
Structured Behavior Analysis on Encrypted Traffic

 João Meira

Instituto Superior Técnico

Lisboa, Portugal

joao.meira@ist.utl.pt

ABSTRACT

The main objective of this work is to study network attacks.

By profiling the inherent network behavior patterns of

maliciously used software tools, we can detect the

techniques that these tools implement without needing to

specifically detect the tool based on its specificities.

It is developed and proposed a network feature extraction

tool dubbed NetGenes, which considers a vast number of

conceptual and statistical network communication features

exclusively based on metadata extracted from L1-4 (OSI-

Layer 1 to OSI-Layer 4) protocols. NetGenes takes a

network trace-file (PCAP, PCAPNG) as an input, and

extracts features of three network objects (flows, talkers

and hosts) which build off of each other, logically

aggregating lower-level network object features beneath

them, and also enabling the creation of new features.

Then, we study various threat classes, organizing them in a

taxonomy-like manner and outlining their encompassed

threats, attack techniques and tools that implement them.

Moreover, we create various rule sets based on the network

objects extracted by NetGenes, for the “Port Scan” threat

class.

Finally, we apply the previously created rule sets to the

CIC-IDS-2017 dataset, providing valuable insight about

how to best detect the “Port Scan” threat class and its

encompassed variants in a direct transparent manner.

Author Keywords

Network Security, TCP/IP Feature Extraction, Encrypted

Network Traffic Analysis, Network Threat Hunting.

ACM Classification Keywords

Information Systems, Information Systems Applications,

Data Mining, Association Rules.

INTRODUCTION
It is developed and proposed a network feature extraction

tool dubbed NetGenes, which considers a vast number of

conceptual and statistical network communication features

exclusively based on metadata extracted from L1-4 (OSI-

Layer 1 to OSI-Layer 4) protocols. It takes a network trace-

file as input and extracts relevant data from it.

Various rule sets based on the network objects extracted by

NetGenes are then created for the “Port Scan” threat class.

Finally, we apply the previously created rule sets to the

CIC-IDS-2017 dataset.

RELATED WORK

In a small article written by Kevin Sheu for Infosec Island

[1], he describes NetFlows as not being comprehensive

enough in terms of cybersecurity features. He argues that

NetFlow only look into layer-1 to layer-4 (L1-4) data

(“layer-3 and layer-4 data”, quoted from the article,

obviously assumes layer-1 and layer-2 is also contemplated,

since ethernet frames and the most common layer-2

protocols be contemplated as a basis for layer-3 and layer-4

protocols) and, thus, are not enough to go deeper in the

connections themselves and gather protocol-specific

features. Note that the NetFlow concept discussed

comprises both NetFlow v1-9 and IPFIX (IP Flow

Information eXport, a.k.a. NetFlow v10). Moreover, Kevin

refers to Zeek [2] (a.k.a. Bro) network metadata as a

superior solution in terms of knowledge depth

(consequently, feature depth).

After researching about several tools, Tranalyzer-2 is the

best flow extraction tool that we could find in terms of

considered network-object features (it considers host, talker

and flow features). It can extract information on a lot of

protocols of different layers and contains up to 98 different

flow features [3] at the network/transport layer level. It

encompasses talker features and host features, based on

Tranalyzer-2’s latest documentation and presented flow

aggregation techniques (mainly using tawk scripting) which

they present in their website [4]. By communicating with

the Tranalyzer-2 team and testing their tool, we could verify

that Tranalyzer-2 now extracts 105 flow features by default,

rather than the 98 flow features mentioned by Haddadi et. al

[3].

Reading Cisco’s article about End-to-End Visibility [7], one

can see how Cisco FirePOWER and FireSIGHT can

leverage NetFlows to obtain network intelligence at the L1-

L4 level. It allegedly generates two useful types of event

from L4-7 protocols’ data, and two other types of event

which are more poorly related to the L4-7 stack. It uses

Snort, a signature-based NIDPS solution, to generate

“Intrusion” events. Additionally, it outputs “Threat and

Security” events as well, which combine both endpoint-

based and network-based features to correlate OS events

with network events, further used to perform host/user

behavior score ranking and, additionally, to throw

“Intelligence” events which are useful for cybersecurity

experts to make informed decisions. Furthermore, the

“Malware” event is a type of event which is outputted

through an in-depth study of files received by an endpoint

system. Moreover, the “Anomaly” event is very strongly

correlated to what this thesis aims to achieve, by detecting

threats and threat classes. Threat classes are a logic

aggregation of threats which, on the other hand, are a logic

aggregation of software solutions, including malware

variants. Malware variants are detectable using IoCs and

applying signature-based rules, threats and threat classes are

detectable by combining higher-level network features and

network behavior analysis to automatically detect malicious

behavior, which allows obtaining IoCs for newly detected

malware variants in automated ways with the study of

threats and threat classes.

Cisco Encrypted Traffic Analytics (ETA) solution is

formed by both Cisco StealthWatch solution and the

Enhanced NetFlow concept combined [17, 42, 43]. This

solution allows analyzing network’s encrypted traffic to

understand the most of what is happening in the network

based only on traffic metadata. As such, it can be used to

detect threats in the network, without breaking users’

privacies (decrypting and inspecting traffic) and without

needing to parse diverse L5-7 protocols too deeply. Of all

Cisco solutions, this one is the most closely related to the

technical matters of this work. This solution, as well as this

work, base themselves on the fact that even though not all

data is intelligible, it is possible to extract a lot of threat

intel from network traffic considering metadata only. By

studying publicly available information about the Cisco

ETA solution [8, 11, 12, 9, 10, 13], one can understand that

it implements encrypted traffic analysis techniques (Cisco

StealthWatch) which can be particularly applied to detect

threats in the network, through the extracted and posteriorly

enriched network information (enhanced netflows).

Cisco CTD provides in-depth defense against modern and

advanced threats [14] which can bypass most detection

mechanisms. For network-based detection, Cisco CTD uses

NetFlows and, on top, Cisco StealthWatch and Cisco

FireSIGHT (which uses Cisco FirePOWER as the

knowledgeable backend module). It also uses an endpoint-

based solution called Cisco AMP [15] (Advanced Malware

Protection) for endpoint threat detection.

Cisco AMP [15] acts like an automated malware sandbox

analysis mechanism capable of analyzing network packet

data and detecting malicious incoming files using static and

dynamic file analysis. In terms of file-related features,

Cisco AMP integrates with Cisco Threat Grid [16, 17, 18]

to obtain more than 700 behavioral indicators (indicator, in

this context, refers to features, do not confuse with indicator

of compromise) related to a file and automatically detecting

and understanding malware captured in the endpoint, which

is not our direct focus. However, it is relevant as a related

application because endpoint-based detection systems also

need to include network-based analysis capabilities.

Ongun et. al [5] used Bro connection logs to obtain network

communication features. Later, they used CTU-13 datasets

containing thirteen different botnet scenarios, each scenario

using different botnets, techniques, and protocols. A feature

representation that worked well in the authors’ setting for

classifying internal IP addresses is feature representation by

time windows and port number. The authors also observed

that feature representation depends on the amount of

training data. Additionally, the authors mention that

features extracted directly from raw data such as Zeek

connection logs do not always result in the most optimal

representation. They recommended that multiple feature

representations apart from Zeek should be evaluated as

future work. We agree with the authors in the sense that

features extracted from Zeek [2] connection logs are not

enough (standalone) to fulfill a full feature representation

and, thus, recognize the consequent need of feature

aggregation methods on top of Zeek’s raw data to improve

detection.

Gu et al. proposed BotSniffer [6], a botnet detection system

which uses a detection approach that was able to identify

C2 servers and the bots infected hosts in the networks.

Their technique was predicated on the notion that bots

belonging to similar botnets would probably indicate a

spatial-temporal relationship and resemblance to each other

due to the pre-programmed events associated with C2

botnets. They focus on protocols running over TCP by

having diverse TCP flow features: number of upstream and

downstream packets; size of the uplink and downlink

transmission bytes; average length of the uplink and

downlink data packets, maximum packet length, average

packet variance, duration of the data stream and packets

loaded in one stream. More specifically, the authors focus

on two L7 protocols, IRC and HTTP, because these two

protocols are very commonly used by bots to fetch or

receive commands from a centralized C2 server. The

authors used a custom dataset composed of diverse network

traces, and some network logs recorded from an IRC

tracker. Most of the traffic used for the dataset was

generated by them in their university campus network.

According to them, BotSniffer presented a high accuracy

and low false positive ratio.

Despite BotSniffer’s good results, Khan et. al [18] upholds

that their detection strategy was widely concerned by

experts in network traffic analysis because it does not

depend on the botnet class to extract a common feature

vector of the flow, which in theory compromises the

definition of anomaly-based detection. We agree with Khan

et. al and the referred experts that the proposed system does

not use an anomaly-based approach, however it does use

network behavior patterns to detect botnets, thus falling into

the behavior-based detection category. In this work, we also

analyze network behavioral patterns and use these to study

and detect specific threats, which enables detecting new

malware variants (tier-1 anomaly) and, even deeper, to

study and detect threat classes, which enables detecting new

threats (tier-2 anomaly); as such, this work falls into the

behavior- and anomaly- based detection spectrum,

independently of the usage of outlier and novel detection

algorithms. According to Khan et. al work [18], the main

factors that determine the efficiency and accuracy of

detection are the characteristics of the extraction and the

classification strategy used. Among other things, these

factors mainly encompass: the labelling taxonomy, the

feature-sets, the type of labelling process and the used

classification algorithms. We can see that this is true by the

results we achieved using different types of feature-sets

(ones that are commonly not used, flow-set based features),

as well as acknowledging the fact that we could label each

“Port Scan” event as its own thing (e.g., “Port Scan -

closed-port probe”) and other types of labelling that would

drastically improve our flow classification results. It is all

about what we are trying to detect.

PORT SCAN THREAT CLASS DEFINITION

Intent: Probe multiple ports of a given host, for a given L4

protocol.

Generic Attack Technique(s):

• Distributed Port Scan - multiple hosts probe multiple ports

of a host.

• FTP Bounce Scan (-b) – this method allows an attacker to

use a vulnerable FTP server as a proxy to port scan other

hosts. This option is ideally used to target hosts in the same

internal network as the FTP server, which will recognize it

and accept packets coming from it, outputting responses

that leak information about the port’s state.

Specific Attack Technique(s):

• UDP Scan (-sU) - the attacker sends a UDP packet to each

port. If the target responds with service data, the port is

open. If the target does not respond, the port is either closed

or filtered.

• TCP Connect Scan (-sT) - the attacker sends a TCP packet

with the SYN flag bit set to each port. If the target responds

with a SYN-ACK packet, the port is open and accepting

requests: the attacker sends an ACK packet back; the target

then responds with the service's specific data; then, the

attacker sends a RST packet and closes the connection. If

the target responds with a RST packet, the port is closed.

Else, if the target does not respond, the port is filtered.

• TCP SYN Scan (-sS) - the attacker sends a TCP packet

with the SYN flag bit set to each port. If the target responds

with SYN-ACK, the port is open and accepting requests:

the attacker sends a RST packet to close the connection. If

the target responds with a RST packet, the port is closed.

Else, if the target does not respond, the port is filtered.

• TCP ACK Scan (-sA) - the attacker sends a TCP packet

with the ACK flag bit set to each port. If the target responds

with a RST packet, the port is either open or closed,

meaning that the port is unfiltered (not blocked by any

firewall). Else, if the target does not respond or if it

responds with certain ICMP error messages (ICMP Type 3;

codes 0, 1, 2, 3, 9, 10 or 13), then the port is filtered.

• TCP Null Scan (-sN) - the attacker sends a TCP packet

with no flag set to each port. If the target responds with a

RST packet, the port is considered closed. Else, if the target

does not respond, the port is either open or filtered. Finally,

if the target responds with an ICMP "Destination

Unreachable" error (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or

13) then the port is filtered.

• TCP Xmas Scan (-sX) - the attacker sends a TCP packet

with the FIN, PSH and URG flag bits set to each port. If the

target responds with a RST packet, the port is considered

closed. Else, if the target does not respond, the port is either

open or filtered. Finally, if the target responds with an

ICMP "Destination Unreachable" error (ICMP Type 3;

codes 0, 1, 2, 3, 9, 10 or 13) then the port is filtered.

• TCP FIN Scan (-sF) - the attacker sends a TCP packet

with the FIN flag bit set to each port. If the target responds

with a RST packet, the port is considered closed. Else, if the

target does not respond, the port is either open or filtered.

Finally, if the target responds with an ICMP "Destination

Unreachable" error (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or

13) then the port is filtered.

• TCP Idle Scan (-sI) - the attacker sends a SYN-ACK

packet to a host, which will be dubbed "unaware host"

because its technical name, "zombie", already associates to

a completely different meaning in the botnet context. The

unexpected SYN-ACK packet sent to the unaware host will

be responded to with a RST packet sent back to the

attacker, which has a certain IP ID associated with it. The

attacker then sends a SYN packet to the target host with the

source IP address spoofed with the IP of the unaware host,

incrementing its IP ID by 1. On this moment, there are three

possible scenarios: (A1) The target host responds to the

unaware host with a SYN-ACK packet. Since the unaware

host was not expecting the packet, it sends a RST packet to

the target host, incrementing its IP ID by 1 again. (A2) The

target host responds to the unaware host with a RST packet.

The unaware host did not expect the packet, but since it isn't

a packet that tries to initiate a connection (rather, abort it),

the unaware host does not respond with any packet, thus not

incrementing its own IP ID. (A3) The target host does not

respond to the unaware host. As such, the unaware host

does not receive any packet and, more importantly, it

doesn't send a packet back, such as in scenario A2, thus not

incrementing its IP ID. Continuation: Once any of the

previous scenarios has taken place, the attacker will send a

SYN-ACK packet to the unaware host, to which the

unaware host will respond with a RST packet. The IP ID of

the final RST packet will then be analyzed by the attacker

for the existence of one of the following scenarios: (B1)

The IP ID was incremented by 2 since the first packet

received from the unaware host, which means that the target

host responded with a SYN-ACK packet to the unaware

host, so the probed port is open. (B2) The IP ID was only

incremented by 1 since the first packet received from the

unaware host, which means that the target host responded

with a RST packet or did not respond at all, since in both

situations the unaware host does not create any response

packet for the target host. As such, from the attacker's

perspective, the probed port might be either closed

(scenario A2) or filtered (scenario A3). The attacker then

repeats this whole process for each port that he intends to

scan.

• TCP Maimon Scan (-sM) - this technique is named after

its discoverer, Uriel Maimon. It starts with the attacker

sending a TCP packet with the FIN and ACK flag bits set to

each port. According to the RFC-793 (TCP RFC), the host

should generate a RST packet in response, independently of

the fact of the port being open or closed. However, Uriel

found out that many BSD-derived systems simply drop this

packet if the port is open.

• TCP Custom Scan (--scanflags) - the attacker sends a TCP

packet with a custom set of TCP flag bits set to each port.

The analysis depends on the TCP flag set used, as this

means different possible responses and interpretations. It

can be used, for example, to find bypassable edge-cases for

firewalls and IDSs.

• Service/Version Detection Scan (-sV). Probes open ports

to determine service/version info, meaning that the flow

will be fully initiated to allow sending test packets to try

and detect the version of the probed service based on the

responses.

• SCTP INIT Scan (-sY) - the attacker sends an SCTP INIT

packet to each port of the target host. An SCTP INIT-ACK

response packet indicates that the port is open and, in this

case, the attacker aborts the connection right after. An

SCTP ABORT response packet indicates that the port is

closed and, if no response is received after several

retransmissions, the port is marked as filtered.

• SCTP "COOKIE ECHO" Scan (-sZ) - the attacker sends

an SCTP COOKIE ECHO packet to each port of the target

host. If the target host doesn't respond, the port is either

open or filtered. If the target host responds with an SCTP

ABORT packet, then the port is closed.

Program Applicability: Any program that communicates

over a network can eventually be used for network host

discovery using a certain network protocol, given that the

probed protocol is present on the probed machine. Given

the latter, we will only consider a host discovery program

as such if at least one of the following conditions are true:

• It supports sending and interpreting ARP probes for

multiple hosts

• It supports sending and interpreting raw IP packets

specifying the probed IP protocol number on the IP header

for multiple hosts (IP protocol probes)

• It supports sending and interpreting TCP, UDP and ICMP

probes (given their prevalence on today's networks) for

multiple hosts

• Optionally, these programs can also support other much

less adopted protocols such as SCTP. Also, the existence of

any L5-7 protocol is irrelevant for this category.

Programs - <name> (<L1-4 protocols supported>):

• UnicornScan (TCP, UDP, ICMP)

• Nmap (ARP, raw IP, ICMP, UDP, TCP, SCTP)

• Ncat (UDP, TCP, SCTP)

• Hping3 (raw IP, ICMP, UDP, TCP)

• AngryIPScanner (ICMP, UDP, TCP)

• Masscan (ICMP, UDP, TCP)

• ZMap (ICMP, UDP, TCP)

References [19]-[23] were used as a basis for building this

definition.

NETGENES TOOL

The tool we developed, dubbed NetGenes, extracts features

of the previous network objects:

• Packets - use packet metadata only, encompassing OSI

layer 1 to OSI layer 4.

• Flows - aggregate packet features into flow features,

considering the protocol stack. We consider two main

protocol stacks: eth-eth-ipv4-udp and eth-eth-ipv4-tcp. TCP

is implemented in the RFC way, meaning that we analyze

TCP flags and the Sequence/Acknowledgment numbers to

logically separate the incomplete 5-tuple TCP flow onto

multiple 6-tuple flows.

• Talkers – aggregate flow features into talker features and

create new talker-based flow-set features. We consider

“eth-eth-ipv4” as the protocol stack for talkers and hosts,

and we uniquely identify them using their IPv4.

• Hosts – aggregate talker features into host features and

create new host-based talker-set features. We consider “eth-

eth-ipv4” as the protocol stack for talkers and hosts, and we

uniquely identify them using their IPv4.

Note about Host features: we now think that host features

should aggregate flow features as well and, perhaps,

substitute most talker features. This conclusion comes from

the fact that these host features have not been as useful as

talker features because the latter ones are flow aggregations

and we can directly query them to understand the

underlying flow sets, whereas hosts provide information

about the underlying talker sets but there is a lot of lost

information on the flow sets. As such, we consider that

hosts should also focus on direct flow aggregation (flow

sets). We think that implementing host-based flow-set

features would be beneficial because it provides insight into

each host individually and each of their flow sets, in a

similar way that the talker does for each pair of talking

hosts.

NetGenes is an unfinished prototype, as it will be for as

long as every threat class’s core feature is not implemented.

Right now, it includes a lot of conceptual and statistical

features on each network object which may not be at all

relevant to detect any network attack by their core features,

and it still does not include all the features that it needs to

properly detect every threat class. These features are

workable with Machine Learning, and have been designed

to be worked with it as well (e.g., one-hot encoding of

Boolean values), but successfully classifying threat class

traffic is not as easy as splitting datasets in train and test

datasets based on authors’ labels and trying multiple

classifiers and regressors, it’s much more complicated than

that to implement a generically efficient classifier.

We define core features as features that can successfully

describe the core scenarios of a network attack (generically

encompassed by its threat class), with either low

possibilities of evasion or severely affecting the attack’s

effectiveness if not detected. The purpose of the NetGenes

tool is to help us extract relevant information for detecting

all the network attacks that we want to detect, which should

be thought about by studying the threat classes that those

attacks implement to extract the core features needed. As

such, our long-term goal with this work is to continuously

improve NetGenes towards encompassing more threat class

core features, in all its extracted network objects. We also

think that, by including non-core features that are useful for

the detection of threat class instances, using statistical

analysis and ML classifiers, we may be able to receive hints

about what core features we should be looking for to

implement in the tool. We recommend this as future work

for more threat classes.

NetGenes supports the extraction of 146 flow features, 184

talker features and 262 host features, from network trace-

files in the PCAP/PCAPNG format.

FLOW-SET BASED ANALYSIS

Until we thought about the Port Scan detection problem

properly, we tried flow classification using ML algorithms,

which was an improvement over packet- and signature-

based detections for detecting new network attack

instances. However, these methods can become outdated

due to the fact that tools change overtime, and custom

parameters can be given to these, altering the network

traffic enough to be able to escape packet-based and

signature-based detection, as well as flow feature analysis

methods that do not solely focus on a threat class’s core

features. Additionally, neither CICFlowMeter nor other

pure “flow” extraction tools can extract flow-set based

features, which is why most researchers usually use flow-

based features to feed ML models and study threat classes.

We recommend that researchers attempt to extract flow-set

based features, such as talker- and host- based features, to

not only improve their detection results but, more

importantly, to find the core features of the threat class, to

improve their results based only on those core features and

to create their own rule sets to detect the threat class. The

current state-of-the-art alternative is relying on black-box

ML models working with multiple statistical flow-based

features to attempt to model a whole threat class around

those features. This may achieve great results because a ML

model is capable of creating very complex rule sets within

itself based on those types of features that are present on the

training data, but the main problem is that it will most likely

rely in features that do not truly define a threat class, so

new implementations could result in undetected network

attacks that completely drop said features (unless they

happen to be core features). It is a common problem that a

ML model will overfit around multiple non-core features

based on the train dataset and achieves great results in the

test datasets because of it when, in fact, the features used

are completely irrelevant for the threat class itself but just

happen to be a commonality within the train and test

datasets. The previous problem is the reason why, for ML-

based research for network traffic analysis, if we want to

find relevant commonalities that lead us to understand the

threat class itself, it is important to use broad train and test

datasets with a preference for multiple tools. However, even

then, it is difficult to truly understand the ML model’s

outputs and we cannot easily outline its limitations in

detecting relevant instances of the threat class.

PORT SCAN RULES

“Port Scan” Host rules:

• (Unused rule) HR-1 – “Other hosts tried to access more

than n network services of the host.”:

(bihost_bwd_biflow_n_unique_dst_ports>n)

“Port Scan” Talker rules:

• TR-1 – “Source host tried to access more than n network

services of destination host, or destination host tried to

access more than n network services of source host.”:

(bitalker_fwd_biflow_n_unique_dst_ports>n) |

(bitalker_bwd_biflow_n_unique_dst_ports>n)

Default Flow rules:

• (Unused rule) FR-HR-Default – Filter flows for relevant

backward uni-hosts: (bihost_bwd_id ==bihost_id)

• FR-TR-Default – Filter flows for relevant bi-talkers

(dividable in forward and backward uni-talkers):

(unitalker_id==unitalker_fwd_id) |

(unitalker_id==unitalker_bwd_id)

“Port Scan” Flow rules:

• FR-1 – “Flow was initialized by an unacknowledged

connection request. Either the initialization packet did not

properly reach the destination host, or any host in-between

the source host (exclusive) and the destination host

(inclusive) dropped the packet. No connection was

established.”:

biflow_eth_ipv4_tcp_initiation_requested_connection==1

• FR-2 – “Flow was initialized in an incomplete manner,

only completing a two-way handshake. In other words,

source host requested a connection (syn1) and destination

host acknowledged it (ack2)”, encompassing two

connection possibilities: 1 – connection rejected, 2 – half-

duplex connection established.”:

biflow_eth_ipv4_tcp_initiation_two_way_handshake==1

• FR-2.1 – “The destination host rejected the connection

(rst2-ack2).”: FR-2 &

biflow_eth_ipv4_tcp_connection_rejected==1

• FR-2.2 – “A half-duplex connection was established, i.e.,

although the destination host accepted the connection

request (syn2-ack2), the source host never acknowledged it

(!ack3), as the third step of the three-way-handshake

mandates.”:

FR-2 &

biflow_eth_ipv4_tcp_connection_established_half_duplex=

=1

• FR-2.2.1 – “The source host established a half-duplex

TCP connection, just to abort it afterwards.”:

(biflow_eth_ipv4_tcp_connection_established_half_duplex

==1) &

(biflow_eth_ipv4_tcp_termination_abort==1) &

(biflow_fwd_eth_ipv4_tcp_n_active_rst_flags>0)

• FR-3 – “A full-duplex connection was established and

there was only 1 packet (syn2-ack2) that was sent by the

destination host, before the source host aborted the

connection.”:

(biflow_eth_ipv4_tcp_connection_established_full_duplex

==1) &

(biflow_bwd_n_packets==1) &

(biflow_eth_ipv4_tcp_termination_abort==1) &

(biflow_fwd_eth_ipv4_tcp_n_active_rst_flags>0)

We note that TR-1 source and destination hosts/ports are

not based on packet direction, but on flow direction. Packet

direction varies in a flow, so it would be a mistake to

directly consider unique destination port counts if it was

based in the packets, as you would capture both the source

and the destination ports of the flow. As such, only after

you have achieved a flow definition can you correctly

define and extract talker features, and the same applies to

flow-set based host features, such as the one presented in

HR-1.

Results obtained using the host rules we defined, HR-1 and

FR-HR-Default, are not presented, because the talker-based

rules we defined, TR-1 and FR-TR-Default, were enough to

achieve great results. Despite this, we further discuss this

matter because the host rules can top the talker features

when a single network attack is performed using multiple

source IPs.

PORT SCAN RULE SET RESULTS AND ANALYSIS

We summarize each “Port Scan” flow rule set (considering

“FR-TR-Default” applied with “TR-1 n=100”), applied to

all CIC-IDS-2017 dataset days that consider a port scan

(Thursday and Friday):

• A lack of flow rules, which captures every flow within the

filtered talkers, has a precision of 69.947%. It has an F1-

Score of 82.316%. It detects every Port Scan flow, but also

wrongfully considers 34.780% of all Port Scan flows.

• “FR-1”, which captures every flow with an unanswered

requested connection (likely dropped), has a precision of

91.070%. Its low F1-Score (22.867%) reflects the fact that

it only detects 13.075% of all Port Scan flows.

• “FR-2”, which captures every flow initiated with a two-

way handshake, has a precision of 99.924%. It has an F1-

Score of 92.671%, the highest F1-Score for a single flow

rule, detecting 86.400% of all Port Scans.

• “FR-3”, which captures every flow that had a full-duplex

connection that is later aborted by the source host, without

the destination host ever sending another packet other than

the three-way-handshake’s second packet, has a precision

of 99.789%. Its low F1-Score of 0.410% reflects the fact

that it only detects 0.205% of all Port Scan flows.

• “FR-2.1”, which captures every flow that was rejected,

has a precision of 99.938%. it has an F1-Score of 92.458%,

detecting 86.019% of all Port Scan flows.

• “FR-2.2”, which captures every flow that had a half-

duplex connection, has a high precision, so most instances

classified as a Port Scan with this rule set were, in fact, a

Port Scan. Its low F1-Score is low reflects the fact that it

only detects 0.380% of all Port Scan flows.

• “FR-2.2.1”, which captures every flow that had a half-

duplex connection whose source host aborted it afterwards,

seems to be the most specific to port scan situations, and its

100.000% precision indicates just that. In fact, there might

be no other reason for a host to open a half-duplex

connection and abort it afterwards unless it was simply

checking if the port was accepting connections. Its low F1-

Score of 0.419% reflects the fact that it only detects 0.210%

of all Port Scan flows.

• “FR-1 | FR-2” has a precision of 98.663%. It has an F1-

Score of 99.067%, detecting 99.474% of all Port Scan

flows.

• “FR-1 | FR-3” has a precision of 91.193%. Its low F1-

Score of 23.184% reflects the fact that it only detects

13.280% of all Port Scan flows.

• “FR-2 | FR-3” has a precision of 99.924%. It has an F1-

Score of 92.789%, detecting 86.605% of all Port Scan

flows.

• “FR-1 | FR-2 | FR-3” has a precision of 98.666%. With an

F1-Score of 99.170%, it has the highest F1-Score among all

rule sets, detecting 99.680% of all Port Scan flows.

PORT SCAN DETECTION RESULTS

Table 1 shows a comparison between our current work and

three other works that have applied their detection

mechanisms to the CIC-IDS-2017 dataset.

Works
Detected

Port

Scans

Friday’s “Port

Scan” Flow

Classification

Accuracy

Previous work

(2018) [26]
1 99.73%

Singh et. al,

ICAESMT-2019

(2019) [27]

1 99.9815%

Stiawan et. al,

IEEE Access 8,

132911–132921

(2020) [28]

1 99.7%

Current work

(2020)
13 99.953%

Table 1. Work Comparison in CIC-IDS-2017 Port Scan

Detection.

Our work detected the 12 port scans that occurred Thursday

and were incorrectly labeled in the dataset, of which 11

were referenced by the dataset authors [24,25], when they

refer to Thursday’s infiltration 2nd step in which

192.168.10.8 performs a port scan to “all other clients”, and

1 port scan that was not referenced at all. NetGenes-

generated data and the rules we employed were effective to

spot these types of imprecisions in the dataset.

Furthermore, as other works, we detected the Port Scan that

occurred on Friday, correctly detecting the only 2 hosts

involved in this interaction. Even though our flow

classification results were not as great as Singh et. al results

[27], we tried hard to not flow fingerprint any flow, which

is very hard to not do when working with Machine

Learning unless manual feature selection is performed, due

to issues with train and test datasets that do not allow

accounting for many variants.

Additionally, this work’s flow definition is different from

the flow definition considered by most other works:

namely, for Friday’s TCP port scan flows, we are

accounting a total of 158980 Friday TCP port scan flows

extracted by NetGenes, while other works consider 158930

original port scan flows extracted by CICFlowMeter

(158923 of which are TCP flows, 6 are marked as

unidentified and 1 is the only correctly labeled UDP flow).

Moreover, we also note that we did not detect the version

detection scans, which would result in many rules that are

essentially flow fingerprinting and would steer away from

using core features only. If this traffic exists unencrypted,

we should instead gather L5-7 features by default and

assess these new features as indicators rather than

performing flow fingerprinting, as at that abstraction level

they could be core features. We propose that as future work.

Finally, even though the metrics we defined are important,

it is more relevant to understand why we are getting such

results. Understanding what our rules do is more important

than the metrics they achieve in correctly classifying flows.

Additionally, what we really want to do is to be able to

safely state that a certain network attack has occurred,

identify the attacker(s) and identify the victim(s), which can

be performed using flow-set information (as we do with

Port Scan’s HR-1 and TR-1). Additionally, a set of flows

filtered by high-precision rule sets indicates that they are

malicious with a very high certainty (even if those are not

the only malicious flows), and this information will help the

analyst further narrow down the network traffic that they

need to focus on to undertake a deeper network analysis.

CONCLUSION

We developed our own tool, dubbed NetGenes, to extract

useful information from the packets captured inside a

network trace-file. The extracted information is

independent of encryption because only the packet

metadata is used to generate it. This information is then

hierarchically organized in three abstract network concepts,

which we dubbed “network objects”, responsible for

logically aggregating traffic, each one with its own features.

NetGenes provides a lot of conceptual and statistical

network features, to arm an analyst or researcher with a

readable feature format. This feature format enables a

researcher to quickly acknowledge the fundamentals of the

network communications captured inside the network trace-

file, while each network-object features provide deeper

insight on the network data.

By developing NetGenes, we can use a set of flow features

that is lengthier than many flow extraction tools, including

conceptual and statistical features, usable to study and

handle the data in the most complete way that we possibly

can (considering the multiple tool’s development cycles this

year). We also developed and extensively use the “Talker”

network object as a flow aggregator, as well as the “Host”

network object as a talker and flow aggregator, as well as

their respective features. NetGenes is a tool that was

inspired by CICFlowMeter (a tool made by researchers at

the Canadian Institute for Cybersecurity, CIC), but at the

moment includes slightly more flow features and adds the

concept of flow-set based features on top, which is already

present in tools that are used more by the network

community like tranalyzer2 (which includes the “top

talkers” concept and possibility of flow aggregation scripts)

and WireShark (“Conversations”).

The Talker object proved to be an important concept to

analyze network traffic. It provides a relevant context for

flows, grouping them by source host and destination host,

and allows filtering useful flows based on talker-based

flow-set features.

Similarly, the Host object, also proved to be an important

concept to analyze network traffic. It provides a relevant

context for talkers and flows, grouping them by Host, and

allows filtering useful flows based on host-based talker-set

and flow-set features.

For the considered threat class ("Port Scan"), the flow

classification results of this work were great, while talker

classification results were perfectly accurate for every day.

ACKNOWLEDGMENTS

Thank you, Prof. Pedro Adão, for supervising my thesis and

providing me the guidance I needed.

Thank you, Eng. Nuno Marques, for hearing me when I felt

the need to randomly babble about my work, as well as

helping me revise my thesis proposal.

Thanks, Portuguese National Cybersecurity Center, for

providing me, from September 2019 to December 2019, a

day-worth of my weekly working hours to have extra time

to research and prepare my thesis proposal.

A final thank you to my family, my girlfriend, and my

friends, for having always supported me and my wishes.

Your support helped me keep the balance between my

personal, academic and professional life, and gave me the

strength to finish my thesis.

REFERENCES

1. Answering Tough Questions About Network Metadata

and Zeek,

http://www.infosecisland.com/blogview/25191-

Answering-Tough-Questions-About-Network-

Metadata-and-Zeek.html, last accessed 2019/11/27

2. Zeek GitHub, https://github.com/zeek/zeek, last

accessed 2019/12/08

3. Haddadi, F., Zincir-Heywood, A.N.: Benchmarking the

effect of flow exporters and protocol filters on botnet

traffic classification. IEEE Systems journal 10(4),

1390–1401 (2014)

4. Tranalyzer Website, http://tranalyzer.com, last

accessed 2019/12/02

5. Ongun, T., Sakharaov, T., Boboila, S., Oprea, A.,

Eliassi-Rad, T.: On designing machine learning models

for malicious network traffic classification. arXiv

preprint arXiv:1907.04846 (2019)

6. Gu, G., Zhang, J., Lee, W.: Botsniffer: Detecting

botnet command and control channels in network

traffic (2008)

7. Cisco VMDC Cloud Security 1.0 Design Guide, chap.

4 (2014)

8. White Paper - Cisco Public 2019 Encrypted Traffic

Analytics (ETA),

https://www.cisco.com/c/dam/en/us/solutions/collateral

/enterprise-networks/enterprise-network-security/nb-

09-encrytd-traf-anlytcs-wp-cte-en.pdf, last accessed

2019/12/18

9. White Paper - Cisco Public 2016 StealthWatch,

https://www.cisco.com/c/dam/m/en_hk/never-

better/dna/pdf/stealthwatch_solution_overview_whitep

aper_en.pdf, last accessed 2019/12/19

10. Radhakrishnan, S.: Detect threats in encrypted traffic

without decryption, using network based security

analytics (2017)

11. Security Analytics and Logging: Supercharging

FirePower with Stealthwatch,

https://blogs.cisco.com/security/security-analytics-and-

logging-supercharging-firepower-with-stealthwatch,

last accessed 2019/12/12

12. Cisco Encrypted Traffic Analytics (ETA) Promotional

Video, cisco.com/go/eta, last accessed 2019/12/19

13. Cisco Encrypted Traffic Analytics: Necessity Driving

Ubiquity, https://blogs.cisco.com/security/cisco-

encrypted-traffic-analytics-necessity-driving-ubiquity,

last accessed 2019/12/19

14. Cisco Cyber Threat Defense (CTD) design guide,

https://www.cisco.com/c/dam/en/us/td/docs/security/ne

twork_security/ctd/ctd2-0/design_guides/ctd_2-

0_cvd_guide_jul15.pdf, last accessed 2019/12/12

15. Cisco Advanced Malware Protection Solution

Overview,

https://www.cisco.com/c/en/us/solutions/collateral/ente

rprise-networks/advanced-malware-

protection/solution-overview-c22-734228.html, last

accessed 2020/01/03.

16. Cisco Threat Grid Promotional Video,

https://www.cisco.com/c/en/us/products/security/threat

-grid/index.html, last accessed 2020/01/03.

17. Cisco Threat Grid Demo, July 2018,

https://www.youtube.com/watch?v=un2t2T_s6IY, last

accessed 2020/01/03.

18. Investigating Malware with Threat Grid,

https://www.youtube.com/watch?v=W7IuchQR7dA,

last accessed 2020/01/03.

19. NMAP TCP Idle Scan,

https://nmap.org/book/idlescan.html, last accessed

2020/11/15.

20. NMAP Service and Version Detection,

https://nmap.org/book/man-version-detection.html, last

accessed 2020/11/15.

21. NMAP Command-line Flags,

https://nmap.org/book/port-scanning-options.html, last

accessed 2020/11/15.

22. NMAP Linux Man Page,

https://linux.die.net/man/1/nmap, last accessed

2020/11/15.

23. NMAP Port Scanning Techniques,

https://nmap.org/book/man-port-scanning-

techniques.html, last accessed 2020/11/15.

24. CIC-IDS-2017’s official website,

https://www.unb.ca/cic/datasets/ids-2017.html, last

accessed 2020/12/28.

25. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.:

Toward generating a new intrusion detection dataset

and intrusion traffic characterization. In: ICISSP. pp.

108–116 (2018)

26. Almeida, F., Meira, J., Adão, P., Loura, R.: Network

Intrusion Detection: Machine-Learning Techniques for

TCP Flow Classification (2018, unpublished)

27. Singh Panwar, S., Raiwani, Y., Panwar, L.S.:

Evaluation of network intrusion detection with features

selection and machine learning algorithms on cicids-

2017 dataset. In: International Conference on Advances

in Engineering Science Management & Technology

(ICAESMT)-2019, Uttaranchal University, Dehradun,

India (2019)

28. Stiawan, D., Idris, M.Y.B., Bamhdi, A.M., Budiarto,

R., et al.: Cicids-2017 dataset feature analysis with

information gain for anomaly detection. IEEE Access

8, 132911–132921 (2020)

