup and Zeppelin and Spark connections. 49

3.13 Spark cluster deployment and integration with Jupyter. 51

3.14 Batch join of two tables of timestamped rows. 52

3.15 Batch machine learning job workflow. 53

3.16 Kafka Spark streaming connection. 53

3.17 Stream to stream join in Spark using watermark. 54

4.1 Example of a ZORRO Chronograf dashboard produced. 56

4.2 Kafka docker deployment monitoring with the TICK stack (CPU). 56

4.3 Kafka vs RabbitMQ latency analysis. 57

4.4 Kafka latencies obtained after simulator optimisations. 58

4.5 Zeppelin notebook for querying Cassandra DB and dashboarding output. 59

4.6 Results from data visualisation - Colour coded 2D PCA representation of 6 equipments. . 59

4.7 Results from data visualisation - histogram and correlation matrix. 60

4.8 First anomaly criterion - sensor combination. 61

4.9 First anomaly criterion - model scores. 62

4.10 Precision and recall - binary classification. 62

4.11 First anomaly criterion - model ROC curves. 63

4.12 First anomaly criterion - Precision vs recall curves. 63

4.13 Second anomaly criterion – sensor anomaly. 64

4.14 Second anomaly criterion - model scores. 64

4.15 Second anomaly criterion - model ROC curves. 65

4.16 Visualisation of anomaly detection with a Chronograf dashboard. 65

4.17 Prediction latency analysis results . 66

4.18 Latency evolution for each model. 67

4.19 Anomaly detection latency with reduced simulator frequency. 68

xviii

Nomenclature

Acronyms

AI Artificial Intelligence.

AMQP Advanced Message Queuing Protocol

AWS Amazon Web Services

CI-CD Continous Integration, Continous Development Pipleine

CPS Cyber Physical System.

ETL Extract, Transform and Load

GCP Google Cloud Platform

IaaS Infrastructure as a Service

IIoT Industrial Internet of Things

IoT Internet of Things

JSON JavaScript Object Notation

K8s Kubernetes

ML Machine Learning

MOM Message Orientated Middleware

MQTT Message Queuing Telemetry Transport protocol

PaaS Platform as a Service

PCA Primary Component Analysis

PvR Precision vs Recall.

QoS Quality of Service

ROC Receiver operating characteristic curve.

SaaS Software as a Service

xix

SMACK S - Spark, M - Mesos, A - Akka, C - Cassandra and K - Kafka

SVM Support Vector Machine

TCP Transport Layer Communication.

TICK Telgraf, InfluxDB, Chronograf, Kapacitor

VM Virtual Machine.

xx

Chapter 1

Introduction

1.1 Motivation and Problem Statement

In an increasingly digital world, most complex and large-scale production lines have adopted what is

called an Industry 3.0 method, where machines, electronics and IT systems are aiding factories in

increasing the speed, efficiency, capacity and flexibility of production through automation. Industry 3.0

gives way for monitoring and connecting these machines and systems into a network known as an

Industrial Internet of Things (IIoT) environment or Industry 4.0. Industry 4.0 is considered the next

Industrial revolution (Figure 1.1). An Industry 4.0 solution consists in creating a connected network of

machines, products and processes that make up the production context, monitoring and or controlling

their status, and through this extract value and drive effective actions and decisions.

Figure 1.1: The four industrial revolutions [1].

Access to the information from this network allows for real-time anomaly detection of products, ma-

chines or IT systems, equipment predictive maintenance and general forecasting, process optimisation,

process explicability and cost accounting, supply/value chain resilience. Given that machines and sys-

tems are connected through a network, Industry 4.0 also allows for automatic machine and process

1

control as well as inter-system cooperation.

Industry 4.0 promises manufacturers additional annual revenues of 2% to 3% on average [2]. For

the European industrial sector, additional projected revenues amount to C110 billion annually. Due

to this, it was predicted that by the end of 2020 European industrial companies would invest C140

billion [2] annually in Industry 4.0. In Industry 3.0 solutions, machine and system maintenance, for

example, is done in a more responsive manner or with periodic check-ups which require experts and

manpower to analyse and identify potential problems followed by more experts and manpower to solve

the issue. Similarly, real-time supply chain resilience does not really occur since, from the point of

view of the processes, the factory floor is unaware of what is happening both on the suppliers and the

client’s sections of the value chain. Industry 4.0 solutions can not only automatically detect anomalies

in real-time and predict future problems but can at least allow for the possibility of remote analysis of the

problem, saving the need for a visit from dedicated experts. Similarly, given that machines are connected

to a network and to an information system, they could adapt their production rate to meet supplier or

client sudden behaviour changes or respond in real-time to unexpected events such as machine failure.

Finally, the data produced from this connected network can provide important insights for optimisation

opportunities previously not identifiable.

Despite these clear advantages according to McKinsey Digital [3], only 30% of technology suppliers

and 16% of manufacturers have an overall Industry 4.0 strategy. McKinsey suggested that the main im-

plementation barriers were difficulties in coordinating actions across different organisational units, con-

cerns about cybersecurity and data ownership when working with third-party providers, lack of courage

to push through a radical transformation, difficulties to adopt new technologies, and lack of necessary

talent. These results are understandable since an Industry 4.0 solution requires the implementation of

complex data systems capable handling huge amounts of data (Big Data), complex network topologies

(IoT) and large computational capacities (cloud computing) [4]. Therefore, the implementation of such

systems and solutions cannot be done by production experts alone.

Having understood the high potential of Industry 4.0 and other data and digital transformation solu-

tions with similar use cases and constraints, many consulting firms have expanded and diversified their

operations to include support to implement these solutions. In fact, Industry 4.0 is one of many domains

where Big Data, cloud computing and IoT intervene. It is therefore not a coincidence that many consult-

ing firms are investing in these domains as it allows them to implement Industry 4.0 and other large scale

digital transformation solutions to their clients in areas such as health care, energy production, agricul-

ture, logistics and smart cities where data and processing is required in real-time to drive decisions and

improve efficiency. In this context, AKKA Technologies [5], an Engineering and Technology consulting

firm, launched a project named ZORRO with the aim of not only equipping AKKA with the know-how

required to advise customers on what an Industry 4.0 and Big Data solution consists of (in terms of

architecture, technology and cost), but also understand what added value it can give manufacturers.

2

1.2 Mission and Objectives

From AKKA’s perspective, the crucial high-level mission of project ZORRO is to develop know-how

regarding Big Data and Industry 4.0 solutions by understanding what they consist of in terms of archi-

tecture, technology and cost, as well as what added value they can give manufacturers. The ZORRO

system alone does not have the objective of being sold as a product. Nevertheless, ZORRO still aims in

becoming a Meta solution capable of satisfying Industry 4.0 objectives and overcoming the constraints

associated to these systems. The idea is that this solution, allied to the know-how created around it,

can then be used as a reference for AKKA when aiding manufacturers in their digital transformation and

in achieving Industry 4.0. We use the term Meta solution to stress the idea that the ZORRO system,

or one of its sub-systems, can be instantiated and adapted based on the concrete customer needs and

requirements. The main objective of this work is therefore to help AKKA satisfy these objectives.

1.3 Implementation and Results

In this work, a Big Data system for the collection, storage and processing of real-time IIoT type data was

implemented. The system was conceived with the following Industry 4.0 objectives in mind: increasing

reactiveness, asset monitoring, decision making and value creation of production environments. The

system was developed to have the following features:

• Data visualization / dashboarding tools supporting dynamic and interactive queries.

• Real-time (streaming) and batch data processing system.

• Machine Learning (ML) and Data Science platforms for data exploration, data analytics and general

insight extraction.

• Real-time anomaly detection, and alerting system, through ML algorithms.

Furthermore, the solution was designed to address the Big Data constraints of velocity, volume and vari-

ety, data streaming constraints involving message latency and message throughput whilst guaranteeing

the real-time analysis and reactiveness that Industry 4.0 promises. Figure 1.2 illustrates a high-level

representation of the implemented system.

The ZORRO system was divided into three main layers: the IoT data production layer, the TCP data

processing layer and the serving layer. The IoT layer represents the physical data production layer. In the

context of the project it was simulated by a factory simulator. This layer would usually contain the physical

machines, products and processes to be monitored or controlled. The TCP layer, standing for the data

communication Transmission Control Protocol, allows for both real-time and batch data processing,

insight extraction and storage. Anomaly detection algorithms, trained using machine learning, were

implemented and deployed here. On the serving layer, a series of tools were developed to extract

value from the developed platform. This layer can be thought of as the customer layer as it is where

business value is extracted. As described above, this layer includes real-time data visualisation and

dynamic query platforms, data science and machine learning development environments, and automatic

3

Figure 1.2: High-level representation of implemented system.

knowledge enrichment features including alerts and creation of virtual sensors, which are outputs of the

stream and batch processing systems.

Following the system development and deployment, performance tests were carried out through var-

ious simulation scenarios varying the data load on the system (size of the simulated factory). In terms of

quantified performance, we mainly studied the system latency. In particular, the time it takes to visualise

data or detect production equipment anomalies. Data exploration and machine learning campaigns were

also done in order to verify that the data scientist and machine learning engineer workflow can be done.

Throughout the state-of-the-art study, development and testing processes, a consistent documentation

was done to aid AKKA in its primary high-level objective which is to generate internal know-how. Like-

wise, all the code and system configuration files developed throughout the internship were stored in a

GitLab [6] repository and a user guide was created for future use and ease of deployment.

1.4 Thesis Outline

In this thesis we shall present the work carried out as follows. Firstly, chapter 2, describes the back-

ground and context of this work. In terms of context the chapter begins by describing in more detail

AKKA Technologies and the ZORRO project. The main conclusions drawn from the state-of-the-art

study, namely how Industry 4.0 is being tackled today and what architectures, technologies and models

are used and were chosen to build the solution in this work are described. Chapter 3 discusses in more

detail how the work’s mission and objectives were approached and accomplished. It describes the im-

plementations that were done on the project and in particular how each sub-system was deployed and

made to interact with the system as a whole. Chapter 4 describes the results that were obtained from

the developed system both in terms of performance and system outputs. Chapter 5 concludes with a

review of the work done by analysing what was accomplished, what can be improved and what were

gains that were obtained from this project.

4

Chapter 2

Work Context and Industry 4.0 Big

Data Systems

In this chapter a more detailed description of the contextual elements of this work, namely the company

with which it was carried out, AKKA Technologies, and the project in which it is inserted, ZORRO, is

done. This chapter also reflects the analysis and conclusions of state-of-the-art study that was carried

out prior to development of the ZORRO system. This involved analysing the domain of Industry 4.0

in terms of what the primary difficulties and solutions are and understanding the technologies that are

used to build them. This study was used to justify and define the ZORRO system requirements analysis

and to select the best technologies, methods and architectures on which to build it. We will focus

this description primarily on the architectures, algorithms and technologies that were used in this work.

Nevertheless, separate documents were produced during this state-of-the-art study explaining all the

different technologies studied. The purpose of this documentation was to serve as future technical

documentation and guides for engineers who pick up the ZORRO project and need to get familiar with

the technologies and tools used.

2.1 Context

This work was carried out in the context of an internship at AKKA Technologies. AKKA Technologies is

an engineering and technology consulting group founded in 1984. The firm is positioned in a series of

technological sectors most notably: aeronautic, automotive, energy, rail, space and defence, information

systems, life sciences and telecommunications (Figure 3). The company’s group holds more than 50

establishments in France as well as in Germany, Belgium, Spain, India, Italy, Morocco, Romania, United

Kingdom, China, North America and Switzerland.

Having reached an already substantial size, employing 21,000 people, AKKA Technologies had plans

to expand and diversify its operations. This diversification mainly involved a shift towards the data and

digital domains, with the aim of creating digitalisation solutions for customers. This was highly motivated

by a clear shift in market demands where organisations are looking to the use of data and information

5

Figure 2.1: AKKA’s location and activity sectors.

systems to drive business decisions. Due to the current COVID-19 pandemic, this diversification process

has been accelerated in particularly because of the impact the pandemic had on the aeronautic and

general transportation sector. AKKA is currently launching a new data solution team in Paris (AKKA Data

Respons team) as well as investing in the training of its employees in areas such as cloud computing

and cyber security.

2.1.1 AKKA Research & Development

The presented work was carried out at AKKA’s Research and Development department, AKKA Re-

search. AKKA Research is AKKA’s internal hub for innovation and cutting-edge skills in technological

and engineering domains. The diversity in the department’s expertise gives way to its vast and extensive

exploration of front-line innovative technologies. From data scientists and machine learning experts, IT

and DevOps engineers to robotics and embedded system engineers, AKKA Research has pioneered

projects reflecting this diversity. Some of these projects include:

• Air-Cobot: The first mobile collaborative robot that inspects aircraft during maintenance and

check-ups.

• Autopilot [7]: An autonomous driving project involving cooperating self-driving cars controlled and

communicating with an IoT platform in real-time.

• Link & Fly [8]: A flying multimodal prototype showcasing the advantages of the aircraft of the

future.

• InGeoCloudS [9]: Solution for the creation and sharing, at a massive scale, of environmental data.

• 5G-MOBIX [10]: New 5G cross-border corridors for connected and automated driving.

Apart from providing AKKA’s consultants with an internal hub of technological know-how, AKKA

Research aims in extending AKKA’s impact on their customers by introducing innovation to the client’s

existing operations. This occurs because many enterprises may only invest in innovation that is very

specific to their domain and AKKA can intervene as the umbrella innovator. With regards to the data

6

and digitalisation domains, AKKA Research is a clear driver in AKKA’s diversification process as their

projects are already very much orientated towards data and digitalisation, building solutions on cloud

computing, IoT, 5G and machine learning.

2.1.2 Project ZORRO

Having understood the high potential of Industry 4.0 for increasing efficiency of production environments

and wanting to increase its expertise on digital transformation and data solutions, the ZORRO project,

which stands for (Zero Defect Production Strategy based on Processing Big Data of Products, Processes

and Quality) was created at AKKA Research. This project emerged in the context of an European H2020

project with multiple partners and with the objective of responding to the demand for European Industrial

efficiency and competitiveness.

As the name suggests, the project’s main goal is to develop an Industrial IoT (IIoT) data platform solu-

tion in a multi-production-line and multi-stage factory context, capable of detecting production anomalies

in real-time and attaining zero-defect production. The data streams from one production line is shown in

Figure 2.2.

Figure 2.2: ZORRO data streams overview (inspired by a PCB production line).

This production line data flow is inspired by Printed Circuit Board (PCB) production lines. As can

confirmed in Figure 2.2, data can be produced from various sources either containing production equip-

ment data, manufactured product data or environment data (red, blue and yellow sensors). The idea

behind the ZORRO IIoT system is to monitor the production status using these data streams and gather

insights about the production as well as detecting anomalies and identifying root causes in real-time.

These insights and anomalies are to be displayed as alerts, diagnostics and reports in a format that

can be interpreted by production stakeholders as shown in Figure 2.3. To do this, the ZORRO solution

must include an IoT data collection system and a database system to store data from the production

processes. This data will then be used to extract insights and train machine learning models which in

turn will be used to monitor the data being produced in the factory and detect the anomalies in real-time.

7

Given that factories can grow huge in size, particularly in mass production contexts, the ZORRO project

was thought of as an Industry 4.0 solution satisfying Big Data constraints.

Figure 2.3: ZORRO industrial data platform solution - integration with factories.

The ZORRO solution is therefore a Big Data scale, IIoT data processing platform. The gains of

the ZORRO IIoT solution are also illustrated in this figure and are improvements that are generally

associated to Industry 4.0 solutions. To summarise the list, the ZORRO project aims in increasing

production efficiency by reducing maintenance cost, increasing flexibility and driving optimisation.

The ZORRO project alone does not have the objective of being sold as a product, instead, it’s aim is

to become a Meta solution to be instantiated depending on the concrete customer needs and require-

ments and to equip AKKA with the know-how required to advise customers on what an Industry 4.0

solution consists of in terms of architecture, technology and cost, as well as what added value it can

give manufacturers.

2.2 Industry 4.0 Today

The term Industry 4.0 was coined in Germany, in 2011, and was born through an initiative to improve

manufacturing by exploiting digitalization and new technologies [11]. As discussed in the introduction

of this work, the idea behind industry 4.0 is to use data from connected machines and IT systems in

the production environment to increase efficiency and quality of production. Although today there is no

standard on how to perform Industry 4.0, robust architecture proposals are starting to rise. One such

mature proposal can be found in [12], where a layered architecture is introduced. According to this

proposal, an Industry 4.0 ecosystem is composed of 5 main layers as illustrated in Figure 2.4.

The layers can essentially be grouped into two main components, a Cyber Physical System (CPS)

with advanced connectivity and real-time data acquisition of the physical production system and an

8

Figure 2.4: Industry 4.0 proposed general architecture [12].

intelligent data management system who’s objective is to leverage the data production and connectivity

of the physical level to extract useful insights from the data and increase efficiency through data-driven

decisions. By grouping the Industry 4.0 ecosystem into these two main components and the 5 layers

which make up the system as a whole, we can already better understand why Industry 4.0 is difficult and

complex to implement as it requires expertise on the physical and IoT domain, due to the correct and

efficient measurement of processes with sensors, on the data engineering domain, not only because

the volume and velocity of the data to manage is significant (Big Data) but also because the data needs

to be streamed in real-time and stored or processed by distributed computing systems (cloud or edge

computing), and on the data science domain, as algorithms for machine learning, analytics and insight

extraction need to be employed to be able to extract value from the data. Furthermore, as can be seen

in the final layer of Figure 2.4, the cognitive layer, following the implementations of the previous layers, in

particular the data-to-information conversion level, the data and results can be used to develop control

algorithms to govern certain processes on the production line automatically. This was done in [13] on

the aerospace manufacturing industry where machine learning control algorithms were developed to

perform the deburring process on certain parts automatically, a process which normally requires manual

work, subjective quality judgement, and could now be done quickly and involving data-based judgement.

Eventhough there is substantial value to be gained here, after succeeding in implementing a robust

Industry 4.0 ecosystem other issues such as cyber security and data ownership arise [3].

In spite of the difficulties associated to Industry 4.0, manufacturing companies require it to increase

the quality and speed of production. In the Aeronautics sector for example, airbus has delivered in the

past 40 years 10,000 aircraft and aims in delivering 20,000 aircraft in the next 20 years (2019 numbers

before the COVID-19 pandemic). To achieve this goal, airbus is investing in Industry 4.0 technologies

such as the mixed reality [14] and Big Data platforms [15] as in Aerospace manufacturing, an increase

in quality is an increased in safety.

Some organisation like SIEMENS are attempting to become reference providers and users of In-

9

dustry 4.0 [16]. However, these organisations naturally struggle to provide support and expertise on all

aspects of the Industry 4.0 environment, as this demands knowledge on a vast range of technological

fields as described above. It is for this reason that players like Microsoft, with their software and cloud

computing offerings, are intervening and forming partnerships with organisation like SIEMENS to pro-

vide all technological aspects an Industry 4.0 solution requires [17]. This particular partnership arose

due to the industries realisation that disruptive technologies such as cloud computing and Big Data are

tied with the feasibility of Industry 4.0 [4]. Big Data and cloud computing are technology enablers of

Industry 4.0.

2.3 Big Data and Cloud Computing Processing Platforms

Data processing platforms are an essential component of Industry 4.0 systems as they contribute to

layers II, III and IV of Figure 2.4. Real-time data systems used in combination with persistence storage

(batch) data systems are becoming increasingly popular due to their ability to store large amounts of

data and extract insights from it whilst also being able to react to changes and events represented by

data being produced in real-time. The ZORRO project is focused on an industrial production context,

nevertheless, there are a significant number of domains where data is required in real-time to generate

alerts or make long-term or short-term decisions. Examples include energy production, agriculture,

healthcare, smart cities etc. Notice that in these domains, there are also physical entities that need to

be monitored or controlled (wind turbines, tractors, medical equipment etc), therefore also including IoT

type data. Due to the wide variety of applications, but similar base needs, data systems that were not

necessarily made for Industry 4.0 were also studied.

In this section what is required to build a Big Data and IoT processing solution both in terms of

architecture and technologies is discussed. This section reflects the the state-of-the-art study carried

out on Big Data and cloud computing processing systems. The section gives an overview of the tech-

nologies, architectures and enablers of Industry 4.0 and Big Data systems but focuses primarily on the

technologies and architectures that were used.

2.3.1 Cloud Provider Solutions

Allied and as a consequence of the rising popularity of digitalisation and data solutions, many techno-

logical companies have entered the cloud computing field, either as users or as providers, realising that

the paradigm for application deployment has changed significantly. Cloud computing refers to the avail-

ability on demand of computer system resources (e.g. data storage, servers, networks, applications)

[18]. Cloud computing offers these resources in the form of 3 primary services [19]:

• Infrastructure as a Service (IaaS) - IaaS refers to the provision of physical and virtual computing

resources by combining physical and infrastructure layers.

• Platform as a Service (PaaS) - As the name suggests, PaaS provides computing platforms such

as operating systems, programming language execution environments and database engines.

10

• Software as a Service (SaaS) - This service provides on-demand applications and service through

the web for internet end-users. An example of such a service is Dropbox. The provider is respon-

sible for all the infrastructural and software maintenance.

Modern applications require a micro-service based architecture with fast and flexible scalability. Cloud

computing platforms allow for this as they manage large data and processing centres with flexible vir-

tualisation tools installed. This is what allows these platforms to provide or remove multiple computing

resources in just a couple of clicks. The alternative to this would be to buy servers for internal use based

on the requirements. This solution has a series of disadvantages, mainly involving scalability and flex-

ibility, which cloud computing does not as cloud providers abstract away all the complexity associated

to the maintenance and deployment of such systems and only charge the customers for what they use.

Given that in Industry 4.0 systems, large amounts of data are produced and need to be processed, cloud

computing has become a promising solution to respond to this on-demand computing resources [20].

Understanding that there were many patterns to the type of applications that their customers were

deploying and high business value, many cloud providers began to develop out of the box SaaS and

PaaS solutions built on their computing resources. Many cloud providers offer IoT, Big Data and Artificial

Intelligence platform solutions, which are precisely the type of solutions that ZORRO aims to provide.

These providers are therefore ideal candidates for a state-of-the-art reference for this project. The big

three cloud providers are:

• Amazon Web Services (AWS).

• Microsoft Azure.

• Google Cloud Platform (GCP).

In the following sub-sections we will explore the offerings of each one of these providers and focus-

ing particularly on their IoT, Big Data and data processing platforms to understand what features and

architectures these systems are composed of.

Amazon Web Services

AWS, founded in 2006, is a globally available platform of web services based on the cloud. It is consid-

ered to be the leader within the big three cloud providers. In terms of IoT platforms, AWS has a mature

and complete offer. The main core of this platform is the AWS IoT Core [21], Figure 2.5.

Figure 2.5: AWS IoT Core concept [21].

11

The solution allows for devices to produce messages (publish) and subscribe to messages (con-

sume) to and from the platform that is built to handle this data management efficiently. The AWS IoT

core also allows for interaction with other AWS services such as Lambda functions, which can trigger

an action depending on the content of the messages received from the IoT core. This allows for what

is known as event driven architectures, where events (described by messages) can activate and trigger

certain system responses. The IoT core can then be enriched by connecting it with other AWS services

such as IoT Analytics, IoT graphs and IoT events (see Figure 2.6). These complementary services

are used for some form of value extraction from the data. AWS also contains core extensions such as

IoT device management and defender services, which provide respectively IoT device management,

creation and connection as well as secure communication to and from all devices.

Figure 2.6: AWS IoT services. [21].

Microsoft Azure

Azure is Microsoft’s cloud platform founded in 2010 and considered number 2 of the big three providers.

It is an extremely popular solution for the execution of services in the cloud for enterprises. Azure IoT

Hub [22] is Azure’s solution for collecting metrics and information from IoT devices, Figure 2.7.

Figure 2.7: Azure IoT Hub high-level architecture [22].

Messages that are produced by the IoT devices, are sent to the IoT Hub. The messages can in turn

be organised by routes, allowing for later redirection to end-point services. End-point services can be

varied in nature, but essentially extract some form of value from the data. Azure event Hub for instance,

allows for an event driven architecture as messages that fall into certain routes can activate certain

12

Azure functions, which in turn create some system response. Similarly, messages can be redirected to

Azure’s streaming analytics platform to perform real-time analytics on the data. Finally, messages can

be sent to Azure’s storage blob for persistent storage and future value extraction. Azure’s IoT hub can

be complemented with Azure’s IoT central which allows for the connection and monitoring of individual

IoT devices. Azure’s IoT Central also provides template interfaces for energy, government, healthcare

and retail solutions. Another end-point service that can complement Azure’s IoT platform is Azure’s

digital-twins platform. This platform has the aim of creating digital representations of physical objects

or systems. This is an extremely interesting use case for IoT systems as digital representations will

ultimately aid in modelling, experimenting on and understanding the real physical system at hand. For

example, if the system is a wind turbine and we wish to test new features on it, one could use the digital

representation of the turbine to perform these tests rather than potentially compromising the correct

behaviour of the real physical system. As illustrated in Figure 2.8, a digital twin solution provides a real-

time graphic digital representation of a system connected to multiple azure services either to keep the

digital twin up to date (IoT Hub) or to extract some insights from the twin.

Figure 2.8: Azure digital twins GUI [23].

Google Cloud Platform

Google’s GCP, founded in 2008, is considered to be the third top cloud computing provider and is growing

at a very fast rate. Like the previous two cloud providers, GCP offers a mature IoT data platform solution

[24] containing various sub-systems to extract value from the data. Figure 2.9 illustrates the full IoT data

platform solution.

As can be seen in Figure 2.9, the idea behind GCP’s IoT platform is to ingest IoT type data, store

this data for Big Data insight extraction and use artificial intelligence (AI) and machine learning (ML),

in real-time, to drive automatic decisions and obtain insights in real-time. Once again, the event driven

architecture is seen here as events, represented by messages, trigger certain system responses. Some

of the systems provided by GCP and included in the figure are:

• Cloud Pub/Sub: Central messaging system of the data platform.

13

Figure 2.9: GCP IoT data-platform [24].

• Big Table: Big Data persistent storage.

• Big Query: Allows for queries on the large scale Big Table data storage system.

• Cloud Machine Learning: Allows for the training and deployment (usage) of ML models.

Notice also that GCP’s IoT platform allows for the control of the IoT layer, through two way com-

munication and using edge ML. This is an extremely powerful concept as the real-time decisions that

are done on the data platform can trigger automatic reactions on the physical process IoT layer. Edge

computing is an interesting aspect of Industry 4.0 introduced by GCP in Figure 2.9. Edge computing

refers to computing power that is installed close to the system of interest. This proximity allows the sys-

tem to provide the low latencies that some real-time actions require. In Industry 4.0, examples of these

actions include automatic machine control and supply and value chain resilience. Like the previous two

providers, GCP’s solution also allows for an offline insight and value extraction tools through what they

call a data usage layer.

Implied High-level Architecture of Industry 4.0 Data Platforms

By studying the solutions developed by these technological and cloud giants, the high-level architecture

and building blocks of IoT and data platform solutions has become clearer. The objective of this study

was not to compare the different cloud providers, as they all have very similar offerings, but rather to

identify the similarities between them and design an architecture that is inspired by the strong points

of all of these solutions. From all three solutions, it is clear that the ZORRO platform must contain a

message broker allowing for the temporary retention of data so that exterior services can consume and

use this data in real-time.

There must also be an intelligent processing platform capable of detecting equipment and system

anomalies from the production floor. It has become clear that the algorithms that make up this platform

should be developed using machine learning due to its ability to make decisions and predictions based

on multiple sources of data. After detecting anomalies, a complete IIoT system should be capable of

performing some action on the IoT level or other elements of the architecture (sending an alert to a dash-

board). The message system must therefore allow for bidirectional communication (publish-subscribe

architecture).

14

In order to extract insight and thus value from the data being produced in real-time, analytics and data

processing engines must have access to the data as close as possible to the time when it is produced.

Allied to this analytics system, there must be some sort of interactive tool for developers and Machine

learning Engineers to write their applications to the platform given their use case. Finally, as was seen

in the AWS solutions, communication security must be considered, particularly when there is a control

loop. With this initial state-of-the-art study, one can already create a high-level system architecture of

the ZORRO solution.

The system must be composed of the following generic sub-systems: IoT data measurement and

production system, data collection and pipeline system, long term data storage system, data processing

and analytics system, data visualisation and insight extraction system. The logical high-level structure

of such a system is represented in Figure 2.10.

Figure 2.10: High level ZORRO solution.

These general sub systems will form the base for the future system requirement analysis. The pro-

posed high-level system architecture not only allows for the fulfilment of the automatic anomaly detection

objective of ZORRO, but is generic enough to build other Industry 4.0 end-point systems not originally

planned for ZORRO. This is crucial as it allows us to make ZORRO a more complete Meta solution. In

the following sections we shall answer the next question that emerges: what individual technologies are

used to build each one of the sub-systems.

2.3.2 Message Broker Systems

As seen briefly above, message broker systems, or message orientated middleware (MOM), are sys-

tems that receive and temporarily retain data from various producers (publishers) and redirect the data

to consumers (subscribers) that wish to consume it. The concept behind MOMs here described is il-

lustrated in Figure 2.11. This type of interaction is known as public/subscribe communication. One

question that might be asked is why not just create a dedicated channel between each two entities

that wish to communicate (Figure 2.11.a). Essentially, not only will the number of communication links

increase significantly (Metcalf’s law, Figure 2.11.b), especially in IoT use cases, but it will shift part of

the communication burden to the consumers and producers. This point-to-point communication leads

to rigid applications and is unthinkable for dynamic large-scale scenarios. On the other hand, if there

15

is a message brokering system responsible for managing all these communication links, then not only

will the number of links decrease, but the burden of managing communications is shifted to the broker,

leaving consumers and producers free to focus on their original tasks. Likewise, the services com-

municating between each other become less rigidly coupled, which is essential in large scale systems.

Publishers and consumers are decoupled in terms of time and synchronisation as they do not even need

to be aware of each other. These types of publish subscribe architectures are very useful in Industry

4.0 scenarios for a number of reasons. Firstly, MOM systems abstract communications while making

interoperability possible [25]. With regards to cyber-physical systems, they are communication protocol

agnostic, making the adoption of communication technologies of different machine protocols easier [26].

MOM systems allow for entities in the production environment to produce data therefore making their

status known and consume data allowing for them to be controlled. This is interesting in automatic pro-

duction environments where machines and products communicate and cooperate in a fully autonomous

production context.

(a) Communication without a MOM. (b) Concept of MOM.

Figure 2.11: Message Orientated Middleware interest [27].

There are many message brokers available today each originally created with different architectures

and use cases in mind. Examples include Kafka, RabbitMQ, HiveMQ, Mosquito etc. One extremely

popular message broker for Big Data message management, being a reference technology, was Apache

Kafka [28]. Apache Kafka [29] was originally developed in LinkedIn to become the unified central data

pipeline of the application. Kafka is a distributed publish-subscribe based durable messaging system. In

Kafka, messages, which are referred to as records, are key-value pairs that are stored in topics. Topics

are classed groups of messages (family of messages). A record can include any type of information,

for example, an event-based record. Data is written to disk in Kafka, but only for a specified retention

period. This data retention allows Kafka to provide data replication and therefore high availability and

fault tolerance. Figure 2.12 illustrates the general Kafka data production and consumption model.

If we consider the sub-figure on the left of Figure 2.12, we see that a Kafka cluster is composed of

entities called brokers. Brokers store and manage the topics. Producers publish messages into specific

topics. If a consumer is interested in data from a topic, it can subscribe to this topic and pull the data

from it. This is a very important feature of Kafka. It follows a consumer pull data model which means that

consumers will never be overloaded with messages. Topics are divided into partitions. Partitions are

essentially what allow Kafka to be a scalable Big Data system. Topic partitions are stored across brokers

16

Figure 2.12: Kafka publish / subscribe model [30].

as shown in Figure 2.12 on the left. If a consumer wishes to consume all messages from topic A, it will

have to consume messages from all the partitions in this topic. To parallelize the consumption of data

from a topic (for higher throughput and smaller latency), consumers can work together in a consumer

group (right hand figure of Figure 2.12). In a consumer group, consumers will divide up the consumption

of a topic by consuming data from an allocated number of partitions. As show in the Figure on the

right, if there are four partitions (topic T1) and four consumers in a consumer group, each consumer

will consume data from one partition. Given that data is unique on a per partition basis, no data is

consumed twice. The criteria for choosing which messages fall into which partitions is defined, in a

round-robin fashion, by the key of the messages in Kafka. Messages with the same key will be stored on

the same partitions. Fault tolerance is achieved through partition replication. Partitions can be replicated

and stored in different brokers. This poses other difficulties in terms of partition leader allocation and

constant updates of partition replicas. These are the type of difficulties that are usually associated to

distributed systems. This process is completely managed both by the brokers and by Apache Zookeeper

[31], which is required in a Kafka deployment. Essentially, for each partition, a broker is selected to be

the leader of said partition. As the leader, it is this broker that is responsible for receiving and sending

messages to and from this partition. Similarly, this broker is also responsible for making sure all replicas

of that partition are up to date. If the broker fails, then Zookeeper will select a new broker, containing a

replica of the partition, to be the new leader.

Kafka is also a highly configurable system, allowing for the user to find a compromise between

message throughput, latency and Quality of Service (QoS). Essentially, this is defined by four major

configuration options. The first option is the maximum number of in-flight batches sent. This option

defines how many batches of messages can be sent by a producer without having received acknowl-

edgement of reception from any broker. If set to be greater than one, and the sending of one message

fails, then there is a risk of message reordering. The second option is the reception acknowledgement

policy. Kafka can be configured to only consider a message received when it has been written into the

respective (leader) partition and to all partition replicas. The final two options are the lingering and the

17

batch size options. Batch size defines how large the batch of messages to be sent to the cluster can

be. Larger batches will increase throughput but also increase latency. Lingering defines how much time

the producer waits before sending a batch. Larger lingering will correspond to larger latency but more

throughput.

Architecturally, Kafka is sound and has the necessary mechanisms to be horizontally scalable, con-

figurable and fault tolerant. Kafka has proven to be very successful in streaming image data in [32],

being capable of streaming hundreds of thousands of images per second, but also as a viable solution

in IoT [33]. It was also chosen as the MOM solution for an Industry 4.0 (IIoT) scenario in [34], acting as

the central data pipeline. In these studies, Kafka integrated well both with data processing platforms and

data storage systems, which ZORRO must contain. Kafka’s popularity and reputation is also shown by

the fact that it is used in 80% of the Fortune 100 companies [29], making it a solid solution for a MOM

system.

2.3.3 Data Processing System

In the context of Big Data systems, a data processing system is a distributed processing system of Big

Data sources. It is distributed in nature as it is not possible to efficiently process Big Data sources in a

single node system. Examples of data processing systems include [28] Hadoop (Hive), Spark, Flink and

Storm. Traditionally, at the time where Hadoop and its map reduce paradigm was introduced by Google

in 2006, these systems were used for batch processing only. Nevertheless, the world of Big Data has

recently extended to stream processing as well.

One of the most popular go to options for distributed and large-scale streaming and batch data-

processing is Apache Spark [35]. Spark is a unified multi-purpose stack for carrying out distributed

calculations. It is used as a unified analytics engine for large scale data-processing. At its core, Spark

is a computing engine (built on a cluster or computer system) that schedules tasks in a distributed

fashion. Spark offers rich libraries allowing for SQL, machine learning, graphing and streaming specific

operations on data (Figure 2.13). All these operations can be performed at significantly high speeds

on a Big Data scale. For certain operations, Spark is known for being 100 times faster than Hadoop’s

map reduce paradigm [35]. Spark was successfully used for image streaming and online prediction

processing in combination with Kafka in [32], being capable of making a prediction throughput of 40000

images per second with 4 Spark workers (26x26 pixel images of digits).

Figure 2.13: Spark ecosystem and comparison with Hadoop [35].

18

All spark programs consist of a driver program known as the SparkContext. The SparkContext is the

entry point of every Spark application. A Spark cluster consists of a master (cluster manager) and worker

nodes. The driver program reads the program (application) instructions, converts the instructions (script)

into tasks and communicates these to the master node who then allocates resources and schedules

tasks to the workers (see Figure 2.14). The driver program is thus a per application construct and the

master is a per cluster component. The workers host executors where tasks are run. Each application

gets its own executor process which stays up for the duration of the application and runs tasks which

in turn are executed in multiple threads. This an advantage as there is application isolation on both the

execution side of things (different executors) and the scheduling side of things (each application has

its own driver program). As a resilient distributed system, Spark also guarantees fault tolerance in its

executions. If a worker fails, spark reschedules the tasks that that worker was responsible for in another

worker being also able to send part of the output that had already been produced by the failing worker

to the new worker. A key component of Spark is the cluster manager which hosts the master node.

The cluster manager is responsible for acquiring resources from the cluster. Examples of these include

YARN, Mesos, Kubernetes or Spark’s standalone cluster manager. In order for there to be fault tolerance

in the Spark master then, like in Apache Kafka, Apache Zookeeper needs to be deployed to manage

multiple master nodes and allocate one as the leader.

Figure 2.14: Spark cluster and execution architecture [36].

As of its second major release, Spark 2, Spark introduced streaming libraries allowing for the pro-

cessing of data in real-time. Since its original introduction, the Spark streaming library has improved

massively. It now consists of pretty much the same programming constructs of batch processing (Spark

structured streaming). Likewise, Spark’s original ML library, MLlib, has evolved to Spark ML which is

faster and more data science friendly having introduced the DataFrame object. Overall, Spark’s wide

adoption, popularity, libraries and performance makes it an excellent choice for Big Data processing,

analytics and machine learning.

2.3.4 Time Series System

One of the priorities of the ZORRO data storage system is to be optimised for large scale timestamped

data. Traditional relational databases are generally not adapted for time series data mainly due to scale,

19

as time series data piles up fast, but also in terms of timestamp orientated queries (data stored in time-

ascending order). With the rise of IoT, time series databases are becoming increasingly popular [37] with

solution such as TimescaleDB, being developed by the famous PostgreSQL community, OpenTSDB,

TICK stack, Graphite and others. After investigating these different solutions the TICK stack [38] was

found to be the leader in terms of performance when it came to time series databases [39]. The central

piece of the TICK stack is time series database InfluxDB, Figure 2.15.

Figure 2.15: The TICK stack [38].

InfluxDB [40] is a NoSQL database purpose built for time series data. Data is ingested into In-

fluxDB through their metrics collection agent, Telegraf [41]. Due to InfluxDB’s wide community adoption,

Telegraf contains many plugins to consume data from various data sources such as Kafka, RabbitMQ,

Kubernetes, MQTT, HTTP, TCP and many others. Chronograf is the user interface to interact with the

stack. It provides data visualisation capabilities through dynamic dashboards and interactive queries as

well as the definition of alerting programs. Finally, Kapacitor is the real-time data processing engine. It

is used to perform a series of extract, transform and load (ETL) jobs. Kapacitor is also responsible for

periodic data processing tasks on InfluxDB to optimise size of storage. For example, Kapacitor performs

Downsamlping on the data which refers to the compression of multiple data points into a single data

point containing average measurements. The TICK stack is mainly written in Go and processing jobs

programmed in Kapacitor must also be written in this language.

With regards to the data model of influxDB, data is divided into measurements. These generally

reflect an entity to measure. It can be something as big as an equipment or something as small as a

sensor. There are two types of columns in a measurement series the fields, which refer to columns that

hold numeric values, and the tags, referring to columns that hold string like values. One of the main

difference between these two is that tags are indexed and fields are not.

The TICK stack has proven efficient in industrial applications such as mining [42], where real-time

20

IoT data is needed to be visualised and used to control certain quantities in the mine such as oxygen

supply. InfluxDB contains a commercial cloud offering which is capable of ingesting millions of metrics

per second. The disadvantage of this stack however is that, for Big Data applications, the commercial

offering needs to be used and the open source version by itself is not horizontally scalable. Nevertheless,

inspired by the state-of-the-art study developed in the previous ZORRO work packages, as well as the

current findings, the TICK stack chosen as the time series specific stack mainly due to its performance

with time series data and incredible dashboarding capabilities. Similarly, at the simulated scale of this

work, the InfluxDB cloud offering is not required.

2.3.5 Persistent Big Data Storage System

In order to be able to store large amounts of data, so that it can be processed in parallel and efficiently

by data processing systems, Big Data information systems require special types of databases. When

it comes to Big Data systems, traditional relational databases are built in such a way that they have

limitations in terms of scalability, fault tolerance and query speed. This is mainly due to the fact that

relational databases are designed in a way such that all data is stored in one node and thus there is

no partitioning of data. InfluxDB claims to be a scalable and efficient Big Data storage system for time

series data but as seen previously has limitations in terms of its open source offering. Similarly, due to

its relatively recent introduction, it does not have many out of the box connectors with other popular Big

Data systems such as the previously studied data processing engine Apache Spark. It is for this reason

that a fully InfluxDB ZORRO solution is not the most coherent choice. When investigating popular Big

Data storage systems, many options are possible: Cassandra, MongoDB, HBase and Neo4j [43].

In this work, Apache Cassandra [44] was chosen as the main persistent storage database solution

not only because it is open-source but also because it significantly leads in Big Data storage performance

both in terms of throughput and operation speed (latency) [45]. It has also been shown to work well as

a cheap and efficient IoT timestamped data storage solution [46]. In fact, Cassandra is also known for

being a good choice when it comes to timestamped data due to its sequential data storage [47]. Given

that Cassandra was developed and built since the beginning with Big Data and distributed storage in

mind, it comes as no surprise that it is one of the most popular Big Data storage systems for large

corporations today being used by 40% of the Fortune 100 companies including eBay, Facebook, Apple,

Instagram, Reddit, CERN and Netflix. Close behind Cassandra in terms of performance is MongoDB,

which contains a strong database as a service commercial offering. Even though MongoDB does not

seem to have a very attractive latency, it could be a viable option when database experts are lacking.

Cassandra is a distributed NoSQL database system, originally developed at Facebook. It was de-

signed to satisfy the following requirements: full multi-master database replication, global availability at

low latency, scaling out on commodity hardware, linear throughput increase with each additional pro-

cessor, online load balancing and cluster growth, partitioned key-oriented queries and flexible schema.

Cassandra is a master-less peer-to-peer system with no single point of failure. All data in Cassandra is

associated to a Token. The nodes in a Cassandra cluster share the responsibility of data storage and

21

occupy themselves with data from a multiple range of token values. When new nodes are added, the

token ranges are simply further partitioned and free token ranges are given to the new nodes. A Cas-

sandra row is defined by a primary key which in turn is composed of one or multiple partition keys and

one or multiple clustering keys. Partition keys, as the name suggests, determine the partition in which

data is stored. The clustering key defines the node in which the partition is stored, Figure 2.16. The

choice of columns to use to define these keys is essential as queries in Cassandra are very dependent

on the columns that form the partition key and clustering key. Naturally, the primary key must be unique.

Figure 2.16: Cassandra primary key definition.

In the ZORRO context, it therefore makes sense to use the timestamp of the reading in the primary key,

to ensure that no readings from different systems, but taken at the same time, coincide and overwrite

each other. Data in a Cassandra system is divided into datacentres each containing multiple racks.

2.3.6 Deployment and Virtualisation

Having chosen the main technologies to be used in each one of the sub-systems, the next challenge is

the choice of the technology deployment method. When it comes to deployment of Big Data information

systems, or any modern application by that matter, the deployment paradigm has significantly changed

in recent years. The first enterprise scaled applications were deployed on physical machines powerful

enough to sustain the expected load. If the load were to increase, the solution consisted mainly in

increasing the power of the machine. This rapidly became impracticable and unthinkable for Big Data

use cases. The concept of Virtual Machines (VMs) arose following this, where the VMs would share

physical resources and could more easily be horizontally scaled up and down. If we needed to scale an

application, we would simply add more of the same type of machines on the hardware level (horizontally

scaling) and spawn more VMs, Figure 2.17. The way software and applications were produced and

coded naturally also changed around this new construct. Despite their attractiveness and flexibility, VM’s

still had limitations as they were relatively expensive to bring up and down and normally came with a

fully-fledged operating systems as seen in Figure 2.17. Similarly, there was no clear bridge between

local application development and deploying it in a VM. In fact, these two operations were generally

done separately. In order to respond to the need for a more scalable and flexible deployment entity, and

22

also to bridge the gap between development and deployment, the concept of containers arose.

Figure 2.17: Virtual machines vs containers.

Containers can be described as isolated processes that contain a namespace (Bins/libs) and access

to a limited amount of hardware resources (control group). Due to this, containers can be thought of

as minimalist operating systems running an application (task) that is stateless. For applications to be

scalable, services from these applications needed to be decoupled. This is the idea behind a micro-

service like architecture. Containers allow for this as they are lightweight therefore making them easy to

bring up and down. They are stateless making an application composed of containers more fault tolerant

as each container is even more “disposable”. To create, deploy and manage containers, Docker is the

go-to technology as they are the original creators of containers as we know them today [48]. Docker

corresponds to the container engine in Figure 2.17.

Most modern-day applications which deal with Big Data sources and fast and varying demands have

adopted a containerised deployment. The use of containers however is not only restricted to Big Data

applications, having being used in embedded robotics systems as well due to their light weight and

micro-service nature [49]. Figure 2.18 illustrates how the docker daemon works.

Figure 2.18: Docker daemon [50].

The client (user) communicates with the docker daemon demanding that a certain container be run

or built. In the case of running a container, the docker daemon downloads the container image from a

container registry and runs it on the host operating system. A container image is simply the build-time

23

construct of a container and a container instance is the run-time construct of a container. Docker is

responsible for managing resource distribution across containers.

Docker is an extremely useful tool to deploy containers however, for large scale environments, tools

such as docker-swarm [51] to manage containerised deployments distributed across many machines

(cluster) is required. In fact, this concept and technology was so widely used in organisations like Google

that they internally developed and open-sourced a container cluster manager solution called Kubernetes

[52]. Kubernetes is the next step to docker as it allows for the management of multiple containerised

systems in different machines. It is for this reason that Docker alone cannot be considered a final solution

for the robust deployment of the ZORRO system.

2.3.7 Data Architectures

So far, we have talked about generic data system architectures and individual technologies that make

up these systems. However, when it comes to Big Data specific architectures, there are different archi-

tectures that can be built depending on the processing modes and use cases required. Three popular

Big Data architectures are Lambda, Kappa and SMACK.

The Lambda architecture [53] is a data processing architecture designed to handle massive amounts

of data using both batch data processing and stream data processing. For batch processing scenarios,

data is stored in a Big Data storage system (Data Lake), and then used in what is known as the serving

layer, involving distributed querying interfaces and insight extraction tools (Figure 2.19). In the streaming

layer, data is ingested in real-time and likewise queried in real-time. This layer is associate to use-cases

where the architecture is event-driven, meaning that actions need to be taken in real-time based on

events that occur.

Figure 2.19: Lambda architecture – concept [54].

The Kappa architecture [55] was created by Jay Kreps based on his experiences at LinkedIn and his

feedback from the Lambda architecture [56]. The KAPPA architecture is a simplification of the Lambda

architecture but without a batch layer (Figure 2.20). The Kappa architecture focuses on stream process-

ing but can also perform ”batch” processes by using MOMs such as Kafka, which persist the data into

disk. The main advantage of the Kappa architecture is that the code and the stack it runs on is the same

24

for both streaming and historical batch processing. This is not necessarily the case for the Lambda

architecture.

Figure 2.20: Kappa architecture – concept [55].

The SMACK architecture stands for S - Spark, M - Mesos, A - Akka, C - Cassandra and K - Kafka.

The SMACK architecture was produced to respond to the new Web and general application paradigm.

In a modern, always connected and data-driven world, technologies need to be able to quickly ingest

data at a large scale with fault-tolerance, process this data in real-time, perform actions based on the

processed results and store data and results in persistent databases. The SMACK architecture was

conceived with these objectives in mind. Although the SMACK architecture uses Spark, Kafka and

Cassandra, which are all promising Big Data technologies, it is locked to specific technologies and is

therefore not adapted for a modular and flexible ZORRO solution. The architecture uses, for example,

the Mesos cluster manager. This is a viable technology but a replacement to the also very popular

Kubernetes cluster manager.

Figure 2.21: SMACK architecture – concept [57].

In ZORRO, we have decided to use the Lambda architecture as the generic, distributed, scalable, and

fault-tolerant Big Data processing architecture as it allows for both batch and streaming data processing.

Batch is required in ZORRO for both machine learning model training (which the KAPPA architecture

does not offer) and creation of a knowledge base of manufacturing data. The streaming layer is essen-

25

tial for real-time data processing, anomaly detection and event driven architectures. The results and

resources from both these processing layers must be available and accessible in what is known as the

serving layer. After a state-of-the art study on different types of lambda architectures and the cloud

provider’s implementations of these architectures, Figure 2.22 was produced to reflect the architecture

desired for ZORRO.

Figure 2.22: Lambda architecture – chosen Big Data architecture for ZORRO.

2.4 Automatic Anomaly Detection

As seen so far, Industry 4.0 systems process data and detect events to perform a series of actions:

anomaly detection, predictive maintenance, supply chain resilience, machine control etc. A majority

of these events are inferred from the numerous sensors present in the production environments and

producing data in large quantities in real-time. In order to process this data at the desired speed,

and in order to be able to apply the actions above mentioned, automatic and intelligent algorithms

are required. The algorithms must be automatic in order to achieve the desired speeds. Intelligent

algorithms, (containing Artificial Intelligence) are required in order to be able to identify events which can

be function of very complex interactions and relationships from the measured sensor values. In the case

of equipment anomaly detection for example, the idea is to be able to understand the dynamics of the

machines when they behave correctly and be then able to tell when the behaviour is deviating from this

normal value.

Artificial intelligence (AI) refers to intelligent like behaviour demonstrated by machines. As seen in

section 2.3.1, AI has a lot of potential in event driven architectures as it can provide crucial insights and

decision criteria in response to events. Most importantly, it can perform this task quickly and in a scalable

way. According to McKinsey [58], 50% of companies that embrace AI will double their cash-flow in 5-7

years. In an IIoT context, AI can be used for general forecasting, supply chain resilience and anomaly

detection. The actions generated by these algorithms can be simple alerts or control actions on the data

and IoT system. In the context of the ZORRO project, the first mission is to be able to detect production

26

anomalies in real-time. This is done through a branch of AI called Machine Learning (ML).

In ML, computer algorithms learn and improve from experience without being explicitly programmed

[59]. ML algorithms can learn from data, make sense of data or automatically learn through experience.

There are three main branches of ML: supervised learning, unsupervised learning and reinforcement

learning. In supervised learning, the algorithm uses data from a dataset (training dataset) containing

input-label pairs (x1, y1), ...(xn, yn), with input xn ∈ X, being p quantitative or qualitative variables, and

observed labels (outputs) yn ∈ Y , also quantitative or qualitative, to create a model f̂ such that:

Y = f̂(X) + ε (2.1)

Where ε represents the measurement noise or error made by the model. The objective of the model

f̂ is therefore to attempt to explain the variable Y based on the observed features, X. The quality

of the model f̂ for observation k, is determined by a loss function l(yk, f̂(xk)), which measures the

discrepancy between the model prediction f̂(xk) and the observed value yk. Therefore f̂ is chosen

such that 1
n

∑n
k=1 l(yk, f̂(xk)), the average loss across the training data set, is minimised. One thing

to keep in mind during the training of a supervised learning algorithm is that trying to reduce by too

much the error during training can be ineffective and lead to a phenomenon called over-fitting. When

a model is over-fitted, it behaves very well on the training dataset but has very bad performance when

acting on a never seen before dataset. Over-fitting, when Y is a one-dimensional continuous variable, is

illustrated in Figure 2.23 where f̂ is given by the orange curve. This same phenomenon also occurs in

classification problems when Y is a qualitative variable. To avoid over-fitting, a balance between model

complexity and training error must be achieved.

Figure 2.23: Regression over-fitting concept.

In unsupervised learning, there are no inputs, outputs or pre-existing labels, and the ML algorithm

attempts to find previously undetected patterns or groups (clusters) in the data. In reinforcement learn-

ing, the algorithm adapts its behaviour and learns as it acts in the environment based on some sort of

cumulative reward or penalisation.

Given that automatic anomaly detection is one of the main objectives of the ZORRO project, ML

models that could effectively detect anomalies were studied. An initial naive approach was to study

27

supervised learning models that could be used for binary classification (anomaly 1 or no anomaly 0).

This corresponds to the case where the variable y, introduced above, can only assume two values:

y ∈ 0, 1.

Focusing on the algorithms offered directly by Apache Spark’s ML library, we chose to study the

following algorithms: Decision Tree, Random Forest, Logistic Regression and Support Vector Machine

(SVM). All these algorithms are methods used for defining the function f̂ described above. Realising

the limitations of this approach, other unsupervised learning algorithms for anomaly detection were

studied. In this section we will briefly, and at a high level, describe how these models work and are built.

The description of the algorithms is purposely kept at a high level, but more formal documentation was

separately done on these algorithms.

2.4.1 Decision Tree

Decision trees [60] are tree like structures that divide data into groups given criterion based on features

of the data. Each division applied to a node creates two further nodes. The features can be both

qualitative (was the machine checked in the past month – yes/no) or quantitative (temperature ¿ 20°).

For quantitative divisions, a value is fixed whilst for qualitative feature divisions, one of the possible

classes is chosen.

Figure 2.24: Two-dimensional concept of decision trees with quantitative features [60].

Figure 2.24 illustrates a 2D example of a decision tree constructed from quantitative features. The

result of a decision tree are childless nodes which form groups in the data division. Decision trees can

be used in binary classification by associating to each group one of the two possible outcomes. The

criteria to associate a class to a group can vary but is generally made so that the group is associated

to the mode of the class of that group. In our anomaly detection scenario, if a new data point arrives

and we wish to assess if it is an anomaly or not, we simply see the group to which it falls, by travelling

down the tree, and label it (make a prediction) equal to the group’s associated label. Decision trees have

multiple hyper parameters but one of the most important parameters is tree maximum depth. As the

name suggests, the tree depth defines the number of layers, m, a tree can have and therefore also puts

a limit on the number of divisions it can have (2m− 1). Increasing tree depth makes the model capable

of making finer and more complex prediction topologies but also exposes the model to becoming over-

28

fitted to the data. In a decision tree we choose the next division based on the division that will maximise

the purity of the two nodes created. Mathematically, this is done by minimising the impurity of a split.

Decision trees have the disadvantage however of being sensitive to over-fitting. Moving an individual

point can sometimes drastically change the form of the decision tree.

2.4.2 Random Forest

Random forest is a Supervised Learning bagging ensemble algorithm used for classification and re-

gression. Bagging algorithms use multiple weak learners, trained with random samples of the original

dataset, to form one robust learner. In random forest, the weak learners are decision trees as studied

above. In classification, the algorithm therefore operates by constructing a multitude of decision trees at

training time and when making a prediction, it outputs the class (prediction) that is the mode of the clas-

sifications (predictions) given by the decision trees (majority vote). The advantage of Random Forest in

comparison to the Decision tree is that it is less susceptible to over-fitting. The random forest algorithm

is therefore an aggregation of decision trees but where in each decision tree:

• The number of features that can be used to make a split at each node is limited to some percentage

of the total. This ensures that the ensemble model does not rely too heavily on any individual

feature and makes fair use of all potentially predictive features.

• Each tree is built on a random sample from the original data set when generating its splits, adding

a further element of randomness that prevents over-fitting.

Random forests successfully convert the high variance predictions (over-fitting) that are normally

associated to individual decision trees into low variance predictions by using majority votes. Taking the

example of Figure 2.25, the chosen predictions would be 1, as it wins the majority vote. The larger the

forest, the more robust the algorithm, however, the longer the training and prediction will take.

Figure 2.25: Illustration of a nine-decision tree random forest.

2.4.3 Logistic Regression

Logistic regression is an inherently binary classifier. The objective of Logistic Regression is adapted to

attempting to model or describe the probabilities P (Y = 1) and P (Y = 0) = 1 − P (Y = 1) rather than

29

predicting the class Y directly. We wish to predict these probabilities based on an observed value X.

This is given by Pr(Y = 1|X) = f(X). Logistic regression achieves this purpose by using a logistic

function. A popular choice is the logit function (our f̂(X))). Notice that in this case, f̂(X) is predicting

a probability and not directly the class. The goal is therefore fit f̂(x) such that it is as close to 1 as

possible for all x ∈ X such that y = 1 and so that f̂(x) is as close to 0 as possible for all x ∈ X such that

y = 0. Visually, this corresponds to fitting a sigmoid like curve to the data as show in the one-dimensional

example (p = 1), in Figure 2.26.

Figure 2.26: Logistic Regression one dimensional example [61].

In order to predict the class, a naive criterion would be to predict Y = 1 if f̂(X) > 0.5. In other

words, if a point arrives and we predict a probability that Y = 1 for that point that is greater than 0.5,

then we predict that that point corresponds indeed to an observation where Y = 1. This can of course

be adapted depending on the use case of the algorithm.

2.4.4 Support Vector Machine

The Support Vector Machine algorithm (SVM) [62] is, in a nutshell, an algorithm that aims in optimally

separating classed points with a hyper plain in the linear case, or with another function in the general

case. An optimal separation is one that perfectly separates two classes or at least does so with the

minimum amount of error possible.

Figure 2.27: Illustration of SVM concept optimally separating two classes [62].

As can be seen in Figure 2.27, multiple curves can be used for defining the separation of classes.

30

The SVM problem therefore implies finding the function f , such that the optimal division is obtained. It is

up to the Engineer to choose the type of curve used. As shown in Figure 2.27, a linear curve can in some

cases not be enough to decently separate the two classes. One would be therefore tempted to increase

the complexity of the curve in order to obtain the optimal separation. This is not necessarily desirable

as very complex curves can lead to the over fitting phenomenon. In the linear case, if the problem is

linearly separable, the problem is posed as the maximisation of the margin. Where the margin is the

shortest distance of a point to the curve. When the problem is not linearly separable, the problem is

renormalized by associating a penalty to each point that is not correctly separated and the goal is now

to minimise the sum of these penalties. Apache Spark’s ML library only provides support out of the box

for linear SVM binary classifier. To make a prediction, we simply first see in which side of the hyper plain

a point falls and predict the label associated to that side of the division.

2.4.5 Artificial Neural Network - Auto Encoder

The disadvantage of supervised ML algorithms in anomaly detection is that we need to supply the algo-

rithm with data from both correct (non-anomaly) like behaviour and incorrect (anomaly) like behaviour.

The danger here is that if a different type of anomaly, that was not initially “taught” to the algorithm,

appears, there is a risk that the algorithm will provide an incorrect prediction. It is for this reason that

unsupervised learning algorithms for anomaly detection were studied. From this study, one of the algo-

rithms that stood out was the auto-encoder artificial neural network having been used in [63] and [64]

for anomaly detection and shown to be efficient for time series anomaly detection.

The aim of the auto encoder network is to learn an efficient encoding of the system to monitor.

The encodings are a form of dimensionality reduction. An example of a popular form of dimensionality

reduction is the Primary Component Analysis (PCA) [65] which can also be useful for data exploration

/ visualisation purposes. The advantage of the auto encoder with regards to PCA is that nonlinear and

therefore more complex interactions can be modelled and encoded. It contains an input layer, an output

layer, and intermediate hidden layers. These layers are formed by nodes. The nodes of each layer are

connected to the nodes of the precedent layers and to the nodes of the following layer. The output of

node j in layer i is here represented by zi,j . For each node j in each layer i, the outputs from the k

nodes of the precedent i− 1 layer are used to define the output of this node, zi,j , such that:

zi,j = σ

(∑
k

wi,j,k · zi−1,k

)
(2.2)

where wi,j,k is the weight present in node j of the layer i for its connection to the node k of the precedent

layer, Figure 2.28. This weight represents the importance of the connection. The function σ is a nonlinear

normalisation function (sigmoid in shape). It is this function that allows the network to model non-linear

interactions. The output of node k from layer i− 1 is simply zi−1,k.

The auto encoder is a neural network with the number of input nodes equal to the number of output

nodes and with one or more hidden layers with less nodes than the input and output layers. The auto-

31

Figure 2.28: Inner workings of an artificial neural network neuron.

encoder attempts to compress the data with a minimal amount of information loss and then decompress

it again in the output. Figure 2.29 illustrates an example of an auto-encoder used in the reconstruction of

an image. The consequence is therefore a network that has learned an efficient encoding of the system.

The network is built during training by tuning the weights of the nodes, wi,j,k, so that the reconstruction

error is minimised. In other words, we want the input to be as close as possible to the output of the

network.

Figure 2.29: Auto-encoder example for image reconstruction [66].

2.5 State-of-the-art and Background Conclusions

At the beginning of this chapter, the context of this work and an overview of Industry 4.0 was done. The

sections that followed were a summary of the documentation produced for AKKA which was deemed

relevant in contributing to AKKA’s ability to intervene in the implementation of Industry 4.0 projects.

Not only were the theoretical concepts about the components that an industry 4.0 infrastructure should

contain presented, but a description on how they can be used as final products in an Industry 4.0 envi-

ronment was given. The definition of these technologies and architectures allows AKKA to concentrate

its future efforts to explore technologies and approaches and systems in a limited set. The same can be

concluded to the Data Science and Machine Learning applications to anomaly detection where various

algorithms and methods were explored.

32

Chapter 3

Implementation of an Industry 4.0

Data Platform

In this chapter we will describe the engineering work done in terms of the implementations developed

and the methodology that was followed to carry it out. The structure of this chapter is very much coin-

cident with the methodology that was followed in this work, the V-cycle development method. We state

the objectives of the engineering work performed in section 3.1, describe the methodology followed in

section 3.2 and perform a system requirements analysis in section 3.3. The sections that follow are

dedicated to the different architectural and design implementations that were done.

3.1 Objectives

As described in section 1.2, the mission of this work is to generate know-how for AKKA regarding Big

Data, Industrial Internet of Things and intelligent data systems. This was done through contribution to

project ZORRO, itself having a concrete objective which is to develop a Big Data Industry 4.0 platform

capable of detecting production anomalies in real-time and generating alerts and reports. The objective

of the technical / engineering work done was therefore to develop a system capable of doing this whilst

also being capable of satisfying the constraints associated to Big Data Industry 4.0 systems.

Although automatic anomaly detection was a very concrete objective of the project, throughout the

conception of the ZORRO solution, a constant attempt was made to try to make the solution as robust

as possible foreseeing that after the anomaly detection capabilities, other objectives would be desired

such as analytics platforms, general forecasting, predictive maintenance etc. It is for this reason, that

even though the objective was fixed, we still attempted to build the foundations for a system capable of

delivering the maximum number of Industry 4.0 advantages as possible.

When faced with this mission, a high-level plan was outlined. The first objective was to under-

stand what features, architectures and technologies Industrial IoT Big Data systems capable of detect-

ing anomalies contain. This was done through performing an extensive state-of-the-art study on both

solution architectures and technologies used to build them. The results from this stage are summarised

33

in chapter 2. Having this done, a system requirement analysis was performed in order to approach

the project with a system engineering mindset respecting the V-cycle development. Technical objec-

tives were defined and a plan was developed and executed based on the comparison between system

objectives and the current state of the project. With the implementation and improvement objectives

completed, tests were done on the developed system to better understand its performance, potential

and limitations.

3.2 Methodology

The adopted project methodology was largely based on the V-cycle methodology as, for each sub-

system, there was a constant validation and verification mindset. The initial system requirements were

outlined to determined if the right system was made, relating to the validation aspect (left hand side of

Figure 3.1). Performance tests were done to confirm that the system was made correctly, relating to the

verification aspect. This methodology aided in guaranteeing that the correct know-how was developed

and that a mature Meta solution was developed.

Figure 3.1: Initial V-cycle approach to system conception.

The project, however, also followed an agile method as every two weeks, a meeting with the project

manager was done and whose feedback meant a loop like improvement on all the major steps including

design, testing and deployment. This was useful not only due to the project manger’s technical experi-

ence, but also product verification and validation know-how. Coinciding with these meetings every two

weeks was a more granular definition of the tasks to be performed using the Microsoft Teams tool.

3.3 System Requirement Analysis

Inspired by the state-of-the-art study and by previous work done on the project, the ZORRO system was

first divided into multiple subsystems as already seen in Figure 2.10. The requirements of each one of

these subsystems were defined as follows:

34

1. Overall system requirements: requirements to be met by the final system (therefore all its sub-

systems).

(a) The system must be horizontally scalable, meaning that if the amount of data to process from

one day to another doubles, then the solution can roughly double the instances/machines of

each technology to respond to the increase in load.

(b) The system must be fault tolerant. This implies that if any sub-component or entity of each

system fails, then the whole system should continue to work. With respect to data, this means

that if one of these sub-components or entities fails, no data is lost.

(c) The system architecture should be based on microservices to render it more horizontally

scalable, more adaptable to modern deployment methods (containers) and in order to reduce

inter sub-system dependencies.

(d) The architecture must be generic so that it can easily be adapted to fit future customer re-

quirements and use cases. This requirement is coupled with the microservices requirement

and the concept of building a Meta solution.

(e) Scaling should be flexible. The system can scale up and down without many issues.

(f) All elements of the system must be open source technologies.

(g) The system must be easily built on commodity hardware.

(h) All technologies should allow for encrypted communication with Transport Layer Security.

2. IoT data collection and pipeline system: responsible for collecting IoT type data and structuring

it for delivery to endpoint systems.

(a) The system must provide a tuneable message latency, meaning that if a message latency of

milliseconds is desired, then the system can simply be horizontally scaled or configured to

achieve that delay.

(b) The system should provide a delivery guaranteed policy. If not required, the system should

be configurable to not guarantee this in exchange for better performance.

(c) The system must provide a tuneable message throughput, allowing for a trade-off between

message throughput and latency.

(d) The system should be compatible with IoT based message production deployments.

3. Big Data Storage system (Data Lake): responsible for creating a persistent source of truth and

for data processing engines to train machine learning models.

(a) The system must provide an API to interact with the data and extract insights from it in a

relatively quick and efficient manner. For example, count, aggregations, min, max and mean

functions.

(b) The system must provide time series related tools and operations.

(c) The system must allow for distributed querying (distributed system).

35

4. Data Processing and Machine Learning systems: responsible for analytics, data processing

and machine learning.

(a) The system must allow for the processing of data in real-time (stream processing).

(b) Must allow for batch processing of data.

(c) Must provide a distributed architecture for performing data analysis to provide results with a

low/tuneable latency.

(d) Must provide a programming interface to develop and use Machine Learning libraries for data

processing, anomaly detection, forecasting and data exploration tasks.

5. Data Visualisation system: responsible for dynamic dashboarding and metric monitoring.

(a) The system should allow for labelled filter-based querying.

(b) Must provide dashboarding tools that display data in real-time as it arrives.

(c) Must be able to collect metrics from different resources and with different protocols.

When implementing the solution, a constant loopback on these requirements was made to make

sure that the developed product satisfied these initially defined requirements (V-cycle validation). These

requirements were also used as a tool to improve the system that was already in place. Although the

state-of-the-art section does not go into detail about all the inner details of the technologies used in this

project, a consistent and detailed documentation of the state-of-the-art technologies was done in order

to later confirm that the developed solution in fact satisfied these system requirements.

3.4 Analysis of the Previous System

Following the system requirement analysis, the next step was to check if the current ZORRO system sat-

isfied the system requirements defined. The previous internship done on the ZORRO project concluded

with the following desired system architecture, illustrated in Figure 3.2.

Figure 3.2: Proposed system in previous internship.

36

We identify the five primary layers: the IoT data production layer (bottom left); followed by the data

collection and pipeline system (MOM on the centre left); the data storage layer; the data processing

layer composed of three sub layers, batch, streaming and time series); finally the serving layer con-

taining result aggregations and data visualisation tools. The symbol on the top left of the entities is the

Kubernetes container cluster management system.

It is important to notice that although this was the proposed architecture, not all features were de-

ployed and tested. The aspects that were missing involved mainly the deployment of Spark (data pro-

cessing) system which was used locally (not in a cluster) and interacting with static data sources (csv).

Similarly, Apache Nifi and RabbitMQ were deployed in virtual machines but not in containerised form (us-

ing docker). The NoSQL and in Memory Databases were developed by a previous intern and deployed

in a cloud provider. Although a lot of work was done to study the feasibility and interest of deploying

the architecture using Kubernetes, the deployment itself was not carried out. Finally, the communication

protocol throughout the whole stack was based on InfluxDB’s line protocol.

Based on the current system status, and the requirements analysis, the following objectives were

defined:

• Deploy missing systems on AKKA’s local cloud and in containerised form (Docker) to obtain a

reproducible Meta architecture.

• Optimise data storage system given that technologies have changed (no need for in Memory DB

due to Spark structured streaming).

• Continue working towards Kubernetes deployment of the system (through dockerisation).

• Test the possibility of replacing RabbitMQ (and Apache Nifi) by another message broker - Kafka,

motivated by the state-of-the-art study.

• Deploy a data scientist, machine learning and analytics development tool which is currently not

present in the serving layer.

• Apply and deploy the lambda architecture using automatic anomaly detection as the use case of

the online machine learning (ML) algorithms (batch and stream processing with deployed ML).

• Change the communication protocol to a more internationally used one in order to reduce inter-

system dependency and increase modularity of the architecture.

All the above objectives were defined bearing in mind the system requirements defined in section

3.3. In the following sections, we will describe the work done on each of the 4 primary subsystems

described and how the above objectives were accomplished.

In order to simulate the ZORRO data flows, described in section 2.1.2, previous collaborators of the

ZORRO project have developed a factory simulator. This is a Python based simulator which uses multi-

threading and queue libraries to simulate a network of IoT devices producing data. This script therefore

simulates what has been called thus far the IoT layer.

In a mass production context, multiple production lines will be present performing the same or differ-

ent transformations on products. Each production line is composed of stages which are logical groupings

of sub-transformations that are applied on products. To perform these transformations on the products,

the stages can contain one or multiple equipments (machines). At instance t, the simulator contains

37

Figure 3.3: Factory simulator concept.

Sensors Product Product Surrounding Equipment Equipment Surrounding
Temperature X X X X
Humidity X X X
Vibration X
Brightness X
Dust X X X
Electric Consumption X

Table 3.1: ZORRO Properties measured.

the state of the products and of the equipment. This state is defined by on entity properties and entity

environment properties. A subset of these properties is summarised in Table 3.1.

The simulator is equipped with artificial anomaly generators. Essentially, each one of the readings of

table 3.1 could have been individually configured to have some sort of anomaly, notably: Variable col-

lective, constant collective and global anomalies. Constant collective involves a sensor that temporarily

freezes at a given high point, in variable collective a sensor value that changes suddenly in mean and

global that randomly peaks significantly. This tool is what was used to simulate faulty equipment be-

haviour. All the described data flows are required for real-time monitoring and visualisation and for

long term persistent storage. In addition, the equipment data streams (on equipment and equipment

surrounding), will be used for equipment anomaly detection.

3.5 Architectural Proposal

As a crucial stage in the V-cycle, the system architecture needed to be defined. The proposed architec-

ture was a product of the state-of-the-art study, system requirements analysis and the analysis of the

previous system. The proposed architecture is illustrated in Figure 3.4.

The architecture of Figure 3.4 is similar to that of Figure 3.2 but with the substitution of RabbitMQ and

Nifi by Kafka as the central message pipeline, the removal of the in-memory database and the addition

of a development platform to interact with the data processing system (requirement 4.d). Querying

interfaces were also added to interact with the raw data present in the data lake (requirement 3.a). The

38

Figure 3.4: Proposed architecture.

Lambda architecture can clearly be seen as the data processing engine is connected both to Kafka, for

stream processing, and Cassandra, for batch processing (requirements 4.a and 4.b).

3.6 Deployment Strategy

Before starting to build the new proposed architecture, the deployment and virtualisation strategy was

defined so that a consistent deployment model was follow throughout the project. This strategy was

followed in almost all of the sub-systems. As of the previous internship related to the ZORRO project,

the final objective of ZORRO, with regards to deployment, was set to use Kubernetes (k8s) [52] as the

cluster deployment solution. This choice is very consistent with the system’s requirements as k8s and

containers combine to form a robust microservice, fault tolerant and scalable system. k8s manages

deployments of containers and therefore all elements of the ZORRO system must be in containerised

form before they can be deployed using k8s. As a container deployment cluster manager, k8s works by

defining a desired container state.

Therefore, in this work, after using and testing a technology, the next step was to containerise it and

define a sub-system container state. To do this, either the official docker container images were used

or custom containers were built, using docker, to perform ZORRO specific tasks. Another advantage

of containerising an architecture is that it allows for the easy version control and storage in container

registries of each sub-system.

To work towards the final k8s objective, all containerised deployments in ZORRO were defined using

a tool from docker known as docker-compose [67]. The idea behind docker-compose is to define a

desired container deployment (state) for one host OS through a configuration .yaml file. This file can

be used to define containers (microservices), their configurations and the environment variables to be

passed to them. It can also be used to define the networks the containers are in and the volumes they

are connected to. This is much more desirable than declaring, configuring and creating each one of

39

these docker “objects” (containers, volumes and networks) individually. Once the docker-compose file

is written, it can be sent to the docker daemon in a single command. This tool is very similar to k8s in

the way that it defines a deployment state. An illustration of how a docker-compose file is used is given

in Figure 3.5. As described in the figure, the docker daemon reads the contents of the docker-compose

file, obtains the containers from a registry (container repository), and deploys them on the host operating

system (Host OS). The docker daemon has access to machine hardware resources and distributes these

across the containers. Notice the networking capabilities of the docker-compose files as they can define

multiple networks and which containers belong to which networks. This can be extremely useful for

microservice architecture security and process isolation. Given that containers are stateless entities,

connections to external data volumes are many times required and can also be defined and created in a

docker-compose file. Overall this file allows for the creation and definition of a containerised architecture

containing all the main docker and container constructs.

Figure 3.5: Docker-compose idea and inner workings.

The use of docker-compose on its own naturally has its limitations. For example, it can only be used

to deploy containers on one host (one machine). To deploy on multiple hosts, docker-swarm [51] is

required. This is docker’s equivalent of k8s. Nevertheless, the type of “objects” and processes done

when defining a docker-compose file are like those defined when creating a k8s deployment. Therefore,

it brings the architecture and deployment method one step closer to the k8s objective. All machines used

in this internship were OpenStack virtual machines [68], from AKKA’s internal cloud. These machines

were of type either 1 or 2 as shown in table 3.2. These machines belonged all to the same network with

1.5 GB/s of bandwidth.

Machine Type OS nº CPUs RAM (GB)

Type 1 Linux, Ubuntu 2 4
Type 2 Linux, Ubuntu 2 6

Table 3.2: OpenStack machine types available.

40

3.7 Developed Proposed System and Meta Architecture

Having defined the system requirements, the desired architecture and the deployment strategy, the next

step was to develop the system. By compiling the developed sub-systems and all their connections with

each other, we obtain the system illustrated by Figure 3.6. This was the final detailed system architec-

ture of this work. The architectural proposal described in section 3.5 and illustrated in figure 3.4 can be

recognised. Each box represents a commodity hardware machine that was used either of Type 1 or of

Type 2 (table 3.2). A docker symbol is included in the top left corner when all the deployed technologies

and tools were containerised for that machine. The developed system was designed to reflect similar

Big Data, stream processing and IoT data systems studied in the state-of-the-art, having a clear mi-

croservice based architecture where each sub-system satisfies a particular purpose and can be scaled

independently of the others. All technologies used to build the core of the system are industry used

Big Data technologies guaranteeing scalability and fault-tolerance. In addition, all the elements of the

developed architecture (languages, technologies and cloud infrastructure) are open source. The system

is modular as the technologies chosen can be integrated with other technological choices different from

the ones used in this work. All these aspects marked the completion of requirements 1.a to 1.g.

Figure 3.6: Final ZORRO system architecture.

Allied to each architectural or technological feature / component, documentation was produced for

AKKA in order to justify the design choices made, understand the various architectural and technological

options that exist today to build these systems and understand the advantages, disadvantages and trade-

offs of the available options. In the sections that follow the details of the deployment of each one of the

sub-systems are described.

41

3.8 Message Brokering and Data Pipeline System

As seen in section 3.4, before this work, the technology used as the message broker was RabbitMQ

[69]. Although this broker communicates with the AMQP protocol, which is suitable in an IoT layer, it has

a series of limitations particularly concerning Big Data scalability [70], where Apache Kafka outperforms

RabbitMQ. This was consistent with the state-of-the-art study as many sources confirmed Kafka as a

reference solution for Big Data scale messaging pipeline.

Realising this, the first objective of the internship was to study the differences between these two

message brokers and study the interest of developing a Kafka solution. The overall results of the study

were the following:

• In terms of architecture, latency and throughput, a Big Data scale solution obtains better perfor-

mances with Kafka than with RabbitMQ. Kafka particularly shines in terms of throughput [71].

• Message order in Kafka can only be guaranteed at the partition level. Whilst it is guaranteed at the

queue level in RabbitMQ (a queue in RabbitMQ is the equivalent of a Kafka topic).

• The communication protocol of RabbitMQ, the Advanced Message Queuing Protocol (AMQP), is

more compatible with IoT devices when compared to Kafka’s binary encoded protocol and has

support for the famous IoT protocol - MQ Telemetry Transport protocol (MQTT). This is mainly due

to Kafka’s producer API complexity and inability to handle poor network performance.

• Under high loads, RabbitMQ’s performance can degrade fast if RAM memory is filled. The same

is true for Kafka when the cache is full, but performance degradation is smaller [71].

• RabbitMQ can handle more complex message routing.

• Kafka consumers follow a data pull model avoiding the possible overloading of consumers with

data.

In addition, Kafka has better integration with other Big Data technologies such as Apache Spark and

Apache Cassandra. With regards to message ordering, not only has Kafka recently released new out

of the box features to solve this issue [72], but messages can also be sorted through the insertion of

a timestamp field on the JSON being sent. This is what was done in the case of this work. Overall, it

was concluded from this study that Kafka is very interesting to have, on a Big Data scale, once the data

is on a TCP communication level. Due to this, and because of its popularity and performance, different

services such as dashboards and analytics engines integrate very well with Kafka. It was therefore

decided that it would be interesting to integrate a Kafka solution into ZORRO.

In addition to the points discussed above, remembering one of AKKA’s high-level objectives, gener-

ating know-how about the feasibility of a Kafka solution is already valuable knowing that state-of-the-art

showed that it could be interesting. Likewise, due to its popularity, Kafka can either already be integrated

in a customer’s information system, or can be the bridge to integrate ZORRO with existing customer sys-

tems. On the other hand, the integration of Kafka should not be thought of as a final solution due to its

poor compatibility with IoT device communication. Confluent [73], the company that open-sourced Kafka

and provides a cloud maintained commercial product, has suggested multiple ways in which Kafka can

integrate with an IoT layer [74]. Essentially, in order to maximise the potential of Kafka, an entity to as-

42

semble IoT layer data is desired. This entity can be deployed as a type of IoT gateway. These gateways

form part of the edge computing layer and can efficiently aggregate IoT data and send IoT data to Kafka

[34]. Another solution described in [74], could include a RabbitMQ-Kafka combined interaction as sug-

gested in [70], or an MQTT broker Kafka interaction as done with HiveMQ [75]. This solution essentially

consists in installing a broker closer to the IoT devices and capable of managing millions of connections

and with unreliable network connections, and a Kafka broker managing fewer connections but capable

of handling massive amounts of data. When considering this solution a question that one may ask is

why not just deploy a single MQTT broker? Essentially, even though MQTT brokers are optimised for

managing communication of IoT devices, few of these brokers scale efficiently and the MQTT protocol

offers poor connectivity with other enterprise applications (unlike Apache Kafka). Similarly, few MQTT

brokers can achieve the data throughput that Kafka can.

3.8.1 Kafka Cluster Deployment

To enrich the Kafka deployment and to better satisfy the scalability, microservice and fault tolerance

requirements, the message broker was deployed in containerised form. This was an upgrade with re-

gards to the previous deployment of RabbitMQ which was directly installed on the virtual machines. A

docker-compose file was used to define the Kafka deployment consisting of 3 Kafka brokers, 1 instance

of Zookeeper to manage the distributed system that is a Kafka deployment and 1 instance of the con-

fluent control centre to monitor the state of the Kafka deployment and provide a GUI to the cluster. The

deployment architecture is illustrated in Figure 3.7. The Kafka ecosystem was deployed on a single

OpenStack virtual machine (Type 1, table 3.2). Kafka was configured using mostly the default settings

which favour latency over throughout and guaranteeing exactly once delivery. This however can be eas-

ily adapted and tuned for use cases where throughput is more important or a strict delivery policy is

not required, thus satisfying requirements 2.a, 2.b and 2.c. Having the Kafka cluster setup, the factory

simulator was connected to it through the Kafka producer API. As defined in the objectives, the com-

munication protocol was also changed to JSON given its wide usage across many communications and

IoT systems and better integration with Apache Spark for example. This therefore allowed us to better

satisfy the requirement of loosely coupled sub-systems (1.c). Kafka also satisfies the communication

security requirement (requirement 1.h) as it allows for Transport Layer Security.

Having deployed a Kafka cluster as a data pipeline, the data model used needed to be defined. This

is always an important choice in Kafka as data distribution, message ordering and general performance

depends on it. In the ZORRO project there are four main sources of information (measurement groups):

on equipment, equipment surrounding, on product and product surrounding. In Kafka, the scalable entity

is the topic, not the partition. As seen in section 2.3.2, having a topic divided into multiple partitions is

what allows Kafka to be a very scalable system due to the possibility of parallel data consumption and

parallel data production. It is for this reason that it is preferred in Kafka to have few topics with many

partitions rather than many topics with few partitions. This justified the initial choice of having one topic

per measurement group (on equipment, equipment surrounding, on product and product surrounding),

43

Figure 3.7: Kafka cluster containerised deployment.

rather than one topic per equipment or per stage. Once the topics are chosen, given that messages

in Kafka are key-value pairs, the second important entity to define is the key of the Kafka messages.

The message key will define the partition in which data will be stored. Kafka groups messages with

identical keys by storing them in the same partitions. Given that message ordering is only guaranteed

at a partition level, for equipment readings, the equipment id (unique identifier of the equipment that is

being simulated) was used as the partition key. Similarly, for product readings, the product id was used

as the partition key. This made sure that all measurements from the same equipment or from the same

product were ordered as they were produced to the same partitions. Considering the on equipment

topic only, divided into three partitions and with a replication factor of two, a single node Kafka cluster

(containing 3 brokers) could store the partitions of the topics as illustrated in Figure 3.8. If we had three

equipments in our production line, for example, Kafka would store the information from each equipment

on a separate partition.

Figure 3.8: Kafka on equipment topic distribution and parallel consumption model.

44

As seen in the previous figure, a multi partition topic allows for data consumption to be done by

multiple consumers (in parallel). With this setup, we are satisfying the Big Data latency, fault tolerance

and throughput system requirements defined (1.a, 1.b, and 2.a). If the Kafka cluster is reaching its limit

in terms of data throughput, it can be easily horizontally scaled by increasing the number of brokers,

partitions and consumers.

3.8.2 Kafka Streams API

Following the deployment of Kafka, the Kafka streams API was used to process data arriving in Kafka

in real-time. Kafka Streams is a Kafka Java library API that allows developers to write streaming data

processing applications, consuming data from Kafka, doing some processing on it, and writing data back

to Kafka. This could be done in Spark, implying however that data be transferred to a Spark cluster,

which would add overhead to the processing. The Kafka streams API was yet another advantage with

regards to RabbitMQ as it allows for intermediate data processing without the intervention of an exterior

data processing engine such as Spark. To test Kafka streams, two streaming apps were coded. One

application created a simple demonstration of an emerging technology in Industry 4.0 called virtual

sensor [76]. A virtual sensor differs from a traditional sensor as the data it produces is not measured by

a physical sensor on the IoT layer. Instead, the value of the virtual sensor is calculated as a function of

one or multiple readings from the physical layer (sensors). It therefore involves some processing of the

data from the physical layer before it can be visualised or delivered to the end-user. To demonstrate that

our Kafka platform was capable of implementing virtual sensors, for each simulated machine, a reading

of equipment electricity cost from the electric consumption of the machine was calculated. The other

Kafka streams application that was developed performed a stream-to-stream join of data from two topics

where the data key was the same, Figure 3.9. To test the second application, a stream-to-stream join

between the on equipment and equipment surrounding topics was done. The resulting information was

stored on an Equipment topic. The JSON contents of the original messages from each topic were simply

concatenated. This can be useful, as will be seen in a future section, for machine learning models that

were trained using data from both on equipment and equipment surrounding data sources. If this was

the case, then during predictions these models need these data sources joined in order to make the

prediction.

These Kafka streams apps were coded in Java, the language in which Kafka is written, and con-

tainerised using docker. Having been built on top of the Kafka consumer and producer API’s, the Kafka

streams apps are horizontally scalable. In order to increase processing capacity, all that is needed is to

increase the number of application instances.

Kafka streams was an important addition to the ZORRO platform as it allows for the execution of

quick, fault-tolerant and scalable Extract, Transform and Load (ETL) jobs to data before sending it to any

of the end-point systems. As seen above, these are typical transformations needed for virtual sensors

for example where a reading must be calculated as a function of multiple others.

Apart from satisfying the Big Data constraints and requirements, Kafka streams also brings the

45

Figure 3.9: Kafka streams ZORRO applications.

ZORRO architecture one step closer to a micro-service based architecture on the processing front,

as each streams application is dedicated to performing a particular task. With these Kafka streams

applications, we have showed that we are capable of performing general data processing tasks and

providing virtual sensors, used in Industry 4.0 [77], without the need of a dedicated data processing

cluster (Spark). This can also be useful in scenarios where pre-industry 4.0 machines are deployed on

the production floor and more information on these machines is required other than that provided by its

embedded sensors. Likewise, scenarios where online data processing is required but without complex

machine learning and data science heavy tasks where Spark would be used, the Kafka streams API can

be an efficient lighter solution.

3.8.3 Kafka Cassandra Connectors

As will be seen in the next section, the Cassandra database system was the technology used for persis-

tent data storage. In order to populate Cassandra with the data from the factory floor (simulator), another

docker-compose file was defined to create a cohort of Kafka-Cassandra connectors. These connectors

were developed in Python and use the Kafka consumer API and the Cassandra connection API. The

script polls a specific Kafka topic and writes to a specific Cassandra table. For each topic, different but

similar scripts were written and were containerised. Figure 3.10 shows the state of the full implemented

Kafka ecosystem plus its connection with the Cassandra cluster. As explained in section 2.3.2 and in

the previous section as well with the Kafka streams API, given that these connectors were coded using

the Kafka consumer API, they can be scaled by adding more instances which would share the data

consumption load. It was desirable to have one connector per Cassandra data table allowing for them

to be scaled independently of each other. For example, if the number of machines from a factory remain

the same, but more products are being produced and monitored, we would want to scale the Cassandra

product connectors (to transfer more product data from Kafka to Cassandra), but keep the Equipment

connectors as they are.

46

Figure 3.10: Kafka deployment with Cassandra Connectors.

3.9 Time Series Database and Data Visualisation

Inspired by the state-of-the-art study carried out in the previous internship, the choice of the TICK stack

as the time series data management, metrics collection and visualisation system was maintained. A

docker-compose configuration file was used to describe the desired containerised TICK deployment

state. The final deployment consisted in all elements of the stack, namely, one Influx database container

(connected to the virtual machine’s persistent file system), one Kapacitor instance and one Telegraf

instance. Chronograph, considered a serving layer technology, was deployed on a separate machine.

In both cases, the technologies were deployed on type 1 machines (table 3.2).

Apart from creating dynamic and interactive dashboards of the arriving data, Chronograf also allows

for the general interaction with the time series stack, from interactive queries on data, to the generation

of automatic alerting systems based on the values received from data in real-time (Chronograf is used

to define the criteria of the alert and Kapacitor is used to process the data). Telegraf was configured to

consume data from the various ZORRO topics in Kafka, commit this data into the database (InfluxDB)

so that it can be visualised and processed. Telegraf was chosen as a replacement of Apache Nifi,

used in the previous deployment, as it is designed and optimised to send data specifically into the TICK

stack. Previously, data was communicated using the InfluxDB line protocol. This guaranteed a good

compatibility with InfluxDB but not with other systems such as Spark or Cassandra. As described in the

Kafka section, to tackle this, the adopted data format was JSON given its popularity and wide adoption.

Telegraf was configured to be able to ingest data from Kafka in JSON format, and convert it to InfluxDB’s

line protocol (defining which JSON fields were tag-sets and which fields were field-sets). Figure 3.11

shows the final, two machine, TICK stack deployment which consumes data from Kafka, stores the

data in InfluxDB and visualises the incoming records in real-time through Chronograf. The overall TICK

stack deployment improved with regards to the previous architecture where each element was deployed

individually.

47

Figure 3.11: TICK Stack – ZORRO deployment.

Once again, it is important to verify and mention that the proposed system satisfies all Big Data

constrains. Telegraf and influxDB are known for being able to ingest a significant amount of data when

compared to other time series data systems [39]. Even if we reach the limits of these systems, the

consumption from Kafka can be increased by adding Telegraf instances and multiplying the number of

container instances of InfluxDB. The disadvantage of this would also be that the scalability requirements

depend on our architectural and data distribution decisions. To solve this, the InfluxDB cloud offering

provides cloud clustered deployment of the TICK stack capable of ingesting millions of metrics per

second. This solution comes however at a cost, as the cloud offering is a commercial offering.

3.10 Data Lake Persistent Storage

Big Data systems require databases that are fault tolerant, scalable and distributed in nature. Once

again inspired by the state-of-the-art study performed in this work and by the work performed on previ-

ous ZORRO internships, it was decided to maintain the choice of Apache Cassandra as the persistent

storage system. As seen in section 2.3.5, Cassandra was designed with Big Data constraints and Big

Data performance in mind and is therefore perfect for our use case as it satisfies the scalability, fault

tolerance and Big Data constraints defined in the system requirements section (1.a, 1.b, 1.e, 1.g and

3.c).

In the context of ZORRO, Cassandra contributes to satisfying two main objectives: creating a his-

toric record of manufacturing data for accountability and future insight extraction and ability to detect

production anomalies in real-time using machine learning. Concerning anomaly detection, one way to

do this is to use binary classification models. In order to train these machine learning models to do

a wide variety classifications and predictions, data is needed. For these models to perform well and

capture many scenarios, they need to be trained with large amounts of data which cannot be stored in

a local machine or in classical relational databases. Once a suitable storage system like Cassandra is

obtained, it must then be connected to an efficient data processing system, to extract insight from this

48

data and train machine learning models with it.

Cassandra is therefore used as the Data Lake and persistent storage system, where all data will

be stored for long term retention. Apart from its performance when dealing with Big Data use cases,

Cassandra is also relatively compatible with the Spark data processing engine. To ingest the data, Cas-

sandra was connected to Kafka through python programmed connectors already discussed. To connect

to Spark, for machine learning model training, an open source connector was used to connect the dif-

ferent Cassandra nodes to those of the Spark cluster. This connector allows us to expose Cassandra

tables as Spark DataFrames and vice-versa as shown in Figure 3.12. There is no equivalent connector

for InfluxDB, making the use of Cassandra with Spark even more desirable. With regards to deployment,

a simple containerised Cassandra cluster was setup in one machine of Type 1, Figure 3.12. In order to

satisfy the interface to the database system requirement (3.a), an Apache Zeppelin notebook applica-

tion [78] was used and deployed as shown in Figure 3.12. Notebooks are used to write in code snippets

(blocks) whose output is displayed on the notebook page. It can also be used to write text and other

HTML objects. Notebooks are thus very popular within the academic community as they are a great way

to visually and in an interactive manner share code and insights. Zeppelin provides an easy connection

integration with a Cassandra cluster and an interface for CQL (Cassandra Querying Language) queries

to be run on it.

Figure 3.12: Cassandra cluster setup and Zeppelin and Spark connections.

Queries submitted on the Zeppelin notebooks are run on the raw data stored in Cassandra and the

output is given on a visual (graphic or tabular) interface.

The data model chosen for Cassandra was consistent with that of Kafka’s. A table for each mea-

surement family (Kafka topic) was created. Two other tables were also created, one for the data from

the equipment (on equipment + equipment surrounding) and another for the data from products (on

product + product surrounding). Given that the state of a machine or product depends not only on the

internal state of the machine and product but also on their surrounding properties, in order to enrich the

information provided to the machine learning models, they must be trained with information from a table

containing both on equipment and equipment surrounding information. A table-to-table batch join was

49

done using Spark both for the equipment and product information. This is exactly the same join that

was done with the Kafka streams API but this time using Spark and joining Cassandra tables instead of

Kafka topics. In most tables, the partition key was defined to be the product id or equipment id plus the

sensor id by which the measurement (row) was taken. For the clustering key we used the timestamp to

guarantee that a measurement taken by one sensor on a given system at a given time is unique.

In Cassandra, queries are restricted to the data model used. In particular, certain operations can

only be performed on the columns that were used to define the partition key. Nevertheless, group by,

aggregations and other classical SQL like operations can be done through this Zeppelin notebook on

the partition key columns. To perform other more complex queries and data processes, the a data

processing engine, like Spark, must be used. The deployment of the chosen data processing engine will

be described on the next section.

3.11 Data Processing and Machine Learning

With regards to the previous internship, Spark was maintained as the data processing solution due to its

exceptional performance in terms of processing speed, Big Data scalability, machine learning libraries,

Python integration and Kafka integration. Another clear reason for selecting Spark is the fact that it allows

us to implement the lambda Big Data architecture using a single framework: Spark. In this section we

will describe the contributions done to the ZORRO data processing layer.

3.11.1 Deployment

A Spark cluster was deployed and configured in two virtual OpenStack machines. One of Type 1 and

another of Type 2. One machine contained one worker and the other machine contained one master

and one worker (Figure 3.13). Spark was configured to have one executor per worker, with proxy-

side authentication and ZORRO specific packages installed (Kafka and Cassandra connectors). The

Spark cluster was connected to both Kafka in streaming mode and to Cassandra in batch mode as

described in section 3.10. This marked the completion of the desired Big Data lambda architecture for

data processing. The standalone cluster manager of Spark was chosen due to its ease in deployment.

Given that the objective of containerised deployments was not satisfied here, a future objective would

be to deploy Spark using Kubernetes (k8s). This would be a clear upgrade because, as described before,

k8s is an excellent container cluster manager with very good support for with Spark.

3.11.2 Spark Analytics

With a Spark cluster setup, an application or script can be run on the cluster through submitting it to the

cluster manager. This generally involves transferring the script to one of the machines of the cluster and

submitting it to the cluster.

Data scientists and machine learning engineers however generally tend to prefer interactive tools to

develop and test their applications such as notebooks (as already discuss with the Zeppelin notebook).

50

Figure 3.13: Spark cluster deployment and integration with Jupyter.

Due to the ability of notebooks to provide these interactive tools, Jupyter [79] was installed on one of the

machines of the Spark cluster and configured to be able to communicate with the Spark cluster. Jupyter

is a web application that allows developers to write interactive code in the form of notebooks. In the

context of ZORRO, Jupyter allows for the development of Spark applications and use of machine learning

libraries in a more interactive and dynamic way. The Jupyter notebook web client therefore serves as

a programming interface to interact with the ZORRO data processing system. This can therefore be

considered a serving layer technology as it allows data scientists and machine learning engineers, who

might not be very familiar with distributed systems, to interact efficiently with the ZORRO ecosystem and

be abstracted to the complexity of the system, Figure 3.13.

In terms of application deployment, if the user specifies the master url, the code written in the note-

books is uploaded to the Spark cluster and executed in the Spark distributed system. The output is then

sent back to the notebook to be displayed. Developing Spark applications in Jupyter is also an excellent

way to test these applications before deploying them in the cluster with a script directly.

Overall, Jupyter reduces the complexity and ease the access to the ZORRO ecosystem providing a

collaborative tool for developers to share code templates or snippets that can be run easily. It is these

sort of collaborative tools that allow data scientists and analysts to develop programs that allow them to

make data driven decisions. These are the tools that an Industry 4.0 solution must contain as, after all,

in Industry 4.0 the idea is to use data to perform data driven decisions driving optimisations, simulations,

reactions and forecasting. Given that Spark is connected to Cassandra in batch mode, the Jupyter

notebooks can be easily re-run with the current data that is in the Cassandra cluster therefore updating

the Jupyter outputs.

3.11.3 Batch Processing

Following the deployment, we then proceeded to working on a batch processing pipeline. The main

use of batch processing in ZORRO is to train machine learning algorithms on huge amounts of data

requiring fast and parallel processing. In an industry 4.0 context, models can be trained for anomaly

detection, predictive maintenance and supply chain resilience. As a starting point, and because it is the

51

main objective of project ZORRO, we have decided to train models for anomaly detection.

The first difficulty was using multiple sources of data and compiling relevant information into one

single table so that it can be fed to the models for training. In the context of this project, if we wish to

train a model to predict anomalies on equipments, then both on equipment and equipment surrounding

information is required. This is because the anomaly can be a function of features from one or both

entities. For example, if a machine is making too much noise, this is something that is measured on the

surrounding environment of the equipment and not on the equipment itself. To combine the information

from both these sources, a criterion based on the timestamp of the data was defined. The way in which

the joins were done in batch mode are illustrated in Figure 3.14. Each point represents a measurement

on each one of the systems (on equipment and equipment surrounding for example). The join was done

following a simple equipment id and timestamp-based criteria.

Figure 3.14: Batch join of two tables of timestamped rows.

Essentially, we wish to join two measurements that refer to the same system (same equipment) and

whose values were recorded at similar times. An inner join is therefore done on the equipment id and

under the condition that the timestamp columns are close to each other (we used the period of the low

frequency reading to define the criterion). Normally readings are taken at constant frequencies and so

the timestamps should be evenly spaced out. However, even if a reading was taken too early or too late,

then it will still just join with the reading it was closest to. The result was a table containing the same

number of rows as the table containing the measurements with higher frequency, but with all sensor

records compiled into each row. These joins were coded using Jupyter notebooks in Pyspark (Sparks

Python API). All the code that was produced in Jupyter notebooks, and submitted to the Spark cluster,

can be easily converted into scripts to be deployed in the Spark cluster and be constantly running in

a production environment. This could be a periodically triggered batch job deployed on the ZORRO

system so that a periodically updated equipment table is available.

With the joined data and therefore a single table in Cassandra containing all relevant equipment

features, before a supervised machine learning model can be trained using Spark on the data from this

table, the data needs to be labelled. With regards to anomaly detection, a label column indicating if the

measurement taken corresponded to a time where the machine was working well or not (non-faulty or

faulty) is needed. This process is known as data annotation. Following the labelling of the data, the

models were then trained. Once the model was trained, tested and tuned, it was exported so that it

could be used in real-time in streaming mode. A summary of the batch process workflow is given in

52

Figure 3.15.

Figure 3.15: Batch machine learning job workflow.

3.11.4 Stream Processing

The second branch of the lambda architecture is the streaming layer. This is a fundamentally different

layer to the batch layer and has a series of other difficulties and issues associated to it. In this work,

and in the context of the ZORRO project, part of the streaming needs such as joins and virtual sen-

sors, were already accomplished using the Kafka streams API. However, automatic anomaly detection

using imported machine learning models must be done using Spark due to the available libraries and

distributed processing efficiency. To connect Kafka to Spark in streaming mode, Spark offers an easy to

use integration to stream data from Kafka. This is available in Spark’s most recent streaming module,

Structured Streaming [80]. Before the streamed data can be used for the predictions however, data from

the Kafka topics must be joined (on equipment and equipment surrounding). This is because, as was

described in the previous section, the models were trained using joined data. For the model to be able

to make a prediction, it must be given all the equipment features that is was provided during training.

As illustrated in Figure 3.16, the Spark streaming application must therefore create two independent

streams, one for the on equipment Kafka topic and another for the equipment surrounding Kafka topic,

join them and then apply the prediction using a model loaded at the start of the streaming application

and which resulted from the model training stage.

Figure 3.16: Kafka Spark streaming connection.

Given that data from Kafka is encoded in binary form, it must first be decoded to obtain the JSON

string. Included in the decoding stage, along with decoding the binary data, the JSON type data obtained

must then be converted into a Spark DataFrame. The method in which data is joined was not the same

53

as the one used and described in Figure 3.14. The stream-to-stream joins were done using a tool in

Spark known as watermarking. The issue with joining streaming data is that a reading received now can

possibly join with a reading received in the future. Given that the joins performed in our case depend on

a timestamp, a reading received now can match with another reading that is late in its arrival. In order to

respond to these situations, a state must be maintained throughout the streaming process. This triggers

a question which is how long should this state be? If no limit is put, then the state will grow indefinitely.

This is where Spark’s watermarking tool can be used to define this length. The watermark defines a

time window until which data is dropped. If a data point arrives and it is outside the time window, this

data point is dropped and not used for joining. Similarly, if a data point arrives on time, it is kept for the

duration of the watermark.

Figure 3.17: Stream to stream join in Spark using watermark.

The watermark value should be chosen based on the admissible/expected latency bearing in mind of

course that the longer the watermark, the larger the streaming state and therefore the larger the impact

on performance the state will have. Figure 3.17 shows a possible scenario of a Spark stream-to-stream

join using watermarks. The join criterion once again is based on equipment id and on a timestamp

window. For stream-to-stream joins, we have decided to join on equipment measurements with the

latest value of equipment surrounding (defining the window with the period of the measurement of lower

frequency). If there is no major latency, the joins work fine as illustrated in the start of Figure 3.17. If

latency arises (which in the figure is the case of latency in the high frequency measurements), then some

joins are never done because the measurements are no longer within the watermark. To solve this, we

would need to increase the watermark. In the case of the figure, increasing a little bit the watermark

seems to be the rational thing to do. However, increasing too much the watermark will lead to increased

retained state and therefore increased latency associated to the joins.

Once the predictions are done, if Spark identifies any anomaly, it writes back to the Anomalies Kafka

topic. By writing the anomalies into a Kafka topic rather than directly into a database, other endpoint

systems can react or learn about the fact that an anomaly was identified by subscribing to the Anomalies

Kafka topic. This is particularly interesting in an Industry 4.0 solution where some automatic responses

could be triggered based on the anomalies identified. The proposed solution for streaming predictions

is scalable as both technologies can be horizontally scaled and are known to be so (Kafka and Spark

[32]).

54

Chapter 4

Developed System Outputs and

Performance Analysis

The results of the developed work in the context of the internship this dissertation was carried out in

can be divided into two main contributions. Firstly, the creation of know-how for AKKA Technologies

regarding Big Data Industry 4.0 systems. Secondly, the development of a Big Data Industry 4.0 meta

solution with quantitative and qualitative proof of concept outputs and performance indicators. In this

chapter we will focus on the results obtained from this develop solution both in terms of the outputs it

can produce and its performance.

4.1 Real-time Data Visualisation

In this section the results obtained from the real-time data visualisation and asset monitoring tool will be

presented.

4.1.1 Factory Dashboards and Monitoring

The main objective of the data-visualisation system, is to be able to monitor the status of a factory-floor.

Figure 4.1 is an example of one of the dashboards that was produced displaying measurements from an

equipment that was simulated. As can be seen in this Figure, Chronograf offers different visualisation

elements which can be configured by the user and are updated in real-time. Due to InfluxDB’s querying

capabilities, multiple features of different sensors can be monitored. We can, for example, choose to

display sensor instantaneous values, as is illustrated in the bottom two graphs of Figure 4.1, or we can

choose to follow the moving average of a sensor (top left measurement gauges).

Dashboards like these mark the completion of the real-time data visualisation and asset monitoring

objectives which can clearly be applied in use cases such as remote analysis (maintenance) and visual

insight extraction. In order to not be locked into the Chronograf tool and to demonstrate that having

InfluxDB as our choice for time series database is not restricting the data visualisation offers, other

55

Figure 4.1: Example of a ZORRO Chronograf dashboard produced.

dashboard tools such as the very popular Grafana tool [81] were also used and produced very similar

results.

4.1.2 Deployment Metric Collection

In addition to real-time data visualisation from the factory floor, the dashboard tool was also used for

system and deployment monitoring. As described in section 2.3.4, Telegraf is the element of the TICK

stack that is responsible for the ingestion of data into InfluxDB (database of the TICK stack). Apart

from having support for Kafka data ingestion, and therefore, in our case, being able to obtain data from

the factory floor, Telegraf is also capable of ingesting metrics from other systems, such as docker and

hardware system metrics. These other metric collection plugins were added to the ZORRO project in

order to monitor the state of the deployments of the various sub-systems. For small-scale systems, this

metric monitoring might not be very useful, however, for Big Data scale solutions, like ZORRO, state

monitoring of the deployment is essential. Figure 4.2 is an example of such ZORRO metric collections

where two dashboards indicating the docker deployment CPU and Network loads are shown. This was

yet another advantage from the previous Apache Nifi deployment which was not configured for this

deployment metric collection.

Figure 4.2: Kafka docker deployment monitoring with the TICK stack (CPU).

56

4.1.3 Latency Performance

A latency analysis was performed on this manufacturing asset monitoring service to understand the

extent to which the visualisation was real-time. The latency here measured refers to the time taken for

the data to be written into influxDB in comparison to when it was produced by the factory simulator.

In our case, this corresponds to the latency obtained from the factory, in other words, the moment

the timestamp was inserted, to Kafka to Telegraf and finally to InfluxDB. The latency tests carried out

consisted in progressively increasing the data load on the system. The load was increased by increasing

the number of production stages being simulated. Each stage contained two equipments. For each

test, an extra factory stage containing two equipments was added. Each equipment contained 4 data

producers (on equipment, equipment surrounding on product and product surrounding), each producing

5 messages per second. Each group of 5 messages, encoded in utf-8 holds, around 6 KB of data.

Therefore, this corresponds to around 6 × 4 × 2 ×nbstages KB/s of data. For 9 stages for example, the

amount of data being transferred is 432 KB/s or 360 messages/s. The simulated messages are quite

large for some IoT scenarios. Nevertheless, their sizes are consistent with complex message types

with larger aggregation of values and meta information [25]. Initially, the simulator was run on a single

machine of Type 1 (table 3.2). A comparison between the previous system (using RabbitMQ) and the

current one was made. The results comparing the mean, maximum and minimum latencies obtained

are illustrated in Figure 4.3.

(a) Mean latency. (b) Maximum latency. (c) Minimum latency.

Figure 4.3: Kafka vs RabbitMQ latency analysis.

By analysing the mean and maximum latency values obtained in Figure 4.3.a and 4.3.b respectively,

it is clear that the latency obtained was much larger than normal and not consistent with the state-of-

the-art-findings [70], [39]. It was therefore attempted to find the true source of latency. It was discovered

that the latency mainly came from the factory simulator as it was running slowly when the data load

was increased. This motivated an optimisation of the factory simulator. This optimisation involved code

changes and timestamp insertion changes. Although the results may not be representative of the nom-

inal performance of both technologies, they allow of the comparison between Kafka and RabbitMQ as

they were simulated under the same conditions. Under the simulated conditions, the Kafka message

broker obtains significantly smaller mean and maximum latencies in comparison with RabbitMQ.

Despite the optimisation of the simulator, the dynamics of the latency were still significantly impacted

by the load on the simulator. The simulator was thus parallelised, reducing the load on the machines

57

hosting them. This is what can be seen in Figure 3.6, where the factory simulator is being hosted in

two different machines (both of Type 1). All these optimisations gave way to a second latency campaign

measuring the mean, maximum and minimum latencies of the Kafka broker. The results obtained are

available in Figure 4.4.

(a) Mean latency. (b) Maximum latency. (c) Minimum latency.

Figure 4.4: Kafka latencies obtained after simulator optimisations.

Overall, the values obtained for the latency are much more admissible with the mean, Figure 4.4.a,

being always inferior to 0.1 s. Likewise, the minimum values of latency (Figure 4.4.c) confirm Kafka’s

capacity to have very small latencies. The results obtained are interesting as they demonstrate that

the developed Kafka platform, which is architecturally stable but was only simulated with a single small

machine (machine Type 1), respects latency levels required for condition monitoring and is close to

the latencies required for augmented reality [20]. With regards to motion control, these latencies are

too large and therefore, as expected, an edge computing solution is more suitable for machine and

equipment automatic control. Despite the admissible latencies obtained after the optimisation and par-

allelisation of the simulator, it was discovered that the dynamics of the latencies were still impacted by

the simulator. Indeed, large changes in the latency were seen precisely when there was a significant

change in the load on a machine. Given that the simulators were coded using the multi-threading and

queue libraries of Python, this latency was probably due to RAM memory depletion of the machines

hosting the factory simulator.

In conclusion, a more efficient and parallelised simulator is required to truly measure the latency

and throughput performance of the current ZORRO system. Notice however, in Figure 4.4, that up to

19 stages were tested, which correspond to around 912 KB/s and 760 messages per second. Despite

this load, the latency obtained was still only of 90 ms. We stopped here because the simulator once

again demonstrated its limit. In a real IoT system, the latency could be higher due to weak network

connections and physical distance. Nevertheless, we can conclude that once this data is on the TCP

layer, communication is very fast. Overall, we can confidently say that we have the basis for what

appears to be a system capable of handling large amounts of data in real-time rather quickly.

All the graphs and analysis above were produced using Jupyter Notebooks. These allowed for visual

and interactive graphing and analysis of the results obtained. Likewise, these notebooks can relatively

easily be picked and understood up by someone new to the project as along with the code, HTML text

snippets were added to comment on the results.

58

4.2 Data Science and Exploration Tool

In this section, the results obtained from the data science, analytics and data exploration tools deployed

in will be presented.

4.2.1 Zeppelin Notebook

As described in section 3.10, a Zeppelin notebook was deployed as a tool to interact with the raw data

in the Cassandra database and extract insights and perform analytics. Figure 4.5 shows an example of

some outputs produced. As a notebook, one advantage of using a Zeppelin to query the data is that

the queries that are run can be saved and re-run at any time with the current data that is present on the

database.

Figure 4.5: Zeppelin notebook for querying Cassandra DB and dashboarding output.

4.2.2 Jupyter Notebook

As seen in Figure 3.13, a Jupyter notebook was added to allow for analytics and data exploration. To

test this tool, and also demonstrate its potential, a series of data exploration methods were used. Python

libraries were used to analyse a fraction of the produced data in the Cassandra database. The interest

of this tool lies here, as it allows for Data Sciensits to connect to a Big Data scale processing platform

(ZORRO) using tools that they are familiar with. Some of the outputs from the data exploration obtained

can be seen in Figures 4.6 and 4.7.

Figure 4.6: Results from data visualisation - Colour coded 2D PCA representation of 6 equipments.

Illustrated in Figure 4.6 are the produced output of a 2 dimensional Primary Component Analysis

59

(PCA) showing colour coded clusters corresponding to six different equipments (2 dimensional meaning

using primary component one and primary component 2). PCA is a dimension reduction tool which

allows for the visualisation of a high dimensional system, like an equipment containing temperature,

humidity, vibration and other measurements, in a smaller dimension (2 dimensions in this case), whilst

attempting to minimise the amount of data lost in this reduced representation. It achieves this by repre-

senting the data in the directions of largest variance (primary components). It is considered an unsuper-

vised machine learning algorithm and can be used, for example, to visually identify anomalies.

(a) Histogram of the dust measurement on a equipment. (b) Correlation matrix of features of an
equipment.

Figure 4.7: Results from data visualisation - histogram and correlation matrix.

Figures 4.7.a and 4.7.b show respectively a histogram of the dust measurement on one of the equip-

ments and correlation matrix between measured variables from one equipment. The results obtained

from these diagrams allow for the understanding, in a data driven fashion, of what nominal and non-

nominal factory behaviour physically looks like. These outputs can also be used to understand where

optimisations can be carried out. For example, using the correlation matrix, if we find that temperature

for a machine is highly correlated with electric consumption, we can attempt to move this machine to a

cooler area or reduce the temperature of the section it is in. Essentially, our platform is capable of using

and manipulating tools which allow for data driven insights to be extracted and data driven decisions to

be made.

The code produced in these outputs was written in Python, on Jupyter notebooks, deployed on the

ZORRO platform, and can be easily shared as a template code or snippet to be reproduced and re-

run against the current data present on the persistent data storage system (Cassandra). This was an

important addition to the ZORRO system as most data scientists and machine learning engineers need

to perform a data exploration phase in order to generate descriptive statistic summaries to understand

the characteristic of the data and identify certain correlations or behaviours.

4.3 Automatic Anomaly Detection

In this section, the results obtained from the developed models for automatic anomaly detection are

described. Both the training processes and the deployment of automatic anomaly detection machine

60

learning models are described.

4.3.1 Model Training

Once the data was joined, the next step was to train some models to detect equipment anomalies. As a

starting point, four supervised learning models offered by Spark were used: Logistic Regression, Sup-

port Vector Machine (SVM), Decision Tree and Random Forest. The problem was therefore approached

as a binary classification problem (faulty 1 vs non-faulty 0). In order to train a supervised learning

model, data needs to be labelled beforehand. This means that the model must be given information

regarding which data points correspond to anomalies and which correspond to correct behaviour of the

system (equipment). A criterion must therefore be defined in order to label an anomaly. In this work,

two anomaly criteria were chosen. In the first criterion, a reading was considered an anomaly if, at the

same time (in one row), both values of two different sensors were above or below a certain threshold.

The thresholds were defined depending on the mean, the standard deviation and the distribution of the

sensor reading. For normally distributed sensor readings, the thresholds were defined at three sigmas

(3-sigma) to the left and to the right of the mean (99.7% rule). For uniformly distributed sensor readings,

the thresholds were simply defined by the extremities of the domain of the distribution. As seen in Figure

4.8.a, an anomaly (green lightening symbol) is defined by a combination of two anomaly sensor read-

ings. Consider in the Figure 4.8.a that each triangle corresponds to an anomaly reading in sensor 1, say

temperature, and each rectangle corresponds to an anomaly reading in sensor 2, say humidity. We only

consider that there is an anomaly when, for instance, both temperature and humidity act strangely at the

same time. The idea behind this criterion is that anomalies are related not to individual features but to

a combination and relationship between features. In Figure 4.8.b, a 2D PCA plot is illustrated to get a

rough idea of the distribution and proportion of anomalies during testing. In this case, approximately 5%

of readings were labelled as anomalies (red points). The data plotted in Figure 4.8 corresponds to 20

minutes worth of simulation.

(a) Anomaly (green lightening) every time two
sensors behave strangely (triangle for sensor
1 and rectangle for sensor 2) at the same
time.

(b) PCA illustrating anomaly to non-anomaly data distribution for first criterion
(first two primary components).

Figure 4.8: First anomaly criterion - sensor combination.

The classical machine learning process was then followed. The data was divided into training and

testing data sets (75% to 25% respectively). The models were trained with the same training data set

61

and tested on the same testing data set. The results obtained for the model scores are available in Figure

4.9. A score of 1 is a very strong prediction score, whilst a score of zero is a very weak prediction score.

These model results correspond to the prediction accuracy, given three criteria, on one equipment.

Figure 4.9: First anomaly criterion - model scores.

Initially, three metrics were used to determine model performance: precision, recall and overall accu-

racy, Figure 4.10. Recall refers to the ability of finding anomalies when they exist (true positives) [82]. It

is also known as sensitivity. Notice that in our case, a positive refers to an anomaly. A low value for recall

means that the model is unable to detect an anomaly when it appears. Precision refers to the quality of

the model in finding the positive class (anomaly). It is thus also known as the positive predictive value

[82]. A small precision implies that the model very easily labels a point as an anomaly, even when it

is not. Finally, overall accuracy simply refers to the proportion of correct predictions with regards to all

predictions. Naturally, the overall accuracy is very much related to both the precision and the recall.

Figure 4.10: Precision and recall - binary classification.

In order to obtain a more precise evaluation of the models, precision vs recall and ROC curves were

plotted. The models studied, apart from SVM, can predict a probability that a certain measurement

is an anomaly, rather than the prediction of anomaly or not anomaly itself. This provides the machine

learning engineer with flexibility, as the threshold of probability with which we consider a measurement an

anomaly can be varied. The ROC curve plots the false positive rate against the true positive rate (recall)

as a function of this threshold and the precision vs recall curve (PvR) does the same but naturally with

the precision and recall values. For this anomaly criterion, the ROC curves obtained are illustrated in

Figure 4.11. The area under the ROC curve (AUC) measures how well a binary classification model

62

separates the two classes. A good model maximises this area. The precision vs recall curves, are

illustrated in Figure 4.12. This curve is similar to the ROC curve but takes more into consideration

the imbalance between the two classes. This is particularly useful in data sets where there are many

negative observations (class 0) and few positive observations (class 1), which is usually the case in

anomaly detection scenarios. The key of the precision vs recall curve is that it does not use the true

negative values.

In both cases, the ideal model maximises the area under each curve and is very different to the no

skill model curve (blue). The curves confirm the satisfactory results obtained and demonstrate that for

this criterion, none of the models are very sensitive to the value of the threshold.

Figure 4.11: First anomaly criterion - model ROC curves.

Figure 4.12: First anomaly criterion - Precision vs recall curves.

The results obtained show that tree-based models, especially Random Forest seem to very slightly

underperform. It is worth mentioning however, that the parameters of none of the models were really

optimised, therefore we cannot yet conclude which model is ideal for this type of situation. To optimise

the models, the cross validation method could have been used especially because Spark offers support

for this. The ROC and PvR curves obtained can provide the machine learning engineer with an idea of

the ideal or adequate threshold for each model. Nevertheless, the choice for this parameter is generally

more dependent on the use case of the model. In a critical production scenario for example, we are

perhaps more willing to stop production if we believe that one of the machines is malfunctioning. In

this case, it would be reasonable to define the threshold as smaller than 50%, to make sure we get

all anomalies. In a mass production environment on the other hand, stopping production can be very

expensive, and therefore we would only want to stop it if we were sure there was a serious anomaly in

one of the machines. It is worth mentioning however that overall, for this scenario, the results obtained

63

for these models were very satisfactory.

In the second anomaly criterion, we identify an anomaly every time one of its features displays a

value that is above or below the defined thresholds. This scenario is illustrated in Figure 4.13.

(a) Anomaly (green lightening) every time
any sensor behaves strangely.

(b) PCA illustrating anomaly to non-anomaly data distribution for second cri-
terion (first two primary components).

Figure 4.13: Second anomaly criterion – sensor anomaly.

In this case, the proportion of anomalies to non-anomalies has changed significantly. Around 33%

of points are anomalies (red points). Figure 4.14 shows the model scores obtained following the same

process and using the same model parameters.

Figure 4.14: Second anomaly criterion - model scores.

In this second anomaly scenario, tree-based algorithms shine (Random Forest and Decision Tree).

From this initial approach, we can already conclude that tree based algorithms seem to behave better

in data sets where the ratio between classes approaches 50%. Similarly, when the number of features

that contribute to an anomaly increases, SVM and logistic regression, using the same parameters, seem

to lose their ability to identify anomalies. It is also interesting to notice the scores obtained for SVM. In

Figure 4.14 we see that the SVM model has a good precision but poor accuracy and recall demonstrating

the interest behind using multiple metrics to evaluate the skill of models. With regards to the Logistic

Regression model, its poor skill can also be confirmed in the ROC curve, Figure 4.15. Following a

certain threshold, the logistic regression model becomes worse than a no skill model.

All the curves, results and notebooks in which they were obtained, can serve as an important tool

for ZORRO PoC purposes but also for future work to be done on the machine learning and anomaly

detection aspects of ZORRO. This contribution paves the way for a new ZORRO ML Toolbox.

In conclusion, through these two anomaly scenarios we have shown that the developed platform is

64

Figure 4.15: Second anomaly criterion - model ROC curves.

capable of performing a classical machine learning workflow essential for the development of effective

models. Interesting model scores were also obtained, particularly when the anomalies depended on the

relationship between features.

4.3.2 Anomaly Pipeline and Visualisation

As seen in section 3.11.4, a model that identified an anomaly would then signal that anomaly by sending

a record to the Kafka Anomalies topic with all the information about the anomaly. Given that the predic-

tions are written into Kafka, it is easy to then insert them into the TICK stack via Telegraf and visualise

them in real-time.

Figure 4.16: Visualisation of anomaly detection with a Chronograf dashboard.

In Figure 4.16, the Chronograf dashboard on the right peaks every time an anomaly is identified.

The graph on the left shows the probability with which the decision of labelling the anomaly was made.

This dashboard was produced while simulating a factory floor with one equipment having anomalies.

Other dashboards concerning the anomalies were created containing the values of the features of the

equipment at the time of the anomaly. This provided a transparent and full analysis of the nature of the

anomalies. These dashboards marked the completion of an important milestone in the ZORRO project

as it is a real-time visual representation of the machine learning algorithms working to adding insights

on the production status. Most importantly, the anomaly information and alerts are display in a human

interpretable fashion. This was the original main objective of Project ZORRO. The architecture can now

also be considered event-driven, which was another feature that was identified in the solutions of the

65

cloud providers, as certain events trigger certain actions. Another important consequence of achieving

this milestone is the ability to now test the developed machine learning models in an environment that

closely simulates a real-production environment.

Another interesting aspect of this result that was not yet explored was the possibility of automatic

responses on the IoT layer. Given that Kafka is the central data pipeline of our architecture, once the

anomaly data is in this pipeline, any of the ZORRO sub-systems can respond or react to the anomaly.

This broadens the reach of the ZORRO event-driven architecture. In order to demonstrate that the

developed platform is capable of automatically enriching customer databases, Kafka was connected to

a PostgreSQL database using a Python Kafka consumer and PostgreSQL connection APIs.

4.3.3 Anomaly Prediction Latency

With the anomaly detection streaming pipeline tested and functioning correctly, the next aspect studied

was the latency of this pipeline. Given that anomalies need to be identified in real-time so that the

responses to these events can also be done in real-time, the levels of latency of this pipeline must be

understood and minimised. Considering that different models operate in different ways, the latency in

the prediction for each model will be different. The simulator was run for each model separately, with one

equipment only (as each model should be trained for one equipment only). The objective was to be able

to study the latency associated with each individual model. For each model, the simulator was run for 20

minutes and the results were calculated on the final 15-minute window (to make sure the system latency

could stabilise at a certain value). Given that only one equipment was run, the amount of data the system

was exposed to was around 32 KB/s or 20 messages/s. The simulator was run using the exact same

anomaly configuration that the model was trained with. The model scenario chosen for the latency study

was the sensor combination model (first anomaly criterion). The results are available in Figure 4.17.b.

Figure 4.17.a represents the processing work-flow around the anomaly detection streaming process. It

is the same process as described in section 3.11.4.

(a) Streaming work-flow. (b) Mean latencies obtained for each model.

Figure 4.17: Prediction latency analysis results.

In figure 4.17.a, each column represents a latency when compared with the moment the timestamp

of the reading was created in the factory simulator. The orange column represents the time it took for

the data to arrive to Spark from the factory. This therefore involves communication from the factory to

Kafka and then from Kafka to Spark. The blue column represents the time it took for an anomaly to

66

be written into the TICK stack (displayed in the dashboard). This is therefore the total time that it takes

to identify an anomaly and display it in a human readable fashion. Other columns were calculated as

an attempt to measure the latency of the inner operations represented in Figure 4.17.a (decoding, join

and prediction). These latencies were found to be very close in proximity to each other. The latencies

of these inner operations were calculated using timestamps inserted in the Spark streaming scripts

that were developed. Given that Spark is a distributed system and that the operations in Spark are

not necessarily followed in the order that they were programmed in (due to the Spark optimiser), it is

believed that Spark inserted the timestamp at a time that did not really reflect the desired insertion of

the timestamp. Therefore, the correct measurement of these inner operations could not be guaranteed

and are therefore not presented.

From Figure 4.17, the first conclusion is that stream-to-stream joins along with a machine learning

predictions clearly take time. We are no longer at the small communication latencies we identified

initially with the TICK stack in section 4.1.3. The second conclusion is that this latency depends rather

significantly on the model chosen and therefore the prediction stage, as the data load is the same in all

other stages regardless of the model used. As expected, the Random Forest model is the one that takes

the most time given that it must consult the predictions of multiple trees (300 were used). For all the other

models, similar latencies were obtained with SVM having the lowest prediction latency. To understand

if the system is stable and latency does not diverge, the latency evolution for these predictions was

analysed. The results are illustrated in Figure 4.18.

Figure 4.18: Latency evolution for each model.

For all models, the system seems to be stable as the latency oscillates around the mean that was

calculated for each model. Likewise, it is important to remember that these latencies were calculated

during a 15-minute window after the system was already given 5 minutes to reach a steady state. Figure

4.18 also shows how many anomalies each algorithm found. We can see that these values vary quite

significantly as not only each model behaves differently but also the data simulated was different.

With these results, another question that is posed is the possibility of being able to reduce or tune

this latency as a function of the use case or client requirements. In the case of our architecture, this

latency could be reduced by attempting three things: scaling the Spark cluster thus adding processing

capacity, Scaling the Kafka cluster or reducing the frequency (load) of the data production in the factory.

It was concluded that scaling Kafka would not be very beneficial in this case as the communication

latency obtained from it was already significantly small. This was seen in the TICK latency analysis,

where Kafka was exposed to higher data loads. Nevertheless, increasing the number of partitions to 2

67

and adding another machine running a Kafka cluster could help in the parallelisation of the consumption.

Scaling Spark would be a viable option, however, this cannot be done as a limited number of machines

for testing purposes were available. It was therefore decided to reduce the message frequency per

producer from 5 messages to 2 messages per second. This therefore corresponds to 8 messages per

second being sent. The watermark for each reading was also slightly reduced. The results obtained

with the same model as above are illustrated in Figure 4.19.

Figure 4.19: Anomaly detection latency with reduced simulator frequency.

From the results obtained we see that the latency has decreased for Logistic Regression and SVM but

not at all for the tree-based algorithms. It appears that the Spark cluster is not necessarily overwhelmed

with the amount of data but rather, there is a processing threshold that Spark is not being able to

compensate for even with this reduced data load. To truly understand if the objective of 5 seconds for

a prediction can be obtained, larger Spark and Kafka clusters are needed to increase the processing

capacity. Another interesting solution could be to have Kafka assume some of the processing load. As

seen in section 3.8, the Kafka streams java API can be used to perform topic stream-to-stream joins.

This developed application could be used to perform the joins and write the joined data to another Kafka

topic. Spark would then only have to consume the data from this topic, decode it, convert the JSON to

a Spark DataFrame and then perform the prediction. Given that Kafka streams API is optimised to work

with data from Kafka, this could be advantageous.

Even though the platform does not have the desired latency objective at the desired scale, we now

have the platform and architecture setup and ready to be optimised so that the objectives can be

achieved. The watermarking tool has proved to be an excellent out of the box tool offered by Spark.

It appears to be however a heavy tool in terms of processing capacity. Nevertheless, the decoding

and JSON conversion tasks should also not be forgotten as they too could explain part of the observed

latency.

In conclusion, we have developed Spark structured streaming applications capable of detecting

anomalies in real-time and writing them back to Kafka. A lambda architecture capable of using machine

learning to provide online insights (anomaly detection) about the production, which was our original

goal, was built. This is therefore the basis for a more optimised and robust Industrial IoT architecture

ready to be used as a reference and as a Meta solution to guide AKKA’s consultants in advising and

implementing Industry 4.0 to its clients.

68

Chapter 5

Conclusions

In this chapter we will summarise the work and implementations done on the ZORRO system, the results

obtained and some of their implications on the larger context of the project. Following this, the extent to

which the developed ZORRO system can be considered a robust meta solution is discussed. The future

work to be done will then be discussed considering the difficulties encountered and limitations identified.

Considering the Masters degree in which this Thesis was carried out, a final discussion of its application

on the Aerospace sector is also done.

5.1 Overview of Deployed System and Work Developed

As shown in Figure 3.6, in this work we have developed an Industrial IoT data collection and processing

system, respecting Big Data constraints and adopting a lambda architecture allowing for both batch and

streaming data processing. The developed system was used to visualise manufacturing data in real-

time, perform data exploration and analytics, and to detect manufacturing anomalies in real-time using

machine learning algorithms trained and deployed on the same platform. The system requirements

were satisfied and the desired architecture produced. Returning to the three main layers introduced in

the introduction of this work, in Figure 1.2, the following paragraphs sum up the work done on each of

these layers.

On the IoT layer (factory simulator), optimisations were performed on the simulator code, the paral-

lelisation of the simulator was done and the integration with a Kafka cluster was enabled. In addition,

the simulator was adapted to have the data being communicated in JSON format.

On the ZORRO data pipeline and processing (TCP) layer, a significant number of implementations

were done. A Kafka message broker cluster, acting as a central data pipeline, was deployed allowing for

messages to be communicated in real-time (with very admissible latencies) to all systems that require it.

In addition to this, the Kafka streams API was used to perform fast and scalable data processing tasks.

A data lake, enabling historic storage of huge data volumes, consisting of a Cassandra database and

an influxDB time series database was deployed. This gave way for batch persistent storage that can

be read in parallel by the Spark distributed data processing system, and for time series specific opera-

69

tions. To ingest data into InfluxDB from Kafka, Telegraf was deployed. To ingest data into Cassandra,

connectors were programmed. On the artificial intelligence and machine learning (ML) side of things,

a Spark cluster was deployed and configured for data processing and implementation of ML models for

automatic anomaly detection in real-time. This involved batch data processing jobs interacting with the

data lake (Cassandra) such as joins, data labelling and ML model training, and speed layer (streaming)

jobs, for the online predictions. An initial campaign was carried out to test different binary classifiers and

their performance both from a prediction (score) and speed (latency) perspective. The models utilised

data from different data sources, therefore time constraint table-to-table and stream-to-stream joins were

done. Being more specific to anomaly detection and ML, this project has performed a preliminary anal-

ysis on unsupervised learning algorithms for anomaly detection (auto-encoder and others) and initial

practical analysis on the supervised learning models available in Apache Spark (Decision Tree, Random

Forest, SVM and Logistic Regression). Tools used to measure the performance of these algorithms

were also studied and developed (ROC and precision vs recall curves). In terms of model skill (scores),

some interesting results were already obtained as models demonstrated being capable of identifying

anomalies dependant on relationships between variables successfully. All these aspects contributed to

the creation of a ZORRO ML toolbox. Performance tests were carried out to quantify the general mes-

sage latency and the prediction latency of the developed system. Despite not being integrated with a

real IoT layer, the performance results obtained are valuable as they offer an idea of the performance

and latency that data communication and processing would have once the data is already on the TCP

layer.

On the serving layer, Chronograf was used for real-time dashboarding of both the anomalies and

the general production / equipment status (asset monitoring). As a data pipeline, Kafka also allowed

for automatic enrichment of a client specific (SQL) knowledge database through a python coded Kafka-

PostgreSQL connector. A Jupyter notebook client was deployed creating an interactive and collaborative

programming interface for data scientists and ML engineers to perform data exploration, batch process-

ing and ML model training and testing using Spark’s python API, Pyspark. Similarly, but on the data

lake side of things, a Cassandra Zeppelin client was deployed for interaction with the raw data stored in

Cassandra.

With regards to deployment, most of the elements of the ZORRO architecture were dockerised ex-

cept for Spark, Jupyter and Zeppelin. Deployment states were defined using docker-compose files,

where containers, networks and volumes were defined and created, rendering the architecture one step

closer to being deployed on a cluster manager such as Kubernetes or docker-swarm. Given that the

platform was also deployed on an internal OpenStack cloud, referring back to section 2.3.1, the devel-

oped ZORRO platform can be more easily deployed on a similar PaaS or even IaaS offering of any cloud

provider.

Overall it can be concluded that a strong basis for a mature Industrial IoT data platform capable of

satisfying the defined constraints related to Big Data and Cyber Physical systems has been developed.

70

5.2 Generation of Know-how for AKKA Technologies

As referred multiple times in this dissertation, one of the major objectives of this work was to generate

know-how for AKKA regarding Industry 4.0, Big Data and stream-processing data systems. In addition

to performing an extensive and documented state-of-the-art study, this objective was achieved through a

consistent and detailed documentation that was developed parallel to the development and design of the

ZORRO system. In particular, throughout the construction of the system, every two weeks, presentations

were prepared to document the evolution of the system, the setbacks encountered and the additions

made.

The configuration files used to build each each of the specific sub-systems and have them commu-

nicate with each other, the code produced to run each one of the data processing, table creation, data

transferring and data visualisation / exploration jobs were stored in the functioning deployment environ-

ment and on a GitLab [6] code repository for future ease of instancing and use.

Having the system illustrated in figure 3.6 documented, built, deployed and functioning, we then

proceeded in utilising it to perform a series of data exploration, data processing and machine learning

campaigns in order to demonstrate its potential as discussed in chapter 4. Likewise, the system was

tested with various data loads in order to understand its performance. The tools developed to test the

system and analyse the results were documented and designed to be easily picked up and reproducible

on other results.

Overall, all of the above mentioned elements contributed to the completion of the generation of

internal know-how objective not only by providing a function proof of concept, but primarily through all

the documentation that was produced around it. As a result, AKKA can use the developed ZORRO

solution to not only understand the nature and potential o Industrial Big Data systems, but also the

difficulties associated to these system.

5.3 System and Work Evaluation

The developed system has proved to be a functioning and architecturally stable solution respecting the

various system requirements. An imperative next question to answer is the extent and ease to which

it can be migrated towards customers operations. Put differently and simply, how plug and play is the

developed solution? This is an important question to tackle as ease in integration and deployment is

an important requirement of Industry 4.0 systems [20]. It is hard to correctly answer this question as it

requires on terrain and industrial experience. Nevertheless, as it stands, the solution requires IT system

engineers to implement it. Similarly, the computational capacity associated to the solution must be

outsourced towards an external cloud provider. This, however, is not a problem as this ZORRO solution

was already deployed and tested on AKKA’s internal Openstack PaaS, built on AKKA’s IT infrastructure,

and can therefore be relatively easily transferred. Some aspects of the ZORRO serving layer are easily

displayed to the user and do not require previous expertise. An example of these are the dashboards

produced. On the other hand, the development and data science tools are targeted naturally towards

71

data scientists and the customers should have dedicated teams to receive these tools. Perhaps one

of the most challenging aspects which the ZORRO project has not yet dealt with is data security and

data ownership and how that will collide with industrial experts that might not have any experience

with complex data and cloud systems. In conclusion, the ZORRO solution is becoming more stable

technically and architecturally, but some eventual integration and partnership with an industrial company

is desired, in order to better understand the onsite implementation challenges of ZORRO as an Industry

4.0 solution.

5.4 Future Work

Despite the advances made to the system, there is a significant amount of work to be done for the

ZORRO system to be fully validated and ready to be demonstrated as a Proof of Concept to potential

future clients and partners of AKKA.

As seen in section 5.3, one of the most important future aspects to work on in this project is the

integration of the developed stack with a real IoT layer (network). The factory simulator proved essential

and useful to build the current system, but it does not allow for reliable and efficient latency testing, as

most of the times, significant latency amounts came from the factory simulator itself. Given that the

simulator was coded using Python scripts, many aspects inherent to a real IoT layer were not at all

simulated. In a real IoT layer, network connection may be limited, and sensors may have unexpected

behaviour that was not simulated in our anomalies. Apache Kafka proved to be a viable technology

for the creation of a unified data pipeline. We saw, however, that it was not the most suitable solution

for direct integration with an IoT layer. For this reason, another essential step in the IoT layer would

be to integrate Kafka with an MQTT broker such as HiveMQ, Mosquito or even the existing RabbitMQ

broker. As an alternative, data could be collected in IoT gateways and communicated to the Kafka

cluster directly through an MQTT proxy aggregating batches of data to be communicated to the Kafka

cluster. These gateways that are generally used in large scale IoT systems [19], form part of the edge-

computing domain of Industry 4.0 which has also not been explored in this work due to its proximity to

the IoT layer. Understanding how edge computing could be used in an industrial context to aggregate

and send Industrial IoT data to the developed ZORRO platform would also be an interesting aspect to

explore.

Another aspect to work on is the data and communication security of the ZORRO platform. Although

Kafka, the central piece of the developed data pipeline, allows for Transport Layer Security, this was not

configured. Configuring it would securely encrypt all the inter-machine communications with the excep-

tion of communication of the elements from within the TICK stack and between Spark and Cassandra.

The deployment of almost all elements for the architecture was done using docker containers, for

reasons discussed previously. To push the containerised deployment one step further, all elements of

the architecture should be containerised and deployed using Kubernetes. This would allow for a real

micro-service, fault tolerant and scalable Big Data architecture. It would also extend the know-how of

the project further towards the popular Kubernetes cluster manager. Once this is done, a Continous

72

Integration, Continous Development Pipleine (CI-CD) could be implemented in order to further the ease

in deployment of the ZORRO system as a Meta solution. It would also further increase AKKA’s know-how

regarding how these data systems are deployed, managed and maintained. All the code developed in

this project was deployed in a GitLab repository which itself contains CI-CD tools that could be explored.

Regarding automatic anomaly detection, the optimisation of the existing developed models, using

Spark’s cross validation class, and the introduction of new models could be explored. Likewise, it would

be interesting to test the sensitivity of the developed models to distributions that are not normal or

uniform. This could include Poisson or exponential sensor distributions. Some new models include

models that were explored in the state-of-the-art but were never implemented due to time restrictions.

The most interesting ones to explore would be the auto-encoder artificial neural network (explained in

section 2.4.5, and geometric distance-based algorithms using the Mahalanobis distance. It would also

be important to understand how many false positives our trained algorithms produce in a situation of

nominal equipment behaviour. Finally, the project could also go beyond automatic anomaly detection and

into the realm of using machine learning for predictive maintenance, time series forecasting and supply

chain resilience. In particular it could also be interesting to consider other classes in the classification

process such as ”replacement soon” or ”high probability of future anomaly”.

To render the PoC architecture truly equal to a lambda architecture, automatic Spark jobs for table

joining, data labelling and model training could be coded. This essentially would consist in automating

the batch processing illustrated in Figure 3.15. In addition, an automatic interaction between the ZORRO

speed and batch layer could be done, where the speed layer selects the most recent and the most high

performing model trained in the batch jobs for predictions. Code has been written for all these tasks in

both script and notebook form. Nevertheless, the automation of all these tasks is missing.

Finally, general more particular performance results need to be obtained for certain stages of the

ZORRO system. For example, the speed of the table-to-table batch joins was not tested, nor was

Spark’s speed of decoding the the data from Kafka or JSON string to Spark DataFrame conversion. It

would be important to begin by understanding how computationally expensive these tasks are before

attempting to optimise the architecture.

5.5 Applications on the Aerospace Sector

Industry 4.0 can be used in a series of production contexts and the objectives and gains are rather

transversal for all. Nevertheless, on the aerospace sector where very accurate and faultless manufactur-

ing is required to meet customer and regulator critical norms, Industry 4.0 can be particularly interesting

to help manufacturers in increasing the speed of production whilst still improving the quality. This was

seen in works like [13] where an Industry 4.0 solution was used to train a machine learning algorithm to

perform the deburring processes on aerospace parts automatically. This work proposed to perform this

critical task, which is traditionally carried out manually by experts and thus with subjective judgement,

using a deburring machine controlled with a machine learning algorithm making data based decisions.

Another example was seen in [83], where an automatic blade compressor re-manufacturing Industry 4.0

73

system was proposed to improve the quality of blade re-manufacturing which previously was done by

hand and only 45% of the blades actually were able to be reused. In these examples, Industry 4.0 is

used to increase the quality and speed of aerospace manufacturing. These examples demonstrate that

the use of data acquisition and intelligent information systems is essential to automate and produce with

the quality and accuracy that aerospace manufacturing requires.

Quoting Jean-Brice Dumont, Executive Vice President of Engineering, Airbus [14] - ”Our challenge

in the coming years is to manufacture more aircraft faster, and for that, we need to enable our workers

to be much better equipped and to be much more effective in what they do. We need to raise the

bar.” Here M. Dumont raises an interesting point concerning Industry 4.0 which should be thought of

as a tool to help manufactures become more efficient. Real-time asset monitoring, for example, can

help manufacturing workers on the production line identify anomalies quickly and visually before the

parts or assemblies reach the final tests and can no longer be changed. Remote analysis of potential

manufacturing problems can also save time and therefore making the manufacturing process faster and

giving manufacturers more flexibility. This quote by M. Dumont is consistent with Airbus’s wish to double

its production of Aircraft in the next 20 years and at a speed that is twice as fast as discussed in section

2.2. With the current COVID-19 pandemic, this objective must be naturally adapted, however, the need

for more efficient production processes continues to be present and has perhaps now grown.

The work developed in this dissertation is a step towards a clearer and more efficient manufacturing

process. All of the tools developed aim in increasing the quality and capacity of decision making of

production experts. From real-time asset monitoring and statistical visualisation of the production data

to real-time anomaly detection and alerting, the insights that the developed system can provide are data

driven, allowing for production experts to perform objective analysis. This tool therefore fits well with M.

Dumont’s objective of creating Industry 4.0 systems capable of making the Aerospace manufacturers

more efficient, better equipped and more effective.

74

Bibliography

[1] Momentum. The evolution of industry 1.0 to 4.0. [Online] https://www.seekmomentum.com/blog/

manufacturing/the-evolution-of-industry-from-1-to-4, 2019. Accessed 20 10 2020.

[2] V. Koch R. Geissbauer, S. Schrauf and S. Kuge. Industry 4.0 – opportunities and challenges of the

industrial internet. PricewaterhouseCoopers, December 2014.

[3] McKinsey. Industry 4.0 after the initial hype. McKinsey Digital, 2016.

[4] Nancy Velásquez, Elsa Estevez, and Patricia Pesado. Cloud computing, big data and the industry

4.0 reference architectures. Journal of Computer Science and Technology, 18(03):e29–e29, 2018.

[5] AKKA. Akka technologies - we accelerate innovation and business for the digital industrial world.

[Online] https://www.akka-technologies.com/. Accessed: 7 12 2020.

[6] GitLab. The complete devops platform. [Online] https://about.gitlab.com/. Accessed: 11 12

2020.

[7] AKKA. Autopilot. [Online] https://www.akka-technologies.com/case-study/

platoon-traffic-light-assist-using-iot/. Accessed: 18 12 2020.

[8] Link & fly - solving future mobility challenges. [Online] https://www.akka-technologies.com/

case-study/linkfly-air-transport-of-the-future/. Accessed: 21 12 2020.

[9] Euro Geo Surveys. Ingeoclouds. [Online] https://www.eurogeosurveys.org/projects/

ingeoclouds/. Accessed: 19 12 2020.

[10] 5g-mobix – new 5g cross-border corridors for connected and automated

driving. [Online] https://www.akka-technologies.com/press-release/

5g-mobix-new-5g-cross-border-corridors-for-connected-and-automated-driving/. Ac-

cessed: 20 12 2020.

[11] Andreja Rojko. Industry 4.0 concept: background and overview. International Journal of Interactive

Mobile Technologies (iJIM), 11(5):77–90, 2017.

[12] Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical systems architecture for industry

4.0-based manufacturing systems. Manufacturing letters, 3:18–23, 2015.

75

https://www.seekmomentum.com/blog/manufacturing/the-evolution-of-industry-from-1-to-4
https://www.seekmomentum.com/blog/manufacturing/the-evolution-of-industry-from-1-to-4
https://www.akka-technologies.com/
https://about.gitlab.com/
https://www.akka-technologies.com/case-study/platoon-traffic-light-assist-using-iot/
https://www.akka-technologies.com/case-study/platoon-traffic-light-assist-using-iot/
https://www.akka-technologies.com/case-study/linkfly-air-transport-of-the-future/
https://www.akka-technologies.com/case-study/linkfly-air-transport-of-the-future/
https://www.eurogeosurveys.org/projects/ingeoclouds/
https://www.eurogeosurveys.org/projects/ingeoclouds/
https://www.akka-technologies.com/press-release/5g-mobix-new-5g-cross-border-corridors-for-connected-and-automated-driving/
https://www.akka-technologies.com/press-release/5g-mobix-new-5g-cross-border-corridors-for-connected-and-automated-driving/

[13] Wahyu Caesarendra, Tomi Wijaya, Bobby K Pappachan, and Tegoeh Tjahjowidodo. Adaptation to

industry 4.0 using machine learning and cloud computing to improve the conventional method of

deburring in aerospace manufacturing industry. In 2019 12th International Conference on Informa-

tion & Communication Technology and System (ICTS), pages 120–124. IEEE, 2019.

[14] Microsoft. Airbus reaches new heights with the help of microsoft mixed re-

ality technology. [Online] https://news.microsoft.com/en-my/2019/06/17/

airbus-reaches-new-heights-with-the-help-of-microsoft-mixed-reality-technology/.

Accessed: 10 12 2020.

[15] Airbus. Skywise, the leading data platform for the aviation industry. [Online] https://skywise.

airbus.com/. Accessed: 13 12 2020.

[16] SIEMENS. Unique automation portfolio. [Online] https://new.siemens.com/global/en/

products/automation.html. Accessed: 19 12 2020.

[17] The leading industry 4.0 companies 2019. [Online] https://iot-analytics.com/

the-leading-industry-4-0-companies-2019/, 2019. Accessed 06 12 2020.

[18] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

[19] Khaled Al-Gumaei, Kornelia Schuba, Andrej Friesen, Sascha Heymann, Carsten Pieper, Florian

Pethig, and Sebastian Schriegel. A survey of internet of things and big data integrated solutions for

industrie 4.0. In 2018 IEEE 23rd International Conference on Emerging Technologies and Factory

Automation (ETFA), volume 1, pages 1417–1424. IEEE, 2018.

[20] Waqas Ali Khan, Lukasz Wisniewski, Dorota Lang, and Jürgen Jasperneite. Analysis of the require-

ments for offering industrie 4.0 applications as a cloud service. In 2017 IEEE 26th international

symposium on industrial electronics (ISIE), pages 1181–1188. IEEE, 2017.

[21] AWS. Aws iot. [Online] https://aws.amazon.com/iot/. Accessed 29 10 2020.

[22] Microsoft. Azure iot. [Online] https://azure.microsoft.com/en-us/overview/iot/. Accessed

29 10 2020.

[23] OpenStack. What is azure digital twins? [Online] https://docs.microsoft.com/pt-pt/azure/

digital-twins/overview, 2020. Accessed 07 12 2020.

[24] Google. Google cloud iot. [Online] https://cloud.google.com/solutions/iot. Accessed 2 12

2020.

[25] P Sommer, F Schellroth, M Fischer, and Jan Schlechtendahl. Message-oriented middleware for

industrial production systems. In 2018 IEEE 14th International Conference on Automation Science

and Engineering (CASE), pages 1217–1223. IEEE, 2018.

76

https://news.microsoft.com/en-my/2019/06/17/airbus-reaches-new-heights-with-the-help-of-microsoft-mixed-reality-technology/
https://news.microsoft.com/en-my/2019/06/17/airbus-reaches-new-heights-with-the-help-of-microsoft-mixed-reality-technology/
https://skywise.airbus.com/
https://skywise.airbus.com/
https://new.siemens.com/global/en/products/automation.html
https://new.siemens.com/global/en/products/automation.html
https://iot-analytics.com/the-leading-industry-4-0-companies-2019/
https://iot-analytics.com/the-leading-industry-4-0-companies-2019/
https://aws.amazon.com/iot/
https://azure.microsoft.com/en-us/overview/iot/
https://docs.microsoft.com/pt-pt/azure/digital-twins/overview
https://docs.microsoft.com/pt-pt/azure/digital-twins/overview
https://cloud.google.com/solutions/iot

[26] Emanuel Trunzer, Pedro Prata, Susana Vieira, and Birgit Vogel-Heuser. Concept and evaluation of

a technology-independent data collection architecture for industrial automation. In IECON 2019-

45th Annual Conference of the IEEE Industrial Electronics Society, volume 1, pages 2830–2836.

IEEE, 2019.

[27] Hyun-Seong Lee, Seoung-Hyeon Lee, Jae-Gwang Lee, and Jae-Kwang Lee. Designing a method

of data transfer using dual message queue brokers in an iot environment. In 3rd IEEE/ACIS Inter-

national Conference on Big Data, Cloud Computing, and Data Science Engineering, pages 1–11.

Springer, 2018.

[28] Peter Heller, Dee Piziak, and Jeff Knudse. An enterprise architect’s guide to big data: Reference

architecture overview. Unpublished paper. Oracle Enterprise Architecture White Paper, 2015.

[29] The Apache Software Foundation. Apache kafka more than 80% of all fortune 100 companies trust,

and use kafka. [Online] https://kafka.apache.org/. Accessed: 11 12 2020.

[30] Neha Narkhede, Gwen Shapira, and Todd Palino. Kafka: the definitive guide: real-time data and

stream processing at scale. ” O’Reilly Media, Inc.”, 2017.

[31] The Apache Software Foundation. Zookeeper. [Online] https://zookeeper.apache.org/. Ac-

cessed: 20 12 2020.

[32] Ayae Ichinose, Atsuko Takefusa, Hidemoto Nakada, and Masato Oguchi. A study of a video anal-

ysis framework using kafka and spark streaming. In 2017 IEEE International Conference on Big

Data (Big Data), pages 2396–2401. IEEE, 2017.

[33] Somphop Chanthakit, Phongsak Keeratiwintakorn, and Choopan Rattanapoka. An iot system de-

sign with real-time stream processing and data flow integration. In 2019 Research, Invention, and

Innovation Congress (RI2C), pages 1–5. IEEE, 2019.

[34] Khaled Al-Gumaei, Kornelia Schuba, Andrej Friesen, Sascha Heymann, Carsten Pieper, Florian

Pethig, and Sebastian Schriegel. A survey of internet of things and big data integrated solutions for

industrie 4.0. In 2018 IEEE 23rd International Conference on Emerging Technologies and Factory

Automation (ETFA), volume 1, pages 1417–1424. IEEE, 2018.

[35] Spark. Apache spark. [Online] https://spark.apache.org/. Accessed 1 11 2020.

[36] Spark. Apache spark - documentation. [Online] http://spark.apache.org/docs/latest/index.

html. Accessed: 1 11 2020.

[37] DB-Engines. Popularity changes per category, december 2020. [Online] https://db-engines.

com/en/ranking_categories. Accessed: 20 12 2020.

[38] InfluxData. Tick stack. [Online] https://www.influxdata.com/. Accessed: 5 11 2020.

[39] Rui Liu and Jun Yuan. Benchmarking time series databases with iotdb-benchmark for iot scenarios.

arXiv preprint arXiv:1901.08304, 2019.

77

https://kafka.apache.org/
https://zookeeper.apache.org/
https://spark.apache.org/
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
https://db-engines.com/en/ranking_categories
https://db-engines.com/en/ranking_categories
https://www.influxdata.com/

[40] InfluxData. Influxdb. [Online] https://www.influxdata.com/products/influxdb/. Accessed: 20

12 2020.

[41] InfluxData. Telegraf. [Online] https://www.influxdata.com/time-series-platform/telegraf/.

Accessed: 20 12 2020.

[42] Aleksey Kychkin and Aleksadr Nikolaev. Iot-based mine ventilation control system architecture

with digital twin. In 2020 International Conference on Industrial Engineering, Applications and

Manufacturing (ICIEAM), pages 1–5. IEEE, 2020.

[43] Aisha Siddiqa, Ahmad Karim, and Abdullah Gani. Big data storage technologies: a survey. Frontiers

of Information Technology & Electronic Engineering, 18(8):1040–1070, 2017.

[44] Apache cassandra - manage massive amounts of data, fast, without losing sleep. [Online] https:

//cassandra.apache.org/. Accessed 07 12 2020.

[45] DataStax. Benchmarking top nosql databases apache cassandra, couchbase, hbase, and mon-

godb. eBook, April 2014.

[46] Katalin Ferencz and József Domokos. Iot sensor data acquisition and storage system using rasp-

berry pi and apache cassandra. In 2018 International IEEE Conference and Workshop in Óbuda

on Electrical and Power Engineering (CANDO-EPE), pages 000143–000146. IEEE, 2018.

[47] Dharavath Ramesh, Ashay Sinha, and Suraj Singh. Data modelling for discrete time series data

using cassandra and mongodb. In 2016 3rd international conference on recent advances in infor-

mation technology (RAIT), pages 598–601. IEEE, 2016.

[48] Docker. Apache spark - documentation. [Online] https://www.docker.com/. Accessed: 7 12

2020.

[49] Ruffin White and Henrik Christensen. Ros and docker. In Robot Operating System (ROS), pages

285–307. Springer, 2017.

[50] Adrian Mouat. Using Docker: Developing and Deploying Software with Containers. ” O’Reilly

Media, Inc.”, 2015.

[51] Docker. Docker docs - swarm mode key concepts. [Online] https://docs.docker.com/engine/

swarm/key-concepts/. Accessed: 11 12 2020.

[52] Kubernetes. Kubernetes - production-grade container orchestration. [Online] https://

kubernetes.io/. Accessed: 7 12 2020.

[53] Lambda architecture. [Online] http://lambda-architecture.net/. Accessed: 11 12 2020.

[54] hazelcast. What is lambda architecture? [Online] https://hazelcast.com/glossary/

lambda-architecture/. Accessed: 20 12 2020.

78

https://www.influxdata.com/products/influxdb/
https://www.influxdata.com/time-series-platform/telegraf/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://www.docker.com/
https://docs.docker.com/engine/swarm/key-concepts/
https://docs.docker.com/engine/swarm/key-concepts/
https://kubernetes.io/
https://kubernetes.io/
http://lambda-architecture.net/
https://hazelcast.com/glossary/lambda-architecture/
https://hazelcast.com/glossary/lambda-architecture/

[55] Repository dedicated to kappa architecture. [Online] https://milinda.pathirage.org/

kappa-architecture.com/. Accessed: 20 12 2020.

[56] Jay Kreps. Questioning the lambda architecture. Online article, July, page 205, 2014.

[57] The smack stack is the new lamp stack. [Online] https://d2iq.com/blog/

smack-stack-new-lamp-stack. Accessed: 20 12 2020.

[58] McKinsey. Digital manufacturing capturing sustainable impact at scale. June 2017.

[59] Tom M Mitchell et al. Machine learning. 1997.

[60] Toulouse Tech. Arbres binares de décision. [Online] http://wikistat.fr/pdf/st-m-app-cart.

pdf, 2016.

[61] L.Fernandes. Understand the logistic regression algorithm. [Online] https://

openclassrooms.com/en/courses/6389626-train-a-supervised-machine-learning-model/

6405876-understand-the-logistic-regression-algorithm. Accessed 10 10 2020.

[62] Toulouse Tech. Machines à vecteurs supports. [Online] http://wikistat.fr/pdf/st-m-app-svm.

pdf, 2016.

[63] Oleksandr I Provotar, Yaroslav M Linder, and Maksym M Veres. Unsupervised anomaly detection in

time series using lstm-based autoencoders. In 2019 IEEE International Conference on Advanced

Trends in Information Theory (ATIT), pages 513–517. IEEE, 2019.

[64] Di Hu, Chen Zhang, Tao Yang, and Gang Chen. Anomaly detection of power plant equipment using

long short-term memory based autoencoder neural network. Sensors, 20(21):6164, 2020.

[65] Stanislav Kolenikov, Gustavo Angeles, et al. The use of discrete data in pca: theory, simulations,

and applications to socioeconomic indices. Chapel Hill: Carolina Population Center, University of

North Carolina, 20:1–59, 2004.

[66] MC.AI. Auto-encoder in biology. [Online] https://mc.ai/auto-encoder-in-biology/, 2019. Ac-

cessed 10 10 2020.

[67] Docker. Docker docs - overview of docker compose. [Online] https://docs.docker.com/

compose/. Accessed: 11 12 2020.

[68] OpenStack. The most widely deployed open source cloud software in the world. [Online] https:

//www.openstack.org/. Accessed: 11 12 2020.

[69] RabbitMQ. Rabbitmq is the most widely deployed open source message broker. [Online] https:

//www.rabbitmq.com/. Accessed: 11 12 2020.

[70] Philippe Dobbelaere and K Sheykh Esmaili. Industry paper: Kafka versus rabbitmq. In Proceedings

of the 11th ACM International Conference on Distributed and Event-based Systems, pages 227–

238, 2017.

79

https://milinda.pathirage.org/kappa-architecture.com/
https://milinda.pathirage.org/kappa-architecture.com/
https://d2iq.com/blog/smack-stack-new-lamp-stack
https://d2iq.com/blog/smack-stack-new-lamp-stack
http://wikistat.fr/pdf/st-m-app-cart.pdf
http://wikistat.fr/pdf/st-m-app-cart.pdf
https://openclassrooms.com/en/courses/6389626-train-a-supervised-machine-learning-model/6405876-understand-the-logistic-regression-algorithm
https://openclassrooms.com/en/courses/6389626-train-a-supervised-machine-learning-model/6405876-understand-the-logistic-regression-algorithm
https://openclassrooms.com/en/courses/6389626-train-a-supervised-machine-learning-model/6405876-understand-the-logistic-regression-algorithm
http://wikistat.fr/pdf/st-m-app-svm.pdf
http://wikistat.fr/pdf/st-m-app-svm.pdf
https://mc.ai/auto-encoder-in-biology/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.openstack.org/
https://www.openstack.org/
https://www.rabbitmq.com/
https://www.rabbitmq.com/

[71] P Sommer, F Schellroth, M Fischer, and Jan Schlechtendahl. Message-oriented middleware for

industrial production systems. In 2018 IEEE 14th International Conference on Automation Science

and Engineering (CASE), pages 1217–1223. IEEE, 2018.

[72] Confluent. How to maintain message ordering and no message duplication. [Online] https://

kafka-tutorials.confluent.io/message-ordering/kafka.html. Accessed: 14 12 2020.

[73] Confluent. The complete solution for cloud-native event streaming. [Online] https://www.

confluent.io/. Accessed: 11 12 2020.

[74] Confluent. Internet of things (iot) and event streaming at scale with apache kafka and mqtt. [On-

line] https://www.confluent.io/blog/iot-with-kafka-connect-mqtt-and-rest-proxy/. Ac-

cessed: 20 10 2020.

[75] HiveMQ. Hivemq and apache kafka - streaming iot data and mqtt messages. [Online] https://www.

hivemq.com/blog/streaming-iot-data-and-mqtt-messages-to-apache-kafka//. Accessed 2

10 2020.

[76] Lambros Sarakis, Theodore Zahariadis, Helen-Catherine Leligou, and Mischa Dohler. A framework

for service provisioning in virtual sensor networks. EURASIP Journal on Wireless Communications

and Networking, 2012(1):1–19, 2012.

[77] Wolfgang Thronicke Atos. Industry 4.0 aspects – machine inter-

ference and virtual sensors. [Online] https://atos.net/en/blog/

industry-4-0-aspects-machine-interference-virtual-sensors, April 2015. Accessed:

14 12 2020.

[78] Apache Zeppelin. Web-based notebook that enables data-driven, interactive data analytics and

collaborative documents with sql, scala and more. [Online] https://zeppelin.apache.org/. Ac-

cessed: 14 12 2020.

[79] Jupyter. Project jupyter exists to develop open-source software, open-standards, and services for

interactive computing across dozens of programming languages. [Online] https://jupyter.org/.

Accessed: 14 12 2020.

[80] Apache Spark. Structured streaming + kafka integration guide. [Online] https://spark.apache.

org/docs/latest/structured-streaming-kafka-integration.html. Accessed: 14 12 2020.

[81] Grafana. Metrics and logs at scale. [Online] https://grafana.com/. Accessed: 13 12 2020.

[82] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the roc plot

when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3):e0118432, 2015.

[83] Richard French, Michalis Benakis, and Hector Marin-Reyes. Intelligent sensing for robotic re-

manufacturing in aerospace—an industry 4.0 design based prototype. In 2017 IEEE International

Symposium on Robotics and Intelligent Sensors (IRIS), pages 272–277. IEEE, 2017.

80

https://kafka-tutorials.confluent.io/message-ordering/kafka.html
https://kafka-tutorials.confluent.io/message-ordering/kafka.html
https://www.confluent.io/
https://www.confluent.io/
https://www.confluent.io/blog/iot-with-kafka-connect-mqtt-and-rest-proxy/
https://www.hivemq.com/blog/streaming-iot-data-and-mqtt-messages-to-apache-kafka//
https://www.hivemq.com/blog/streaming-iot-data-and-mqtt-messages-to-apache-kafka//
https://atos.net/en/blog/industry-4-0-aspects-machine-interference-virtual-sensors
https://atos.net/en/blog/industry-4-0-aspects-machine-interference-virtual-sensors
https://zeppelin.apache.org/
https://jupyter.org/
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://grafana.com/

	Acknowledgments
	Abstract
	Resumo
	List of Tables
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Mission and Objectives
	1.3 Implementation and Results
	1.4 Thesis Outline

	2 Work Context and Industry 4.0 Big Data Systems
	2.1 Context
	2.1.1 AKKA Research & Development
	2.1.2 Project ZORRO

	2.2 Industry 4.0 Today
	2.3 Big Data and Cloud Computing Processing Platforms
	2.3.1 Cloud Provider Solutions
	2.3.2 Message Broker Systems
	2.3.3 Data Processing System
	2.3.4 Time Series System
	2.3.5 Persistent Big Data Storage System
	2.3.6 Deployment and Virtualisation
	2.3.7 Data Architectures

	2.4 Automatic Anomaly Detection
	2.4.1 Decision Tree
	2.4.2 Random Forest
	2.4.3 Logistic Regression
	2.4.4 Support Vector Machine
	2.4.5 Artificial Neural Network - Auto Encoder

	2.5 State-of-the-art and Background Conclusions

	3 Implementation of an Industry 4.0 Data Platform
	3.1 Objectives
	3.2 Methodology
	3.3 System Requirement Analysis
	3.4 Analysis of the Previous System
	3.5 Architectural Proposal
	3.6 Deployment Strategy
	3.7 Developed Proposed System and Meta Architecture
	3.8 Message Brokering and Data Pipeline System
	3.8.1 Kafka Cluster Deployment
	3.8.2 Kafka Streams API
	3.8.3 Kafka Cassandra Connectors

	3.9 Time Series Database and Data Visualisation
	3.10 Data Lake Persistent Storage
	3.11 Data Processing and Machine Learning
	3.11.1 Deployment
	3.11.2 Spark Analytics
	3.11.3 Batch Processing
	3.11.4 Stream Processing

	4 Developed System Outputs and Performance Analysis
	4.1 Real-time Data Visualisation
	4.1.1 Factory Dashboards and Monitoring
	4.1.2 Deployment Metric Collection
	4.1.3 Latency Performance

	4.2 Data Science and Exploration Tool
	4.2.1 Zeppelin Notebook
	4.2.2 Jupyter Notebook

	4.3 Automatic Anomaly Detection
	4.3.1 Model Training
	4.3.2 Anomaly Pipeline and Visualisation
	4.3.3 Anomaly Prediction Latency

	5 Conclusions
	5.1 Overview of Deployed System and Work Developed
	5.2 Generation of Know-how for AKKA Technologies
	5.3 System and Work Evaluation
	5.4 Future Work
	5.5 Applications on the Aerospace Sector

	Bibliography

