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Abstract

The analysis and design of structures rely on numerical models that are computationally very expensive

in the general nonlinear case. In recent years machine learning has been used to approximate func-

tions in many domains, so there is a possibility to use it to approximate the structure responses of new

designs of structures in civil engineering. In this work, we explore data driven approaches to calculate

the responses of new designs of beam structures. We consider linear and nonlinear beam models, in-

vestigate different neural networks architectures, calculate relevant structure responses and behaviours,

and validate it in relation to precise numerical simulations. Our results show that neural networks can

approximate the behaviour of realistic beam structures to predict the bending moments, tensions, and

maximum load, all this 1000x faster than the corresponding numerical simulation. This work can be used

as a tool to quickly help an engineer to validate several variants of preliminary designs of new structures

before committing to a long precise numerical simulation.
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Resumo

A análise e design de estruturas dependem de modelos numéricos que são muito caros computacional-

mente nos casos não lineares gerais. Nos últimos anos machine learning tem sido usado para aproxi-

mar funções em vários domı́nios, portanto existe a possibilidade de usar machine learning para aprox-

imar respostas de estruturas em novos designs de estruturas em engenharia civil. Nesta dissertação,

exploramos abordagens baseadas em dados para calcular as respostas de novo designs de estruturas

de vigas. Consideramos modelos de vigas lineares e não lineares, investigamos diferentes arquiteturas

de redes neuronais, calculamos comportamentos e respostas de estruturas relevantes, e validamos em

relação a simulações numéricas precisas. Os nossos resultados demonstram que redes neuronais con-

seguem aproximar o comportamento de estruturas de vigas realistas para prever momentos, tensões e

cargas máximas, tudo isto 1000x mais rápido do que as simulações numéricas correspondentes. Este

trabalho pode ser usado como uma ferramenta para ajudar um engenheiro a validar rapidamente diver-

sas variáveis preliminares de design em novas estruturas antes de se comprometer a uma simulação

numérica precisa e longa.
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Artificial Intelligence (AI) has proven to be efficient and effective in the solution of complex engineer-

ing problems involving the definition of design parameters, the evaluation of the engineering system

response and processing decision making problems, while being able to obtain more accurate solutions

in less time and with less computational effort by comparison with traditional methods [1].

Nowadays AI is used in various problems of many different areas, techniques like Machine Learn-

ing (ML), Pattern Recognition (PR) and Deep Learning (DL) have gained the most attention amongst

structural engineering in recent years [1].

Techniques of ML are used to train a computer to classify a sample or predict a phenomenon, using

techniques such as K-Nearest Neighbours, Decision Trees, Naive Bayes or Neural Networks, ML is

used in diverse areas, from economics to try to predict market scenarios, to medicine trying to predict

development and evolution of diseases. PR techniques train a computer to recognize patterns in a group

of data, this can be used to recognize and learn new correlations and is commonly used for speech and

image recognition, having practical uses like identifying fingerprints or license plates from images.

Deep Learning is a subsection of Machine Learning that involves the use of Artificial Neural Networks

(ANN). ANN can learn from almost any type of data, requiring less preprocessing, because they learn

through their own errors and can go as deep as necessary. This increases their complexity but because

of it, ANN can model almost any type of problem. Since the beginning of the 2000s DL has been

benefiting from advances in hardware, with help of Graphics Processing Unit (GPU)s and innovative

algorithms, DL can reach better levels of accuracy in less computational time than ever [2].

Neural Networks (NN) can deal with a wide range of applications in mathematics and physics such

as function regression, pattern recognition or time series prediction [3] and when enough data is avail-

able, Neural Networks are extremely useful at complex nonlinear problems [4]. Compared with more

traditional machine learning techniques, NNs do not require as much effort in feature selection and input

processing since they learn through their own errors.

1.1 Motivation

The analysis and design of civil engineering structures span a wide range of complex phenomena, cor-

responding to non-linear behaviours. Those behaviours are evaluated through sophisticated numerical

models, which require some computational effort. Hence, in a preliminary design of a structure simplified

methods are applied (some times hand calculations), which have a limited accuracy. For example, when

designing a new bridge structure, it is necessary to take into account the forces the bridge will have to

endure. These forces cause the structure to suffer some sort of displacement and if that displacement

is over a threshold the bridge can break into a collapsed state. That is why in the process of design,

it is necessary to guarantee a level of safety of the bridge by calculating the structure responses in the

3



desired scenarios.

Figure 1.1: Beam diagram

However, when dealing with non linear materials or forms on the structures, complex non linear

equations need to be solved. Nowadays, conventional methods of solving these equations such as the

Finite Element Method (FEM), can be very time consuming and require a lot of computational effort.

The motivation of this dissertation is to find out whether neural networks can be an effective alterna-

tive for determining the structure responses in a preliminary design of a new structure. With a precise

and accurate prediction of the structure responses and behaviours, we could estimate the safety of a

structure scenario without having to calculate the complex non linear equations, therefore improving

significantly the computational time and effort when laying out a new structure design.

1.2 Objectives

The main objective of this dissertation is to evaluate the use of Neural Networks to aid the design of civil

structures, more specifically beam structures.

To explore this, we will study different types of beam designs under different types of loads and find

ways to model the Riks analysis problem as a regression problem. We then need to obtain data of

relevant structure responses, such as bending moments, displacements, rotations and curvatures from

those beams structures and train NN models to predict them. After that we can evaluate how NNs can

improve the design process of new beam structures.

1.3 Contributions

Modeled Neural Network to predict the linear elastic analysis of Beams subject to one concentrated load

or a uniformly distributed load, then escalated into predicting nonlinear behaviours and more complex

4



scenarios. The main contribution was predicting the behaviour and the beam load capacity of continuous

beams (with two and three spans) with a nonlinear material.

The aim of the analysis through the NN is to determine the structural behaviour of steel beams,

considering a non-linear constitutive relation of the steel. The loads corresponding to the yielding of the

beam and to the formation of each plastic hinge and the collapse load is obtained. We also explore

different Network architectures and parameters, then compare them to find the most optimal setting

for each type of problem. In the end, we believe we have developed models shown to have better

computational time and efficiency than traditional methods like FEM.

1.4 Document Structure

This document is structured as follows:

• Chapter 2 reviews the state of the art about Neural Networks and their use inside Civil Engineering

projects while referring some related works.

• Chapter 3 presents the scenarios we will be working on and the challenges and methodologies we

will be using.

• Chapter 4 describes our solution, specifying the different datasets obtained and the neural net-

works developed for the different scenarios and challenges.

• Chapter 5 shows our models performance in different tests and evaluates the results.

• Chapter 6 concludes this document and presents some future work that can be done.
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2.1 Neural Networks

2.1.1 History and Biology inspiration

Artificial Neural Networks are inspired by the way the human brain works. A human brain can process

enormous amounts of information using the data obtained by the human senses (touch, sight, hearing,

smell and taste). This data is processed through neurons, which pass electrical signals through them.

A typical neuron has a structure that consists of a cell body, an axon where it sends messages to

other neurons and the dendritic tree where it receives messages from other neurons. When an axon

from one neuron contacts the dendritic tree of another neuron there is a structure called the synapse.

Synapses contain vesicles of transmitter chemical, these can be different from each other, some imple-

ment positive weights while others implement negative weights. Neurons are the primary components

of the nervous system, that includes the brain, and by communicating with each other through synapse,

neurons form an hierarchical structure that allows to learn functions. ANNs have a similar structure,

sending input signals between nodes in an hierarchical way. The human brain can learn simply because

synapses can adapt, by changing its number of vesicles or the number of receptor molecules, synapses

change their effects and adapt their own weights. This can make the human brain learn to perform every

kind of activity such as recognizing objects, understand language, movements of the body. Much like

Human neural networks, artificial neural networks also learn their functions by adapting weights.

Although, only gaining more interest in the last decade, Artificial Neural Networks were already

documented as far back as the 1940s [5] and its potential was aware back then, the problem was that

the technology to make it happen just simply was not there. With the latest exponential advances in

technology, especially in computational hardware, the potential of neural networks has been proved and

more and more models are being developed to aid in every kind of subject and area, from economics to

try to predict market scenarios, to medicine trying to predict development and evolution of diseases, or

to image recognition, helping identifying fingerprints or license plates.

2.1.2 Neural Networks Definition and Structure

An Artificial Neural Network is composed by at least three layers: the input layer which is the information

represented in nodes that we give to our model; the output layer that is the computed output the network

predicted giving the input; and the hidden layer, which can be more than one, the more hidden layers a

network has the deeper the network is.

Each Layer is made of a certain number of nodes or neurons, these neurons represent values and

transmit their values as signals to the neurons in the next layer that they are connected to. Neurons

use an Activation Function to compute their own value using the values that were signalled to them from

previous neurons, their own weight, and bias values. The connection between the Neurons can also
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vary, in most cases a NN is densely connected, meaning every neuron is connected to every neuron in

the adjacent layer.

Figure 2.1: Neural Network Structure

2.1.3 Neural Networks Architecture

A Neural Network’s architecture represents its number of hidden layers (depth), number of nodes or

neurons in each layer (width), the connections between nodes and layers and the activation functions

used in the layers to determine connection weights [6].

Choosing the optimal number of hidden layers and nodes is one of the most difficult tasks when

building a NN, because too few can lead to high training error but too many can also lead to high gen-

eralization errors [2]. In [7] a correlation between a higher number of hidden layers and higher approxi-

mation accuracy was shown when solving Partial Differential Equation (PDE)s with the deep Backward

Stochastic Differential Equation (BSDE) method. In [8] a network with one hidden layer composed of 30

nodes was used to predict deflection of reinforced concrete beams and in [9] a trial and error process

indicated that 120 neurons for each of the 2 hidden layers used was the best architecture predicting

severity indexes and locations of stiffness deficiencies.

2.1.4 Training

The process of training a Neural Network has 2 phases:
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• The feedforward phase, where neurons using their weights and bias and an Activation Function

compute and transmit the values to the layers ahead until the output layer computes some final

value.

• Then there is the backpropagation phase where the neurons will update their values of weight

and bias based on the error of the output in relation to the true value, this error is calculated by

a function called the loss function, these two phases repeat until the error is low enough, each

repetition is called an epoch.

Popular loss functions used in Neural Networks are mean squared error, mean absolute error or

mean squared logarithmic error, the best option may vary between each problem to solve.

2.1.5 Activation Functions and Optimizers

Activation Function (AF) are used in Feedforward to, giving the weights and bias of each neuron, com-

pute the respective output signals [2]. Across many possible AFs, Rectified Linear Unit (ReLu) has

proven to be the most widely used with most success [10]. In [2] ReLu was shown outperforming Sig-

moid, Tanh and Softplus activation functions, achieving a lower mean square loss in a 1000 epoch train-

ing. Compared with Sigmoid or Tanh, ReLu is more computationally efficient since it does not need to

compute exponential operations. In practice ReLu tend to show better convergence than Sigmoid [11].

Sigmoid also has some advantages, specifically in not blowing up activation since Sigmoid is limited

between 0 and 1. For example, in [9], a simple network with only a hidden layer and using a logsig

as an activation function was used for structured health monitoring, successfully predicting the severity

and location of stiffness deficiencies in buildings. However Sigmoid deal with the problem of vanishing

gradient, since Sigmoid’s derivative is never bigger than 0.25, when used in deep networks the N small

derivates multiplied together make the gradient quickly go to zero, thus making the network impossible

to train [10]. ReLu does not have with this problem since its value has no limits. So ReLu is a better

activation function for networks with many hidden layers.

Furthermore, other parameters we can change to obtain the best possible prediction in less time

are loss functions to evaluate our network and optimizers for Back-propagation when training our NN.

Stochastic Gradient Descent (SGD) is both simplest and most popular method for solving optimization

problems in Machine Learning but it requires several hyper-parameters to be efficient on some problems

[2]. In [2] comparisons between optimizers SGD, AdaGrad, Adadelta, RMSProp and Adam were made,

theoretically Adam should be the best overall choice and it obtained the best performance in training,

however, conclusions were that the most efficient method depends on problems and conditions.
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2.1.6 Convolutional Neural Networks

Neural Networks are also very popular in image recognition problems, with Convolutional Neural Net-

work (CNN) prevailing in this topic. CNN were inspired by biological processes, their connectivity pat-

terns between neurons resembles the organization of the animal visual cortex and making use of its

pooling process and sparsely connected neurons, CNN are remarkably used for image processing in

Computer Science.

Convolutional layers receive as input a high-dimensional array, that could represent anything, most

commonly in image recognition problems it represents an image. Then, using 2-dimensional filters to

scan the image by applying convolution operations, it returns 2-dimensional arrays called feature maps

where the outputs are stored. Training a convolutional layer is simply updating the filter values since it

is the filters that are multiplying on the input values. The same way we apply the convolutional layers

on the input values we can also apply them on the outputs of other layers, this allows to stack multiple

convolutional layers to create an hierarchical architecture that builds a convolutional neural networks.

So, making use of the distributed weights among the neurons and invariance in transitions, CNN

can also be very useful to represent civil engineering structures. For instance, in our work, we tested

convolutional layers that represented not an image, but a simplified structure of a beam.

Among all NN architectures CNNs have established as the most popular in civil engineering over the

last years, since CNNs are capable of capturing the 2D topologies, because of a pooling process and

sparsely connected neurons [1]. Recent studies have also showed that CNNs can perform better in both

speed and accuracy compared to conventional AI methods and can extract and learn optimal features

from raw data [1]. For instance, in [12] a CNN with only one hidden layer with 4 neurons using Uni-

directional feedforward Levenberg-Marquardt back-propagation was used to correlate fatigue life with

observed cracks in road bridge decks.

2.2 Artificial Intelligence in Civil Engineering

The analysis and design of structures rely on the numerical models, which are derived in order to ac-

curately represent the real behaviour of a structure. Essentially, for the analysis of stresses and defor-

mations of a structure, models based on the finite element method are widely and successfully adopted

in structural engineering. However, in an attempt to improve some computational time efficiency, re-

cently there has been a growing interest in applying AI in Civil Engineering projects [1]. Mainly with the

use of machine learning methods, including deep neural networks, for complementing the model-based

approaches, e.g. finite-element simulations, that are the state-of-the-art in civil engineering.

Today one of the biggest areas of application of AI in Civil Engineering is in aiding Structure Health

Monitoring (SHM) and for the past two decades, significant progress in developing SHM models for
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different kinds of structures has been made [1]. Structures can be degraded by natural hazards like

strong ground shaking or wind loading, this can lead to some critical elements being damaged and

some of these damaged elements cannot be visually inspected, so, the damage should be assessed

by alternative methods such as non-destructive testing methods or vibration-based structural health

monitoring techniques [9]. SHM involves using data collected from sensors to monitor a structure,

extracting damage sensitive features, and interpreting those features for condition assessment of the

structure [1]. The capabilities and the recent developments of artificial intelligence algorithms has made

possible to analyse significant amounts of data measured ”in-situ” from the real behaviour of structures.

Depending on the structure relevance, it is common to have the structures monitored (e.g., reading

accelerations, deformations) and thus access to a valuable data representing the real behaviour of

structures. The use of such data allow to have a better insight on the structural behaviour and to tune

the corresponding modelling. Furthermore, due to the technological development of monitoring devices

(with a significant capacity of readings) it is possible to update the numerical model taking into account

real time from the structure behaviour. This model can then be a surrogate of the real structure, being

updated according to the service conditions of the structure, which will allow to evaluate the future

performance of the structure and will serve as a tool to determine the timing of maintenance. AI is an

excellent auxiliary tool providing an efficient and faster way to deal with the structural health monitoring

of structures, identifying patterns, contributing to select the most appropriate parameters to read and the

corresponding location. With this information is possible to act with regard to the safety of the structure

as fast as possible. On the other hand, by being capable of analysing the significant amount of data

from the structure monitoring, it allows to build a reliable digital twin of the structure. Without AI it would

be extremely hard to use every valuable data to monitor the structure, thus in the future, AI will be an

essential tool for SHM.

Some applications of NN in SHM are, for example, in [9] where a NN is developed based on data

from a scaled down model of two buildings, based on different simulations that provide the behaviour

for different stiffness deficiencies it is possible to learn a neural network that predicts a severity index

and their locations, results are latter verified in a scaled down model of two buildings. With a similar

approach, in [13] a simulator is used to compute the damage on the structural properties of a bridge.

This simulator is then used to train a neural network aiming at detecting the severity of the damage and

its location. In [14] neural networks are used to learn the relation between the natural frequencies and

mode shapes and the elemental stiffness parameters. In most cases these methods can then be used

in real-time to provide fast diagnostic about the structure. For instance, in [12] a NN provides a quick

assessment of the life assessment of the bridge using the observed crack patterns without having to run

the full simulation.
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2.2.1 Neural Networks at Predicting Structure Behaviour

Another line of research that has been much less explored is to use AI to improve the calculation time

of design parameters. This is important because it reduces the time necessary to verify the safety

constraints of a new structure design, allowing to test more different options with little effort. Neural

Networks can be a good tool for this computations [4] [8]. Today, FEM are commonly used to calculate

structure behaviours, however when dealing with nonlinear examples, FEM needs to solve non-linear

PDE and that can lead to solving systems of nonlinear equations, which is highly computationally ex-

pensive [15]. Since FEM approach is to discretize the whole computational domain in small regions,

compute some form of solution and then gather all regions to put the whole global solution together,

non-linearity can be too expensive and hard to calculate and whenever we decide to change something

in the initial conditions and design parameters all the calculations must restart from the beginning [16].

Using AI, it could be possible to calculate directly the structure behaviour values or integrate AI

models in the FEM to speed up the more computationally expensive steps, either way the goal would

be to make calculations quicker and save both human and machine time and effort when designing a

new structure, making also possible to try more alternative designs to find the best possible one. For

instance, in [17] they use a NN with two hidden layers, the first with six neurons and the second with

seven and using the Levenberg-Marquardt training algorithm, to ascertain the structural parameters

of water harvesting structures at the conceptual stage of design, leading to accurately estimating the

major design parameters in quick time. In [18] they use an NN consisting of one hidden layer having

four nonlinear neurons using an hyperbolic tangent transfer function, to invert the reliability function that

needs to be computed using finite element simulation. It is also possible to combine these data-driven

approaches with finite-element simulations. Using data from various simulations we can learn a model

to predict the behaviour in the real world. Later on, by relying on the data acquired on the long-term

we can update the finite-element simulations by learning parameters from the real world. For instance,

in [19], after testing an ANN based on the feed forward network and having only one hidden layer with

eight neurons, for the entire structural model in predicting shock-wave loaded plates deformations and

another ANN for replacing viscoplastic constitutive equations, integrated into a finite element code, is

demonstrated a possibility to develop an ANN within an intelligent finite element for non-linear problems

in structural mechanics, leading to significant reduction of simulation time.

For the design of civil engineering structures, the corresponding structural behaviour of its struc-

tural elements (beams, slabs columns) and the structural system as whole has to be evaluated. This

corresponds to determine the distribution of integral forces and stresses, displacements, deformations

and accelerations. All this data will allow to evaluate the performance of the structure under service

conditions and to evaluate the safety to ultimate limit states (i.,e collapse of the structure)

In a non-linear scenario, determining such responses of beams and other structural elements can
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be a computational challenge, particularly due to geometrical and physical non-linear behaviours. As for

example implementing the reinforced concrete elements deflections are hard to compute because of the

non-linear stress-strain relationship of and steel [8]. Neural Networks can be a valuable tool to compute

these calculations. Neural Networks capabilities at prediction, approximation, grouping, interpolation

have always been an aid at solving engineering problems like non-destructive testing results analy-

sis, construction processes planning or geotechnical problems [8]. A NN, trained with only experimental

data needs no identification of material parameters and can lead to lower computational efforts and even

replace the whole mechanical model [19]. Some examples of applications of Neural Networks to pre-

dict behaviour of structural elements can be found. The application of Neural Networks for constitutive

modelling of concrete was first proposed by [20], where an improved technique of ANN approximation

learned the mechanical behaviour of drained and undrained sand. In [21] a NN-based surrogate mod-

elling approach is presented, they use NN to approximate the residual forces of the Newton-Raphson

incremental-iterative formulation of the classical Euler or Timoshenko beams of the Equivalent Beam

Element. The presented model is suitable for simulating geometrically nonlinear behaviour of carbon

nanotubes. In [22] extensive research into the application of neural networks constitutive modelling of

complex materials was made. An intelligent finite element method incorporating a back propagation

neural network in finite elements analysis was built. Proving Neural networks capacities at predicting,

with high accuracy, nonlinear material behaviour such as deflection and bending moments.

So Neural Networks can be an alternative at predicting responses and behaviours of structural ele-

ments. For instance, in [4] proposed Neural Networks models predicted inelastic moment of continuous

composite beams when giving the elastic moments, with significant results at saving computational effort

and in [23] three Neural Networks predicted deflections in steel-concrete simply supported bridges, 2

and 3 span continuous bridges, incorporating flexibility of shear connectors, shear lag effect and cracking

in concrete slabs.

2.3 Solving Partial Differential Equation Directly Approach

Another possible approach for NN predictions in structural behaviour, that we did not develop in this

dissertation but that is worth mentioning, is to use the Neural Network to solve directly the differential

equations. Instead of using the collected data of design conditions and deformation values and train the

NN to associate them directly, we can calculate the differential equation of our problem using the loss

function of the NN to penalize the fitted function’s deviations from the desired differential operator and

boundary conditions [15]. However, in this task of calculating deformations in structures, the function

we want to solve can, in more complex examples, be a non-linear high dimensional PDE and finding

algorithms for solving high-dimensional PDEs has been a difficult task for a long time, mostly due to
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the difficult problem known as the curse of dimensionality [7]. However, Deep Learning approaches

have recently been successfully used to solve PDEs. [7] shows PDEs reformulated using backward

stochastic differential equations and the gradient of the solution is approximated by NNs, very much like

the approach of deep reinforcement learning where the gradient acts as the policy function. In [24], the

Deep Garlekin method is presented, where a NN is used to approximate the solution of high dimensional

PDEs, the NN is trained to satisfy the differential operator, initial condition and boundary conditions, the

training is made on batches of random points so its mesh free and solves the problem of meshes

becoming infeasible in higher dimensions. Similar to this, in [25], the Deep Ritz method is presented, for

solving variational problems that arise from partial deferential equations, like the Deep Garlekin method

the Deep Ritz method has potential to work in higher dimensions and fits well with the stochastic gradient

descent. In [26] a Robust Polynomial Neural Network is described, the iterative algorithm works with the

purpose to find a subset of variables and a model that minimizes some criteria. RPNN is able to identify

both linear and non-linear polynomial models using the same approach and has positive results even

when in the presence of outliers in the training data, it also obtained high predictive ability in small data

sets as well as faster training than traditional NN approaches.

[27] and [28] show data driven approaches to solve and discover PDEs with Neural Networks serving

as function approximators that encode underlying physical laws as prior information. However, one of the

big advantages of solving directly the differential equations approach is that collecting data for training

can be much easier, because we do not need to make a lot of simulations and calculations of the whole

method of finding deformations to obtain big amounts of data to train the NN. For instance in [15],

using the Deep Garlekin method from [24], a solution to a desired PDE is approximated via a deep

NN, using for the training data random points sampled from the domain of the function, because of this

sampling method with mini batches from different parts of the domain, the computational bottleneck of

grid-based methods is avoided. So, previously computed training data might not even be necessary,

in [16], solving PDEs with NN, they build a loss function for the NN that matches the desired PDEs to

be used in training. The training is unsupervised, using a set of points inside the domain to train the NN

and to validate during training.
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This chapter explains the problem in more detail and presents the scenarios we considered for this

work as well as the most important parameters we want to predict and the methods we used to obtain

them. One of the most adopted and conventional methods for the analysis of structures is the FEM,

for example ABAQUS, the software used to obtain the data used in this dissertation, is one of the most

popular software to simulate civil engineering structures and it uses FEM. FEM is a numerical procedure

to determine approximate solutions of differential equations by subdividing the domain into smaller parts

called the finite elements and obtain approximate solutions for those smaller parts (finite elements).

Structural behaviour encompasses the solution of non-linear equations in order to accurately repre-

sent geometrical and non-linear behaviour of structures. Numerical models based on FEM can properly

deal with a wide range of non-linearities, being however (and depending on the required accuracy) costly

in terms of CPU time.

The goal is to verify whether the analysis of structures can be accurately performed by a Neural net-

work in a faster way than conventional methods, namely the FEM, particularly for non-linear behaviour.

In this dissertation, the analysis is focused on the analysis of beams (assuming an elastic and an

elasto-plastic behaviour) in an attempt to derive a tool for the corresponding structural analysis. That

tool will have the advantage of evaluating the non-linear response of a beam in a faster way (almost

instantaneously) by comparison with FEM models. This feature would make it possible to be adopted in

a preliminary stage of the design.

All the data obtained to train the NNs developed in this dissertation was obtained with the use of the

software suite for finite elements analysis ABAQUS.

3.1 Setting the scenarios

Before starting to test our method, it was necessary to decide on which type of scenarios would be

considered for testing. So, first were considered predictions on simpler linear scenarios, because data

would be easier to obtain and therefore the focus on the neural network development could be more

intensive. This linear cases, done successfully, would already prove the possibility and potential of neural

networks at modeling structure responses. Only after proving that initial idea, we escalated into more

complex and non linear scenarios. These scenarios could already show improvement in computational

time and effort of the NN model when compared to conventional FEM based procedure.

3.1.1 Parameters to be considered

A beam structure can have different structural systems, particularly a different set of support conditions,

different load patterns and different cross-section geometries. Inside our beam scenarios, there are 2

main factors that can vary.
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• the structural system regarding support conditions,

• the load pattern acting on the beam.

Regarding the structural system, two types were considered: statically determined and single span

beams; and statically undetermined beams with two and three spans (continuous beams). So, we could

vary not only the actual size in meters of a beam, but also the number of beams, that can lead to different

scenarios and results.

As for the loads, besides varying the magnitude, we could have 2 main types of load, concentrated

loads, corresponding to a force on one specific point of the beam, or, distributed loads along the beam,

that is the same force on every point of the beam.

3.1.2 Linear Scenarios

Was then needed some form of representation to translate this information into a form capable of being

read by Neural Networks. What we did was to discretize the whole beam model into X positions, where

we could have a load or not, and simply place a value of 1 if there is a load, or a value of 0 if there is

not any load. Figures 3.1, 3.2, 3.3 show this interpretation as well as the first three scenarios we chose

for the first test, those were, single span beam with one concentrated load (3.1), 1-span beam with a

uniform load(3.2) and 2-span continuous beam with one concentrated load(3.3).

There is also another big influential factor when designing a beam structure that is the type of sup-

ports. But since we only tested for pinned supports it was not relevant to try to introduce this information

into the networks. Pinned supports are free to rotate but have constraints in the translation movements,

while for example, a clamped support has constraints against both rotation and translation movements.

Figure 3.1: 1-Span Beam Diagram (Concentrated Load)
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Figure 3.2: 2-Span Beam Diagram (Concentrated Load)

Figure 3.3: 1-Span Beam Diagram (Uniform Load)

3.1.3 Non Linear Scenarios

Further ahead, we tested our models to predict non linearity, we changed the type of material of our

beams to a elastoplastic material that introduces non linearity in the behaviour and therefore in the

calculations. This was the most interesting part of this dissertation, because in this example, is where

we can see better the potential of neural networks computational time and efficiency, since the first linear

examples are also very quickly obtained through structural analysis methods solved by hand calculations

or for more complex structures using FEM, but non linear ones can take a long time to calculate.

For this example we built 2 scenarios. First a two span continuous beam with 3 concentrated forces,

2 in one span and 1 on the other spans. Figure 3.4 shows this scenario.

Then, we also tried a 3 span continuous beam scenario with one span having a uniformly distributed

load and the other 2 a concentrated load in the middle. We can see an example in figure 3.5.

3.2 Structure Behaviours and Responses

Knowing which scenarios to take and which factors inside those scenarios we need to vary, now we

need to know which behaviours and results we want to predict.
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Figure 3.4: 2-Span Beam Non Linear Scenario

Figure 3.5: 3-Span Beam Non Linear Scenario

For the design of a beam structure (some structural systems of bridges can be modelled by a beam

structure) , it is required to evaluate several parameters characterising the structural response due to the

applied load (internal forces, displacements, rotations..). A wrong evaluation of those parameters can

lead to designing a structure that is unsafe and that could have catastrophic consequences. As our goal

is to create a model that approximate the real values of these parameters in the preliminary phase, it is

important that we can accurately evaluate the most important and significant behaviours and structure

responses.

The Bending Moment corresponds to an internal force associated with the beam flexure introduced

by the loading. For the evaluation of beam safety to flexure a comparison between the bending mo-

ment along the beam with the beam resisting bending moments is performed. The diagram of bending

moments for concentrated loads are linear segments having maxima on the position of the loads. The

beam transverse displacement (deflection) shows how much the structure displaces from its undeformed

shape after subjected to the load. This technically could be an important factor, because if this value

is too high the structure could be on the brink of a collapse. We predicted these two responses on our

linear examples, just as a proof that NNs can predict with accuracy structural elements behaviour.

Others parameters such as the Rotation and Section Curvature also allow to evaluate the structure

deformation after subjected to the load. These two parameters and the bending moment will the most
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Figure 3.6: Moment and Deflection of a continuous Beam

important to predict in non linear examples.

3.2.1 Non linearity

The goal of this dissertation is to verify that Neural Networks can predict the behaviour of beam struc-

tures considering the nonlinear constitutive relations of the corresponding material, while getting results

faster than traditional methods of computation. This is an interesting task because it is the nonlinear

cases that lead traditional programs to their most time and effort consuming computations, so predicting

this successfully and in less time could lead to significant improvements.

An important parameter to know when designing beam structure is the maximum force it can with-

stand safely without causing damage to its structure, which is commonly known as the beam load capac-

ity. But nonlinear behaviour can be challenging to predict with Neural Networks. To understand why, we

take the example of the material we’ve later chosen for the tests, which is admitted to be elasto-plastic.

This non-linear material on our structure will have 3 different phases during the stress test that we want

to predict. The first one is when the beam has an elastic behaviour behaviour, as load increases, some

point in the beam will reach its bending yield moment and eventually will become fully yielded, this will

form the first plastic hinge and we enter the second phase that is the plastic behaviour, meaning ad-

ditional load will be redistributed to other parts of the structure as the hinge rotates. Eventually other

hinges will be formed as the whole process repeats, until there are enough hinges to make the structure

collapse (mechanism), the final third phase is after the structure collapsed, we will still have to predict

this phase with NN to find out the beam load capacity.

One way to know the values of force that cause a plastic hinge is calculating results for increasing

load in a scenario, and then combining the bending moment with the rotation in a plot. Because after

plastic hinges occur, the plastic hinges allow free rotations to distribute the load along the beam, con-

sequently the rotation levels increase even without increasing the load. This means we can identify the
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Figure 3.7: Elasto-plastic behaviour

force necessary to create the plastic hinges by plotting the bending moment and rotations together and

observe when the bending moment stops increasing but the plastic hinge allows free rotations so the

rotation levels keeps increasing.

3.2.2 Yield Moment and Maximum Force Supported in ABAQUS

To show it is possible to use the values of the bending moment and the rotation to evaluate the force

associated with the plastic hing formation, we present an example with the data we obtained from

ABAQUS.

To this end a numerical model of a beam considering a non-linear constitutive relation (an elasto-

plastic behaviour) was developed in ABAQUS. The ABAQUS model considers a Newton-Raphson fol-

lowing path technique considering the control of the arc-length. The models output a parameter LPF,

which stands for Load Proportionally Factor and represents the multiplying factor of the initial load given

as an input at each arc length of the analysis. For example, if we input a load of 100kN in our analy-

sis and at arc-length 2 the value of LPF is 4, then the actual load used to compute at that arc length

is 4x100kN = 400kN. This is because the analysis computed by ABAQUS relies on an incremental

procedure associated with path following strategies for the solution of non-linear equations. It keeps
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incrementing the load and simulating with increasing values of load until one of 2 things happens, either

the LPF reached value=9.5 (in our simulated beams LPF would never be higher than 9.5) or the load

reached the maximum value of load supported by the beam. In the case it reaches the maximum load,

the LPF will remain the same for the rest of the simulations, it will not increment any more.

So, in conclusion, if we give at input a big enough value of load, ABAQUS will output results for the

maximum load supported by the beam and we can learn this value with the LPF. However, if we give in

input a value of load that is not big enough, ABAQUS will stop at LPF=9.5 and will not simulate with the

maximum load supported.

The interesting part is, that when ABAQUS reaches a value of load that causes a plastic hinge, the

values of bending moment on the plastic hinge position stop increasing for the next arc lenghts until

the end of simulation. But, the values of rotation keep increasing, because the plastic hinge allows

free rotations (even without increasing the load, so this will also happen on the last plastic hinge). This

is interesting because it allows us to plot rotation and bending moment together to find out the loads

necessary to create the plastic hinges.

To show an example, for the same beam design, we did twenty simulations in ABAQUS, each with a

different value of load, loads changed from 30kN to 600kN, increasing 30kN in each simulation.

Figure 3.8: Bending Moment along the beam

The distribution of the bending moment and the rotation along the beam length is evaluated in order

to determine the plastic hing position. As we can observe in Figure 3.8, the bending moment remains

the same after the load reached the final maximum value. Conversely the rotation (Figure 3.9) continues
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Figure 3.9: Rotation along the beam

to increase (without any increase of load), which means that a plastic hinge was formed.

This is convenient because if we know the points of plastic hinges on the beam and simulate with

incrementing values of load in the input, then we can create plots of bending moment vs rotation and

identify the minimum value of load to make the plastic hinges occur.

So, knowing the plastic hinges would form in position 2 and 6, we extracted the values of bending

moment and rotation for those positions in each one of the 20 simulations and plotted them together.

Figures 3.10 and 3.11 show these graphs, where each point is represented with the value of load that

originated it. It is simple to observe that at a certain point the slope of these graphs becomes null which

is due to the fact of the bending moment stopped increasing but the rotation kept increasing. Looking

back to how ABAQUS works, we can understand that this means the load has reached the maximum

load before a plastic hinge occurs. Since the value of load that originated this point is 1609kN for the

position 2 graph but for the position 6 graph it is 1795kN, it means that the first plastic hinges occurs

in position 2 when load is 1609kN and we enter a elastoplastic regime, only when the load is 1795kN

the second plastic hinge occurs in position 6 and that would cause the structure to collapse. It would be

interesting to try to predict this with Neural Networks.
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Figure 3.10: Moment vs Rotation at position 2 meters

Figure 3.11: Moment vs Rotation at position 6 meters (support)

3.2.3 Using Section Curvature to identify plastic hinges positions

To this end, it would be needed to determine the positions where the plastic hinges will occur, only then

we can predict the Bending Moment vs Rotation graphs on those positions and find the magnitude of

27



the forces that cause the plastic hinges. One can find this out by looking at the section curvature values

after the analysis of a beam.

Just like Rotation, Section Curvature also represents how much a node rotates. As explained before,

after plastic hinges occur and as load increases, the plastic hinges will rotate to distribute the load along

the beam. Observing the nodes where these values are the highest, we can assume that those are the

nodes where the plastic hinges occurred.

Figure 3.12: Section Curvature along the beam

Figure 3.12 is the result of twenty ABAQUS simulations of the same scenario with increasing loads.

We can see that as the load input increases, the curvature value spikes in position 2 and 6, this is be-

cause in this scenario, where there were three concentrated forces with the same magnitude in position

2, 4 and 9, the plastic hinges occurred in the positions 2 and 6.

This is the method we will use to know beforehand the positions of the plastic hinges on the beam,

and after that, plot the bending moment vs rotation in those positions to find out what are the minimum

loads to cause the plastic hinges and consequently find the maximum load supported by the beam. All

we need is Neural Network models capable of predicting accurately section curvature, bending moment

and rotation levels along the beams.
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We had settled all the scenarios and knew which metrics we needed and how to obtain them. So,

now the approach resorts to simulate enough examples to create datasets for all the scenarios and

metrics, then, create the neural networks optimized for each scenario and train them with the datasets,

and finally use the neural networks to predict new scenarios and evaluate the results.

4.1 Datasets

In order for our networks to learn how to predict the desired structural behaviours and responses we

need big enough datasets to train them. These datasets should have enough samples that represent

the various examples along the domain of the problem.

4.1.1 Linear Examples

As we said before we only used the Linear examples as an initial proof that NNs can predict beams

structural responses, and only predicted the Bending Moments and Deflections.

4.1.1.A 1-Span Beams

For the 1-span beams we discretized the whole beam in 11 positions equidistant from each other, the

position of the load could be on any of the 11 positions of the beam except the extremity, so it could vary

through 9 possible positions.

We choose the 1-span beam as our first scenario exactly because it is simple and linear, therefore to

create the dataset necessary for these beams, we did not need to use ABAQUS simulations, we could

simply use python to solve the polynomial equations, this helped save a lot of time in the data gathering

phase.

The equations calculated to create the data necessary to train the different neural networks were the

following:

A – Concentrated Load Deflection

D(x) =
Pbx

6EI
(L2 − x2 − b2)

Where P is the Force of the Load, E is the Young’s modulus and I is the area moment of inertia, which

are all constant along the beam and multiplied by the whole formula, so we can ignore them for now

because we can simply multiply them after the NN prediction. L is the size of the Beam, b represents the

distant between the position of the load and the end of the beam and x represents the position where

we are calculating the deflection.
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The data-set included the dimension of L that varied from 1 to 101, the position of the load P that

could be on any of the 9 possible positions and the resulting Deflection value in each one of the 11

positions. The data-set had 10 000 samples.

Figure 3.1 represents this scenario.

B – Concentrated Load Bending Moment

BM(x) =
Pbx

L

This was the formula used to calculate the Beding Moment for the 1-span beam. The variables P, b x

and L mean the same as in the Deflection formula. The dataset created also had 10 000 samples and

varied the same variable along the same range as in the Deflection dataset.

C – Uniform Load Deflection

D(x) =
Px

24EI
(L3 − 2Lx2 + x3)

And finally this was the formula used to calculate the Deflection data for the Uniform Load 1-span beam.

The dataset had 10 000 samples. Variables mean the same as before and we also ignored P, E and

I again for our calculations. This time, since the position of the load was constant, the dataset only

included the dimensions of L, varying between 1 and 101 as well, and the values of Deflection in each

position.

We can see a representation of this scenario in Figure 3.3.

4.1.1.B 2-Span Beam Concentrated Load

Then we moved forward to a more complex setting with a 2-span beam instead of 1-span, however

this scenario was still linear. We only created a dataset with one concentrated load on this beam. The

dataset for this scenario was composed with the size of each span (varying between 1 and 10), the po-

sition of the load, the force created by the load (varying between 1 and 100) and the resulting deflection

values in each one of the 21 positions of the whole composite beam. 21 positions instead of 11 as be-

fore, because, since there is 2 spans now, each span is represented by 11 positions, however 1 position

is the point where the spans meet so it is a shared position by the beams. The same representation as

before is adopted, with 0s and 1 to represent the position of the load. Figure 3.2 represents this model.

This time and henceforth the data was obtained with the use of ABAQUS.
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4.1.2 Non Linear Examples

Since our goal is to improve the time efficiency of traditional civil engineering FEM based software, we

have to escalate our scenarios into non linear problems, since it is those non linear scenarios that cost

significant computational time to simulate.

4.1.2.A Scenario settings

Given the time we had, the scenarios had to be simple enough to able ourselves to create all the data

necessary for the networks and build the networks that could predict behaviours with high precision.

But also complex enough to be able to show some sort of generalization and potential to evolve into a

more multifaceted model, that could encompass more variables and predict even more different possible

scenarios.

Figure 4.1: Scenario for the 2-Span Beams

A – 2-Span Beams The scenario for our first nonlinear tests is the one represented in Figure 4.1. We

chose a 2-span beam for more complexity than a single beam. Each span has 6 meters, so 12 meters

in total. The material chosen is elasto-plastic to introduce nonlinear behaviour. The beam is pinned

on the edges, we chose this because it also adds more complexity than clamped supports. Pinned

support are free to rotate but have constraints in translation movement, whether clamped supports are

constraint against both rotation and translation movements. Each span has three concentrated loads,

two on the first span and one on the second span, again, we added more complexity with the three

concentrated loads instead of linearly distributed over the beam. Also, the first concentrated load has a

force of Q while the second and third have βQ and αQ, respectively. This is where we added some room
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for generalization in the model we want to build, that is, the model being able to predict various different

examples, in this case the multiple options for the location and magnitude of the loads.

However, for simplicity we discretized the beam in thirteen positions, one for each meter of the beam.

So, six positions for each span, with position 0 and 12 being the pinned edges and position 6 the middle

support.

Figure 4.2: Representation of the Nonlinear 2-Span Beams

Various examples were then computed for this scenario. The parameters varied were:

• The position of the loads. The first two loads could take any position on the first span except

the pinned points and the third load could take any position on the second span except, also, the

pinned points.

• The magnitude of the loads. Varied from 10kN to 3000kN. β and α could take the values 0.5, 1 or

2.

We simulated in ABAQUS, 70.000 random examples inside the domain of the chosen scenario. We

then, extracted all relevant input and after analysis information, including the values of Section Curvature,

Bending Moment and Rotation to create Datasets for each one of these variables to predict. Specifically,

we had information about the positions of the loads, their magnitudes at the input of ABAQUS and at the

end of Analysis (multiplied with final LPF value) and the values of Section Curvature, Bending Moment

and Rotation in each one of the thirteen nodes of the beam.

B – 3-Span Beams We then escalated into a 3-span scenario, this would be the hardest scenario

we would try to predict with NN. Represented in Figure 4.3, our beams were composed by 3 spans

that could vary in size from 1 to 10 meters, the material was elastoplastic as before and all the supports

were also pinned. One of the spans had a uniform load while the other two had a concentrated load in

the middle, the span that had the uniform load could be in the middle or on the edges, to increase even
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Figure 4.3: Scenario for the 3-Span Beams

more the generalization, the uniform load had a magnitude of Q while the the other two had magnitudes

of α Q and β Q respectively.

To simplify and to able our NN to predict all the possible examples, we discretized the whole beam in

31 positions, 11 for each span, sharing the edges with the next one.

To create the dataset we simulated around 70.000 random examples. In each example we varied:

• Which span had the uniform load (middle or edge).

• The size of each span, varying from 1 to 10 meters.

• The magnitude of the load Q, varying from 10kN to 3700kN. β and α could take the values 0.5, 1

or 2.

All relevant data was then extracted to build the datasets to train the neural networks. Structure

responses such as Rotations, Section Curvatures and Bending Moments, as well as input information

such as the load types, magnitude and positions and the beam sizes.

4.1.2.B Choosing the best load type

We then used this information to train the Neural Networks developed. Training using the real load

values makes sense since we want our model to predict the real value of load, and this works fine for

the Bending Moment. However, knowing how ABAQUS works, for the Rotation and Section Curvature

models, there will be examples that have the exact same input but different output, because of ABAQUS

method of continuing to increment Rotation and Section Curvature values after reaching the maximum

load supported. This will cause the NN model, given this dataset, to not be able to learn, since there are

multiple different solutions for the same input. To resolve this problem we could, instead of the real load

at the end of analysis, use the input load given to ABAQUS before the analysis. With these loads, the

maximum load value always outputs the same value for Section Curvature and Rotation, as well as the

load values should be better distributed and normalized.
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However, if we also want our NNs to predict the correct maximum load supported by the beam, we

cannot train with these loads, we need to use the real loads. So, we had to use the original loads when

predicting the Moment vs Rotation graphs. But perhaps we can still use the input loads for the Section

Curvature prediction to identify the plastic hinges locations, this was proven to not be a problem to our

final model and actually the option that lead to better results, as it will be shown later.

4.1.2.C Data Scaling

Nevertheless, we still believed that the real load is not evenly distributed and normalized enough along

the dominium of the dataset, so we decided that there was still some sort of improvement to be made in

our final datasets. With that in mind we tested the effects of scaling our data. We tested two techniques

of data normalization. The first one was using a logarithmic scale simply replacing the load value L

with log(L), this ensures that the loads will be in a more confined dominium. The second technique was

linear scaling simply dividing each load minus the minimum of all loads by the difference between the

maximum and the minimum of all loads.

Log Scaling:

L′ = log(L)

Linear Scaling:

L′ = (L− Lmin)/(Lmax− Lmin)

Results can be observed in figures 4.4 and 4.5. Figure 4.4 shows the neural network training com-

parisons between using the original dataset and using the datasets after scaling the data with each one

of the techniques. In Figure 4.5 we can observe better the difference in NN training with each one of the

data scaling techniques.

Since our original dataset has much more samples with higher values of load than with lower values,

meaning it is not evenly distributed across all possible values, it would be expected that log scaling would

perform better since it solves this problem. However, we obtain the best results after normalizing with

the linear scaling, as we can see in figure 4.5.

4.2 Neural Network Models

Having now created all the datasets for the scenarios developed, all that is left is to create the neural

networks, train them with the datasets for each scenario and observe and evaluate the NN predictions.
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Figure 4.4: Comparisons in training between original loads before and after normalization

Figure 4.5: Comparison in training between the 2 normalization techniques

Neural Network models created were thought specifically to solve our problem, taking in considera-

tion the each chosen scenario.
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4.2.1 Linear examples

4.2.1.A Simple MLP Network

The first NN created for the linear examples is a simple NN, represented in Figure 4.6. This NN takes as

input 12 nodes, 11 representing the 11 positions of the beam with values either 0 or 1 depending on the

existence of a load and another node to represent the size of the beam. For example in figure 4.6, the

12th node has the value of L that is the size of the beam, the 7th node has value 1 while the rest have

value 0, so there would be a concentrated load on the position 6 of the beam.

This Network has 3 hidden layers with 64, 32 and 24 neurons respectively.

As for the output layer, 11 nodes are computed representing the values of deflection or bending

moment in each of the 11 positions of the beam.

Figure 4.6: First simple NN tested for Linear examples

4.2.1.B Complex MLP/CNN Network

We then decided to test a different NN architecture, the reason for this was because since we have

11 equally distant points to represent our beam, a valid argument could be made to use CNN for its

uniformly distributed weights and transition invariance.

So this network is a more complex NN, represented in Figure 4.7 and it only takes as the input layer,

the 11 nodes that represent the positions of the beam, then has 3 Hidden Convolution Layers and only

after we insert the node representing the size L of the beam. The next 3 hidden layers are normal

densely connected layers like in the previous NN (4.6), before giving as output the 11 nodes with the
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value of the structure response we want to predict (deflection or bending moment) in each one of the

positions.

Figure 4.7: Second more complex NN tested for Linear examples

4.2.2 Non-Linear examples

4.2.2.A 2-Span Beams

From the linear examples, we believe to have found the optimal architecture for this scenario, so the

first Neural Network created for the non-linear scenario (Figure 4.8) was inspired by that. It had thirteen

input nodes, these nodes represented the thirteen positions of the beam and provided information about

the positions of the loads, to make this, we placed a value of 1 on the nodes representing a position

that had a concentrated load, and a value of 0 on nodes that represented a position without any load
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Figure 4.8: Nonlinear 2-Span Beam Neural Network Architecture

on it. This Network Layer would then be processed through five Convolutional Layers, with 128, 64, 32,

24 and 13 nodes, in that order and all densely connected before flattening. The choice to make these

layers convolutional makes sense since the thirteen nodes represent equidistant positions on the beam

and CNN makes the nodes have uniformly distributed weights. After that we concatenated to our so far

computed output of thirteen nodes, three more nodes representing the magnitude of each load on the

beam. The whole sixteen nodes were then computed by four Normal Dense Layers, of 64, 32, 24, and

13 nodes, in that order, until producing the final output of thirteen nodes, each one with the value of the

variable to predict in each position of the beam. All these layers had ReLu as the activation function, that

was proven to be the one with the fastest convergence. Also, the loss function with best convergence

was Mean Squared Error, and the best optimizer was Adam because of the adaptive learning rate.

We used this architecture to predict the Section Curvature, Bending Moment and Rotation after

an analysis of a beam inside the dominium of the selected scenario, and it was the architecture that

obtained the best predictions, because it combined all the best methods to model our problem, such

as the uniformly distributed weights of the convolutional layers, the ReLu activation function for faster
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convergence and avoid vanishing gradient problems and Adam as optimizer for the adaptive learning

rate because we have very different set of features (positions and loads) and the learning rate should be

different for each.

Nevertheless, we still tried different architectures to compare with the original. Specifically, one where

results were quite positive, was the architecture represented in Figure 4.9 where we would only give one

input of position and obtain the output result for that given position, instead of predicting the whole beam

like before. This Network had 7 input nodes, 3 representing the positions of the existing loads on the

beam and other 3 representing their magnitudes, the last node would be the position we are calculating

the result for. The input nodes will then get processed through five normal densely connected layers of

128, 64, 32, 24 and 12 neurons until obtaining the final neuron with the result.

Figure 4.9: Single Output Neural Network Architecture
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4.2.2.B 3-Span Beams

The NN developed for this scenario had a similar architecture as the best performing NNs in the previous

scenarios with also an input layer representing the beam positions placing a value of 1 on positions that

have a load and 0 otherwise, in the case of the uniform load all the positions on that beam had value 1.

The input layer info will then be processed through 5 convolutional layers before adding the additional

information about the size of the three beams (3 nodes) and then each load magnitude (3 nodes).

The concatenated layer will then be processed through 3 normal dense layers before giving the output

represented in 31 nodes, each representing a position in the whole continuous beam. Just like the NN

in Figure 4.8, however the input and output layers with 31 nodes and the nodes added in the middle are

6 and not only 3.

4.2.2.C Prediction Methodology

In these non linear scenarios we went further ahead trying to predict the plastic hinges locations and the

maximum load supported with the method explained in section 3.

So, to predict that, we trained 2 Neural Networks with the same architecture, one with the Section

Curvature dataset and the other with the Bending Moment dataset.

Our final model takes into account a new random beam design inside the domain of the scenarios and

transform the information into nodes to be input into the NN models. Then using the Section Curvature

NN model it will predict the positions where the plastic hinges will occur. It finds this by giving a very

high value of load in the input and the model predicts where the structure would break, therefore that

is where the plastic hinges occurred. Since all we had to do was to give a high value of load, knowing

exactly the value of it does not matter, and that is why we could train this model with the ABAQUS input

loads instead of the real loads.

After knowing the plastic hinges positions, the program will use the Bending Moment model to predict

the yield moment and the forces necessary to make the structure collapse on the plastic hinges. For

that, it must predict the bending moment vs rotation graphs, so it calls the NN model multiple times to

predict the same beam scenario but with incremented loads and plot the bending moment until the slope

of the graph turns null, then the load that originated the point where the slope turns null is the maximum

value of load. Since what makes possible to identify the slope is the stabilization of the bending moment

levels, it is not even necessary to predict the rotation values and that is why we only needed the Bending

Moment model.
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Results and Evaluation
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In this chapter we show every test we made to evaluate all our models in each scenario.

We started with the linear and simpler scenarios, searching for the most optimal architecture for our

problems, we compared not only different numbers of layers and nodes but also different AFs, optimizers,

and the use convolutional layers. We then test the results of prediction in each linear scenario.

Moving forward to the non linear scenarios, we test predictions on some of the most important struc-

ture responses and compare the 2 types of loads in the training data to understand why we have to use

one type or the other on some structure responses. We also compare our NN architecture to a differ-

ent one to show the increased performance. Finally we show predictions on finding the maximum load

supported, we explain our model’s methods showing its limitations but also its significantly increased

performance compared to conventional methods.

5.1 Linear Scenarios

One of the first test we did was comparing activation functions ReLu and sigmoid for the training (Figure

5.1) and the results were similar for all the scenarios.

Figure 5.1: Comparison between ReLu and Sigmoid in training

It is observable that ReLu is a more optimal activation function for our NN architectures in this prob-

lem, this makes sense since we have multiple hidden layers in our networks, [10] and [2] also showed

ReLu outperforming other Activation Functions. Another argument for using ReLu in our Networks is to

introduce nonlinearity in the convolution layers since some of our NNs developed here use convolution

layers.

So we opted to choose ReLu as the activation function for all our final tests, with MSE as the loss
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function and optimizer Adam.

We had developed 2 different NN architectures for the linear tests, one with only normal dense

Multilayer Perceptron (Figure 4.6) and another incorporating convolutional layers as well (Figure 4.7).

Here we compare these architectures, to find if the convolutional layers make a significant difference to

predict our problem.

5.1.1 1-Span Beam Concentrated Load

For this data-set, results were successful with both Neural Networks. As we can see in Figure 5.2,

the complex NN with the convolutional layers (Figure 4.7) performed better, achieving the lowest error

rate faster. In figure 5.3 we can see an example of a Deflection prediction in this scenario that is quite

accurate.

Figure 5.2: Comparing the 2 Networks training for the Point Load 1-Span Beam

We also tested on the data-set with the bending moments instead of deflection as the target. We

trained the NN the same way as before and can observe an example of a prediction in Figure 5.4, proving

our NN can also predict different functions of structure responses.
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Figure 5.3: Predicting Deflection of Concentrated Load on 1-Span Beam

Figure 5.4: Predicting Bending Moment of Concentrated Load on 1-Span Beam

5.1.2 1-Span Beam Uniform Load

In the scenario of predicting 1-Span Beams when under a Uniform Load, the load is distributed along the

beam, so we did not need 11 nodes to represent the position of the load, consequently our NN model

was a little different.

The model used was similar to the first network for linear scenarios (figure 4.6), however only taking

as input one node with the value of the size L of the Beam.

We can see that this simple Network was enough to predict the Deflection values accurately. The
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loss plot in training can be observed in Figure 5.5 and an example of a prediction in Figure 5.6.

Figure 5.5: Training NN for Uniform Load on 1-Span Beam

Figure 5.6: Predicting Deflection of Uniform Load on 1-Span Beam

5.1.3 2-Span Beam Concentrated Load

This Scenario was the most complex of the Linear ones. We tested with both NNs in Figures 4.6 and

4.7, but with a slight difference in the input layer, since we needed to add more Nodes to represent the

2 spans now, instead of just one.

Comparison of the two Networks in training can be observed in Figure 5.7.
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Figure 5.7: Comparing the 2 Networks training for the Point Load 2-Span Beam

We can then see that, again, the complex NN with the convolutional Layers (Figure 4.7) performed

better, achieving the minimum error rate in less iterations. The reason behind this increased performance

is probably exactly those convolution layers that converge better than normal dense layers when we give

the nodes in a form representing the structure of our beam and therefore, the training is improved

significantly.

Figure 5.8: Predicting Deflection of Concentrated Load on 2-Span Beam

A prediction with this NN can be observed in figure 5.8. This scenario was the hardest to predict, the

errors were slightly higher, however most predictions were very close to the original like in Figure 5.8.
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Even though all these tests demonstrated were simple and solving these linear scenarios with tra-

ditional methods also takes a very short amount of time, so no real improvement is shown in these

examples, it still serves as proof that Neural Networks are effective and capable of predicting very accu-

rately deflections and bending moments of beams.

5.2 Nonlinear 2-Span Beams

5.2.1 Structure Responses Predictions

Onto the nonlinear scenario. The first test and comparison we should do was between the 2 Datasets

with different types of loads obtained in ABAQUS. Compared to the real loads, the ABAQUS input loads

were initially better normalized and did not have problems with multiple outputs for the same input. So

we started by testing with this loads and observe the results.

With these loads, it was possible to correctly predict the Section Curvature (Figure 5.9), Bending

Moment (Figure 5.10) and Rotation (Figure 5.11) values along the beam. As well as the maximum load

supported by the beams (Figures 5.12 and 5.13).

Figure 5.9: NN prediction of Section Curvature of nonlinear 2-Span Beam
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Figure 5.10: NN prediction of Bending Moment of nonlinear 2-Span Beam

Figure 5.11: NN prediction of Rotation of nonlinear 2-Span Beam
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Figure 5.12: NN prediction of Moment vs Rotation of nonlinear 2-Span Beam in position 2 meters

Figure 5.13: NN prediction of Moment vs Rotation of nonlinear 2-Span Beam in position 6 meters (support)
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This shows how Neural Networks can effectively and accurately predict some already complex non-

linear beam behaviours.

Using the real loads for the Section Curvature model was not possible due to the multiple samples

with the same input corresponding to different outputs, as it was explained before and we wanted our

model to be able to predict the real loads. So, for the Bending Moment predictions, we had to use the

real loads. In this case not only it is possible, it is also better to use these loads. Consider the example

of a fixed scenario, as we increase load, we reach the maximum and we keep inputting larger values of

load in ABAQUS, but the result of Bending Moment is always the same since ABAQUS stopped at the

maximum load supported. So, with the input loads dataset there will be a lot of samples for the same

scenario but different loads that have the same result. Using the real loads computed at the end of the

ABAQUS analysis, for the same scenario, a different value of load will always cause a different result,

and this is better to model our Neural Networks. We can observe in Figure 5.14 the comparison in a

thirty epochs training between these two types of loads.

Figure 5.14: Comparison between the 2 load types when training for the Bending Moment

5.2.2 Networks comparisons

We developed 2 NN architectures (Figs. 4.8 and 4.9) to predict the non linear scenarios and compared

them both in training and in predictions. Training was better with the NN architecture in figure 4.8 as

we can observe the learning history comparison in Figure 5.15 however results were still quite accurate,

since the final loss after training was close. We can see an example for the Section Curvature and Bend-

ing Moment predictions in Figures 5.16 and 5.17, respectively. We think that the use of Convolutional
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Layers are a major factor in why the first network seems to outperform other architectures, since we can

organize the information given to the network in a representation of the structure. This was also showed

in the linear examples.

Figure 5.15: Comparison in training between the two NN architectures

Figure 5.16: Comparison between the two NN architectures in predicting a Section Curvature example
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Figure 5.17: Comparison between the two NN architectures in predicting a Bending Moment example

5.3 Nonlinear 3-Span Beams

This scenario was the most complex of all the scenarios we studied here, because of being 3-span

beams and because we varied types and magnitudes of loads as well as size of beams. There was

lots of different possible examples inside this scenario and the solutions were nonlinear. We tested

predictions on Rotation and Bending Moments responses as well as Section Curvatures. With this

last one, we could identify the plastic hinges positions and then also predict some Rotation x Bending

Moments graphs to identify the yield moment for the plastic hinge in cause, just like we did with the

2-span beams. Figure 5.18, 5.19 and 5.20 show a prediction of Rotation, Bending Moment and Section

Curvature from random examples inside the domain of our scenario respectively. In Figures 5.21 and

5.22 we see the Rotation x Bending Moment graphs from two plastic hinges positions identified from the

Section Curvature graph in figure 5.20.

As we can observe from the graphs, our model predicted rather accurately all this structure be-

haviours even though this scenario was a very complex and nonlinear scenario that would take several

time to calculate with traditional methods like FEM.
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Figure 5.18: NN prediction of Rotation of 3-Span Beam, Sizes: 2m, 6m, 1m

Figure 5.19: NN prediction of Bending Moment of 3-Span Beam, Sizes: 6m, 3m, 4m
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Figure 5.20: NN prediction of Section Curvature of 3-Span Beam, Sizes: 7m, 6m, 3m

Figure 5.21: NN prediction of Bending Moment x Rotation of 3-Span Beam; Sizes: 7m, 6m, 3m; Position: 10m

5.4 Maximum Load Supported Predictions

To exemplify our method of finding out the maximum load supported by a beam we take an example of

the 2-span beam scenario with α = β = 1. It starts by plotting the section curvature graph when giving a
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Figure 5.22: NN prediction of Bending Moment x Rotation of 3-Span Beam; Sizes: 7m, 6m, 3m; Position: 15m

value of load high enough to observe the plastic hinges points, as we can see in Figure 5.23 it would be

positions 2 and 6 since those are the points where the section curvature value spikes.

Figure 5.23: NN prediction of Section Curvature 2-Span Beam with α = β = 1

Then we calculate the rotation and bending moment graphs for the same scenario, multiple times
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with incremented loads like in figures 5.24 and 5.25. We simulated the same beam with values of load

from 25kN to 1975kN, increasing 50kN in each subsequent simulations. We did not go denser here, say

1kN in each simulation, for the sake of the clarity of the graphs to be showed in this document

Figure 5.24: Multiple NN predictions of Bending Moment on 2-Span Beam with α = β = 1

And finally we can take the values of bending moment and rotation on the positions of plastic hinges

identified before and plot them together to create the graph in blue in Figure 5.26, the orange graph in

the same figure is the one computed by ABAQUS, where it will always stop increasing the load when

reaching the maximum supported by the structure. This feature makes it very simple to calculate the

maximum load supported by the beam, all there is to do is to observe the point in the graph where the

slope of the function becomes 0. However, in our program that is not as easy, because we do not know

beforehand the maximum load value. So, we will have to compute with values higher than the maximum

load supported as is showed in Figure 5.26, but this values are not in our training data and are not even

possible to exist, since our training data is made of exclusively examples computed by ABAQUS which

never computes with values over the maximum load supported.

As we can observe in Figures 5.26, when the load surpasses the maximum load value, our neural

network stops predicting in a behaviour similar to the real and starts giving out more random values.

Some possible reason for this is because this values of load cannot be correctly represented in our

training data since ABAQUS stops at the maximum, they exist because they are outliers in our training

data computed by ABAQUS, most of this outliers have higher values of load but lower bending moment

values than the maximum.
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Figure 5.25: Multiple NN prediction of Rotation on 2-Span Beam with α = β = 1

Figure 5.26: Comparison between real and NN prediction of Moment vs Rotation of 2-Span Beam with α = β = 1

Given all this and observing the graphs with the results, our method to identify the maximum possible

load was the last point before the absolute value of bending moment lowers, that is, the last point before
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the function starts having a different/more random behavior. We can observe some examples in Figures

5.27, 5.28 and 5.29 that show that this method predictions are already quite accurate, but we have a

sparse number of increments, for the sake of the clarity of these plots we increment the load by 50kN

each step. In our final model our incrementations are denser, we increment load by just 1kN in each

step, leading to even more accurate predictions.

Figure 5.27: Comparison between real and Final Model prediction of Moment vs Rotation of 2-Span Beam with α
= β = 1

In the example of Figure 5.27 the Neural Network would predict a maximum load of 1625kN when the

original is 1564kN, in Figure 5.28 NN would predict 1175kN when original is 1137kN, and in Figure 5.29

NN would predict 1975kN when original is 1927kN. These results are good estimated values that are

quickly computed and could be used for quickly designing multiple different nuances of a beam scenario.

With this method of identifying the maximum load supported, we only had to predict the bending

moment, since we only need to observe the tweak in the Bending Moment value to identify the instant

where the maximum load was reached, therefore the rotation model although demonstrated in this work

with having good predictions was not used in our final model.

Our program simulates around three thousand different incremented loads for a given scenario, then

computes and outputs the result in around four and a half seconds. To have a notion of the potential of

Neural Networks and how much faster our model is compared to traditional methods, when we simulated,

for the same scenario, the thirteen different load increments, represented in Figures 5.12 and 5.13,
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Figure 5.28: Comparison between real and Final Model prediction of Moment vs Rotation of 2-Span Beam with α
= β = 1

just the ABAQUS simulations before plotting them all together took 325 seconds. The Neural Network

models computed and plotted the same thirteen samples in 0.007 seconds.

The following table shows some scenarios executions times comparisons between ABAQUS FEM

based simulation and our NN model predictions.

Table 5.1: Beam Scenarios execution times

Scenario Nr of simulations ABAQUS NN
Linear 2-Span Beam 1 27s 0.001s
Linear 2-Span Beam 20 541s 0.002s

Non Linear 2-Span Beam 1 27s 0.001s
Non Linear 2-Span Beam 20 541s 0.005s
Non Linear 3-Span Beam 1 28s 0.001s
Non Linear 3-Span Beam 20 565s 0.005s
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Figure 5.29: Comparison between real and Final Model prediction of Moment vs Rotation of 2-Span Beam with α
= β = 1

63



64



6
Conclusion

Contents

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

65



66



6.1 Conclusions

Planning and building a civil engineering structure is a serious and complex project, designing a safe

architecture for the structure is of course an essential part to avoid risks. Nowadays, conventional

methods to verify the safety of a complex and non linear structure can be very time expensive. Neural

Network approaches can help to reduce this computational time.

We defined 3 scenarios in linear models and 2 scenarios in non linear models to work on.

Table 6.1: Beam Scenarios tested

Scenario Material
1-Span Beam Uniform Load Linear

1-Span Beam 1 Concentrated Load Linear
2-Span Beam 1 Concentrated Load Linear
2-Span Beam 3 Concentrated Loads Nonlinear

3-Span Beam 2 Concentrated Loads 1 Uniform Load Nonlinear

We believe to have developed neural network architectures build exceptionally to predict inside these

scenarios, even though some room for improvement is always possible, we still showed aspects that

seem to be the most optimal such as the superiority in training of ReLu compared to any other AF, and

Adam compared to any other optimizer, as well as our developed architecture that uses convolutional

layers to better model the real world structure.

With this work we proved the potential of neural network models for this specific problem by building

a model that can predict an approximation of a solution for some types of beam structures in 30 000 less

time than with a traditional method. This model can also, with more training data, evolve into a more

multifaceted model that can predict different designs of structures.

6.2 Future Work

6.2.1 Generalization

One thing to improve in our models is the capacity to generalize more different and diverse beam de-

signs, even though our model can predict with high accuracy, it fails to generalize, because it can only

yet predict beam architectures of 3 spans at maximum.

Obtaining new training data to incorporate different designs, and then test the prediction results on

them, would be the first step to improvement. For this it would be necessary to obtain more data of

different structure designs and develop more NN architectures to represent the new scenarios. Then

have some sort of selection method to choose which NN to use in each scenario.
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6.2.2 Incorporation inside FEM

Another interesting goal for the project initiated here would be to incorporate it inside the FEM model.

FEM has a computational expensive method for solving the structure responses of non linear models,

our model offers an alternative fast approximation of this responses for an easier and faster modeling at

a preliminary design phase. However, it could also be possible to incorporate our model with the FEM

to replace the more complex and computational expensive functions with the NN. This would be even

more effective after an improvement to our model’s generalization capacity, making possible to improve

FEM computational time efficiency with any structure model at any phase of a structure creation.

6.2.3 Solving PDE directly

This would not be an improvement to be made to our model, but more of an alternative with higher

potential to solve the same problem. We did not test for this approach in this dissertation, however it is

a possible solution to our initial objective that also involves neural networks. As reviewed in Chapter 2.3,

we could use the neural network models to learn and predict the partial differential equations solutions

that have to be solved for FEM in non linear models that are computational expensive and significantly

increase the time efficiency. This would be even more interesting if the model was then incorporated

inside softwares that use FEM, such as ABAQUS.
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[8] M. Kaczmarek and A. Szymańska, “Application of artificial neural networks to predict the deflections

of reinforced concrete beams,” Studia Geotechnica et Mechanica, vol. 38, no. 2, pp. 37–46, 2016.

[9] C.-M. Chang, T.-K. Lin, and C.-W. Chang, “Applications of neural network models for structural

health monitoring based on derived modal properties,” Measurement, vol. 129, pp. 457–470, 2018.

[10] C. E. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions: Comparison of

trends in practice and research for deep learning,” 2018.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neu-

ral networks.”

69



[12] E. Fathalla, Y. Tanaka, and K. Maekawa, “Remaining fatigue life assessment of in-service road

bridge decks based upon artificial neural networks,” Engineering Structures, vol. 171, pp. 602–616,

2018.

[13] J. Shu, Z. Zhang, I. Gonzalez, and R. Karoumi, “The application of a damage detection method

using artificial neural network and train-induced vibrations on a simplified railway bridge model,”

Engineering structures, vol. 52, pp. 408–421, 2013.

[14] K. H. Padil, N. Bakhary, and H. Hao, “The use of a non-probabilistic artificial neural network to

consider uncertainties in vibration-based-damage detection,” Mechanical Systems and Signal Pro-

cessing, vol. 83, pp. 194–209, 2017.

[15] A. Al-Aradi, A. Correia, D. Naiff, G. Jardim, and Y. Saporito, “Solving nonlinear and high-dimensional

partial differential equations via deep learning,” arXiv preprint arXiv:1811.08782, 2018.
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