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ABSTRACT 

The main objective of this work is to study network attacks. 

By profiling the inherent network behavior patterns of 

maliciously used software tools, we can detect the 

techniques that these tools implement without needing to 

specifically detect the tool based on its specificities. 

It is developed and proposed a network feature extraction 

tool dubbed NetGenes, which considers a vast number of 

conceptual and statistical network communication features 

exclusively based on metadata extracted from L1-4 (OSI-

Layer 1 to OSI-Layer 4) protocols. NetGenes takes a 

network trace-file (PCAP, PCAPNG) as an input, and 

extracts features of three network objects (flows, talkers 

and hosts) which build off of each other, logically 

aggregating lower-level network object features beneath 

them, and also enabling the creation of new features. 

Then, we study various threat classes, organizing them in a 

taxonomy-like manner and outlining their encompassed 

threats, attack techniques and tools that implement them. 

Moreover, we create various rule sets based on the network 

objects extracted by NetGenes, for the “Port Scan” threat 

class. 

Finally, we apply the previously created rule sets to the 

CIC-IDS-2017 dataset, providing valuable insight about 

how to best detect the “Port Scan” threat class and its 

encompassed variants in a direct transparent manner. 
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INTRODUCTION 
It is developed and proposed a network feature extraction 

tool dubbed NetGenes, which considers a vast number of 

conceptual and statistical network communication features 

exclusively based on metadata extracted from L1-4 (OSI-

Layer 1 to OSI-Layer 4) protocols. It takes a network trace-

file as input and extracts relevant data from it. 

Various rule sets based on the network objects extracted by 

NetGenes are then created for the “Port Scan” threat class. 

Finally, we apply the previously created rule sets to the 

CIC-IDS-2017 dataset. 

RELATED WORK 

In a small article written by Kevin Sheu for Infosec Island 

[1], he describes NetFlows as not being comprehensive 

enough in terms of cybersecurity features. He argues that 

NetFlow only look into layer-1 to layer-4 (L1-4) data 

(“layer-3 and layer-4 data”, quoted from the article, 

obviously assumes layer-1 and layer-2 is also contemplated, 

since ethernet frames and the most common layer-2 

protocols be contemplated as a basis for layer-3 and layer-4 

protocols) and, thus, are not enough to go deeper in the 

connections themselves and gather protocol-specific 

features. Note that the NetFlow concept discussed 

comprises both NetFlow v1-9 and IPFIX (IP Flow 

Information eXport, a.k.a. NetFlow v10). Moreover, Kevin 

refers to Zeek [2] (a.k.a. Bro) network metadata as a 

superior solution in terms of knowledge depth 

(consequently, feature depth). 

After researching about several tools, Tranalyzer-2 is the 

best flow extraction tool that we could find in terms of 

considered network-object features (it considers host, talker 

and flow features). It can extract information on a lot of 

protocols of different layers and contains up to 98 different 

flow features [3] at the network/transport layer level. It 

encompasses talker features and host features, based on 

Tranalyzer-2’s latest documentation and presented flow 

aggregation techniques (mainly using tawk scripting) which 

they present in their website [4]. By communicating with 

the Tranalyzer-2 team and testing their tool, we could verify 

that Tranalyzer-2 now extracts 105 flow features by default, 

rather than the 98 flow features mentioned by Haddadi et. al 

[3]. 

Reading Cisco’s article about End-to-End Visibility [7], one 

can see how Cisco FirePOWER and FireSIGHT can 

leverage NetFlows to obtain network intelligence at the L1-

L4 level. It allegedly generates two useful types of event 

from L4-7 protocols’ data, and two other types of event 

which are more poorly related to the L4-7 stack. It uses 

Snort, a signature-based NIDPS solution, to generate 

“Intrusion” events. Additionally, it outputs “Threat and 

Security” events as well, which combine both endpoint-

based and network-based features to correlate OS events 

with network events, further used to perform host/user 

behavior score ranking and, additionally, to throw 

“Intelligence” events which are useful for cybersecurity 

experts to make informed decisions. Furthermore, the 

“Malware” event is a type of event which is outputted 

through an in-depth study of files received by an endpoint 



system. Moreover, the “Anomaly” event is very strongly 

correlated to what this thesis aims to achieve, by detecting 

threats and threat classes. Threat classes are a logic 

aggregation of threats which, on the other hand, are a logic 

aggregation of software solutions, including malware 

variants. Malware variants are detectable using IoCs and 

applying signature-based rules, threats and threat classes are 

detectable by combining higher-level network features and 

network behavior analysis to automatically detect malicious 

behavior, which allows obtaining IoCs for newly detected 

malware variants in automated ways with the study of 

threats and threat classes. 

Cisco Encrypted Traffic Analytics (ETA) solution is 

formed by both Cisco StealthWatch solution and the 

Enhanced NetFlow concept combined [17, 42, 43]. This 

solution allows analyzing network’s encrypted traffic to 

understand the most of what is happening in the network 

based only on traffic metadata. As such, it can be used to 

detect threats in the network, without breaking users’ 

privacies (decrypting and inspecting traffic) and without 

needing to parse diverse L5-7 protocols too deeply. Of all 

Cisco solutions, this one is the most closely related to the 

technical matters of this work. This solution, as well as this 

work, base themselves on the fact that even though not all 

data is intelligible, it is possible to extract a lot of threat 

intel from network traffic considering metadata only. By 

studying publicly available information about the Cisco 

ETA solution [8, 11, 12, 9, 10, 13], one can understand that 

it implements encrypted traffic analysis techniques (Cisco 

StealthWatch) which can be particularly applied to detect 

threats in the network, through the extracted and posteriorly 

enriched network information (enhanced netflows). 

Cisco CTD provides in-depth defense against modern and 

advanced threats [14] which can bypass most detection 

mechanisms. For network-based detection, Cisco CTD uses 

NetFlows and, on top, Cisco StealthWatch and Cisco 

FireSIGHT (which uses Cisco FirePOWER as the 

knowledgeable backend module). It also uses an endpoint-

based solution called Cisco AMP [15] (Advanced Malware 

Protection) for endpoint threat detection. 

Cisco AMP [15] acts like an automated malware sandbox 

analysis mechanism capable of analyzing network packet 

data and detecting malicious incoming files using static and 

dynamic file analysis. In terms of file-related features, 

Cisco AMP integrates with Cisco Threat Grid [16, 17, 18] 

to obtain more than 700 behavioral indicators (indicator, in 

this context, refers to features, do not confuse with indicator 

of compromise) related to a file and automatically detecting 

and understanding malware captured in the endpoint, which 

is not our direct focus. However, it is relevant as a related 

application because endpoint-based detection systems also 

need to include network-based analysis capabilities. 

Ongun et. al [5] used Bro connection logs to obtain network 

communication features. Later, they used CTU-13 datasets 

containing thirteen different botnet scenarios, each scenario 

using different botnets, techniques, and protocols. A feature 

representation that worked well in the authors’ setting for 

classifying internal IP addresses is feature representation by 

time windows and port number. The authors also observed 

that feature representation depends on the amount of 

training data. Additionally, the authors mention that 

features extracted directly from raw data such as Zeek 

connection logs do not always result in the most optimal 

representation. They recommended that multiple feature 

representations apart from Zeek should be evaluated as 

future work. We agree with the authors in the sense that 

features extracted from Zeek [2] connection logs are not 

enough (standalone) to fulfill a full feature representation 

and, thus, recognize the consequent need of feature 

aggregation methods on top of Zeek’s raw data to improve 

detection. 

Gu et al. proposed BotSniffer [6], a botnet detection system 

which uses a detection approach that was able to identify 

C2 servers and the bots infected hosts in the networks. 

Their technique was predicated on the notion that bots 

belonging to similar botnets would probably indicate a 

spatial-temporal relationship and resemblance to each other 

due to the pre-programmed events associated with C2 

botnets. They focus on protocols running over TCP by 

having diverse TCP flow features: number of upstream and 

downstream packets; size of the uplink and downlink 

transmission bytes; average length of the uplink and 

downlink data packets, maximum packet length, average 

packet variance, duration of the data stream and packets 

loaded in one stream. More specifically, the authors focus 

on two L7 protocols, IRC and HTTP, because these two 

protocols are very commonly used by bots to fetch or 

receive commands from a centralized C2 server. The 

authors used a custom dataset composed of diverse network 

traces, and some network logs recorded from an IRC 

tracker. Most of the traffic used for the dataset was 

generated by them in their university campus network. 

According to them, BotSniffer presented a high accuracy 

and low false positive ratio. 

Despite BotSniffer’s good results, Khan et. al [18] upholds 

that their detection strategy was widely concerned by 

experts in network traffic analysis because it does not 

depend on the botnet class to extract a common feature 

vector of the flow, which in theory compromises the 

definition of anomaly-based detection. We agree with Khan 

et. al and the referred experts that the proposed system does 

not use an anomaly-based approach, however it does use 

network behavior patterns to detect botnets, thus falling into 

the behavior-based detection category. In this work, we also 

analyze network behavioral patterns and use these to study 

and detect specific threats, which enables detecting new 

malware variants (tier-1 anomaly) and, even deeper, to 

study and detect threat classes, which enables detecting new 

threats (tier-2 anomaly); as such, this work falls into the 

behavior- and anomaly- based detection spectrum, 

independently of the usage of outlier and novel detection 



algorithms. According to Khan et. al work [18], the main 

factors that determine the efficiency and accuracy of 

detection are the characteristics of the extraction and the 

classification strategy used. Among other things, these 

factors mainly encompass: the labelling taxonomy, the 

feature-sets, the type of labelling process and the used 

classification algorithms. We can see that this is true by the 

results we achieved using different types of feature-sets 

(ones that are commonly not used, flow-set based features), 

as well as acknowledging the fact that we could label each 

“Port Scan” event as its own thing (e.g., “Port Scan - 

closed-port probe”) and other types of labelling that would 

drastically improve our flow classification results. It is all 

about what we are trying to detect. 

PORT SCAN THREAT CLASS DEFINITION 

Intent: Probe multiple ports of a given host, for a given L4 

protocol. 

Generic Attack Technique(s): 

• Distributed Port Scan - multiple hosts probe multiple ports 

of a host. 

• FTP Bounce Scan (-b) – this method allows an attacker to 

use a vulnerable FTP server as a proxy to port scan other 

hosts. This option is ideally used to target hosts in the same 

internal network as the FTP server, which will recognize it 

and accept packets coming from it, outputting responses 

that leak information about the port’s state. 

Specific Attack Technique(s): 

• UDP Scan (-sU) - the attacker sends a UDP packet to each 

port. If the target responds with service data, the port is 

open. If the target does not respond, the port is either closed 

or filtered. 

• TCP Connect Scan (-sT) - the attacker sends a TCP packet 

with the SYN flag bit set to each port. If the target responds 

with a SYN-ACK packet, the port is open and accepting 

requests: the attacker sends an ACK packet back; the target 

then responds with the service's specific data; then, the 

attacker sends a RST packet and closes the connection. If 

the target responds with a RST packet, the port is closed. 

Else, if the target does not respond, the port is filtered.  

• TCP SYN Scan (-sS) - the attacker sends a TCP packet 

with the SYN flag bit set to each port. If the target responds 

with SYN-ACK, the port is open and accepting requests: 

the attacker sends a RST packet to close the connection. If 

the target responds with a RST packet, the port is closed. 

Else, if the target does not respond, the port is filtered. 

• TCP ACK Scan (-sA) - the attacker sends a TCP packet 

with the ACK flag bit set to each port. If the target responds 

with a RST packet, the port is either open or closed, 

meaning that the port is unfiltered (not blocked by any 

firewall). Else, if the target does not respond or if it 

responds with certain ICMP error messages (ICMP Type 3; 

codes 0, 1, 2, 3, 9, 10 or 13), then the port is filtered. 

• TCP Null Scan (-sN) - the attacker sends a TCP packet 

with no flag set to each port. If the target responds with a 

RST packet, the port is considered closed. Else, if the target 

does not respond, the port is either open or filtered. Finally, 

if the target responds with an ICMP "Destination 

Unreachable" error (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or 

13) then the port is filtered. 

• TCP Xmas Scan (-sX) - the attacker sends a TCP packet 

with the FIN, PSH and URG flag bits set to each port. If the 

target responds with a RST packet, the port is considered 

closed. Else, if the target does not respond, the port is either 

open or filtered. Finally, if the target responds with an 

ICMP "Destination Unreachable" error (ICMP Type 3; 

codes 0, 1, 2, 3, 9, 10 or 13) then the port is filtered. 

• TCP FIN Scan (-sF) - the attacker sends a TCP packet 

with the FIN flag bit set to each port. If the target responds 

with a RST packet, the port is considered closed. Else, if the 

target does not respond, the port is either open or filtered. 

Finally, if the target responds with an ICMP "Destination 

Unreachable" error (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or 

13) then the port is filtered. 

• TCP Idle Scan (-sI) - the attacker sends a SYN-ACK 

packet to a host, which will be dubbed "unaware host" 

because its technical name, "zombie", already associates to 

a completely different meaning in the botnet context. The 

unexpected SYN-ACK packet sent to the unaware host will 

be responded to with a RST packet sent back to the 

attacker, which has a certain IP ID associated with it. The 

attacker then sends a SYN packet to the target host with the 

source IP address spoofed with the IP of the unaware host, 

incrementing its IP ID by 1. On this moment, there are three 

possible scenarios: (A1) The target host responds to the 

unaware host with a SYN-ACK packet. Since the unaware 

host was not expecting the packet, it sends a RST packet to 

the target host, incrementing its IP ID by 1 again. (A2) The 

target host responds to the unaware host with a RST packet. 

The unaware host did not expect the packet, but since it isn't 

a packet that tries to initiate a connection (rather, abort it), 

the unaware host does not respond with any packet, thus not 

incrementing its own IP ID. (A3) The target host does not 

respond to the unaware host. As such, the unaware host 

does not receive any packet and, more importantly, it 

doesn't send a packet back, such as in scenario A2, thus not 

incrementing its IP ID. Continuation: Once any of the 

previous scenarios has taken place, the attacker will send a 

SYN-ACK packet to the unaware host, to which the 

unaware host will respond with a RST packet. The IP ID of 

the final RST packet will then be analyzed by the attacker 

for the existence of one of the following scenarios: (B1) 

The IP ID was incremented by 2 since the first packet 

received from the unaware host, which means that the target 

host responded with a SYN-ACK packet to the unaware 

host, so the probed port is open. (B2) The IP ID was only 

incremented by 1 since the first packet received from the 

unaware host, which means that the target host responded 



with a RST packet or did not respond at all, since in both 

situations the unaware host does not create any response 

packet for the target host. As such, from the attacker's 

perspective, the probed port might be either closed 

(scenario A2) or filtered (scenario A3). The attacker then 

repeats this whole process for each port that he intends to 

scan. 

• TCP Maimon Scan (-sM) - this technique is named after 

its discoverer, Uriel Maimon. It starts with the attacker 

sending a TCP packet with the FIN and ACK flag bits set to 

each port. According to the RFC-793 (TCP RFC), the host 

should generate a RST packet in response, independently of 

the fact of the port being open or closed. However, Uriel 

found out that many BSD-derived systems simply drop this 

packet if the port is open. 

• TCP Custom Scan (--scanflags) - the attacker sends a TCP 

packet with a custom set of TCP flag bits set to each port. 

The analysis depends on the TCP flag set used, as this 

means different possible responses and interpretations. It 

can be used, for example, to find bypassable edge-cases for 

firewalls and IDSs. 

• Service/Version Detection Scan (-sV). Probes open ports 

to determine service/version info, meaning that the flow 

will be fully initiated to allow sending test packets to try 

and detect the version of the probed service based on the 

responses. 

• SCTP INIT Scan (-sY) - the attacker sends an SCTP INIT 

packet to each port of the target host. An SCTP INIT-ACK 

response packet indicates that the port is open and, in this 

case, the attacker aborts the connection right after. An 

SCTP ABORT response packet indicates that the port is 

closed and, if no response is received after several 

retransmissions, the port is marked as filtered. 

• SCTP "COOKIE ECHO" Scan (-sZ) - the attacker sends 

an SCTP COOKIE ECHO packet to each port of the target 

host. If the target host doesn't respond, the port is either 

open or filtered. If the target host responds with an SCTP 

ABORT packet, then the port is closed. 

Program Applicability: Any program that communicates 

over a network can eventually be used for network host 

discovery using a certain network protocol, given that the 

probed protocol is present on the probed machine. Given 

the latter, we will only consider a host discovery program 

as such if at least one of the following conditions are true: 

• It supports sending and interpreting ARP probes for 

multiple hosts 

• It supports sending and interpreting raw IP packets 

specifying the probed IP protocol number on the IP header 

for multiple hosts (IP protocol probes) 

• It supports sending and interpreting TCP, UDP and ICMP 

probes (given their prevalence on today's networks) for 

multiple hosts 

• Optionally, these programs can also support other much 

less adopted protocols such as SCTP. Also, the existence of 

any L5-7 protocol is irrelevant for this category. 

Programs - <name> (<L1-4 protocols supported>): 

• UnicornScan (TCP, UDP, ICMP) 

• Nmap (ARP, raw IP, ICMP, UDP, TCP, SCTP) 

• Ncat (UDP, TCP, SCTP) 

• Hping3 (raw IP, ICMP, UDP, TCP) 

• AngryIPScanner (ICMP, UDP, TCP) 

• Masscan (ICMP, UDP, TCP) 

• ZMap (ICMP, UDP, TCP) 

References [19]-[23] were used as a basis for building this 

definition. 

NETGENES TOOL 

The tool we developed, dubbed NetGenes, extracts features 

of the previous network objects: 

• Packets - use packet metadata only, encompassing OSI 

layer 1 to OSI layer 4. 

• Flows - aggregate packet features into flow features, 

considering the protocol stack. We consider two main 

protocol stacks: eth-eth-ipv4-udp and eth-eth-ipv4-tcp. TCP 

is implemented in the RFC way, meaning that we analyze 

TCP flags and the Sequence/Acknowledgment numbers to 

logically separate the incomplete 5-tuple TCP flow onto 

multiple 6-tuple flows. 

• Talkers – aggregate flow features into talker features and 

create new talker-based flow-set features. We consider 

“eth-eth-ipv4” as the protocol stack for talkers and hosts, 

and we uniquely identify them using their IPv4. 

• Hosts – aggregate talker features into host features and 

create new host-based talker-set features. We consider “eth-

eth-ipv4” as the protocol stack for talkers and hosts, and we 

uniquely identify them using their IPv4. 

Note about Host features: we now think that host features 

should aggregate flow features as well and, perhaps, 

substitute most talker features. This conclusion comes from 

the fact that these host features have not been as useful as 

talker features because the latter ones are flow aggregations 

and we can directly query them to understand the 

underlying flow sets, whereas hosts provide information 

about the underlying talker sets but there is a lot of lost 

information on the flow sets. As such, we consider that 

hosts should also focus on direct flow aggregation (flow 

sets). We think that implementing host-based flow-set 

features would be beneficial because it provides insight into 

each host individually and each of their flow sets, in a 

similar way that the talker does for each pair of talking 

hosts. 



NetGenes is an unfinished prototype, as it will be for as 

long as every threat class’s core feature is not implemented. 

Right now, it includes a lot of conceptual and statistical 

features on each network object which may not be at all 

relevant to detect any network attack by their core features, 

and it still does not include all the features that it needs to 

properly detect every threat class. These features are 

workable with Machine Learning, and have been designed 

to be worked with it as well (e.g., one-hot encoding of 

Boolean values), but successfully classifying threat class 

traffic is not as easy as splitting datasets in train and test 

datasets based on authors’ labels and trying multiple 

classifiers and regressors, it’s much more complicated than 

that to implement a generically efficient classifier. 

We define core features as features that can successfully 

describe the core scenarios of a network attack (generically 

encompassed by its threat class), with either low 

possibilities of evasion or severely affecting the attack’s 

effectiveness if not detected. The purpose of the NetGenes 

tool is to help us extract relevant information for detecting 

all the network attacks that we want to detect, which should 

be thought about by studying the threat classes that those 

attacks implement to extract the core features needed. As 

such, our long-term goal with this work is to continuously 

improve NetGenes towards encompassing more threat class 

core features, in all its extracted network objects. We also 

think that, by including non-core features that are useful for 

the detection of threat class instances, using statistical 

analysis and ML classifiers, we may be able to receive hints 

about what core features we should be looking for to 

implement in the tool. We recommend this as future work 

for more threat classes. 

NetGenes supports the extraction of 146 flow features, 184 

talker features and 262 host features, from network trace-

files in the PCAP/PCAPNG format. 

FLOW-SET BASED ANALYSIS 

Until we thought about the Port Scan detection problem 

properly, we tried flow classification using ML algorithms, 

which was an improvement over packet- and signature- 

based detections for detecting new network attack 

instances. However, these methods can become outdated 

due to the fact that tools change overtime, and custom 

parameters can be given to these, altering the network 

traffic enough to be able to escape packet-based and 

signature-based detection, as well as flow feature analysis 

methods that do not solely focus on a threat class’s core 

features. Additionally, neither CICFlowMeter nor other 

pure “flow” extraction tools can extract flow-set based 

features, which is why most researchers usually use flow-

based features to feed ML models and study threat classes.  

We recommend that researchers attempt to extract flow-set 

based features, such as talker- and host- based features, to 

not only improve their detection results but, more 

importantly, to find the core features of the threat class, to 

improve their results based only on those core features and 

to create their own rule sets to detect the threat class. The 

current state-of-the-art alternative is relying on black-box 

ML models working with multiple statistical flow-based 

features to attempt to model a whole threat class around 

those features. This may achieve great results because a ML 

model is capable of creating very complex rule sets within 

itself based on those types of features that are present on the 

training data, but the main problem is that it will most likely 

rely in features that do not truly define a threat class, so 

new implementations could result in undetected network 

attacks that completely drop said features (unless they 

happen to be core features). It is a common problem that a 

ML model will overfit around multiple non-core features 

based on the train dataset and achieves great results in the 

test datasets because of it when, in fact, the features used 

are completely irrelevant for the threat class itself but just 

happen to be a commonality within the train and test 

datasets. The previous problem is the reason why, for ML-

based research for network traffic analysis, if we want to 

find relevant commonalities that lead us to understand the 

threat class itself, it is important to use broad train and test 

datasets with a preference for multiple tools. However, even 

then, it is difficult to truly understand the ML model’s 

outputs and we cannot easily outline its limitations in 

detecting relevant instances of the threat class. 

PORT SCAN RULES 

“Port Scan” Host rules: 

• (Unused rule) HR-1 – “Other hosts tried to access more 

than n network services of the host.”: 

(bihost_bwd_biflow_n_unique_dst_ports>n) 

“Port Scan” Talker rules: 

• TR-1 – “Source host tried to access more than n network 

services of destination host, or destination host tried to 

access more than n network services of source host.”: 

(bitalker_fwd_biflow_n_unique_dst_ports>n) | 

(bitalker_bwd_biflow_n_unique_dst_ports>n) 

Default Flow rules: 

• (Unused rule) FR-HR-Default – Filter flows for relevant 

backward uni-hosts: (bihost_bwd_id ==bihost_id) 

• FR-TR-Default – Filter flows for relevant bi-talkers 

(dividable in forward and backward uni-talkers): 

(unitalker_id==unitalker_fwd_id) | 

(unitalker_id==unitalker_bwd_id) 

“Port Scan” Flow rules: 

• FR-1 – “Flow was initialized by an unacknowledged 

connection request. Either the initialization packet did not 

properly reach the destination host, or any host in-between 

the source host (exclusive) and the destination host 

(inclusive) dropped the packet. No connection was 

established.”: 

biflow_eth_ipv4_tcp_initiation_requested_connection==1 



• FR-2 – “Flow was initialized in an incomplete manner, 

only completing a two-way handshake. In other words, 

source host requested a connection (syn1) and destination 

host acknowledged it (ack2)”, encompassing two 

connection possibilities: 1 – connection rejected, 2 – half-

duplex connection established.”: 

biflow_eth_ipv4_tcp_initiation_two_way_handshake==1 

• FR-2.1 – “The destination host rejected the connection 

(rst2-ack2).”: FR-2 & 

biflow_eth_ipv4_tcp_connection_rejected==1 

• FR-2.2 – “A half-duplex connection was established, i.e., 

although the destination host accepted the connection 

request (syn2-ack2), the source host never acknowledged it 

(!ack3), as the third step of the three-way-handshake 

mandates.”: 

FR-2 & 

biflow_eth_ipv4_tcp_connection_established_half_duplex=

=1 

• FR-2.2.1 – “The source host established a half-duplex 

TCP connection, just to abort it afterwards.”: 

(biflow_eth_ipv4_tcp_connection_established_half_duplex

==1) & 

(biflow_eth_ipv4_tcp_termination_abort==1) & 

(biflow_fwd_eth_ipv4_tcp_n_active_rst_flags>0) 

• FR-3 – “A full-duplex connection was established and 

there was only 1 packet (syn2-ack2) that was sent by the 

destination host, before the source host aborted the 

connection.”: 

(biflow_eth_ipv4_tcp_connection_established_full_duplex

==1) & 

(biflow_bwd_n_packets==1) & 

(biflow_eth_ipv4_tcp_termination_abort==1) & 

(biflow_fwd_eth_ipv4_tcp_n_active_rst_flags>0) 

We note that TR-1 source and destination hosts/ports are 

not based on packet direction, but on flow direction. Packet 

direction varies in a flow, so it would be a mistake to 

directly consider unique destination port counts if it was 

based in the packets, as you would capture both the source 

and the destination ports of the flow. As such, only after 

you have achieved a flow definition can you correctly 

define and extract talker features, and the same applies to 

flow-set based host features, such as the one presented in 

HR-1. 

Results obtained using the host rules we defined, HR-1 and 

FR-HR-Default, are not presented, because the talker-based 

rules we defined, TR-1 and FR-TR-Default, were enough to 

achieve great results. Despite this, we further discuss this 

matter because the host rules can top the talker features 

when a single network attack is performed using multiple 

source IPs. 

PORT SCAN RULE SET RESULTS AND ANALYSIS 

We summarize each “Port Scan” flow rule set (considering 

“FR-TR-Default” applied with “TR-1 n=100”), applied to 

all CIC-IDS-2017 dataset days that consider a port scan 

(Thursday and Friday): 

• A lack of flow rules, which captures every flow within the 

filtered talkers, has a precision of 69.947%. It has an F1-

Score of 82.316%. It detects every Port Scan flow, but also 

wrongfully considers 34.780% of all Port Scan flows. 

• “FR-1”, which captures every flow with an unanswered 

requested connection (likely dropped), has a precision of 

91.070%. Its low F1-Score (22.867%) reflects the fact that 

it only detects 13.075% of all Port Scan flows. 

• “FR-2”, which captures every flow initiated with a two-

way handshake, has a precision of 99.924%. It has an F1-

Score of 92.671%, the highest F1-Score for a single flow 

rule, detecting 86.400% of all Port Scans. 

• “FR-3”, which captures every flow that had a full-duplex 

connection that is later aborted by the source host, without 

the destination host ever sending another packet other than 

the three-way-handshake’s second packet, has a precision 

of 99.789%. Its low F1-Score of 0.410% reflects the fact 

that it only detects 0.205% of all Port Scan flows. 

• “FR-2.1”, which captures every flow that was rejected, 

has a precision of 99.938%. it has an F1-Score of 92.458%, 

detecting 86.019% of all Port Scan flows. 

• “FR-2.2”, which captures every flow that had a half-

duplex connection, has a high precision, so most instances 

classified as a Port Scan with this rule set were, in fact, a 

Port Scan. Its low F1-Score is low reflects the fact that it 

only detects 0.380% of all Port Scan flows. 

• “FR-2.2.1”, which captures every flow that had a half-

duplex connection whose source host aborted it afterwards, 

seems to be the most specific to port scan situations, and its 

100.000% precision indicates just that. In fact, there might 

be no other reason for a host to open a half-duplex 

connection and abort it afterwards unless it was simply 

checking if the port was accepting connections. Its low F1-

Score of 0.419% reflects the fact that it only detects 0.210% 

of all Port Scan flows. 

• “FR-1 | FR-2” has a precision of 98.663%. It has an F1-

Score of 99.067%, detecting 99.474% of all Port Scan 

flows. 

• “FR-1 | FR-3” has a precision of 91.193%. Its low F1-

Score of 23.184% reflects the fact that it only detects 

13.280% of all Port Scan flows. 

• “FR-2 | FR-3” has a precision of 99.924%. It has an F1-

Score of 92.789%, detecting 86.605% of all Port Scan 

flows. 



• “FR-1 | FR-2 | FR-3” has a precision of 98.666%. With an 

F1-Score of 99.170%, it has the highest F1-Score among all 

rule sets, detecting 99.680% of all Port Scan flows. 

PORT SCAN DETECTION RESULTS 

Table 1 shows a comparison between our current work and 

three other works that have applied their detection 

mechanisms to the CIC-IDS-2017 dataset. 

Works 
Detected 

Port 

Scans 

Friday’s “Port 

Scan” Flow 

Classification 

Accuracy 

Previous work 

(2018) [26] 
1 99.73% 

Singh et. al, 

ICAESMT-2019 

(2019) [27] 

1 99.9815% 

Stiawan et. al, 

IEEE Access 8, 

132911–132921 

(2020) [28] 

1 99.7% 

Current work 

(2020) 
13 99.953% 

Table 1. Work Comparison in CIC-IDS-2017 Port Scan 

Detection. 

Our work detected the 12 port scans that occurred Thursday 

and were incorrectly labeled in the dataset, of which 11 

were referenced by the dataset authors [24,25], when they 

refer to Thursday’s infiltration 2nd step in which 

192.168.10.8 performs a port scan to “all other clients”, and 

1 port scan that was not referenced at all. NetGenes-

generated data and the rules we employed were effective to 

spot these types of imprecisions in the dataset. 

Furthermore, as other works, we detected the Port Scan that 

occurred on Friday, correctly detecting the only 2 hosts 

involved in this interaction. Even though our flow 

classification results were not as great as Singh et. al results 

[27], we tried hard to not flow fingerprint any flow, which 

is very hard to not do when working with Machine 

Learning unless manual feature selection is performed, due 

to issues with train and test datasets that do not allow 

accounting for many variants. 

Additionally, this work’s flow definition is different from 

the flow definition considered by most other works: 

namely, for Friday’s TCP port scan flows, we are 

accounting a total of 158980 Friday TCP port scan flows 

extracted by NetGenes, while other works consider 158930 

original port scan flows extracted by CICFlowMeter 

(158923 of which are TCP flows, 6 are marked as 

unidentified and 1 is the only correctly labeled UDP flow). 

Moreover, we also note that we did not detect the version 

detection scans, which would result in many rules that are 

essentially flow fingerprinting and would steer away from 

using core features only. If this traffic exists unencrypted, 

we should instead gather L5-7 features by default and 

assess these new features as indicators rather than 

performing flow fingerprinting, as at that abstraction level 

they could be core features. We propose that as future work. 

Finally, even though the metrics we defined are important, 

it is more relevant to understand why we are getting such 

results. Understanding what our rules do is more important 

than the metrics they achieve in correctly classifying flows. 

Additionally, what we really want to do is to be able to 

safely state that a certain network attack has occurred, 

identify the attacker(s) and identify the victim(s), which can 

be performed using flow-set information (as we do with 

Port Scan’s HR-1 and TR-1). Additionally, a set of flows 

filtered by high-precision rule sets indicates that they are 

malicious with a very high certainty (even if those are not 

the only malicious flows), and this information will help the 

analyst further narrow down the network traffic that they 

need to focus on to undertake a deeper network analysis. 

CONCLUSION 

We developed our own tool, dubbed NetGenes, to extract 

useful information from the packets captured inside a 

network trace-file. The extracted information is 

independent of encryption because only the packet 

metadata is used to generate it. This information is then 

hierarchically organized in three abstract network concepts, 

which we dubbed “network objects”, responsible for 

logically aggregating traffic, each one with its own features. 

NetGenes provides a lot of conceptual and statistical 

network features, to arm an analyst or researcher with a 

readable feature format. This feature format enables a 

researcher to quickly acknowledge the fundamentals of the 

network communications captured inside the network trace-

file, while each network-object features provide deeper 

insight on the network data. 

By developing NetGenes, we can use a set of flow features 

that is lengthier than many flow extraction tools, including 

conceptual and statistical features, usable to study and 

handle the data in the most complete way that we possibly 

can (considering the multiple tool’s development cycles this 

year). We also developed and extensively use the “Talker” 

network object as a flow aggregator, as well as the “Host” 

network object as a talker and flow aggregator, as well as 

their respective features. NetGenes is a tool that was 

inspired by CICFlowMeter (a tool made by researchers at 

the Canadian Institute for Cybersecurity, CIC), but at the 

moment includes slightly more flow features and adds the 

concept of flow-set based features on top, which is already 

present in tools that are used more by the network 

community like tranalyzer2 (which includes the “top 



talkers” concept and possibility of flow aggregation scripts) 

and WireShark (“Conversations”). 

The Talker object proved to be an important concept to 

analyze network traffic. It provides a relevant context for 

flows, grouping them by source host and destination host, 

and allows filtering useful flows based on talker-based 

flow-set features. 

Similarly, the Host object, also proved to be an important 

concept to analyze network traffic. It provides a relevant 

context for talkers and flows, grouping them by Host, and 

allows filtering useful flows based on host-based talker-set 

and flow-set features. 

For the considered threat class ("Port Scan"), the flow 

classification results of this work were great, while talker 

classification results were perfectly accurate for every day. 
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