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Abstract

Medical imaging is a fundamental screening and diagnostic tool. Healthcare professionals can nowadays
rely on various types of image modalities of the human body, including three-dimensional images such
as magnetic resonance images. However, with increasingly more information and image complexity,
the pressure that radiologists are subjected to is ever increasing, and the resulting fatigue can lead
to diagnostic errors. Machine learning mechanisms have been proposed for the analysis of medical
images, although most previous work has dealt with inputs involving two dimensions. This work proposes
an approach based on convolutional neural networks, combined with recurrent neural networks, for the
classification of three-dimensional medical images. The proposed architecture aims to extract features
from the individual slices of the three-dimensional image, using a convolutional network, and correlate
them with the three-dimensional nature of the original images using a recurrent neuronal network.
Experiments were carried out with different architectures to classify three-dimensional images of the
knee, leveraging a publicly available data-set. The results show that the main model presented in this
work, based on the ResNet architecture and LSTM units, is efficient for the classification of this type of

images, despite being relatively simple.
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1. Introduction

Medical imaging is a fundamental screening and
diagnosis tool with spread use in modern medicine.
Common types of medical imaging include com-
puted tomography (CT), positron emission to-
mography (PET), and magnetic resonance imag-
ing (MRI). These scans give detailed three-
dimensional (3D) images of human organs and can
be used to detect infection, cancers, traumatic in-
juries and abnormalities in blood vessels and or-
gans. With the advances of modern medicine and
imaging, the modalities of medical imaging that
use more than a single image for diagnosis, have
started to become more readily available, with bet-
ter image quality. That in turn grows the databases
of medical images and with the advent of high per-
formance computers, machine learning methods
can now play a crucial role in assisting clinicians in
the analysis of medical images, providing numer-
ous benefits, from improving workflow to support-
ing clinical decisions.

However, in medical data that comprises mul-
tidimensional and multi-planar images, traditional
approaches often fail due to the complexity of the
data being handled. As a consequence, imple-

Artificial Intelligence, 3D Image Classification, Deep Learning, Convolutional Neural

mentations related to the analysis of three dimen-
sional medical images, e.g. MR imaging, remain
not well explored, though it must be said that in re-
cent years work in this domain, i.e. deep learning
publications on the analysis 3D images, has been
growing rapidly.

Existing approaches based on 3D deep neural
networks have indeed been tried, and success-
fully gained on traditional image analysis methods,
enabling significant progress in medical imaging
tasks [1, 2]. Most of these methods rely on con-
volutional neural networks (CNNs), extended to 3D
data, which have proven to be dependable on the
classification and segmentation of two dimensional
(2D) images. More recently, frameworks that com-
bine CNNs and recurrent neural networks (RNNs)
have been pushed forward [3], looking at the clas-
sification problem from a different perspective. This
article intends to expand the previously developed
methodologies, by studying novel deep learning
methods for 3D image classification, implementing
a deep CNN combined with a RNN for the clas-
sification of 3D medical images, and evaluating
the proposed method on an established standard
benchmark dataset, namely MRNet [4].

The rest of this paper is organized as follows.



Section 2 presents fundamental the concepts on
machine learning applied to image classification,
together with related work on 3D image classifi-
cation. Section 3 presents the proposed method-
ology while Section 4 details the evaluation pro-
cedure and the obtained results, comparing them
to other methods using the same dataset. Fi-
nally, Section 5 summarizes our conclusions and
presents directions for future work.

2. Concepts and Related Work

This section is divided into two other subsections.
Section 2.1 reports fundamental concepts on ma-
chine learning that are relevant for this work, such
as Convolutional Neural Networks (CNNs). Sec-
tion 2.2 presents previous studies conducted in the
field of 3D medical image classification.

2.1. Deep Learning Concepts

Neural networks are, at the most basic level, com-
posed of perceptrons units which are connect to
each other in layers, in order to map inputs into tar-
geted outputs. These layers can be seen as nested
functions whose parameters can be trained directly
to minimize a given loss function computed over
the outputs and the expected results.

In its simplest form, a single-node neural net-
work computes a single output from multiple real-
valued inputs by composing a linear combination
according to input weights, and then transform-
ing the output through an activation function. In a
mathematical form, Equation 1 shows how this can
be written, where y refers to the output prediction,
X = (z1,--- ,z,) is the vector of inputs, w denotes
the vector of weights, b is a bias term, and ¢(.) is
an activation function.

y=fl)=0¢ (Zwi x xme) — s(w-x+b) (1)
=1

Granting that a single-node neural network has
limited mapping ability, the conjunction of several
of these nodes into blocks can be used to build
a more complex model. A Multi-Layer Perceptron
(MLP) builds on this idea, as it consists of a set of
nodes forming the input layer, one or more hidden
layers of computation nodes, and an output layer of
nodes. The information flows from the input layer
through the network layer-by-layer, until it reaches
the output. MLPs are also typically refered to as
Feed-forward networks and in the case of a sin-
gle hidden layer, MLP can be mathematically inter-
preted as:

y=f)=¢Bx¢'(A-x+a)+b) (2

In Equation 2, x is a vector of inputs and y a
vector of outputs. The matrix A represents the

weights of the first layer and a is the bias vector
of the first layer, while B and b are, respectively,
the weight matrix and the bias vector of the second
layer. The functions ¢’(.) and ¢(.) both stand for
an element-wise non-linearity, as result of activa-
tion functions respectively associated to nodes in
the hidden layer, and in the output layer.

A neural network such as MLP is trained by
adapting weights and biases to optimal values, so
that the intermediate computations, used to define
the function, match their optimal parameters. Nor-
mally, models are trained using iterative gradient-
based optimizers, that lower the cost function. Gra-
dient descent is used to minimize the cost function,
by adjusting weights and biases of the network in
the opposite direction of the gradient. Adaptive
Moment Estimation (Adam) is an algorithm exten-
sively used for this purpose, that calculates adap-
tive learning rates for each parameter [5]. To ap-
ply gradient descent training in a deep neural net-
work the most popular learning technique is back-
propagation algorithm, that consists of two steps.
In a forward pass the predicted outputs are evalu-
ated, and in a backward pass the error calculated
from the predicted outputs in the output layer is
propagated backwards throughout the layers, up-
dating the weights of layers responsibility for a por-
tion of the error.

For more complex applications, such as image
processing, MLPs have limitations due to the num-
ber of parameters associated with images. MLP
networks use dense interactions between every in-
put and output unit making their use prohibitive.
Convolutional Neural Networks (CNNSs) tackle this
problem by having the neurons within a layer only
connecting to a small region of the layer preceding
it, and thus using common parameters to process
all these small regions.

In more detail, CNNs are typically comprised of
three types of layers. Convolutional layers deter-
mine the output of neurons connected to local re-
gions of the input, through the calculation of the
scalar product between the layer’s weights and the
region connected to the input volume, followed by
an activation function. The depth of the output pro-
duced by a convolutional layer corresponds to a
number of filters. Each filter is convolved across
the spatial dimensionality of the input (1D, 2D, 3D),
producing a feature map. These maps are stacked
along the depth dimension to form the full out-
put volume from the convolutional layer. Pooling
layers follow convolution layers, and down-sample
each feature map independently, reducing both the
height and width, while persevering the depth in-
tact. A commonly used type of layer is max-
pooling, which returns the maximum value in the
pooling window. Finally, the latter layers are com-



bined with fully-connected layers similar to those
in MLPs, that seek to emulate the desired outputs
and generate the final representations.

Another example of neural networks are Recur-
rent Neural Networks (RNNSs), designed for pro-
cessing sequential data. RNN architectures take
just the current input instance, but also what was
perceived one step back in time. This can be use-
ful for processing sequences of images, consisting
of multiple slices. More formally, given a sequence
x = (x1,22, - ,x¢), a standart RNN updates its re-
current hidden state h, by sequentially processing
the input sequence and computing:

h,=¢'(W-x;,+U-h;,_;) (3)

In brief, we have that the hidden state h; at time
step t is a function of the input at the same time
step x;, modified by a weight matrix W. This re-
sult is added to the hidden state of the previous
time step h,_,, after multiplied by its own hidden-
state-to-hidden-state matrix U. Previous studies in-
dicate that traditional RNNs can suffer from vanish-
ing gradients, leading to difficulties in training deep
models. A method to deal with this problem is the
use of Gated Recurrent Units (GRUs) [6] or Long
Short-Term Memory (LSTM) recurrent units, pro-
posed by Hochreiter et al. [7]. This latter approach
is detailed in the next section of this paper.

2.2. Deep Learning Methods for 3D
Medical Image Analysis Tasks

In a very short time, deep learning techniques have
become an alternative to many machine learning
algorithms that were traditionally used in medical
imaging. With the appearance of larger data sets
of labeled medical images, deep learning meth-
ods to perform classification or segmentation tasks
have achieved performances similar or even bet-
ter of clinical experts [4, 8]. Recent examples of
publicly available data sets, supporting this type of
developments, include the MRNet data-set [4] for
the classification of MR knee scans.

Previous work on the analysis of two dimen-
sional medical images, such as X-rays, has proved
to be successful. For instance Rajpurkar et al. [9],
found that an algorithm based on Densely Con-
nected Convolutional Networks (DenseNet) can
detect and localize lesions at a comparable rate to
radiologists. With decreasing computational costs
and more availability of better graphic processing
units, three dimensional medical images also be-
came possible targets for for deep learning meth-
ods.

A state-of-the-art approach by Korolev et al.
[10] constructed a full 3D CNN, trained to clas-
sify Alzheimer’s Disease (AD) using MRI data

from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI). In their work, some well-known base-
line 2D deep architectures, such as VGGNet and
ResNet, were converted to their 3D counterparts.
However models like these have millions of param-
eters and are harder to train on smaller data-sets.

A different approach followed by Bien et al. [4]
is another example for the use of deep learning on
the task of classifying 3-dimensional medical im-
ages. The authors proposed the use of a well-know
2D deep architecture, AlexNet [11], to perform fea-
ture extraction on each slice. They then combined
the vectors obtained to generate an encompass-
ing representation, before finally using a logistic
regression model to generate a single prediction
for each exam. On the MRnet dataset, the authors
managed to obtained a high classification accuracy
(namely 85%, 86,7% and 72,5% on abnormal de-
tection, ACL tear detection, and meniscal tear de-
tection respectively) which compared fairly with the
clinical expert’s accuracy.

Another application of deep learning for evaluat-
ing knee MR images was brought forward by Liu
et al. [12]. The authors developed a fully auto-
mated deep learning—based cartilage lesion detec-
tion system by using a joint segmentation and clas-
sification convolutional neural network. The pro-
posed model was trained on a small data set of
T2-weighted MR knee images and the obtained re-
sults were compared to practicing clinicians. The
results indicated a high overall diagnostic accuracy
for detecting cartilage lesions.

Nokivok et al. [8] reported on the use of a Con-
volutional Long Short-Term Memory (C-LSTM) net-
work in 3D scans, to address the issues caused by
implementing a 3D CNN approach. In brief, the
proposed model processes 3D volumetric scans
as a time-series of 2D slices, using time dis-
tributed convolutions. It then feeds the output of the
convolutions onto a bidirectional C-LSTM block,
in order to leverage spatio-temporal correlations
of the order-preserving slices. The neural net-
work showed competitive and sometimes superior
performance on liver and vertebrae segmentation
tasks, leaving the authors to plan about future use
of this model on other imaging tasks such as clas-
sification.

A similar approach to the three dimensional
classification solution proposed by in this work,
was presented by Liu et al. [3] in 2018. The
paper proposed a framework of a conventional
CNN and a Gated Recurrent Unit (GRU) to learn
and classify Fluorodeoxyglucose Positrons Emis-
sion Tomography (FDG-PET) images, sequenced
into two dimensional slices. The architecture
achieved a good performance on the classifica-
tions of alzheimer’s disease (AD) and mild cog-
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Figure 1: Overview on the proposed CNN-LSTM architecture.

nitive impairment results (MCI), on images of the
ADNI dataset.

3. Methodology

This section describes the approach used to ad-
dress the task of classifying three dimensional
multi-planar medical images using deep learning
techniques. Using current state-of-the-methods,
the model combines the use of convolutional neu-
ral networks and recurrent neural networks. Figure
1 illustrates the overview of the approach imple-
mented approach.

Section 3.1 addresses the application of Resid-
ual Neural Networks (ResNets) for extracting
meaningful features from the images, while Section
3.2 describes in detail the architecture of the com-
plete model with the LSTM component for process-
ing sequence of slices. In Section 3.3, an alter-
native model is presented, taking the already pro-
posed approach and unifies the single labels into a
multi-label neural network. The implementation of
the models relied mostly on the Keras' deep learn-
ing library, using as computational backend Ten-
sorFlow22. Resources from other libraries, such
as scikit-learn® and scikit-image*, were also used
for specific operations.

Thttps:/keras.io
2https://www.tensorflow.org
Shttps:/scikit-learn.org
4https:/scikit-image.org

3.1. Feature Extraction with Residual
Neural Networks

With the increase of computing power availabil-
ity, deep learning architectures started to become
more popular as they proved to be a breakthrough
in image classification tasks. To accomplish image
recognition and classification tasks, deep models
often involve stacking multiple convolutional and
pooling layers in a network for producing a feature
vector, followed by fully-connected layers that pro-
duce a final classification. The evolution of deep
learning with convolutional neural networks can be
seen from the introduction of LeNet by LeCun et al.
[13], with seven layers, to more recent approaches
as the VGGNet by Simonyan and Zisserman [14],
that had as much as 19 layers. This push in depth
resulted in improvements for image processing ac-
curacy. However as network depth increases, it
was noted that accuracy gets saturated and then
degrades rapidly.

The Residual Neural Network (ResNet), intro-
duced by He et al. [15], proposes to address the
issue of degradation by applying residual blocks.
In more detail, ResNet models are based on deep
residual learning. Instead of trying to stack lay-
ers to fit a desired mapping H(x) directly from «z,
these layers are designed deliberately to fit a resid-
ual mapping F'(x). Formally, the stacked non linear
layers are made to fit F(z) = H(x) — z, recasting
the original mapping into F(z) + z.

This method of residual learning is adopted in
blocks of few stacked layers, also called residual
building blocks. In these building blocks, a stack of
layers learns the residual mapping F(z), and the
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Figure 2: lllustration of a Residual Block.

operation F' + x is performed by a shortcut con-
nection, also called identity mapping, together with
an element-wise addition. The identity mapping
does not introduce extra parameters nor computa-
tion complexity and, in cases were the dimensions
of x and F are different, a linear projection can be
performed by the shortcut connection to match the
dimensions. An example of a residual block can be
seen in Figure 2, were the stacked layers are three
different convolutional layers, and a shortcut con-
nection from the input is added to the output of the
last layer in the block, represented as F(x).

The ResNet applied in our work consists of 50
layers, were the residual blocks have a bottleneck
design. The stack that composes the block, con-
sists of two 1 x 1 convolutional layer responsible for
reducing and increasing dimensions, leaving the
3 x 3 layer in the middle with a smaller input and
output. ResNet50, as it is also known, has an input
dimension of 224 x 224 x 3, where the last dimen-
sion represents the color channels.

3.2. CNN-LSTM Architecture

When dealing with a classification task including
3D images, a simple and direct way of extracting
spatial features would be to build a three dimen-
sional CNN. However, when dealing with large 3D
images (in our case 224 x 224 x 24 voxels) a deeper
CNN is required to be able to accurately classify
those images. Going deeper means that a bigger
number of training samples is needed to achieve
good performance, although extensive data sets
of medical images, specially 3D images, are not
readily available. This creates a problem, as 3D
CNNs are no longer a solution to the classification
and recognition tasks of medical images, due to
their large number of learnable parameters and low

number of samples in existing data-sets, that lead
to the low performance in these deep models [16].

In this work we propose a new classification
model, that is supported by a combination of a 2D
CNN and an RNN, that learns the features of 3D
knee MR images and classifies them in terms of
abnormal exams, anterior cruciate ligament (ACL)
and meniscus tears. As 3D images can be inter-
preted as times series of 2D slices, a method to
capture features on 2D images can be used to-
gether with another method to extract the corre-
lated features between slices, cooperating as one
to learn and acquire the full 3D spatial features and
improve image classification.

To better extract features from the 2D slices from
the decomposed 3D image, the ResNet50 network
was leveraged to produce feature vectors. Pre-
trained weights on ImageNet [17] were used to
save computational power and quickly identify ba-
sic features (e.g.,edges), as training a model from
scratch generally demands a larger data set than
the one used in this work. Because MRNet slices
are very different form the images on ImageNet,
our model needed to train on the data set being
fed, so fine-tuning was done and the later layers of
the residual model were unfroze, as first-layer fea-
tures are general and last-layer features are more
specific [18]. To obtain the desired feature vec-
tor from the input slices, the last fully-connected
layer was removed from the original ResNet50 net-
work, so that the last layer was an average pool-
ing layer outputting a vector of n x 1 x 1000, were
n is the number of input 2D slices for each 3D im-
age. Time-distributed wrappers were applied to the
residual network, as this allows decomposing the
three dimensional image as intended into several
2D image slices and apply every layer of the model
to those slices.

Following the feature extraction done to the in-
dividual slices, an inter-slice extraction of features
must be done to fully capture the 3D nature of the
original image. Then, in order to weight in spatio-
temporal correlations within the order-preserving
sequence of slices a recurrent neural network must
be applied, as the connections between nodes on
a RNN form a directed graph along a temporal se-
quence. These networks can be applied in our
case to obtain inter-slice features, as the time-
distributed wrapped residual network outputs se-
quential data from our 3D input.

To fulfill the main intuition of extracting inter-slice
features, and correlating features from correlating
slices, an RNN type layer was added after the
ResNet50 output. A LSTM layer was chosen, as
this is able to model relationships between inputs
separated by large sequences of data, by having a
recurrent hidden state regulated through gates.
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Figure 4: LSTM unit.

The key to a LSTM is the cell state and the ability
to update it by using gates. At time step t, that in
our model corresponds to a slice t for a given input
sequence of 3D images, a sigmoid layer called for-
get gate f, decides which part of the memory cell
will be forgotten or kept, an input gate i; controls
which values are going to be updated and a tahn
gate C*; creates a vector of new candidate values.
These last two results are combining to create an
update to the cell state. Lastly, a gate o, produces
an output based on a filtered cell state. These gate
values are calculated through linear combinations
of the current input x;, and the previous state h;
with a sigmoid function (o). An LSTM unit can be
formally defined as follows.

fo=0(Wy-[he_1,%x] +by)

i =ca(W;-[h;_1,%X] +b;)

C*, = tanh(W¢ - [hy_1, %] + be)
o, =0(W, - [hi_1,X:] +b,)

Ct = Ct—l X ft +C*t X it

5
ht =0 X tanth ( )

The main intuition for designing the complete ar-
chitecture was that the features of the correlated
slices should also be correlated. To do so, a LSTM

layer is added to our model at the end of the time-
distributed part, so as to impose this correlation
explicitly. In the model, a bidirectional extension
for the LSTM unit (bi-LSTMs) was used to enable
the network to learn spatio-tempg}al correlations of
the slices in a forward direction (h;;), and in a back-
ward direction (71;). Both states from the indepen-
dent LSTM cells are concatenated, h;; = [hiz, hit],
providing a more wide-raging summary of the inter-
slice features.

The resulting output from the bidirectional LSTM
layer was then combined with a fully-connected
layer, before a final layer containing a sigmoid ac-
tivation function outputs a prediction in the range
of [0,1]. This end to end network, that can be
seen in Figure 1, was entirely trained using the
Adam optimizer [5] with a learning rate starting
at 0.0001. This small learning rate was chosen
due to the impact high learning rates have on pre-
trained networks, as we risk losing previous knowl-
edge by distorting the CNN weights too soon and
too much. To calculate the error and propagate
it via back-propagation, the binary cross-entropy
loss was employed as the loss function.

Due to MRNet data set containing different im-
age planes for each same training sample (i.e. dif-
ferent 3D images for the axial, coronal, and sagittal
plane of a sample), nine networks were trained in
total, one for every plane and classification task.
In order to simplify the results obtained, and hope-
fully improve the quality of the prediction, a logis-
tic regression was trained to combine the output
probabilities of each plane on the same classifica-
tion task, and generate a single prediction. This
method was selected as it allows us to give less
weight to a less accurate network, and more weight
to a better performing network in the final predic-
tion. To this end, three logistic regression models
were trained, one for each classification task (i.e.
abnormal exams, ACL tear, and meniscus tear).



Table 1: Statistical characterization of the data set used in the
experiments

Statistics Training  Validation
Exams with abnormality (%) 913 (80.80) 95 (79.17)
Exams with ACL tear (%) 208 (18.41) 54 (45.00)
Exams with meniscal tear (%) 397 (35.13) 52 (43.33)
Exams with ACL and meniscal tear (%) 125 (11.06) 31 (25.83)
Total number of exams 1,130 120

3.3. A Multi-label Approach

As an alternative to the CNN-LSTM approach pre-
sented in the previous section, a multi-label archi-
tecture was also proposed with the intention of sim-
plifying and speeding up the process of training the
neural networks proposed, as training 3 networks
(i.e., one for each plane) is faster than training 9.
This model relies heavily in the CNN-LSTM archi-
tecture, as it features the same ResNet model pre-
trained on ImageNet weights for intra-slice feature
extraction, and a LSTM layer to correlate slices and
capture inter-slice features.

In more detail, this network has a common
branch to all outputs composed of non-trainable
layers of the ResNet50, time-distributed as men-
tioned before, before branching out into the differ-
ent outputs. Each branch contains the remain-
ing unfrozen layers of ResNet, minus the fully-
connected layer, as it was removed. The dif-
ferent branches are able to train over the in-
tended targets. The resulting feature vector is
fed onto the branch Bi-LSTM layer, before pass-
ing through a fully-connected layer with a sigmoid
activation function, to finally output a prediction in
the range of [0, 1]. It is important to notice that the
branches do not share parameters between them-
selves. This multi-label approach was also trained
using the Adam optimizer, and the same learning
rate and loss function as the previous CNN-LSTM
model.

4. Experiments and Discussion

This section presents the experimental evaluation
of the proposed deep learning architecture. Sec-
tion 4.1 describes the data-set and its characteris-
tics, together with the pre-processing and augmen-
tation methods utilized. Section 4.2 presents the
obtained results obtained. The first experiment de-
tails the results over the MRNet data-set with base
models, while the second experiment presents the
obtained results with the proposed models on the
knee MRI classification task.

4.1. Data Set Analysis and
Experimental Methodology

As previously mentioned, with increasingly more
databases of medical images available, machine
learning methods can now leverage this data, with
the objective of improving workflows and playing
a crucial role in assisting clinicians. An example
can be the data set used in this work. MRNet [4]
provides knee MRI exams performed at the Stan-
ford University Medical Center between January 1,
2001, and December 31, 2012, that were manually
reviewed in order to build a data set of 1,250 knee
MRI examinations.

The data set contains 1,008 (80.64%) abnor-
mal exams, with 262 (20.96%) anterior cruciate
ligament (ACL) tears and 449 (35.92%) meniscal
tears. ACL tears and meniscal tears occurred
concurrently in 156 (12.48%) exams. Examina-
tions were performed with a standard knee MRI
coil and a routine non-contrast knee MRI protocol.
From each exam, sagittal plane T2-weighted se-
ries, coronal plane T1-weighted series, and axial
plane PD-weighted series were extracted to con-
stitute the data set. The number of images in
these series ranged from 17 to 61 (mean 31.48,
SD 7.97). The exams are split into a training set
(1,130 exams from 1,088 patients) and a validation
set (120 exams from 113 patients). These figures
can be seen in close detail on Table 1.

Taking into account the range of the number of
slices in each image, pre-processing the data set
was needed, as typical neural networks only allow
a fixed size of data to be fed into. The original im-
ages from the data set have a n x 256 x 256 size
voxel, were n is the number of slices present in
each image. To fix the number of slices, interpo-
lation was applied to every sample to resize the
number of sequences to 24. This number of slices
was chosen due to its closeness to the mean aver-
age, and reduced size while still maintaining rele-
vant information. Image size was also altered to fit
the ResNet with pre-trained weights on ImageNet,
as these weights were trained on 224 x 224 images,
s0 a re-scaling was done from 256 x 256.

A data augmentation strategy was also utilized
to help reduce over-fitting as the original data set is
of a small size. The employed technique is based
on the method presented by Hendricks et al. [19]
called AugMix. This data augmentation scheme
improves on previous techniques by mixing to-
gether the results of several augmentation chains
in convex combinations, avoiding aggressive aug-
mentation methods and augmentation primitives in
chain that can lead to quick image degradation.
This technique was applied to our data set in a
limited fashion, as medical images should not con-
sider some of the transformations used in the origi-



Table 2: Comparison between three deep learning algorithms for image classification.

Model Axial Coronal Sagittal
Accuracy Precision Recall AUC Accuracy Precision Recall AUC Accuracy Precision Recall AUC
VGG16
Abnormal 0.825 0.870 0.916 0.832 0.850 0.897 0.916 0.739 0.775 0.895 0.811 0.829
ACL 0.775 0.765 0.722 0.825 0.625 0.585 0.574 0.697 0.700 0.514 0.556 0.787
Meniscus 0.650 0.566 0.827 0.796 0.675 0.603 0.731  0.751 0.683 0.630 0.654 0.731
ResNet50
Abnormal 0.867 0.869 0.979 0.890 0.792 0.872 0.863 0.757 0.833 0.912 0.874 0.895
ACL 0.808 0.830 0.722 0.849 0.717 0.700 0.648 0.806 0.633 0.593 0.593 0.674
Meniscus 0.608 0.532 0.808 0.667 0.617 0.550 0.635 0.689 0.625 0.554 0.692 0.722
DenseNet201
Abnormal 0.808 0.909 0.802 0.820 0.758 0.859 0.832 0.666 0.858 0.906 0.916 0.846
ACL 0.633 0.561 0.852 0.650 0.550 0.500 0.019 0.544 0.758 0.805 0.611 0.767
Meniscus 0.592 0.520 0.750 0.662 0.675 0.594 0.789 0.680 0.658 0.571 0.846 0.732

nal paper, and each transformation has to be repli-
cated to all slices in a sample. Small gamma varia-
tions, rotations and translations were performed in
the data-set which allowed us to double the num-
ber of training samples.

Model training was done with batches of 32 in-
stances, using the Adam optimizer [5] with a learn-
ing rate starting at 0.0001, that could be redefined
if validation loss had stopped improving employing
a technique available on the Keras library called
ReduceLROnPlateau. The number of epochs was
also defined through a criteria based on a valida-
tion loss, stopping when that metric had not im-
proved in 8 epochs. To assess the quality of the
predictions, the following metrics were used: accu-
racy, macro precision, macro recall, and area un-
der the ROC curve (AUC).

4.2. Experimental Results

To choose which convolutional neural network
would better fit our needs as a feature extrac-
tor for intra-slices, three different architectures
were tested on the knee MRI classification task.
These models include VGG16, ResNet50, and
DenseNet201. All were trained in the MRNet data
set as out-of-the-box, architectures pre-trained
with ImageNet weights. To allow the use of these
models with 3D images, time-distributed wrappers
were used, and a global average pooling layer was
added to the end, in order to to group the slices
together. The predictions were obtained through a
sigmoid activation layer.

Table 2 presents the results obtained across all
models on the MRNet data set. In the first set of
experimental results, it is possible to verify that the
ResNet50 architecture, with pre-trained weights
on ImageNet, outperformed the other models on
abnormality and ACL tear classification, while
DenseNet201 seemed to be the worse model ex-
cept on the sagittal plane were it outperform the
rest of the architectures. The VGG 16 model man-
aged to be perform better on the meniscal tear

task on the sagittal plane. Globally, these models
with small alterations were able to achieve good re-
sults. However, the most stable architecture in all
labels and planes was ResNet50, as it performed
reliably better than the other methods, accomplish-
ing an AUC of 0.895 in the abnormal classification
task with sagittal plane images. This result was
expected, as VGG16 is a shallower network than
ResNet50, and DenseNet201 is a very deep net-
work and thus had learning limitations due to the
small data set.

Table 3 presents results obtained for the knee
MRI classification task in the MRNet data set, with
the proposed approaches in this work, namely
the CNN-LSTM network and the Multi-label CNN-
LSTM model. This set of experimental results
was obtained after the predicted probabilities of the
models for the different planes were combined us-
ing logistic regression. The most beneficial series,
determined from the coefficients of the fitted logis-
tic regression, were the sagittal plane for abnormal-
ities, the axial plane for ACL tears and the coronal
plane for meniscal tears, for the CNN-LSTM archi-
tecture. For the alternative model the most bene-
ficial series were the axial plane for abnormalities
and ACL tears and the coronal plane for meniscus
tears.

Table 3: Comparison between our CNN-LSTM model and the
alternative multi-label approach.

Model Accuracy Precision Recall AUC
Abnormal  0.908 0.906  0.908 0.839
CT’::;?Z"F"E ossion ACL 0.875 0877 0875 0870
+Log 9 Meniscus  0.700 0712 0701 0.706
) Abnormal  0.858 0.880  0.858 0.660
'J\r"t':)"'i‘:t‘ilzellq’;"°rde‘;'sion ACL 0.842 0857  0.842 0.831
9 9 Meniscus  0.700 0706  0.701 0.701
Abnormal 0.850 0.937
MRNet [4] ACL 0.867 0.965
Meniscus 0.725 0.847
. Abnormal 0.894
Unassisted general
radiologist [4] AGL 0.920
Meniscus 0.849

The CNN-LSTM network managed to achieve
better results than those achieved by the Multi-
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Figure 6: lllustration of the ACL exam ROC curves.

label Model in all categories. The main architec-
ture attained a top accuracy of 0.908 on the ab-
normal task, and a top AUC of 0.870. Results
for the multi-label model managed to be accept-
able as well, as it performed better than the better
base model. However, it was understandable that
the simpler model would fare better than the more
complex, as more parameters with a small data set
can lead to degradation of results.

In Figure 5, AUC results are presented for the
abnormal classification tasks, were we can verify
that the better performing network is CNN-LSTM in
the sagittal plane, with an AUC of 0.936. This ex-
plains why the sagittal plane was the most benefi-
cial series when classifying abnormalities, as it per-
formed much better than the other planes. When
looking at Figure 6, it is observable that the AUC
values are very similar between the models. The
same can be said with Figure 7, that illustrates the
AUC values of the meniscal tear classification task.

When comparing our best results, obtained with
the CNN-LSTM approach, to the original imple-
mentation of MRNet on the same data set by Bien
et al. [4], we verify that for the AUC metric, the MR-
Net model performed better in abnormality tear de-
tection, ACL tear detection, and meniscal tear de-
tection, with AUC values of 0.937, 0.965 and 0.847,
respectively. However, in the accuracy metric, our
model performed better in abnormality detection
and ACL tear detection when compared against
MRNet (which obtained 0.850 and 0.867, respec-
tively, in that metric). Additionally, when compared
to results obtained by unassisted general radiolo-
gists in abnormality detection, provided in the MR-
Net paper, both of our models have no significant
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Figure 7: lllustration of the meniscal exam ROC curves.

differences in the performance metrics.

5. Conclusions and Future Work

This work presented an approach, based on CNNs
and RNNs, to adress the task of classifying multi
planar 3D medical images, specifically knee MRIs
according to 3 classes. Considering previous stud-
ies reported in the field of deep learning towards
the task of classifying 3D medical images, a novel
neural network was introduced. The architecture
starts with a convolutional neural network trained to
extract features from intra-slices fed from input 3D
images, followed by a recurrent neural network to
correlate and extract inter-slice features, outputting
a prediction in a end-to-end network. The full pro-
posed model, adding a Long Short Term Memory
(LSTM) layer after the CNN feature extraction con-
tributed to a better performance, and added the ca-
pability of modeling relationships between slices.
Logistic regression was used to combine multiple
predictions from distinct planes, which also con-
tributed for the good performance of the model, as
less accurates prediction weighted less on the fi-
nal output. Despite the results that were obtained,
there is room for improvement. As future work, |
believe that combining the several planes through
a different approach could lead to performance im-
provements and better computational costs. Fu-
ture work can also consider implementing a more
recent deep learning network for feature extraction
such as EfficientNet [20].
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