
SureSpace: orchestrating IoT devices to certify location

João Maria Marques Tiago
Instituto Superior Técnico, Universidade de Lisboa

joao.marques.tiago@tecnico.ulisboa.pt

Abstract
Location-aware mobile applications are increasingly pop-

ular and useful. However, as more services rely on location,
there are concerns that users may misreport their location to
gain undue advantages. One way to prevent such location
spoofing is to rely on location certification systems. For ex-
ample, SureThing uses Wi-Fi or Bluetooth beacons and ad-
hoc witnesses to allow a user to make proof of location at
a specific time and place. This approach can be extended to
smart spaces, such as smart buildings, managed by platforms
like DS2OS. In this work, we propose, implement, and eval-
uate SureSpace, a new system that combines location certi-
fication with smart space management, to verify the location
of users inside a smart building. The new system relies on
existing infrastructure to act as witnesses, while introduc-
ing a varied combination of devices and proof techniques to
achieve security by diversity in the proofs, and thwart spoof-
ing attacks. The system was evaluated in laboratory condi-
tions, and was shown to be effective using light and audio
signals.

1 Introduction
Mobile applications have gained popularity in the last

decade, given the increased ubiquity and pervasiveness of
mobile devices on people’s everyday lives. Meanwhile, the
Internet of Things (IoT) [12] is emerging as a network of
interconnected smart devices that collect and consume in-
formation for management, and decision-making purposes
in smart environments, depending upon characteristics like
network availability or coverage area [6]. Mobile devices
can interact with IoT devices for added value services, but
security is a critical concern. Context attributes like iden-
tity, time and location, need to be trusted to allow for good
security decisions when granting access to resources [3].

The use of location in mobile applications is increasingly

popular and useful. However, in most cases, location is col-
lected by the device itself, and the user may misreport loca-
tion to gain undue advantages.

To prevent location spoofing, location certification mech-
anisms can be deployed to prove that a user is at a specific
location (either geographical or logical), at a specific time.
SureThing [9] is a recent proof of location framework built
with Java on the Android platform that uses location mea-
surements collected with GPS, Wi-Fi and Bluetooth Low En-
ergy (BLE) to certify location. SureThing makes use of wit-
ness devices to verify and attest to the presence of users in
crowded physical spaces with diverse devices. In its current
version, it does not take advantage of existing infrastructure
available at a location.

With this work, we introduce SureSpace, an extended ver-
sion of the original architecture of SureThing, designed to
engage in smart environments in a secure way. To generate
a location proof, beacons, which are on-site smart devices,
broadcast unique signals meant to be captured by the prover
using witnesses in the prover device. If the captured signal
matches the original signal to a certain threshold, the location
proof is deemed valid. Different approaches and techniques
are supported for signal processing and matching. To dis-
cover, configure and control beacons inside the smart space,
we use DS2OS [10], a smart space management framework.
It bundles a beacon discovery mechanism to account for the
high dynamism of smart environments, allowing beacons to
be added or removed in runtime.

2 Background
In this Section, we present the two systems that were com-

posed to build SureSpace: SureThing and DS2OS.

2.1 SureThing
SureThing [9] is a location certification system for An-

droid devices that lets users prove their location. Its design
and architecture are influenced by other location certifica-
tion systems, such as APPLAUS [13], and Crepuscolo [7],
to the extent that they share some core components. To lo-
cate the user, SureThing uses different location estimation
techniques, such as Geo Proof (geographic location obtained
from GPS or ANLP1), Wi-Fi Proof (via Wi-Fi fingerprint-
ing), and Beacon Proof (using BLE beacons).

1The Android Network Location Provider, that uses both cell tower and
Wi-Fi to determine the device location.

The goal of location certification is to prevent location
spoofing, by requiring proof of a claimed location. Using
their Android smartphone, the prover says that they are at
a specific location, and the system challenges the claim, by
asking for evidence, and/or one or more witnesses at the loca-
tion. The proof mechanism starts by collecting some sort of
signal, that is unique to the location at a specific time. This
signal is abstract, and it can be both a “natural” signal, like
the radiation or noise level, or an artificial signal, such as a
radio. The prover collects the signal, with errors, and keeps
the evidence for later verification. When the prover wants
to make proof of location and time, they are challenged by
the verifier. The verifier can ask for the signal or some of
its features, and compare them with a template or witnesses
observations.

Since the original SureThing paper, there have been other
applications implemented with the approach, some with ad-
hoc witnesses, others with fixed witnesses, and also some
with beacons that transmit pseudo-random signal sequences.
There is also an ongoing work that is providing witness and
user privacy protection through the use of different privacy
mechanisms [8]. Until this work, SureThing lacked a way
to leverage multiple signals and the smart space orchestra-
tion capabilities, required for a robust and diverse proof of
location process.
2.2 DS2OS

DS2OS [10] is a smart space orchestration framework
focused on the development of services for smart spaces.
Smart devices deliver valuable data (e.g. light or tempera-
ture conditions), and perform useful work (e.g. turn a light
or heating on). These capabilities can be used to implement
scenarios where smart devices work together towards a com-
mon goal. The coordinated management of smart devices,
known as smart space orchestration, is possible if smart de-
vices can be interconnected to share data over a network.

In DS2OS, services are logical processes that deliver
functionality in a smart space, usually grouped in two cat-
egories: adaptation services, that provide an interface to a
smart device, and orchestration services, that implement the
logic behind pervasive scenarios. In practice, each smart de-
vice requires an adaptation service, and smart devices are
coordinated by an orchestration service. Regardless of their
category, services have unique identifiers in DS2OS, con-
veniently named after the nature of the service (e.g. the
adaptation service for a temperature sensor could go by
temperatureadaptationservice).

Smart devices produce and consume pieces of unstruc-
tured information, known as context. To become manage-
able, context is shaped into context models, that represent
entities in a structured way. Context models have con-
text nodes (i.e. attributes) to describe properties of the en-
tity they are linked to. To determine its type, each con-
text node has a type attribute, which is, in fact, a con-
text model itself, usually simpler. To understand this bet-
ter, consider a context model of a temperature sensor, of
type /sensor/temperature. The context model should
include, at least, two properties: isOn, a /boolean for
the operational status of the sensor, and value, a /number
used to represent the read temperature. The temperature-

adaptationservice would, then, include a context node
of type /sensor/temperature to represent the sensor. In
other words, all properties of the sensor’s context model
would be implicitly included in that context node.

Each service has its own context model, and inter-service
communication is achieved through the manipulation of con-
text models. Simply put, a context model is a blackboard:
some services write on it, and other services read from it to
achieve their objective. To prevent unauthorized operations,
context nodes have read and write permissions. Following
the example, all services should be able to change the value
of isOn, so that the sensor can be turned on. However, value
must be read-only to all services but the temperature-
adaptationservice, authorized to update the temperature
value. In this light, context models are interfaces for ser-
vices, a sort of service contract that (1) specifies which at-
tributes can be read and/or written, via get and set oper-
ations, respectively, and (2) by whom, according to an ac-
cess control policy. For instance, if an orchestration ser-
vice wishes to get the current temperature, it would have
to call set(’isOn’, true) on the context model of the
temperatureadaptationservice (to enable the sensor),
and then get(’value’) to get the actual temperature.

Context models are stored in a distributed system over
a peer-to-peer network, known as the Virtual State Layer
(VSL). Peers of the network are called Knowledge Agents
(KAs), and each agent persists a subset of the context mod-
els. To be granted access to the distributed knowledge, ser-
vices register to a KA of their choice, that becomes respon-
sible for the respective context models. From that moment
on, these context models become available to other services,
even if connected to a different agent.

One important feature of DS2SOS is that services can
subscribe to specific context nodes to receive a notification
when the node value changes. This feature is useful, for in-
stance, when a service wants to take different actions de-
pending on the new value. Another key feature of DS2OS
is dynamic service discoverability [4, 11], that allows adap-
tation services to be discovered by different criteria: type
of smart device (e.g. temperatureadaptationservice), or
type of attribute (e.g. /boolean).
2.3 Supported location representations

Geocodes represent geographic locations on Earth, where
each location is assigned a unique identifier, used to dis-
tinguish between entities. Usually, geocodes are short and
human-readable. In SureSpace, we use geocodes to locate
both the prover and the orchestrator within the building.
Our problem domain allows locations to be represented with
coarser granularity, because the focus is on determining if
the prover is within the boundaries of the room, and not nec-
essarily at a specific location within that area.

Currently, SureSpace supports two geocode systems:
Open Location Code (OLC), and What3words (W3W). By
default, SureSpace uses the OLC geocode system to encode
locations into plus codes that represent squares on the Earth’s
surface. The longer the code, the smaller the square is, and,
in its full length of 11 characters, a plus code represents a
3× 3 m square. For example, 8CCGPVP5+GMW describes the
reception hall of a building in Lisbon. Shortening the code to

Figure 1: SureSpace architecture.

8CCGPVP5+GM, a larger square containing the reception hall
is drawn. This feature is useful to represent larger rooms
with a single plus code.

3 Architecture
SureSpace is a location certification mechanism designed

for smart environments. Its architecture integrates elements
from SureThing, that enriches SureSpace with an assortment
of techniques and technologies for location certification, and
DS2OS, that offers the possibility to configure and orches-
trate smart devices in a smart space, as well as the possibility
to dynamically discover them in run-time.
3.1 Components

Figure 1 outlines all components of SureSpace, focusing
on the communication flows between them. Components are
presented following the expected interaction sequence.

The prover is a SureSpace user that engages with the sys-
tem in order to prove their location. The prover device is
the device used by the prover during all interactions with the
system.

The Certificate Authority (CA) is the long-term identity
provider of all active entities of the system, similar to CAs
in use on the Internet for website certification. To be deemed
legitimate and to be able to engage with SureSpace, entities
must register themselves to the CA. Each entity generates a
public/private key pair. The private key is known only to the
entity, and is kept safe and secure on their side. The public
key is used to generate a certificate signing request in order
to apply for a public key certificate. If the request is approved
by the CA, a public key certificate is issued and assigned to
the requester entity.

An orchestrator is the entry point to SureSpace system be-
cause it is the component the prover first reaches out to. An
orchestrator is the “mastermind” of any proof of location,
responsible for coordinating the process at the highest level,
and preventing malicious communication flows coming from
unauthorized parties. It implements diverse logical subpro-
cesses that include, for example, the dynamic discovery of

new orchestrated rooms, the dynamic discovery of new bea-
cons and their orchestration, and the delivery of accurate in-
formation about a specific location proof. Orchestrators run
an orchestration service to communicate with the adaptation
services of the orchestrated beacons.

A Knowledge Agent (KA) is a node in the distributed
knowledge network of DS2OS (refer to 2.2). More specif-
ically, KAs are context repositories that persist relevant in-
formation used by the orchestrator. To deliver room-level
orchestration, each orchestrated room has its own KA, that
behaves like a proxy to the room (meaning that no rooms
share the same KA). Agents hold information about their ge-
ographical location by running a localization service, so that
the orchestrator can discover them by location when looking
for new orchestrated rooms. Since beacons register them-
selves to the closest KA in their vicinity, new beacons are
easily discoverable and accounted for. During a proof of lo-
cation, an orchestrator will need information about engaging
beacons (and respective trusted witnesses), like the value of
specific attributes. That information becomes available to
other KAs, since they are all nodes in the same distributed
knowledge network.

A beacon is a smart device embedded into the trusted in-
frastructure ready to be used in a proof of location (e.g. a
smart bulb). By default, SureSpace is not aware of existing
beacons by themselves, since they may not be directly con-
nected to the system. Thus, each beacon requires a proxy
to become visible to, and controllable by the system. That
proxy is an adaptation service, that represents and controls
exactly one beacon. During the proof of location, each bea-
con generates and broadcasts exactly one signal meant to be
captured by, at least, one corresponding witness in the prover
device. A signal is something produced by a beacon that
can be received by a corresponding witness. For instance,
visible light, emitted by a smart bulb (the beacon), and ac-
knowledged by a light sensor (the witness), could be used as
a signal. The definition of signal, however, is left open to
avoid narrowing down the possibilities to a small set of con-
ventional signals, paving the way for out-of-the-box ideas.
Theoretically, any equipment can be used as a witness, pro-
vided it is able to acknowledge signals from a specific bea-
con. Witnesses in the prover device are untrusted, because
they are not part of the trusted infrastructure.

A signal is generated based on a set of quirky properties,
that feed a deterministic signal generator. If these proper-
ties are disclosed, the original signal can be easily replicated.
Naturally, signals have different characteristics/features, and
are susceptible to deterioration induced by multiple factors
during their transmission. Moreover, witnesses have limited
capabilities, and might not be able to acknowledge all char-
acteristics of the signal, but only a subset of them. Thus,
what the witness receives is not the original signal, but a de-
graded representation of some of its characteristics. In some
cases, part of the characteristics of the signal can be suc-
cessfully derived from the analysis and/or processing of the
degraded representation. To the derived information we call
proof ambient, because it represents the witness’ knowledge
of the original signal.

To determine the legitimacy of the location proof, we

measure the accuracy of the proof ambient by quantifying
similarity between the original signal, that was transmitted
by the beacon, and the degraded representation, that was re-
ceived by the witness. To do that, we require a trusted rep-
resentation of the signal from a trusted witness, embedded
into the reliable infrastructure, capable of acknowledging the
same set of characteristics, to ensure the two representations
are compatible. In some cases, usually when the infrastruc-
ture is not open for modification, trusted witnesses can be
virtual. Without the need for real devices, virtual witnesses
mimic the behavior of receiving the signal through emulation
to deliver the same functionality. Alongside with a beacon,
corresponding trusted witnesses, be them virtual or not, are
represented and controlled by the same adaptation service.

The verifier is the last entity to engage in SureSpace. It
measures the reliability of a location proof by assessing the
legitimacy of the proof ambient derived by the prover. The
verifier implements adequate criteria to compare different
representations of the same signal. However, there is no pre-
determined assessment criteria, because (1) the definition of
signal itself remains abstract enough to encompass a variety
of beacon, and (2) application-specific criteria might have to
be taken into account. Regardless of the implementation de-
tails, the verifier must output a boolean value that represents
the assessment result. If true, the location proof is deemed
reliable, and, thus, accepted.

4 Location certification process
The process encompasses three stages: pre-authorization,

proof, and verification.

4.1 Pre-authorization stage
A proof of location requires the orchestration of a subset

of beacons scattered across a smart location, like an orches-
trated room. Beacon orchestration requires some context in-
formation to be readily available at proof-time (like which
beacons are engaging with the proof of location).

The objective of this pre-stage, represented in Figure 2, is
to produce an authorization, requested by the prover and is-
sued by an orchestrator, that works as a token used to trigger
the proof stage, while containing relevant metadata neces-
sarey for the proof of location.

First, the prover device determines its compatibility with
the existing beacon-witness mapping (Device compatibility
check step). A beacon is deemed supported by the prover de-
vice if and only if it has, at least, one compatible untrusted
witness (usually a sensor, like a light sensor). Consequently,
the set of supported beacons depends on the hardware prop-
erties of the prover device.

The prover device estimates its location resorting to ex-
ternal mechanisms (Device location estimation step). For
instance, GPS can be used if the signal is strong enough.
Upon locating the prover device, GPS coordinates are then
converted to a plus code (refer to 2.3). In the absence of a
suitable localization system (like in GPS-constrained envi-
ronments), scanning an on-site QR code with the geocode
of the room might be sufficient to locate the prover within
the building. In the end of this step, the prover requests a
proof authorization to the orchestrator (Request authoriza-
tion step).

Figure 2: Process diagram for the pre-authorization stage.

Figure 3: Process diagram for the proof stage.

Following the validation of the request, the orchestrator
determines which beacons are available at the location re-
ported by the prover (step Adaptation service discovery).
Different orchestrated rooms offer different beacons, discov-
erable via adaptation services delivered within that room. To
determine which beacons are available at the reported lo-
cation, the orchestrator (1) lists all orchestrated rooms, (2)
determines the closest one to the prover, and (3) discovers
which beacons are available in that room.

Finally, the orchestrator selects beacons eligible for the
proof of location (Eligible beacons selection step). A bea-
con is eligible if and only if (1) it is supported by the prover
device, and (2) available at the prover location. A beacon
selection policy might filter eligible beacons, depending on
policy criteria (e.g. the security level of the room). In the
end of this step, the orchestrator generates an authorization,
stores it for future use, and sends it to the prover.
4.2 Proof stage

This stage, represented in Figure 3, starts when the prover
submits the proof authorization to the orchestrator (step Sub-
mit authorization).

Beacons generate signals based on a set of quirky proper-
ties, used to feed a deterministic signal generator. To mini-
mize the likelihood of broadcasting the same signal twice, a
seed value is generated in an unpredictable way (step Gener-
ate random seed), and it is used to populate quirky properties
with pseudorandom values derived from it.

The orchestrators lock the adaptation services of the se-
lected beacons, and applies new pseudorandom values to the
quirky properties (step Configure beacons). When beacons
are ready, they start broadcasting their signal. At the same

time, trusted witnesses in the infrastructure start receiving
the signal, as well as untrusted witnesses in the prover de-
vice. Untrusted witnesses send the information directly to
the prover device, that safely stores the information, and
trusted witnesses share the information with the orchestra-
tor via the VSL (by updating the corresponding properties of
their context models).

Network latency has direct impact on the level of synchro-
nization between orchestrator and prover, since only upon
clearance from the orchestrator will the prover initiate the
process. If desynchronized, “dead times” may occur in the
beginning (beacons are broadcasting, but the prover is wait-
ing for clearance), and in the end of the process (beacons
have ceased their activity, but untrusted witnesses remain ac-
tive). This phenomena should be mitigated in the verification
stage, without relying on clock synchronization.
4.3 Verification stage

Theoretically, a proof of location is accepted if the proof
ambient is complete enough (with regard to all the signals
broadcast by engaging beacons), and accurate enough (if the
extracted information is in line with the original signal’s in-
formation).

Even in optimum conditions, signal degradation will de-
crease the accuracy of the proof ambient. Internal factors
(e.g. witnesses sensitivity) and external factors (e.g ambient
noise, topology of the orchestrated room) might lead to a
misrepresented, yet legitimate, proof ambient. To account
for such errors, a margin of error is considered when com-
paring the trusted representation of the original signal with
its degraded representation.

To verify the location proof, the prover submits the proof
ambient of the different signals to the verifier. A final judg-
ment is yield, either accepting or rejecting the location proof.
Lest compromising the versatility of the verification step, im-
plementation details of the stage are left open.
5 Implementation
5.1 Development platform

We developed a prototype of SureSpace as a Java project,
using the JDK (Java Development Kit) version 11, and used
Maven 3.6.3 to manage the building process and help with
dependencies version management. We implemented a cus-
tom version of Ardulink 2, a Java solution for coordinating
Arduino boards [2] (required for the experimental setup), and
implemented the Certificate Authority, the orchestrator, and
the verifier from scratch (some code was partially inspired in
existing work by João Ferreira [9]). We also implemented all
DS2OS services (adaptation, localization, and orchestration
services) by extending available templates. To bootstrap the
VSL, KAs need to be launched one by one to become peers
(refer to 2.2). In practical terms, a KA is bundled as an exe-
cutable JAR file. However, the code of a KA was no longer
compatible with our setup, so we modified it, and recom-
piled it. The prover was implemented as an Android mobile
application, for a richer user-experience, compiled in Java 8
against API 30.
5.2 Cross-entity communication

Depending on their domain, entities communicate using
different underlying communication protocols. DS2OS en-

Figure 4: Message structure shared in SureSpace.

tities (KAs and services) communicate with the VSL via
REST connectors (using HTTPS as tunneling protocol for
added security). Communications between SureSpace enti-
ties (CA, orchestrator, and verifier) are supported by gRPC
(in Java), following a remote invocation paradigm. gRPC
uses Protocol Buffers (protobuf) to provide a platform-
independent representation of remote interfaces, and it was
chosen because of its efficiency, and loose coupling between
clients and servers [1]. Moreover, communications between
SureSpace entities share a common payload format, illus-
trated in Figure 4, that (1) allows for a standardized pro-
cess of message validation, and (2) fosters the implemen-
tation of the desired security properties (integrity, authenti-
cation, and non-repudiation). All messages hold informa-
tion about their source (field sender), and destination (field
receiver), to prevent message forwarding. Replay attacks
are mitigated by using a securely generated random num-
ber (field nonce). For integrity, authentication, and non-
repudiation purposes, a digital signature is generated over the
message (field signature) using SHA-512 with the source
entity’s private key. To reduce the number of interactions
with CAs, the source entity’s certificate (field certificate)
is attached to the body of the message prior to signing.

5.3 Entity identification
Each SureSpace entity is assigned a public key certifi-

cate that is part of a certificate chain that terminates with
the SureSpace Root CA. Public/private key pairs are gener-
ated using 2048-bit RSA, and certificates are signed using
SHA-512. Moreover, each entity is identified by a hierarchi-
cal identifier, unique within the SureSpace domain.

5.4 Beaconing technique
To determine if a signal is appropriate for a proof of loca-

tion, we classify it based on two metrics: difficulty of repli-
cation, and difficulty of acknowledgment. Signals should be
difficult to replicate without knowing the quirky properties
used for their generation. If signals have noticeable patterns
or are reused, a malicious party can easily replicate them. At
the same time, signals must be versatile enough to account
for common limitations shared by compatible witnesses, so
that signals can be easily received by most witnesses.

We propose a technique based on time fragmentation to
reach an equilibrium between these two metrics. During the

proof stage, each signal is broken into a fixed number of con-
secutive, same-length fragments, and each fragment is gen-
erated based on a set of quirky properties.

For simplicity, we adopt the following notation:
• b∈ B denotes beacon b, in the set of supported beacons,

B

• w ∈Wb,b ∈ B denotes witness w, in the set of witnesses
compatible with beacon b, Wb

• fb,i ∈ Fb,b∈ B, i≥ 1 denotes the i-th fragment of the set
of fragments that compose a signal broadcast by beacon
b, Fb

• q ∈ Q fb,i ,b ∈ B, i ≥ 1 denotes quirky property q, in the
set of quirky properties used to generate fragment fb,i,
Q fb,i

• Sb = fb,1 ‖ fb,2 ‖ . . . ‖ fb,n,b ∈ B, i ≥ 1 denotes a signal
with n≥ 1 fragments, broadcast by beacon b

Algorithm 1 proposes a pseudocode of the technique.
Since each fragment is very likely to have a different set of
quirky properties, we assume that no two fragments share
the same set of quirky properties, resulting in the creation of
unique signals.

Algorithm 1 Pseudocode of the technique.

s← UnpredictableSeed();
for all b ∈ B do

random← Random(s);
for i← 1,2, . . . , |Fb| do

for all q ∈ Q fb,i do
q← PseudorandomValue(random);

end for
end for

end for

5.4.1 Light signal time fragmentation
Consider a light source (e.g. a LED) used as a beacon

in a proof of location, blight , that can switch between states
on and off with period P ∈ [PMIN ,PMAX [, measured in a
convenient unit (PMIN and PMAX are, respectively, the low-
est and the highest supported periods). In the proof stage,
the beacon broadcasts a signal, Slight , split into n d-seconds
fragments. During each fragment flight,i, i = 1,2, . . . ,n, the
beacon switches between states with a pseudorandom period
Pi (the quirky property), derived from the seed, forming a
power-on and power-off sequence with rates that vary be-
tween fragments.

Theoretically, Pi can take any value in range [PMIN ,PMAX [,
and nothing prevents two pseudorandom periods from being
equal or close enough to generate similar or indistinguish-
able fragments. To avoid this, we adopt an approach that (1)
prevents reusing the same period and (2) reduces the proba-
bility of picking periods too close in the range.

As witness, we consider a light sensor, wlight , capable
of measuring light intensity in a convenient unit, at a sam-
pling rate not less than Pi

−1, ∀i. Plotting the measurements
over time offers a representation of Slight based on one of

1 <model type="/complex/beacon">
2 <isOn type="/basic/boolean"/>
3 <switchingPeriod type="/basic/number"/>
4 </model>

Figure 5: Simplified context model of a light beacon.

its properties (light intensity). The analysis of that represen-
tation may confirm significant variations in light intensity,
which are an interpretation of the power-on and power-off
sequence.
5.4.2 Audio signal time fragmentation

Consider an audio source (e.g a speaker) used as a beacon
in a proof of location, baudio. The beacon can be programmed
to play any song out of a predefined set of m songs, and
songId ∈ {0,1, . . . ,m−1} is the index of the song to be
played. This song is any regular song that plays on the radio,
and we consider it over any synthesized melody because a
song is more easily tolerated by the human ear for extended
periods of time. During its activity, the beacon broadcasts a
signal, Saudio, with a single d-seconds fragment, and a pseu-
dorandom songId ∈ Q fbaudio ,1

(the only quirky property) is
derived from the seed.

As witness, we consider a sound sensor, waudio, capable
of measuring sound amplitude in a convenient unit. Plot-
ting the measurements over time offers a representation of
Saudio based on one of its properties (audio amplitude). The
analysis of that representation may confirm variations in am-
plitude and frequency that match the song being played.
5.5 Supported beacons

Adding support for a new beacon requires writing its con-
text model with all the configurable properties (the trusted
witness requires its own context model too), and implement-
ing the adaptation service, so that the beacon can be discov-
erable.

Currently, SureSpace supports two beacons (a light bea-
con, and an audio beacon), and next we go over the steps
required to add support for them.
5.5.1 Light beacon and witnesses

Based on the example in 5.4.1, we considered a light bea-
con capable of switching between states on and off with a
configurable period. Figure 5 is a simplified context model of
the beacon, where isOn is a boolean used to control the bea-
con (if set to true, the beacon is working), and switching-
Period is the time it takes for the beacon to switch between
states (in seconds).

As trusted witness, we considered a light sensor capable
of measuring light intensity at a configurable sampling rate
not less than switchingPeriod−1. Figure 6 is a simplified
context model of the trusted witness, where intensity is the
measured light intensity (in a convenient unit), intensity-
SamplingRate is the sampling rate at which the sensor is
reading (in Hertz), and isOn is a boolean used to control
the witness (if set to true, the witness is working). The or-
chestration service subscribes the intensity attribute on the
trusted witness context model. Every time the attribute value
changes because of a new measurement, the orchestration

1 <model type="/complex/witness">
2 <intensity type="/basic/number"/>
3 <intensitySamplingRate type="/basic/number"/>
4 <isOn type="/basic/boolean"/>
5 </model>

Figure 6: Simplified context model of a light witness.

1 <model type="/complex/beacon">
2 <isOn type="/basic/boolean"/>
3 <songId type="/basic/number"/>
4 </model>

Figure 7: Simplified context model of an audio beacon.

service is notified. At that moment, the value is timestamped
(in milliseconds), and stored in the orchestrator to compose
the trusted representation of the light signal.

As untrusted witness, we consider any device capable of
measuring light intensity to ensure both witnesses acknowl-
edge the same property of the signal (intensity).
5.5.2 Audio beacon and witnesses

Based on the example in 5.4.2, we considered an audio
beacon capable of playing a specific song out of a set of
songs stored in a raw format (like WAV). Figure 7 is a sim-
plified context model of the beacon, where isOn is a boolean
used to control the beacon (if set to true, the beacon is work-
ing), and songId is the index of the song to be played.

As trusted witness, we considered a sound sensor capable
of measuring the sound amplitude at a specified sampling
rate. Figure 8 is a simplified context model of the trusted
witness, where amplitude is the measured sound amplitude
(in a convenient unit), amplitudeSamplingRate is the sam-
pling rate at which the sensor is reading (in Hertz), and isOn
is a boolean used to control the witness (if set to true, the
witness is working).

The trusted witness was implemented as fully virtual
to demonstrate the feasibility of the approach. Since we
have access to the songs in a raw format, it is possi-
ble to emulate the behavior of a physical witness. Every
amplitudeSamplingRate−1 s, the virtual witness reads the
sound amplitude from the file, and updates the amplitude
attribute on its context model, which has been subscribed
by the orchestration service. Every time the attribute value
changes, the orchestration service is notified. At that mo-
ment, the value is timestamped (in milliseconds), and stored
in the orchestrator to compose the trusted representation of
the audio signal.

1 <model type="/complex/witness">
2 <amplitude type="/basic/number"/>
3 <amplitudeSamplingRate type="/basic/number"/>
4 <isOn type="/basic/boolean"/>
5 </model>

Figure 8: Simplified context model of an audio witness.

As untrusted witness, we consider any device capable
of measuring sound amplitude to ensure both witnesses ac-
knowledge the same property of the signal (amplitude).

5.6 Verifier implementation
To verify a location proof, the verifier quantifies similarity

between different representations of the same signal: a de-
graded one (from untrusted witnesses in the prover device),
and a trusted one (from trusted witnesses in the infrastruc-
ture). If more than one beacon is used (and, thus, more than
one signal is involved), individual similarity estimates are
weighted for a final similarity estimate.

Based on the beacons we support, we use the MATLAB
Engine API for Java to quantify similarity. Next, we detail
the approach used for comparing representations of the same
signal, for both light signals, and audio signals.

5.6.1 Light signal representations similarity estima-
tion

Representations may be sampled at different rates, imped-
ing their comparison. We bring them to a common rate by
upsampling the representation with the lowest frequency, us-
ing linear interpolation. This process produces an approxi-
mation of the representation that would have been obtained
by sampling at a higher rate.

Because clock synchronization is not a requirement, po-
tential delays between representations may exist. To align
them without relying on timestamps, we use correlation to
determine where representations overlap the most, and then
align them.

At last, we normalize both representations, and calculate
the linear correlation coefficient between them, corrlight 1,
given by Equation 1

r =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2

√
∑

n
i=1(yi− ȳ)2

(1)

where r is the linear correlation coefficient, n is the num-
ber of samples in the representations (they have the same
size), xi and yi are the sample points, and x̄ and ȳ are the
means of the samples. This coefficient measures the linear
relationship between the two representations, and is used as
an estimate of their similarity.

5.6.2 Audio signal representations similarity estima-
tion

Audio and light signals are fundamentally different, and
so are their representations. For that reason, we cannot fol-
low the previous approach. Instead, after normalization, we
use dynamic time warping to resample and align the repre-
sentations. This algorithm stretches the two representations
onto a common set of instants, such that the sum of the Eu-
clidean distances between corresponding points is smallest.
Then, we calculate the linear correlation coefficient between
the aligned representations, corraudio 1, and use it as a first
estimate of their similarity.

To improve the estimate, we calculate the power spec-
trum of the two representations. Simply put, a power spec-
trum is a frequency-domain interpretation of an audio signal
representation because it describes the distribution of power

Figure 9: Experimental setup components, and orchestrated
area.

(sound amplitude) into frequency components. In this con-
text, this information is relevant because each song has a dif-
ferent time-frequency structure. Thus, we calculate the linear
correlation coefficient between the power spectra of the two
representations, corraudio 2, and use it as a second estimate
of their similarity.

The two estimates are weighted for a final similarity esti-
mate, given by Formula 2

w1× corraudio 1 +w2× corraudio 2,w2 = 1−w1 (2)

Weights w1 and w2 must be tuned based on a training set,
since they are necessarily beacon- and witness-dependent.
5.6.3 Combined signals similarity estimation

For a final similarity estimate, individual similarities are
estimated according to Formula 3

w3× corrlight 1+

w4× (w1× corraudio 1 +w2× corraudio 2),

w4 = 1−w3

(3)

Weights w3 and w4 need to be tuned.
6 Evaluation

In this Section, we present the experimental setup used
to evaluate the SureSpace prototype, describe the evaluation
criteria, and discuss the evaluation results.
6.1 Experimental setup

For the experimental setup, we used inexpensive equip-
ment, with less accuracy, but more representative of com-
modity equipment that we expect to find in a smart build-
ing. We dropped room-level orchestration, and opted for a
smaller, yet representative, orchestrated area shown in Fig-
ure 9.

Recall notation from 5.4, where b denotes a supported
beacon, and w a corresponding witness. Based on the sup-
ported beacons, we used a Grove Chainable RGB Led V2.0
as light beacon, blight , a Grove Light Sensor V1.2 as trusted
light witness, wlight , and a JBL GO 2, connected to a Grove
MP3 V2.0 module, as audio beacon, baudio. The trusted au-
dio witness, waudio, is fully virtual, eliminating the need for
physical equipment. For connectivity reasons, blight , wlight ,
and the Grove MP3 V2.0 module were all connected to a
Grove Base Shield V2.0 for an Arduino Uno board. The

prover device was a Huawei Mate 20 Pro Android smart-
phone, shipped with Android 10, equipped with a built-in
ambient light sensor, the untrusted light witness, w′light , and
a microphone, the untrusted audio witness, w′audio. During
the proof of location, the prover device is steady in the cen-
ter of the orchestrated area, as depicted.

We built a dataset by running 80 location proofs under
the same controlled scenario. Each location proof delivered
four signal representations (two representations per signal, a
trusted one and a degraded one). To be assessed, a location
proof is submitted to the verifier (refer to 5.6).

In some cases, the verifier may classify location proofs in-
correctly, either by accepting a location proof that should be
rejected (false positive), or, conversely, by rejecting a loca-
tion proof that should be accepted (false negative). To evalu-
ate SureSpace, we consider (1) the false positive rate (FPR),
which is the percentage of all negatives that still yield posi-
tive, (2) the false negative rate (FNR), which is the percent-
age of positives that yield negative, and (3) the success rate,
which is the percentage of correct classifications. FPR and
FNR are inversely proportional to the success rate, and the
verifier should focus on minimizing them.

To ensure the reproducibility of the experiments, the du-
ration of the proof stage was set to 30 seconds in all proofs
of location (a reasonable value in a human time-scale that
works in a possible meeting room scenario). Regarding the
audio component, beacon baudio could choose between 20
different predefined songs, all sampled at 44.1 kHz (refer
to 5.4.2). Regarding the light component, light signals were
broken into two 15-seconds fragments, and beacon blight
could switch between states with a pseudorandom period
P∈ [0.5,7.5[(refer to 5.4.1). The upper bound of the range is

7.5s (=
15s
2

) to ensure that light signal fragments generate,
at least, one complete on-off sequence (i.e. the beacon is
powered on, and then it is powered off for the same amount
of time at least once). The lower bound of the range is 0.5s
to ensure compatibility with all light witnesses (based on the
information we collected, w′light , the Android ambient light
sensor, is the light witness that reports the lowest sampling
rate of ≈ 2Hz).

6.2 Optimal weight tuning
We started by dividing our dataset into two subsets: a

training set, and a test set. Following the Pareto principle,
the training set accounted for 20% of the dataset (i.e. 16 lo-
cation proofs), and the test set accounted for the remaining
(i.e. 64 location proofs).

We started by tuning weights w1 and w2 using the training
set (refer to 5.6.2). We crossed audio signal representations
from all location proofs in the training set, ending with 256
combinations (16 × 16), from which 16 should be accepted
(the number of legitimate location proofs), and 240 should
be rejected (the number of fabricated location proofs). We
varied w1 (recall that w2 = 1−w1) to find the optimal combi-
nation that would minimize FPR+FNR. Figure 10 plots the
sum as a function of w1. The local minima is at w1 = 0.661,
which means that 〈w1,w2〉 = 〈0.661,0.339〉 offers the best
success rate (FPR = 33.33% and FNR = 37.50%). Replac-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 w
1

70

75

80

85

90

95

100
 F

P
R

 +
 F

N
R

 w
1
 =

0.
66

1

Figure 10: Optimal value of w1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 w
3

0

20

40

60

80

 F
P

R
 +

 F
N

R

 w
3
 =

0.
43

6

Figure 11: Optimal value of w3.

ing w1 and w2 in Formula 2, the audio signal representations
similarity estimate is given by Formula 4

0.661× corraudio 1 +0.339× corraudio 2 (4)

Then, we tuned weights w3 and w4 (refer to 5.6.3). Fol-
lowing the same approach, we crossed audio and light sig-
nals from all location proofs in the training set, and varied
w3 (recall that w4 = 1−w3) to find the optimal combina-
tion that would minimize FPR+FNR. Figure 11 plots the
sum as a function of w3. The local minima is at w3 = 0.436,
which means that 〈w3,w4〉 = 〈0.436,0.564〉 offers the best
success rate (FPR = 7.50% and FNR = 6.25%). Replacing
all weights in Formula 3, the final similarity estimate is given
by Formula 5

0.436× corrlight 1+

0.564× (0.661× corraudio 1 +0.339× corraudio 2)
(5)

6.3 Approach effectiveness
We validated our approach by testing our signal rep-

resentation similarity estimate against the test set. We
crossed light and audio signal representations from all lo-
cation proofs in the test set, ending with 4096 combinations
(64 × 64), from which 64 should be accepted (the number
of legitimate location proofs), and 4032 should be rejected
(the number of fabricated location proofs). In the end, the
verifier classified location proofs correctly in 94.78% of the
cases, with rates FPR = 5.06% and FNR = 15.63%.

For demonstration purposes, consider the two light signal
representations of a location proof accepted by the verifier.
Figure 12 plots the normalized light intensity read by both
witnesses in different colors (the trusted witness, wlight , and
the untrusted witness, w′light). It becomes evident that the
light signal is split into two fragments, with the second frag-
ment starting at around 15 s. At that moment, the rate at
which blight changes between states on and off decreases.

The trusted representation is sharper and has more spikes
than the untrusted representation. This difference can be ex-

0 5 10 15 20 25 30

Time (s)

-2

0

2

N
or

m
al

iz
ed

in
te

ns
ity

 wlight

 w' light

Figure 12: Light signal representations overlapping.

0 5 10 15 20 25 30

Time (s)

-2

0

2

4

N
or

m
al

iz
ed

am
pl

itu
de

 waudio

 w'audio

Figure 13: Audio signal representations overlapping.

plained by the very different sampling rates at which both
witnesses work. Based on the information we collected dur-
ing the experiments, wlight works at ≈ 14 Hz, while w′light
works at ≈ 2 Hz. For that reason, the trusted witness is
aware of the commence of the second fragment, while the
untrusted witness misses it, since it occurs in-between sam-
ples. Notwithstanding, representations overlap, suggesting
both witnesses were exposed to the same light conditions.

Additionally, consider the two audio signals representa-
tions of a location proof accepted by the verifier. Figure 13
plots the normalized sound amplitude read by both witnesses
in different colors (the virtual trusted witness, waudio, and the
untrusted witness, w′audio). Although both representations
overlap, the trusted representation has stronger and neater
variations in sound amplitude, while the untrusted represen-
tation looks more sketchy, with periods of constant sound
amplitude. Once again, this is a consequence of sampling the
same sound at different sampling rates. Based on the infor-
mation we collected during the experiments, waudio works at
≈ 30 Hz, while w′audio works at ≈ 12 Hz. The power spectra
of both representations, depicted in Figure 14, shows promi-
nent peaks in magnitude occurring around the same frequen-
cies. This suggests that both witnesses were capturing the
same song being played by baudio.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency (Hz)

0

5

M
ag

ni
tu

de

 waudio

 w'audio

Figure 14: Audio signal representations spectra overlapping.

6.4 Resistance to attacks
We consider that SureSpace has successfully resisted an

attack when it rejects an illegitimate location proof. In other
words, we are interested in the number of false positives,
and, thus, consider FPR as the metric to evaluate SureS-
pace’s resistance to attacks.

Based on the attacker model, we consider two attackers
that try to prove their false presence by manipulating signals:
A1 Receives the signal from exactly one random beacon,

but not from the others (beacons may have different ra-
dius of action);

A2 Combines legitimate signals representations to derive a
synthesized proof ambient from them.

Attacker A1 can either (1) receive the light signal but not
the audio signal, or (2) receive the audio signal but not the
light signal. Based on Formula 5, we confirm that signals
have similar weights (0.436 vs 0.564), so we expect location
proofs to be rejected if an attacker only provides the repre-
sentation of one of the signals. To simulate attacker A1, we
used the 4032 fabricated location proofs that should be re-
jected by the verifier, and, according to the scenario, (1) or
(2), we discarded one of the signal representations when sub-
mitting the location proof to the verifier. In both scenarios,
we determined FPR = 0.00 % — it means that the verifier
successfully rejected all location proofs fabricated by the at-
tacker.

In 6.3, we combined legitimate signal representations
from different location proofs to fabricate new illegitimate
location proofs. In fact, we were already simulating attacker
A2, and determined FPR = 5.06 %. In fact, combining sig-
nals from different location proofs is not an effective attack
because the verifier is capable of telling they were generated
for different location proofs (since the likelihood of broad-
casting the same signal is low).

7 Conclusion and future work
In this paper, we presented SureSpace, a location certi-

fication system designed for smart environments. It lever-
ages the capabilities of both SureThing, that defines proce-
dures and techniques for proofs of location, and DS2OS, that
provides control over diverse smart devices for orchestration
purposes. SureSpace relies on smart devices that broadcast
preconfigured signals, and witnesses that capture these sig-
nals, to certify location at a specific time and place, without
requiring the presence of other users. The system was eval-
uated in laboratory conditions with inexpensive Arduino-
compatible equipment. It was shown to be effective using
light and audio signals, with a success rate up to 94.78%.
Moreover, we evaluated SureSpace’s resistance to attacks by
simulating the capabilities of an attacker.

As future work, we consider the possibility of implement-
ing more complex methods for optimal weight tuning, that
could possibly improve the effectiveness of SureSpace.

We also consider a new way to verify location proofs
based on a challenge-response approach. Instead of disclos-
ing the complete captured signal to the verifier, the prover
could be challenged to answer questions about specific com-
ponents of the location proof. For example, and considering
the light signal, we could consider questions like “For how

long was the beacon in the on state?”.
Moreover, SureSpace could use a privacy protection

mechanism to protect the prover’s identity. [5] proposes
an approach based on short-term identifiers, or pseudonyms,
used in communications. The long-term identifier is only
disclosed under defined conditions, allowing mapping the
pseudonym to the real identity in some cases (e.g. when the
orchestrator wants to validate the prover identity).

Finally, SureSpace could be evaluated in an actual smart
environment, using available smart devices. The adoption
of SureSpace would also require the development of an im-
proved end-user mobile application. Then, it could be used
in real-world applications, like a check-in app for physical
meetings.
8 References
[1] About gRPC | gRPC. https://www.grpc.io/about/. Accessed:

2020-12-23.
[2] Ardulink 2. https://github.com/Ardulink/Ardulink-2. Ac-

cessed: 2020-12-21.
[3] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati,

and P. Samarati. Supporting Location-Based Conditions in Access
Control Policies. In Proceedings of the 2006 ACM Symposium on In-
formation, Computer and Communications Security, ASIACCS ’06,
page 212–222, New York, NY, USA, 2006. Association for Comput-
ing Machinery.

[4] G. Aures and C. Lübben. DDS vs. MQTT vs. VSL for IoT. Network,
1, 2019.

[5] N. Bißmeyer, J. Petit, and K. M. Bayarou. CoPRA: Conditional
pseudonym resolution algorithm in VANETs. In 2013 10th an-
nual conference on wireless on-demand network systems and services
(WONS), pages 9–16. IEEE, 2013.

[6] A. Buckman, M. Mayfield, and S. BM Beck. What is a smart building?
Smart and Sustainable Built Environment, 3(2):92–109, 2014.

[7] E. S. Canlar, M. Conti, B. Crispo, and R. Di Pietro. Crepuscolo: A
collusion resistant privacy preserving location verification system. In
2013 International Conference on Risks and Security of Internet and
Systems (CRiSIS), pages 1–9. IEEE, 2013.

[8] J. Costa and M. L. Pardal. A Witness Protection for a Privacy-
Preserving Location Proof System, 2020.

[9] J. Ferreira and M. L. Pardal. Witness-based location proofs for mobile
devices. In 17th IEEE International Symposium on Network Comput-
ing and Applications (NCA), Nov. 2018.

[10] M.-O. Pahl. Distributed Smart Space Orchestration. Dissertation,
Technische Universität München, München, 2014.

[11] M.-O. Pahl and S. Liebald. A Modular Distributed IoT Service Dis-
covery. In 2019 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), pages 448–454. IEEE, 2019.

[12] K. K. Patel, S. M. Patel, et al. Internet of Things - IOT: definition,
characteristics, architecture, enabling technologies, application & fu-
ture challenges. International journal of engineering science and com-
puting, 6(5), 2016.

[13] Z. Zhu and G. Cao. APPLAUS: A privacy-preserving location proof
updating system for location-based services. In 2011 Proceedings
IEEE INFOCOM, pages 1889–1897. IEEE, 2011.

https://www.grpc.io/about/
https://github.com/Ardulink/Ardulink-2

	Introduction
	Background
	SureThing
	DS2OS
	Supported location representations

	Architecture
	Components

	Location certification process
	Pre-authorization stage
	Proof stage
	Verification stage

	Implementation
	Development platform
	Cross-entity communication
	Entity identification
	Beaconing technique
	Light signal time fragmentation
	Audio signal time fragmentation

	Supported beacons
	Light beacon and witnesses
	Audio beacon and witnesses

	Verifier implementation
	Light signal representations similarity estimation
	Audio signal representations similarity estimation
	Combined signals similarity estimation

	Evaluation
	Experimental setup
	Optimal weight tuning
	Approach effectiveness
	Resistance to attacks

	Conclusion and future work
	References

