
SureSpace: orchestrating IoT devices to certify location

João Maria Marques Tiago

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor: Prof. Miguel Filipe Leitão Pardal

Examination Committee

Chairperson: Prof. José Carlos Martins Delgado
Supervisor: Prof. Miguel Filipe Leitão Pardal

Member of the Committee: Prof. João Carlos Serrenho Dias Pereira

January 2021

ii

À Avó Alice, pelo farol e porto de abrigo que sempre foi e será.

Ao Professor Miguel Pardal, pela con�ança que sempre manifestou em mim, pelo conhecimento

que, com motivação, me transmitiu durante o mestrado, por todas as ideias, sugestões e

correções que contribuíram para a qualidade �nal do documento, e pela inesgotável

compreensão ao longo de tempos menos bons.

A toda a Família, pelo apoio constante, pelo amor pleno, pela paz que sempre me dá.

A todos os Amigos, e, em particular ao Gonçalo, pelo alicerce emocional permanente.

iii

iv

Acknowledgments

This work was supported by national funds through Fundação para a Ciência e a Tecnologia

(FCT) with reference UID/CEC/50021/2019 (INESC-ID) and through project with reference

PTDC/CCI-COM/31440/2017 (SureThing).

v

vi

Resumo

As aplicações móveis que recorrem à localização do dispositivo são cada vez mais populares e

úteis. Contudo, à medida que mais serviços dependem da localização, crescem as preocupações

com utilizadores que reportam falsas localizações para ganhar vantagens indevidas. Uma forma

de prevenir a falsi�cação da localização é con�ar em sistemas de certi�cação de localização. Por

exemplo, o SureThing recorre ao Wi-Fi ou a transmissores Bluetooth e a testemunhas ad hoc para

oferecer a possibilidade de um utilizador provar a sua localização num determinado momento e

num determinado local. Esta abordagem pode ser alargada a espaços como edifícios inteligentes,

geridos por plataformas como o DS2OS. Neste trabalho, propomos, implementamos e avaliamos

o SureSpace, um novo sistema que combina certi�cação da localização com a gestão de espaços

inteligentes para veri�car a localização de utilizadores dentro de um edifício inteligente. O novo

sistema recorre a infraestrutura existente que utiliza como testemunha, e, para alcançar maior

segurança, introduz diversidade nos dispositivos utilizados e nas técnicas de prova, com o objetivo

de impedir a falsi�cação da localização. O sistema foi avaliado em condições de laboratório, e

mostrou ser e�caz utilizando sinais luminosos e de som.

Palavras-chave: Certi�cação de Localização, Contextualização de Aplicações, Segu-

rança de Dispositivos Móveis, Espaços Inteligentes, Internet das Coisas

vii

viii

Abstract

Location-aware mobile applications are increasingly popular and useful. However, as more ser-

vices rely on location, there are concerns that users may misreport their location to gain undue

advantages. One way to prevent such location spoo�ng is to rely on location certi�cation sys-

tems. For example, SureThing uses Wi-Fi or Bluetooth beacons, and ad-hoc witnesses to allow

a user to make proof of location at a speci�c time and place. This approach can be extended to

smart spaces, such as smart buildings, managed by platforms like DS2OS. In this work, we pro-

pose, implement, and evaluate SureSpace, a new system that combines location certi�cation with

smart space management, to verify the location of users inside a smart building. The new system

relies on existing infrastructure to act as witnesses, while introducing a varied combination of

devices and proof techniques to achieve security by diversity in the proofs, and thwart spoo�ng

attacks. The system was evaluated in laboratory conditions, and was shown to be e�ective using

light and audio signals.

Keywords: Location Certi�cation, Context-Awareness, Mobile Security, Smart Spaces,

Internet of Things

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xv

List of Figures . xvii

1 Introduction 1

1.1 Objectives . 3

1.2 Outline . 3

2 Background & Related Work 5

2.1 Internet of Things . 5

2.2 Location representation . 7

2.2.1 Open Location Code . 7

2.2.2 What3words . 7

2.3 Indoor localization overview . 8

2.4 Indoor localization techniques . 9

2.4.1 Received Signal Strength Indicator . 9

2.4.2 Angle of Arrival . 9

2.4.3 Time of Flight . 10

2.4.4 Time Di�erence of Arrival . 11

2.4.5 Fingerprinting . 11

2.4.6 Summary . 12

2.5 Indoor localization technologies . 12

2.5.1 Wi-Fi . 13

2.5.2 Bluetooth . 14

2.5.3 Radio Frequency Identi�cation . 14

2.5.4 Visible light . 15

xi

2.5.5 Acoustic signal . 15

2.5.6 Ultrasound . 15

2.5.7 Summary . 16

2.6 Indoor localization systems . 16

2.6.1 Acoustics based . 16

2.6.2 BLE based . 18

2.6.3 DeepML for indoor localization with smartphone magnetic and light sensors 19

2.6.4 RoomSense . 20

2.6.5 Summary . 20

2.7 Proof of location systems . 21

2.7.1 Work�ow overview . 22

2.7.2 APPLAUS . 22

2.7.3 Crepuscolo . 23

2.7.4 SureThing . 24

2.7.5 Summary . 25

2.8 Smart space management with DS2OS . 25

2.9 Summary . 28

3 SureSpace design 29

3.1 Overview . 30

3.2 Architecture . 30

3.2.1 Prover . 32

3.2.2 Certi�cate Authority . 32

3.2.3 Orchestrator . 33

3.2.4 Knowledge Agent . 33

3.2.5 Adaptation Service . 34

3.2.6 Beacon and Witnesses . 36

3.2.7 Veri�er . 37

3.3 Location certi�cation process . 38

3.3.1 Pre-authorization stage . 38

3.3.2 Proof stage . 39

3.3.3 Veri�cation stage . 41

3.4 Summary . 41

xii

4 SureSpace implementation 43

4.1 Development platform . 43

4.1.1 Cross-entity communication . 44

4.1.2 Entity identi�cation . 45

4.2 Beaconing technique . 45

4.2.1 Technique description . 46

4.2.2 Light signal time fragmentation . 47

4.2.3 Audio signal time fragmentation . 49

4.3 Supported beacons . 50

4.3.1 Light beacon and witnesses . 50

4.3.2 Audio beacon and witnesses . 51

4.4 Veri�er implementation . 52

4.4.1 Light signal representations similarity estimation 53

4.4.2 Audio signal representations similarity estimation 53

4.4.3 Combined signals similarity estimation . 54

4.5 Summary . 54

5 Evaluation 55

5.1 Experimental setup . 55

5.2 Optimal weight tuning . 57

5.3 Approach e�ectiveness . 58

5.4 Resistance to attacks . 62

6 Conclusion 63

6.1 Achievements . 63

6.2 Future work . 64

References 65

xiii

xiv

List of Tables

2.1 Abstract approaches to device localization. 8

2.2 Comparison of localization techniques. 13

2.3 Comparison of localization technologies. 17

2.4 Comparison between indoor localization systems. 21

2.5 Comparison between proof of location systems. 25

xv

xvi

List of Figures

2.1 A partial view of the IoT architecture. 6

2.2 SureThing components and communication �ows. 24

2.3 Context management architecture of the VSL. 28

3.1 SureSpace deployment diagram. 31

3.2 Hierarchy of trust adopted in SureSpace. 32

3.3 Simpli�ed context model of the localization service. 34

3.4 Simpli�ed context model of a smart bulb. 35

3.5 Simpli�ed context model of a light sensor. 35

3.6 Simpli�ed context model of a light adaptation service. 35

3.7 Process diagram for the pre-authorization stage. 38

3.8 Process diagram for the proof stage. 40

4.1 Message structure shared in SureSpace. 45

4.2 Simpli�ed context model of a light beacon. 50

4.3 Simpli�ed context model of a light witness. 51

4.4 Simpli�ed context model of an audio beacon. 51

4.5 Simpli�ed context model of an audio witness. 52

5.1 Experimental setup components and orchestrated area. 56

5.2 Optimal value of w1. 58

5.3 Optimal value of w3. 58

5.4 Trusted and untrusted light signal representations comparison. 60

5.5 Trusted and untrusted audio signal representations comparison. 61

xvii

xviii

Chapter 1

Introduction

Mobile devices, like smartphones and tablets, or even more computationally constrained devices,

such as smartwatches, have become an essential part of people's everyday lives [HHFM17]. The

mobile commerce grew very rapidly, as vendors launched new devices with a rich variety of

technical features [HC16], turning mobile devices into sophisticated machines with powerful

capabilities. As a result of technological innovations, mobile applications, or apps, designed to run

on mobile devices to provide speci�c functionality, have appeared from the convergence of media,

information technology, and Internet [PD18]. There are several categories of mobile applications,

ranging from social media and games, to utility and productivity, and their popularity has led

to the emergence of an app economy, with corresponding developments in supply and demand of

mobile applications [BK11].

The use of location in mobile applications to deliver location based services (LBS) became

popular in the last decade. These applications deliver information tailored to the location and

context of the mobile device and the user [HGK+18]. Di�erent groups of LBS have been con-

sidered, from location based social networks, that add a location dimension to existing social

networks, to location based gaming, that maps real-world environments into a virtual world.

However, mobile devices may lack a trustworthy mechanism to collect location in a veri�able

way, and users may feel temped to misreport their location to gain undue access to a restricted

resource provided by a LBS [SW09].

To prevent location spoo�ng, location certi�cation mechanisms can be deployed to prove that

a user is at a speci�c location (either geographical or logical), at a speci�c time, while o�ering

strong security properties. SureThing [FP18] is a recent proof of location framework built with

Java on the Android platform that uses location measurements collected with GPS, Wi-Fi, and

Bluetooth Low Energy (BLE) to certify location. SureThing makes use of witness devices to

verify and attest to the presence of users in crowded physical spaces with diverse devices. In its

1

current version, it does not take advantage of existing infrastructure available at a location.

Also in the last decade, the Internet of Things (IoT) emerged as a network of intercon-

nected smart devices [PP+16] that exchange context resources transparently for management

and decision-making purposes, depending upon characteristics like network availability or cover-

age area [BMBB14]. Depending on their type, smart devices use di�erent protocols to commu-

nicate, expose and process ambient resources in di�erent ways, and have varying information-

processing capabilities [VBCMV+12]. IoT environments are, then, strongly dynamic, but smart

device heterogeneity poses serious interoperability issues, preventing the development of com-

plex pervasive scenarios where smart devices work together to deliver valuable services in a smart

space. To solve this problem, Pahl proposed the Distributed Smart Space Orchestration Sys-

tem (DS2OS) [Pah14], a pervasive framework designed to facilitate smart space management.

DS2OS allows discovering and con�guring smart devices regardless of their speci�cs, enabling

the development of complex orchestration schemes that can be perceived as smart space services.

In some smart environments, mobile devices can interact with IoT devices embedded into

the infrastructure for collaborative user-centered, and scenario-based services. Securing these

interactions is a critical concern, if one is to allow a mobile device to execute actions on an IoT

infrastructure. However, relying on the assumption that the user's pro�le su�ces to determine

what they are authorized to do is not enough. Following a certain security policy, some actions

may require the physical presence of the device in a speci�c location, and, for that reason, context

attributes, like user identity, time, and location, are the basis for good security decisions when

granting access to infrastructure resources [ACD+06].

With this work, we introduce SureSpace, an extended version of the original architecture of

SureThing, designed to engage in smart environments in a secure way. To generate a location

proof, beacons, which are on-site smart devices, broadcast unique signals meant to be captured by

the prover using witnesses in the prover device. If the captured signal matches the original signal

to a certain threshold, the location proof is deemed valid. Di�erent approaches and techniques

are supported for signal processing and matching. To discover, con�gure, and control beacons

inside the smart space, we use DS2OS [Pah14], a smart space management framework. It bundles

a beacon discovery mechanism to account for the high dynamism of smart environments, allowing

beacons to be added or removed in runtime.

To evaluate SureSpace, we designed a small-scale smart infrastructure by deploying a LED,

a light sensor and a speaker, and developed an Android client application to test the prototype.

The setup, using inexpensive equipment, is a realistic and plausible version of a real-world one.

2

1.1 Objectives

We proposed SureSpace, a location certi�cation mechanism designed for smart environments.

It leverages smart devices as beacons that broadcast precon�gured signals, and witnesses that

capture these signals, to later attest to the presence of the user. SureSpace is based on a previous

location certi�cation system, and resorts to a smart space orchestration framework to discover,

con�gure, and control beacons. To the best of our knowledge, this is a novel approach to collect

proof of location in smart environments. We developed a prototype of SureSpace, and evaluated

it in laboratory conditions. We also evaluated its resistance to attacks, based on the established

attacker model.

1.2 Outline

The remainder of the document is structured as follows. Chapter 2 provides an in-depth look into

smart environments, explores di�erent ways to represent location, discusses the most prominent

techniques and technologies for indoor localization, and addresses indoor localization systems,

proof of location systems, and smart space management. Chapter 3 provides insight on the

architecture of SureSpace. Chapter 4 covers the most relevant details about the implementation

of the SureSpace prototype. Chapter 5 presents the experimental setup used to evaluate the

prototype, describes the evaluation criteria, and discusses the evaluation results in a controlled

scenario, and under attack. Chapter 6 summarizes important points of our work by identifying

expected contributions, and suggests relevant features left as future work.

3

4

Chapter 2

Background & Related Work

This Chapter explores the key concepts of the three fundamental domains that compose the the-

oretical framework of SureSpace: smart environment, indoor localization, and proof of location.

Section 2.1 introduces the core concepts of the Internet of Things, and discusses its layered archi-

tecture proposed by [PP+16]. Section 2.2 addresses the pertinence of representing locations with

coarser granularity in SureSpace, and provides examples of geocode systems. Section 2.3 provides

insight into abstract approaches to indoor localization. Respectively, Sections 2.4 and 2.5 cover

the most common techniques and technologies used for indoor localization, and Section 2.6 ex-

plores indoor localization systems that stand out by their disruptive approaches to localization.

Section 2.7 motivates for the need of certifying location of a mobile device, and discusses some

proof of location systems in real-world scenarios. Finally, Section 2.8 stresses the importance of

management in smart spaces, and provides a real-world example of a system designed to achieve

smart space orchestration.

2.1 Internet of Things

At a lower level, the Internet of Things (IoT) is a network of physical objects, of all types

and sizes, ranging from smart sensors and home appliances, to cameras and medical instru-

ments [PP+16]. These devices are interconnected through one or more common channels, and

share information based on stipulated protocols, in order to provide a wealth of intelligence

for planning, management, and decision making [BMBB14]. Interconnectivity, heterogeneity,

dynamic changes, and scalability characterize the IoT environment.

IoT is an admixture of multiple and diverse technologies and communication standards,

aiming to provide end-to-end connectivity. Current research is primarily focused on long-range

machine-to-machine connection, but existing short- and medium-range solutions will not be

5

Figure 2.1: A partial view of the IoT architecture, adapted from [PP+16].

wiped o� the map in the near future. This is because long-range technologies grant a high

coverage with low power communication solution, whilst IoT applications in local level require

high data rate. Thus, in the near future, IoT devices might turn into double-interface devices:

one for short-range communication, and another one for long-range communication [ZGL19].

Figure 2.1 covers two of the four layers of the architecture of the IoT paradigm, according

to [PP+16].

Following a bottom-up approach, the Smart device/sensor layer is made up of smart devices

integrated with sensors, that connect the physical world to the digital world. These sensors

measure physical properties (like temperature or pressure), and convert them into a signal ready

to be shared with other devices. For that purpose, most sensors are connected to a network,

either wireless or wired, through sensor gateways (that use protocols like Wi-Fi or Bluetooth).

The Application layer covers IoT applications, named after the collaborative cooperation of

smart devices to reach common goals. Some applications are more viable and appropriate than

others, depending upon characteristics of the smart environment, such as network availability,

coverage, scale, user involvement, or impact [GBMP13]. A smart home, for example, is a kind of

smart environment expected to be deployed in a small area, with few active users. Most smart

devices will be connected to the local network, to o�er services such as device control, weather

forecast, and intrusion detection mechanisms [PP+16]. Smart buildings are a type of smart envi-

6

ronments too, and seek to integrate and account for intelligence and control, with adaptability,

in order to meet energy and e�ciency, longevity, and comfort and satisfaction [BMBB14].

Figure 2.1 deliberately omits two middle layers, the Network/communication layer and the

Application support layer (bottom to top). Respectively, these layers handle (1) the transfer

of massive volumes of data in a way to support low latency and high bandwidth, and (2) the

pre-processing of that data through analytics and security controls before reaching the top layer.

Although important, they lose relevance in the context of our research because the problems

they cover are already handled (refer to Section 2.8).

2.2 Location representation

Geocodes represent geographic locations on Earth, where each location is assigned a unique

identi�er, used to distinguish between entities. Usually, geocodes are short and human-readable.

In SureSpace, we use geocodes to locate both the prover and the orchestrator within the building.

Our problem domain allows locations to be represented with coarser granularity, because the

focus is on determining if the prover is within the boundaries of the room, and not necessarily

at a speci�c location within that area.

This section covers the two geocode systems supported by SureSpace: the Open Location

Code (refer to Subsection 2.2.1), and What3words (refer to Subsection 2.2.2).

2.2.1 Open Location Code

The Open Location Code (OLC) geocode system [plu] encodes locations into plus codes that

represent squares on the Earth's surface. The longer the code, the smaller the square is, and, in its

full length of 11 characters, a plus code represents a 3×3 m square. For example, 8CCGPVP5+GMW

describes the reception hall of a building in Lisbon. Shortening the code to 8CCGPVP5+GM, a

larger square containing the reception hall is drawn. This feature is useful to represent larger

rooms with a single plus code.

2.2.2 What3words

TheWhat3words (W3W) geocode system [wha] follows a similar approach: each 3×3 m square on

the Earth's surface is assigned a unique 3-word address that does not change over time. The grid

spacing is immutable, meaning larger rooms might require multiple codes to be fully covered. For

reference, ///spotted.muddle.folds is the W3W code that represents the previously described

reception hall.

7

Table 2.1: Abstract approaches to device localization.

Name Description

Device based
localization (DBL)

The user resorts to a subset of Reference Nodes (RN) to compute
their relative location. Primarily used for navigation.

Monitor based
localization (MBL)

A subset of the RN is passively obtaining the position of the user
connected to the node. Primarily used for tracking.

Proximity Detection
(PD)

Distance is estimated between user and a Point of Interest (PI), like
a beacon.

2.3 Indoor localization overview

As smartphones and wearable devices with wireless communication capabilities proliferate in a

wide-scale, the location of such devices becomes a valuable context. Their technological capabili-

ties and diversity range from low-cost sensors to sophisticated smart devices, capable of collecting

data and interacting with the external environment, enabling the development of location-based

applications and services. Device localization has a broad range of applications, from the health

sector to building management.

Although most IoT technologies have not been designed with localization capabilities, some

applications might require pervasive and smooth indoor localization of both mobile and static

devices. Existing short- and medium-range communication technologies can estimate relative

indoor positions, with varying degrees of accuracy, with respect to some reference point. The

absolute location of the device, however, remains unknown, unless the global location of the

reference points is known a priori. When it comes to long-range technologies, and because

the infrastructure relies on static access points, an accurate global location of the device is

usually made possible. However, the overall accuracy of the estimation is still very low, specially

concerning indoor environments, where the GPS signal is virtually non-existent.

A close collaboration between short- and medium-, and long-range solutions is required to

diminish current market demand for high coverage and high power communications, brought

by diverse localization requirements of IoT devices. Consequently, and before introducing the

di�erent localization techniques and technologies, it becomes necessary to di�erentiate between

the abstract approaches to device localization. Table 2.1 considers di�erent approaches covered

in [ZGL19].

Existing user localization solutions have shifted from network- to user-centric approaches,

Location Based Services (LBS), from which both service providers and end users can bene�t a

lot.

8

2.4 Indoor localization techniques

This Section introduces common indoor localization techniques: Received Signal Strength Indi-

cator (refer to Subsection 2.4.1), Angle of Arrival (refer to Subsection 2.4.2), Time of Flight (refer

to Subsection 2.4.3), Time Di�erence of Arrival (refer to Subsection 2.4.4), and Fingerprinting

(refer to Subsection 2.4.5). Subsection 2.4.6 is a short summary of the di�erent techniques.

2.4.1 Received Signal Strength Indicator

One of the simplest and most widely deployed approaches for indoor localization is based on the

Received Signal Strength (RSS), i.e. the actual signal strength power the receiver gets, usually

measured in decibel-milliwatts (dBm). With the help of signal propagation models, it is possible

to turn the RSS value into an absolute and physical distance, because the signal strength power

at a reference point is known beforehand. The greater the RSS value, the closer receiver and

transmitter are from one another. However, RSS is not a localization technique, but rather an

approach to tackle the problem. The actual technique is the RSS indicator (RSSI), a relative

measurement of the RSS, with no standard units (commonly de�ned by chip vendors).

RSS based localization can be used in both DBL and MBL cases. In the DBL case, the RSS

at the device is used to compute the absolute distance between the device and, at least, three RN

(like Wi-Fi access points). Upon that, trigonometry rules are applied to determine the device

location relative to the above-mentioned RN. Thus, such approach requires trilateration. In the

MBL case, the RSS value received at the RN is used to compute the device location. This is a

centralized approach, because further communication between all participant RN is required for

a distributed collection and processing of RSS values.

Although simple and cost e�ective, RSS based approaches su�er from poor localization ac-

curacy. This is mainly due to signal attenuation, multipath fading, and indoor noise [ZGL19].

Filtering mechanisms can be applied to increase accuracy � although reaching higher levels of

accuracy remains infeasible without bringing into play complex and computationally expensive

algorithms.

2.4.2 Angle of Arrival

Angle of Arrival (AoA) based localization approaches require multiple antennas at the receiver

(an antennae array) that work as a single antenna. By calculating and exploiting the time

di�erence of arrival at each of the individual antennae, it is possible to determine the angle at

which the signal reaches the sensor and, thus, the device location [ZGL19]. For an n-dimension

environment, n antennae at the receiver are required to compute their location. Therefore, in

9

a real 3D setting, only 3 antennae are required. Also, AoA delivers good estimation accuracy

when the distance between the transmitter and the receiver is relatively small. However, the

farther the transmitter and receiver are, the more deteriorated the accuracy gets � a slight error

in the angle calculation becomes a large error in the location estimation. To deliver the same

level of accuracy, this approach requires more complex algorithms and careful calibration, when

compared to RSS based approaches. Moreover, because this technique is a�ected by multipath

e�ects, the line of sight required for e�ciently working might be di�cult to obtain.

2.4.3 Time of Flight

Also known as Time of Arrival (ToA), Time of Flight (ToF) capitalizes on the electromagnetic

signal propagation time to determine the distance between transmitter and receiver. By multi-

plying the measured ToF value by the speed of light in a vacuum, the physical distance between

transmitter and receiver can be gauged, according to Equation (2.1)

Dij = (tj − ti)× c (2.1)

where Dij is the distance between transmitter i and receiver j, ti is the time at which

transmitter i sends the message, tj is the time at which receiver j receives it, and c is the speed

of light in a vacuum. Furthermore, tj = ti + tp, where tp is the time taken by the signal to

traverse from transmitter i to receiver j.

Similar to RSS based-systems (if one considers the ToF value an RSSI value), this technique

requires a static architecture of, at least, three known access points, that act as receivers. In

a �rst phase, resorting to Equation (2.1), the absolute distance between the receiver and each

transmitter is computed. Upon that, basic geometry is applied to calculate the location of the

device with respect to the involved access points.

For this technique to be correctly deployed, receivers' and transmitters' clocks must be syn-

chronized and, depending on the requirements imposed by the underlying protocol, timestamps

might be required to be transmitted along with the signal. The estimation accuracy of such

technique is deeply coupled to both the signal bandwidth and the sampling rate. If the sampling

rate is too low, the signal might arrive between the sampled intervals, and thus not be captured.

To assuage such problem, frequency domains super-resolution techniques are put in place to

extract the ToF value with high resolution [ZGL19]. However, as stated earlier, indoor envi-

ronments su�er from multipath fading, requiring larger bandwidth to counterbalance possible

signal losses. Nevertheless, although both improvements add to a better estimation of the ToF

value, they cannot eliminate signi�cant errors when no direct line of sight can be drawn [ZGL19].

10

Existing objects in indoor sites may de�ect the original signal, which then propagates through a

longer path, tampering with the expected ToF values because of longer measured times.

2.4.4 Time Di�erence of Arrival

The Time Di�erence of Arrival (TDoA) technique exploits the di�erence in signals propagation

times emitted by di�erent transmitters and measured at the receiver [ZGL19]. Unlike the ToF

technique, which relies on the absolute signal propagation time to compute the absolute distance,

this technique resorts to TDoA measurements (which are delta-Ts) to determine the distance

between each transmitter, according to Equation (2.2)

LD(i,j) = c× TD(i,j) (2.2)

where LD(i,j) is the absolute distance between transmitters i and j, c is the speed of light

in a vacuum, and TD(i,j) is the di�erence in signals propagation times measured at the receiver.

Upon that calculation, an hyperboloid, depicting all possible receiver locations, is drawn for each

pair of transmitters, given by Equation (2.3)

LD(i,j) =
√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2

−
√

(Xj − x)2 + (Yj − y)2 + (Zj − z)2
(2.3)

where (Xi, Yi, Zi) are the coordinates of transmitter i, and (x, y, z) are all possible coordinates

of the receiver. At least three transmitters (and, thus, at least three hyperboloids) are required

to determine the exact location of the receiver � the intersection of all hyperboloids. The

resultant system of equations of hyperboloids can be solved either through linear regression or

by using Taylor-series expansion to linearize the equation [ZGL19]. Similar to the ToF, the

overall accuracy of the TDoA technique depends on the signal bandwidth, sampling rate (at the

receiver), and the existence of a direct line of sight between transmitters and receiver. Unlike

the ToF, the TDoA does not require clock synchronization between transmitters and receiver,

but rather strict synchronization between the transmitters.

2.4.5 Fingerprinting

Also known as scene analysis, Fingerprinting is a technique that encompasses two di�erent

phases. The �rst one is the o�ine phase, and it requires an environmental survey to gather

�ngerprints of the site where the system is going to be deployed in � usually, RSSI measurements.

In the second phase, and in real-time, online measurements are collected and compared against

the stored measurements to assess the user location. To understand the extent to which both

11

measurements match, and to map the device location on a grid, di�erent approaches have been

taken, and are discussed in [ZGL19].

The �rst and oldest approach relies on probabilistic, and embodies so-called Probabilistic

Methods. Using mathematical models, it is possible to compute the likelihood of the device

being in a given location provided the features measured at a given location. This estimation

is not continuous, but rather discrete, and, theoretically, the smaller the distance between each

o�ine measurement point, the more granular the estimation is, because the measurement grid is

denser. However, in such cases, the signal di�erence between two neighbor points might become

much smaller than the standard signal indoor signal variation, drastically decreasing the accuracy

of the location estimation. Therefore, there is a signi�cant tradeo� to consider between the o�ine

grid density and the probability of a successful estimation. Also, one should bear in mind that

indoor environments are susceptible to change over time, requiring new site �ngerprinting.

Probabilistic Methods paved the way for Arti�cial Neural Networks (ANN), used to classify

and forecast indoor scenarios. In an initial phase, the ANN is trained using both the measurement

point's absolute coordinates, and the RSSI values read at that location from the o�ine phase.

Once it is trained, the ANN can be used to estimate the device location taking the online RSSI

measurements as input.

Another approach �nds its roots in the process of comparing location points that are exclu-

sively in proximity to the point we wish to locate. k-Nearest Neighbor (kNN) algorithms rely

on RSSI online measurements to determine the k-nearest matches (based on o�ine RSSI mea-

surements previously surveyed), using root-mean-square error (RMSE). To obtain the estimated

device location per se, the k-nearest matches are averaged (possibly weighting each match, if

distances are adopted as weights).

2.4.6 Summary

In this section, we covered the di�erent state-of-the-art indoor localization techniques. Table 2.2

provides a comparison between the di�erent techniques.

2.5 Indoor localization technologies

This Section introduces common indoor localization technologies: Wi-Fi (refer to Subsection 2.5.1),

Bluetooth (refer to Subsection 2.5.2), Radio Frequency Identi�cation (refer to Subsection 2.5.3),

Visible Light (refer to Subsection 2.5.4), Acoustic Signal (refer to Subsection 2.5.5), and Ultra-

sound (refer to Subsection 2.5.6). Subsection 2.5.7 is a short summary of the di�erent technolo-

gies.

12

Table 2.2: Comparison of localization techniques, adapted from [ZGL19].

Technique Advantages Disadvantages

RSSI Easy to implement and
cost-e�cient.

Low localization accuracy due to environmental
noise, might require �ngerprinting prior to use in
a real context.

AoA Delivers high localiza-
tion accuracy, and does
not require �ngerprint-
ing.

Requires complex hardware and algorithms, and
the performance deteriorates with increase in dis-
tance between transmitter and receiver.

ToF High localization accu-
racy without requiring
�ngerprinting.

Requires synchronized clocks between the receiver
and the multiple transmitters, and, perhaps, time
stamped messages.

TDoA No need for clock syn-
chronization between
receiver and transmit-
ters, nor �ngerprinting.

Requires synchronized clocks between the multi-
ple transmitters, and larger bandwidth.

Fingerprinting Easy to deploy on site. Minor changes in the indoor environment require
new site surveying.

2.5.1 Wi-Fi

Under the o�cial name of IEEE 802.11 standard, Wi-Fi aims to provide networking capabilities,

and access to the Internet to devices in public, commercial or private environments [ZGL19].

Although initial reception ranges were low, the need for connection of more and more mobile

devices in space regions increasingly smaller led to the development of IEEE 802.11ah, with a

range of about 1 km, and centered on IoT devices. With the current proliferation of mobile

devices with networking capabilities (especially devices with an attached Wi-Fi adapter that

users tend to keep enabled for long periods of time), this technology plays a pivotal role in indoor

localization [ZGL19]. The numerous and almost-omnipresent Wi-Fi access points have been used

as reference nodes for most localization techniques, reducing the overall cost of implementing

them, given that no additional infrastructure is needed.

Although existing Wi-Fi networks are being used for localization purposes, they were origi-

nally deployed with the intent to provide high data throughput and network coverage to devices

in the vicinity of its access points. Thus, more e�cient and more robust algorithms are further

required, to ensure greater localization accuracy, while reducing possible noise interference in

the communication channel induced by existing devices. Any of the aforementioned localiza-

tion techniques (RSSI, ToF and AoA, or any combination of them, i.e. hybrid methods) can be

adopted to provide Wi-Fi based localization services [ZGL19].

13

2.5.2 Bluetooth

Bluetooth, or, o�cially, IEEE 802.15.1 standard, is a physical and MAC layers speci�cation

designed to connect wireless devices within a certain personal space [ZGL19]. Versions 4.x of the

protocol (starting with version 4.0, known as Bluetooth Low Energy, or BLE) aim to lower power

consumption, while o�ering lower latencies, and high nominal data rates (up to 8 Mbps) [ZGL19].

Version 5 of the protocol (the latest version) has new features focused on new IoT technology.

It ensures a communication bandwidth that allows data transfer among multiple smart devices

at nominal rates that go up to 16 Mbps [CPTT18], while o�ering larger operation ranges (up

to 200 m outdoors). Although most techniques, such as RSSI, AoA and ToF, can be deployed

with an infrastructure composed by BLE beacons, the vast majority of BLE based localization

solutions rely on RSS based inputs [ZGL19]. These techniques are less complex, but the indoor

localization accuracy is quite limited. BLE is, thus, a good candidate for indoor localization

using beacons, but context aware proximity based services, such as iBeacons (by Apple Inc.) or

Eddystone (by Google Inc.), are proprietary systems.

2.5.3 Radio Frequency Identi�cation

It is possible to transfer and store data over an electromagnetic transmission from a Radio

Frequency Identi�cation Device (RFID) tag (the transmitter), and a radio frequency compatible

circuit (the receiver). A priori, both transmitter and receiver must agree on a speci�c radio

frequency and protocol to communicate, so that the receiver can read the data sent by the RFID

tag. Two di�erent RFID systems are mentioned in the literature: active RFID, and passive

RFID [ZGL19]. These approaches di�er greatly in communication range, frequency range, power

source, overall size, and cost.

Active RFIDs operate in the ultra high and microwave frequency ranges, covering areas of

hundreds of meters between transmitter and receiver. Periodically, active RFID tags transmit

their ID, whilst connected to a local power source. Although such systems have been used for

object tracking at a �low� cost, they cannot achieve sub-meter accuracy, and are not a portable

solution.

On the other hand, passive RFIDs operate with the power provided by the reader signal, which

they re�ect to send back information. They deliver good connectivity when both transmitter

and receiver are close in the vicinity. Passive RFID tags are smaller, cheaper and work in

many frequency ranges, from low frequency to microwave, going through high and ultra-high

frequencies. Currently, these tags are replacing bar-codes, but remain unsuitable for indoor

localization due to the low range.

14

2.5.4 Visible light

Light Emitting Diodes (or LEDs) can be used to modulate and emit visible light between 400

and 800THz, opening room for high-speed data transfer using light, the so-called Visible Light

Communication (VLC). LEDs act as light beacons, transmitting the signal, which is collected

and interpreted at the receiver's sensor, measuring the position and direction of the LEDs. Upon

that, and using the AoA technique, it is possible to accurately estimate the relative position of the

receiver [ZGL19]. Currently, this technology has a major drawback: it requires an unobstructed

line of sight between the LED and the sensor. Nevertheless, and given that LEDs are used in

several rooms in the house, this technology may become widely used.

2.5.5 Acoustic signal

The vast majority of smartphones carry built-in microphone sensors. Such ubiquity can be lever-

aged to estimate the relative device location with respect to some preset sound emitting reference

nodes (special speakers, for instance). The Acoustic Signal technology involves the transmission

of modulated acoustic signals, containing timestamps or other relevant information, collected

by the device's microphone sensor for ToF estimation [ZGL19]. However, the smartphone's mi-

crophone sensors have some limitations (like the low sampling rate, and the anti-aliasing �lter),

posing some di�culties for indoor localization � accurate estimations are only feasible if acoustic

signals with frequencies under 20KHz (audible band) are used. To achieve such behaviour, the

transmission power must be low enough not to create noise sound pollution (i.e. humans should

not be able to hear it), and signal processing to improve the signal received by the sensor is

further required. Notwithstanding, acoustic signal is not widely used, because it requires high

sampling rate (which might drain the device battery too rapidly), and additional infrastructure

(as reference nodes need to be placed on the spot).

2.5.6 Ultrasound

The Ultrasound based localization technology relies on ToF measurements of ultrasound signals

(not audible, with frequencies above 20KHz), and the sound velocity to compute the absolute

distance between a transmitter and the receiver. The idea is similar to the calculation from a

time interval, described in Subsection 2.4.3. It has been proven to provide indoor localization

with centimeter-level accuracy, supporting the tracking of multiple mobile nodes at the same

time within the same vicinity, with high energy e�ciency, and virtually non-existent signal leak-

age between rooms [ZGL19]. Usually, a previous radio frequency pulse is broadcast, to ensure

the necessary synchronization, because receiver and transmitter might not be clock-synchronised

15

when the ultrasound transmission begins. Despite all the apparent advantages, the sound ve-

locity, unlike radio frequency signals, varies drastically when room temperature, and humidity

change [ZGL19]. To remedy such drawback, temperature sensors are normally deployed along

with the ultrasound emitters on the spot, so the correct adjustments can be performed. Still,

the overall accuracy of ultrasound based localization is low in the presence of high levels of envi-

ronmental noise � depending on the intensity of the noise, complex signal processing algorithms

might be applied to �lter it out.

2.5.7 Summary

In this section, we covered the di�erent state-of-the-art indoor localization technologies. The

maximum range is indicative of the area the technology might cover, and the power consumption

is relevant because, as explained later, low energy consumption is one of the paramount priorities

to run a wide-scale IoT infrastructure at lower costs. Table 2.3 provides a comparison between

the di�erent technologies.

2.6 Indoor localization systems

Section 2.3 introduced di�erent abstract approaches for indoor localization. Over time, indoor lo-

calization systems have shifted from network- to device-centric approaches, and DBL approaches

have gained popularity. Network-centric systems rely on the wide distribution and availability

of some infrastructure elements, increasing the deployment costs. On the other hand, DBL ap-

proaches do not rely on the adjacent infrastructure, since the device itself connects to a subset

of RN to determine its location. In line with this trend, disruptive approaches to DBL have

been proposed in the literature, with systems that leverage sensors embedded into the device to

achieve good localization accuracy.

This Section presents representative examples of some of these systems, based on acoustics

(refer to Subsection 2.6.1), BLE (refer to Subsection 2.6.2), light and magnetic sensors (refer

to Subsection 2.6.3), or sound �ngerprinting (refer to Subsection 2.6.4). SureSpace is not an

indoor localization system, but understanding the feasibility of these approaches, and their design

implications is of valuable help.

2.6.1 Acoustics based

Some indoor localization systems are coarse-grained, with room- or, at best, meter-level accuracy.

Although such guarantees might su�ce in some settings, like outdoor navigation, they will not

meet the requirements in the centimeter-level realm, where accuracy is paramount. To surmount

16

T
able

2.3:
C
om

parison
of

localization
technologies,

adapted
from

[Z
G
L
19].

T
e
c
h
n
o
lo
g
y

M
a
x
im
u
m

r
a
n
g
e
a

P
o
w
e
r
c
o
n
su
m
p
tio

n
A
d
v
a
n
ta
g
e
s

D
isa

d
v
a
n
ta
g
e
s

W
i-F

i
35

m
M
oderate

D
oes

not
require

extra
devices,

w
idely

deployed
and

high
accuracy.

R
equires

com
plex

algorithm
s
process-

ing
and

is
prone

to
am

bient
noise.

B
luetooth

40
m

b
L
ow

L
ow

energy
consum

ption
and

w
ide

range.
D
elivers

low
accuracy

and
is

prone
to

am
bient

noise.

R
F
ID

20
0
m

L
ow

L
ow

energy
consum

ption
and

w
ide

range.
L
ow

localization
accuracy.

V
isible

L
ight

1
.4

k
m

R
elatively

high
A
vailable

at
a
w
ide-scale

and
delivers

high
accuracy.

T
he

e�
ective

range
is

a�
ected

by
ob-

jects
in

the
line

of
sight

path,
and

com
-

paratively
consum

es
m
ore

energy.

A
coustic

Signal
F
ew

m
eters

L
ow

-
m
oderate

P
rovides

high
accuracy.

R
equires

extra
sound

em
itters

and
is

severely
a�
ected

by
noise

p
ollution.

U
ltrasound

A
few

tens
of

m
eters

L
ow

-
m
oderate

Supp
orts

tracking
m
ultiple

m
obile

nodes
at

the
sam

e
tim

e.
H
igh

dep
endencies

on
the

sensor
place-

m
ent.

aU
n
less

sta
ted

o
th
erw

ise,
th
e
rep

o
rted

va
lu
es

a
re

fo
r
in
d
o
o
r
en
v
iro

n
m
en
ts,

a
n
d
ta
k
en

fro
m

[Z
G
L
1
9
].

bA
cco

rd
in
g
to

[C
P
T
T
1
8
].

17

such problematic, Liu et al. have proposed Guoguo [LLL13], an indoor localization ecosystem

that uses acoustic signals to estimate the device location. This disruptive technology is used

due to recent research concluding that leveraging ubiquitous microphone sensors (which most

smartphones have) introduces a new approach of ranging by using the audible band acoustic

signal. Besides ubiquitous, these sensors are inexpensive and deliver high localization accuracy

due to the low transmission speed of acoustic signals. Nevertheless, Liu et al. faced some di�cul-

ties, because of the limited bandwidth of microphones, the strong attenuation of aerial acoustic

signal, and the various interferences in the audible band, which all translate to short operation

distance, low update rate, and sound pollution [LLL13].

The proposed ecosystem uses on-site deployed reference nodes that act as acoustic beacons

(inaudible to the human ear), and a smartphone application responsible for localization pro-

cessing, thus performing passive sensing, i.e. collecting and analysing the transmitted signal

passively. However, instead of emitting simple �Beep� signals, and in order to support multi-

ple smartphone users, Liu et al. designed transmission waveform, wide-band modulation, and

one-way synchronization, and ranging schemes. They also propose additional mechanisms to

improve the ecosystem performance with regard to coverage, update rate, and sound pollution,

like a �ne-grained adaptive time of arrival estimation approach that exploits the details of the

beacon signal, and performs non-line-of-sight identi�cation and mitigation [LLL13]. Although

a localization accuracy ranging from 6 to 25 cm can be achieved using Guoguo, the acknowl-

edged drawbacks deteriorate the performance to values that make it unsuitable for a ubiquitous

localization system [ZGL19].

2.6.2 BLE based

One of the main radio technologies emerging in the scenario of user-centric LBS is the BLE.

Given its low power communication, as discussed in Subsection 2.5.2, it is ideal for indoor

environments, where the received RSS value has signi�cant �uctuations, turning such technology

into the perfect candidate for provisioning contextual aware services. Following up with such idea,

Zafari et al. propose a novel approach that leverages Apple's iBeacons, intended for proximity,

to build a LBS [ZP15], and further evaluate the e�ectiveness of the model with regard to the

accuracy of indoor positioning. iBeacons allow applications running on smartphones, either

Android or iOS, to receive such signals.

According to the speci�cations of the iBeacon protocol, every beacon is permanently broad-

casting advertisement packets, carrying a universal identi�er (with the purpose of di�erentiating

between multiple organizations), along with other values used to separate beacons belonging to

18

one organization according to their physical location (for instance, a shop section). A smart-

phone near the beacon is able to listen to the signal being transmitted, and using the RSSI

technique (refer to Subsection 2.4.1) it is capable of estimating the device location with high

accuracy. Upon that, the application running on the smartphone contacts a server to retrieve a

context-aware entity (like a discount coupon), based on its location.

Zafari et al. leverage this mechanism to prototype a high-accuracy system for indoor or GPS-

constrained environments through particle �ltering. This is one of the theoretic approaches to

follow in order to increase the tracking accuracy in the environment, proven to perform better

than other �lters [ZP15]. The main contribution of their work lies on the particle �ltering param-

eter tuning, which enhances localization accuracy up to 0.97 m, but also on the main conclusions

they draw with respect to the positioning of the beacons. According to their experimental results,

increasing the number of beacons will only increase the accuracy until the area is saturated with

beacons [ZP15]. Also, overloading the space with beacons might a�ect the accuracy adversely,

because beacons interfere among each other. Furthermore, beacons must be placed in the ceiling,

to avoid obstacles.

2.6.3 DeepML for indoor localization with smartphone magnetic and light

sensors

Wang et al. propose a novel approach to indoor localization using a smartphone's magnetic

and light sensors [WYM18]. Without requiring additional infrastructure, this approach exploits

bimodal magnetic �eld and ambient light data with a deep learning approach. The geomagnetic

�eld and light intensity, at a given location, are highly stable and robust over time (i.e. an

ubiquitous signature of the site), and, at many locations, are complementary to each other.

Because local anomalies to both data are known, combining such data allows to increase the size

of input data, improving location diversity, recognition performance and, therefore, the overall

accuracy of the indoor localization process. To train bimodal data, a deep long-short term

memory (LSTM) network, a popular recurrent neural network (RNN), was used. Compared

to �ngerprinting based methods, the deep LSTM network does not require the creation of a

database: instead, it only needs one group of weights trained for all training locations.

Similar to other approaches, the overall process comprises three steps: data preprocessing

and training (performed o�ine), and location estimation (performed online). In the �rst one, the

site is surveyed to obtain real-time readings from both sensors (the sampling rate of the magnetic

�eld sensor is adjusted, to ensure synchronization with the ambient light sensor). The o�ine

training is the novel approached proposed in [WYM18]. A fully connected layer was implemented

19

for location features extraction from the sensors' raw data. Upon that, a two-layered deep LSTM

network is used for training optimal weights, and a classi�er is used to train the output data.

In the third and last step, the bimodal image representing the unknown location is fed to the

trained deep LSTM network to estimate the device location.

Their experimental study demonstrates the feasibility of the process, and the e�ectiveness of

the system under two representative indoor environments (a laboratory scenario, cluttered with

tables, chairs, and computers, and a corridor scenario).

2.6.4 RoomSense

RoomSense [RSA+13] discusses a novel approach to indoor room-level positioning, using an active

sound �ngerprinting1 approach. The system was deployed to an Android smartphone, using its

incorporated speaker and microphone, requiring no additional hardware.

A given room is characterized by a set of room acoustic and common audio features, useful to

�ngerprint a given position inside the room. Not all features suit the purpose of �ngerprinting,

because some of them lead to low performance, or are ine�cient. Because it outperformed all the

other features individually, the Mel-Frequency Cepstral Coe�cients feature was chosen, according

to their experimental evaluation. Proactively, the smartphone running RoomSense measures the

impulse response2, in particular the Maximum Length Sequence, in a given position. Later, the

collected data for that location is processed (feature extraction and selection are performed, for

instance), and classi�ed (using dynamically generated room models � there is a training phase

involved).

Training impulse responses for multiple positions and smartphone orientations inside a given

room allowed for a room-level localization accuracy of 98.2 %, according to [RSA+13]. Never-

theless, the recognition accuracy is dependent on the density of training positions per room � in

order to reach a room localization accuracy of 80 %, at least one position every 18 m2 should

be trained. Furthermore, they prove their system is robust against ambient noise (a localization

accuracy above 80 % is still possible with a signal-to-noise-ratio above 30 dB). Also, RoomSense,

when compared to other similar systems, is faster, requiring less than 1 s to go through all the

required steps to output a location estimation.

2.6.5 Summary

In this section, we covered a few disruptive systems that follow a DBL approach for indoor

localization. Without extra infrastructure, they leverage smartphone sensors to achieve high

1Process of emitting a sound chirp and measuring the impulse responses.
2The impulse response is a response of a dynamical system to a Dirac input impulse.

20

Table 2.4: Comparison between indoor localization systems.

Approach Accuracy Advantages Disadvantages

Acoustic
signals

Up to
6 cm

High localization accuracy. Short operation distance, and
low update rate. Prone to in-
terferences in the audible band
(background noise).

BLE Up to
97 cm

Energy e�cient (since BLE of-
fers low power communication).
Great for indoor environments,
where RSS values have signi�-
cant �uctuations.

Signi�cant operational delay.
Additional costs since it requires
the deployment of iBeacons.

Magnetic
�eld and
light
intensity

Up to
50 cm

No extra infrastructure. Geo-
magnetic �eld and light inten-
sity are highly stable and robust
over time.

Requires site �ngerpinting.

Sound
�nger-
printing

Room-
level

No extra infrastructure. Low la-
tency, and robust against ambi-
ent noise.

Requires site �ngerpinting.

accuracy localization. Where possible, we stated the main conclusions and design implications

of each system, by looking at the conducted experimental evaluation. Table 2.4 provides a

comparison between the di�erent systems.

2.7 Proof of location systems

Since access points started having embedded geographical information, it has been observed that

people carry Bluetooth- or Wi-Fi�enabled devices on them, some capable of running location-

aware applications. Such applications use location to deliver services tailored to the user's con-

text. For instance, a hypothetical credit card with enhanced security can be programmed to

only work in the vicinity of some locations chosen by the user (say a city or region). In this

scenario, the system would have to verify and validate the user's location prior to approving

any transaction. Under some circumstances, users may feel tempted to mock their location to

gain undue access to restricted resources [SW09]. Taking on the previous example, an attacker

that obtains physical access to a credit card has a �nancial motivation to lie about their real

location and get unlimited access to the privileges of the credit card's owner. The problematic

is aggravated by the fact that most devices lack trustworthy mechanisms to prove their location

(such as expensive trusted platform modules to make GPS data unforgeable). Ever since, the

need for location proofs, that certify a user to a speci�c location and time, has emerged.

A typical location proof has �ve �elds: an issuer, a recipient, a timestamp, a location,

21

and a digital signature [SW09]. Identities (both issuer's and recipient's) are usually proved by

public keys, securely certi�ed by a trusted third-party. Desirably, a proof of location mechanism

should o�er security properties like integrity (to ensure the proof cannot be tampered with), non-

transferability (to bind the proof exactly to one user), and privacy (to prevent the disclosure of

the user's location, current or past). Varying degrees of proof veri�cation are possible, depending

on the considered physical attacks to the system. For instance, users may deliberately pass their

mobile devices to other users, pretending to be somewhere else � spoo�ng attack.

This Section covers the location certi�cation processes of di�erent location certi�cation sys-

tems. In Subsection 2.7.1, we provide insight into the abstract mechanism. Then, we present

three systems: APPLAUS (refer to Subsection 2.7.2), Crepuscolo (refer to Subsection 2.7.3), and

SureThing (refer to Subsection 2.7.4).

2.7.1 Work�ow overview

All three location certi�cation systems covered in this Section share similar architectures and

work�ows. To initiate the process, the user wishing to prove their location, the prover, estimates

their location using whatever mechanism the system provides. Then, the prover collects evidence

from other users in the vicinity, known as witnesses, that attest to their presence. Finally, the

system veri�es the evidence collected by the prover to determine the legitimacy of the claim.

2.7.2 APPLAUS

Zhu et al. propose APPLAUS [ZC11], a user-centric location privacy model in which co-located

Bluetooth-enabled mobile devices mutually generate location proofs, and update to a location

proof server. Mobile nodes in the same vicinity communicate with each other to exchange location

proofs using Bluetooth.

In the message �ow, one of the nodes, playing the role of the prover, wishes to prove its

location, and broadcasts a location proof request to nearby nodes. That request is received by

witnesses, that, upon approval, generate a location proof and send it back to the prover. To keep

track of history records of the location proofs, a location proof server is needed. That server is

untrusted, and prover nodes submit their location proofs directly to it. To protect mobile nodes

privacy, APPLAUS considers the existence of a certi�cation authority, run by an independent

and trusted third-party, that manages the credentials (the identity) for the nodes, serving as a

bridge between the veri�er and the location proof server. Prior to joining the network, and for

each mobile node, the certi�cation authority preloads a set of public/private key pairs � public

keys are known as pseudonyms. Therefore, and even if an attacker obtains complete network

22

coverage and tracks nodes throughout the entire network, the certi�cate authority will still be the

only party who knows the mapping between real identity and pseudonyms. Finally, the system

considers the existence of a veri�er, i.e. a third party who is authorized to verify a prover's

location.

The proposed privacy model gives mobile nodes the capability of assessing their privacy level,

and the capacity to decide if a proof request must be accepted, based on the current level of

privacy. According to their experimental results, APPLAUS delivers location proofs e�ectively

while preserving nodes privacy at the same time.

2.7.3 Crepuscolo

Canlar et al. propose Crepuscolo [CCCDP13], a more robust collusion resistant and privacy

preserving location veri�cation system. Canlar et al. introduce the concept of neighbor-based

solutions, in which location proofs are acquired from neighboring mobile devices (whilst in

infrastructure-based solutions location proofs are acquired from infrastructure elements, like ac-

cess points, for instance). Crepuscolo (and, thus, APPLAUS) are examples of neighbor-based

solutions.

In the message �ow, Crepuscolo adopts the same entities already discussed in APPLAUS

(see Subsection 2.7.2). They have similar names and play the same role. However, APPLAUS

only protects against simple collusion attacks (using a reputation system), not addressing the

capability of the attacker to perform a wormhole attack, a speci�c type of collusion attacks. The

attacker records a packet at one location inside the network, tunnels the packet to a colluding

party at another location, and replays the packet there [CCCDP13]. To tackle this type of

attack, Crepuscolo adds a new entity, the token provider, which generates a token for each

location proof. A token is a piece of information which endorses the location proofs acquired

from witnesses. They can only be created with the physical involvement of the prover, and

can not be reconstructed at a di�erent location. Therefore, location proofs are endorsed by a

token, and the combination proof of location + token proves that a certain mobile node was

at a certain location, at a certain time, providing the necessary resilience against more complex

collusion attacks. To preserve privacy, Crepuscolo adopts the same mechanism already discussed

in APPLAUS, pseudonyms.

According to their experiments, the proposed system is able to detect up to 90 % of the

collusion attacks, using few token providers in a large area. They further compare their system

to APPLAUS with respect to location veri�cation, and protection against wormhole attacks.

23

2.7.4 SureThing

SureThing [FP18] is a location certi�cation system for Android devices that lets users prove their

location. Its design and architecture are in�uenced by APPLAUS (refer to Subsection 2.7.2),

and Crepuscolo (refer to Subsection 2.7.3), to the extent that they share some core components.

Figure 2.2 o�ers a simpli�ed view over the location proof mechanism provided by SureThing,

with special emphasis on the di�erent steps of the process. The prover starts by estimating their

location using di�erent location estimation technologies, such as Geo Proof (geographic location

obtained from GPS or ANLP3), Wi-Fi Proof (via Wi-Fi �ngerprinting), and Beacon Proof (using

BLE beacons, refer to Subsection 2.5.2). After clearance to start the location proof, the prover

collects evidence from witnesses in their vicinity that attest to their presence. To validate the

proof, SureThing challenges the original claim by verifying the evidence collected by the prover.

Figure 2.2: SureThing components and communication �ows.

At a more abstract level, we can consider evidence collected by the prover to be some sort of

signal, that is unique to the location at a speci�c time. In Figure 2.2, that signal is information

sent by witnesses in the vicinity to con�rm the user's presence, but that signal can be extended

to be a �natural� signal, like the radiation or noise levels. Naturally, the prover collects the signal

with errors and keeps the evidence for later veri�cation. When the prover wants to make proof of

location and time, they are challenged by the veri�er. The veri�er can ask for the signal or some

of its features, and compare them with a template (like observations reported by witnesses).

3The Android Network Location Provider, that uses both cell tower and Wi-Fi to determine the device location.

24

Table 2.5: Comparison between proof of location systems.

System Advantages Disadvantages

APPLAUS Resorts to pseudonyms to protect
mobile nodes privacy.

Only protects against simple collu-
sion attacks.

Crepuscolo Addresses wormhole attacks, o�er-
ing higher protection against collu-
sion attacks.

The mechanism is more complex be-
cause tokens are used to endorse lo-
cation proofs.

SureThing O�ers multiple location estimation
techniques to locate the user.

Only protects against simple collu-
sion attacks.

SureThing uses a certi�cation authority, that is trustful and binds identities to public keys. To

guarantee collusion avoidance, SureThing uses witness redundancy, and decay mechanisms� with

promising results in crowded locations. For the majority of places, Wi-Fi Proof (with 10 read-

ings) was the technique that ensured the highest accuracy. Also, such technique is the one with

the most regular readings regarding time spent � turning it into the best option for location

estimation.

Since the original SureThing paper, there have been other applications implemented with the

approach, some with ad-hoc witnesses, others with �xed witnesses, and also some with beacons

that transmit pseudo-random signal sequences. There is also an ongoing work that is providing

witness and user privacy protection through the use of di�erent privacy mechanisms [CP20]. Until

this work, SureThing lacked a way to leverage multiple signals and the smart space orchestration

capabilities, required for a robust and diverse proof of location process.

2.7.5 Summary

This Section motivated for the need of proof of location systems, and explored real-world exam-

ples of existing systems. For each system, we described the main components of its architecture,

the attacks it can handle, and its privacy model. Table 2.5 provides a comparison between the

di�erent systems.

2.8 Smart space management with DS2OS

The IoT presents a scenario with numerous heterogeneous computational actors that greatly in-

crease processing capacity [VBCMV+12]. These actors exchange context resources transparently

through one or more communication channels, o�ering the possibility for a new paradigm which

would improve people's lives. However, interoperability issues between the di�erent actors, with

regard to their capabilities and o�ered resources, are one of the major obstacles that lie between

25

what IoT is and what it could be. This heterogeneity comprises the communication protocols

adopted by each actor, the di�erent ways they expose ambient resources, and how they transform

raw data into high-level information, ready to be consumed by upper-layer services. Semantic

models might be the best way to describe actors and the surrounding ambient in pervasive sce-

narios [VBCMV+12], such as smart spaces, where smart devices play the role of the described

actors. To cope with the lack of a standardized approach to smart space management, we looked

for a �smart space orchestrator�.

In an e�ort to improve the orchestration capabilities of a smart space, Pahl introduced the

Distributed Smart Space Orchestration System (DS2OS) [Pah14], a service-oriented framework

focused on the development of services for smart spaces. Services are logical processes that

deliver functionality in a smart space, usually grouped in two categories: adaptation services,

that provide an interface to a smart device, and orchestration services, that implement the logic

behind pervasive scenarios. In practice, each smart device requires an adaptation service, and

smart devices are coordinated by an orchestration service. Regardless of their category, services

have unique identi�ers in DS2OS, conveniently named after the nature of the service (e.g. the

adaptation service for a temperature sensor could go by temperatureadaptationservice).

Smart devices � be them sensors, that acquire data from the world, or actuators, that

change the state of a physical space � play the starring role in smart spaces, as they deliver

valuable data (e.g. light or temperature conditions), and perform useful work (e.g. turn a light

on or turn heating on). These capabilities can be leveraged to implement real-world pervasive

scenarios where smart devices work together towards a common goal (e.g. turn heating on if

room temperature drops below some threshold). The coordinated management of smart devices

located in a smart space is known as smart space orchestration, and becomes possible if smart

devices can be interconnected to share data over a network. Without further support, however,

full-�edged orchestration of smart spaces is commonly deemed infeasible, because interconnection

problems between heterogeneous smart devices, and the lack of an �orchestration brain�, block

the way for the development of more complex orchestration schemes.

Smart devices produce and consume pieces of unstructured information, known as context. To

become manageable, context is shaped into context models, that represent entities in a structured

way. Context models have context nodes (i.e. attributes) to describe properties of the entity they

are linked to. To determine its type, each context node has a type attribute, which is, in fact,

a context model itself, usually simpler. To understand this better, consider a context model

of a temperature sensor, of type /sensor/temperature. The context model should include, at

least, two properties: isOn, a /boolean for the operational status of the sensor, and value, a

26

/number used to represent the read temperature. The temperatureadaptationservice would,

then, include a context node of type /sensor/temperature to represent the sensor. In other

words, all properties of the sensor's context model would be implicitly included in that context

node.

Each service has its own context model, and inter-service communication is achieved through

the manipulation of context models. Simply put, a context model is a persisted blackboard:

some services write on it, and other services read from it. To prevent unauthorized operations,

context nodes have read and write permissions. Following the example, all services should be

able to change the value of isOn, so that the sensor can be switched on. However, value must

be read-only to all services but the temperatureadaptationservice, authorized to update the

temperature value. In this light, context models are interfaces for services, a sort of service

contract that (1) speci�es which attributes can be read and/or written, via get and set oper-

ations, respectively, and (2) by whom, according to an access control policy. For instance, if an

orchestration service wishes to get the current temperature, it would have to call set('isOn',

true) on the context model of the temperatureadaptationservice (to enable the sensor), and

then get('value') to get the actual temperature.

Context models are stored in a distributed system over a peer-to-peer network, known as

the Virtual State Layer (VSL). Peers of the network are called Knowledge Agents (KAs), and

each agent persists a subset of the context models. To be granted access to the distributed

knowledge, services register to a KA of their choice, that becomes responsible for the respective

context models. From that moment, these context models become available to other services,

even if connected to a di�erent agent.

One important feature of DS2SOS is that services can subscribe to speci�c context nodes to

receive a noti�cation when the node changes. This feature is useful, for instance, when a service

wants to take di�erent actions depending on the new value. Another key feature of DS2OS is

dynamic service discoverability [AL19, PL19], that allows adaptation services to be discovered

by di�erent criteria: type of smart device (e.g. temperatureadaptationservice), or type of

attribute (e.g. /boolean).

Figure 2.3 summarizes key ideas of DS2OS. Services (in yellow) connect to exactly one

Knowledge Agent (in green), that persists their context models on a context repository managed

by a context manager. Context models (more speci�cally, their context nodes) can be manip-

ulated through get and set operations, and services can subscribe to certain context nodes

to be noti�ed of changes (the notify callback) � accesses are mediated by the agent and vali-

dated against an access control policy. Smart devices (in blue), both sensors and actuators, are

27

Figure 2.3: Context management architecture of the VSL, adapted from [Pah14].

controlled via (adaptation) services.

2.9 Summary

In this Chapter, we started by covering the IoT, with a brief overview of its layered architecture,

and an explanation of the most relevant terms that relate to the topic. We motivated for the

use of geocodes to represent locations, providing examples of real-world geocode systems. We

covered the most prominent indoor localization techniques and technologies, based on the state-

of-the-art systems addressed in [ZGL19]. We motivated for the need of proof of location systems

in real-world scenarios. Finally, we addressed the importance of management in smart spaces,

later relevant in the architecture we propose.

28

Chapter 3

SureSpace design

SureSpace is a location certi�cation mechanism designed for smart environments. Its architecture

results from the integration of the SureThing and DS2OS frameworks, covered in Chapter 2, for

location certi�cation and smart space management, respectively. On the one hand, the SureThing

domain encompasses all components necessary for the proof of location (Certi�cate Authority,

Witness, Prover, and Veri�er), enriching SureSpace with an assortment of technologies for lo-

cation certi�cation. On the other hand, the DS2OS domain brings the possibility to con�gure

and orchestrate smart devices in a smart space, as well as the possibility to dynamically discover

them in run-time (introducing components like Knowledge Agents, and the Orchestrator).

As an example, consider a meeting room in a smart o�ce building where SureSpace has

been deployed. Employees, prior to a meeting, can be required to use their mobile phones to

generate a location proof, to prove that they were at that speci�c room, at a speci�c time. Unlike

other location certi�cation systems, that rely on other users in the vicinity to prove location,

SureSpace uses mobile devices that interact with the smart and trusted infrastructure in the

room to generate the location proof.

Necessarily, communication between mobile devices and the infrastructure is wireless, expos-

ing the system to external threats. In general terms, we can describe a SureSpace attacker as

any rouge user that deliberately engages in a dishonest behavior with the intent of proving their

false presence. At a lower level, we consider that an attacker is capable of:

1. Passively listen to all communications (eavesdrop);

2. Impersonate a user or a device;

3. Tamper with the data exchanged between source and destination.

To secure SureSpace, communication between components should use existing secure channel

implementations (like TLS), to provide con�dentiality, authenticity (integrity and data source

29

authentication), and freshness (to prevent replay attacks). Whenever a custom communication

channel is considered, we assume that there is no interference, and no remote readings due to the

limited range. These are the key points we took into account when designing SureSpace, that

we introduce next.

Section 3.1 o�ers an overview of SureSpace. Section 3.2 details each component of the ar-

chitecture, explaining its purpose, and how it relates to other components. Section 3.3 explores

the di�erent stages of the certi�cation process, required to generate and verify a location proof

in SureSpace. Section 3.4 is a brief summary of the Chapter.

3.1 Overview

SureSpace applies the concept of signal, introduced by SureThing (refer to Subsection 2.7.4), to

smart environments. To prove location, it explores interactions between the prover device (the

mobile device used by the prover to engage with SureSpace) and beacons (a subset of smart

devices in the trusted infrastructure). In a �rst stage, beacons broadcast signals meant to be

collected, with errors, by the prover device. Multiple factors contribute to signal degradation,

leading to a �degraded� version of the original signal. In SureSpace, a location proof is a collection

of (degraded) signals captured by the prover device. In a second stage, signals are compared: if

the degraded version of the signal matches its original version to a certain extent, it is considered

legitimate. A location proof is accepted if enough signals are legitimate. The speci�c threshold to

legitimate a signal is application-dependent, and must be de�ned in each veri�er implementation,

as described in Section 4.4.

For the sake of simplicity, the terms smart space and smart environment are used inter-

changeably to designate a physical space where a cluster of smart devices has been deployed.

Moreover, consider that smart spaces can be divided into multiple rooms.

3.2 Architecture

In this section, we introduce all components of the SureSpace domain. To help visualize the

logical structure of the solution, we use Figure 3.1, the deployment diagram of SureSpace. In the

diagram, green is used for artifacts, blue for nodes, yellow for devices, and orange to distinguish

the smart space infrastructure from the other nodes. Components are presented following the

expected interaction sequence in a proof of location scenario.

30

Figure 3.1: SureSpace deployment diagram.

31

3.2.1 Prover

The prover is a SureSpace user that engages with the system in order to prove their location.

The prover device is the device used by the prover during all interactions with the system.

3.2.2 Certi�cate Authority

The Certi�cate Authority (CA) is the long-term identity provider of all active entities of the

system, similar to CAs in use on the Internet for website certi�cation.

Each entity generates a public/private key pair. The private key is known only to the entity,

and is kept safe and secure on their side. The public key is used to generate a certi�cate

signing request in order to apply for a public key certi�cate (mandatory step equivalent to entity

registration). If the request is approved by the CA, a public key certi�cate is issued and assigned

to the requester entity.

SureSpace is able to handle the registration of new entities at runtime by supporting dynamic

instantiation. For example, a new prover can join SureSpace at any given time to prove their

location, or a new orchestrator can be deployed, con�gured, and immediately set to work. To

support this, entities are grouped by type, and certi�cates assigned to entities of the same type are

nested under the same intermediate CA. Taking on the previous example, certi�cates assigned

to provers belong under the Prover CA, and certi�cates assigned to orchestrators belong under

the Orchestrator CA. Of course, intermediate CAs belong under the Root CA of SureSpace, and,

by the way certi�cate chains work, so do all other certi�cates. Figure 3.2 provides visual aid to

understand how certi�cates are organized in the hierarchy of trust adopted in SureSpace.

Figure 3.2: Hierarchy of trust adopted in SureSpace.

32

For communication purposes, entities are required to have unique identi�ers within the SureS-

pace domain. These identi�ers are hierarchical and generated based on the entity's certi�cate

chain, that starts with the Root CA and ends with the certi�cate assigned to the entity (refer to

Subsection 4.1.2 for a comprehensive example).

3.2.3 Orchestrator

From the prover's perspective, an orchestrator is the �entry point� to SureSpace because it

is the component they �rst reach out to when engaging with the system. An orchestrator

is the �mastermind� of any proof of location, responsible for coordinating the process at the

highest level, and dispatching communication �ows to prevent malicious actions coming from

unauthorized parties. To that extent, it implements diverse logical subprocesses that include,

for example, the dynamic discovery of new orchestrated rooms, the dynamic discovery of new

beacons and their orchestration, and the delivery of accurate information about a speci�c location

proof. Orchestrators do not persist any information: all relevant activity (either communication-

or proof-related) is stored in volatile memory.

Depending on network congestion generated by provers trying to prove their location, more

orchestrators can be instantiated to increase the throughput. At a structural level, SureSpace was

designed to accommodate one orchestrator per smart space. A smart building, for instance, can

be divided into multiple smart spaces (e.g. one per �oor), thus requiring more than orchestrator.

To prove their location, the prover can connect to any of the available orchestrators. By default,

to save transmission time, the prover will connect to the closest orchestrator. For example, each

smart space can display a QR code that encodes the identi�er of the orchestrator to contact.

Orchestrators run an orchestration service to communicate with the adaptation services of

the orchestrated beacons (since the distributed knowledge is only available through the VSL).

Since the orchestration service is simply used to encapsulate low-level calls to the VSL into

higher-level functions, used by the orchestrator to implement its functionality, its context model

has no context nodes.

3.2.4 Knowledge Agent

A Knowledge Agent (KA) is a node in the distributed knowledge network of DS2OS (refer to

Section 2.8). More speci�cally, KAs are context repositories that persist relevant information

used by an orchestrator.

To deliver room-level orchestration, each orchestrated room has its own KA, that behaves

like a proxy to the room (meaning that no rooms share the same KA). Agents hold information

33

about their geographical location, so that the orchestrator can discover them by location when

looking for new orchestrated rooms. For that purpose, each KA runs a localization service (a

type of DS2OS service), that can be queried to retrieve the agent's location. Figure 3.3 depicts

a simpli�ed context model of the localization service. location is the string representation of

the agent location using a plus code (refer to Section 2.2).

1 <model type="/complex/service">

2 <location type="/basic/text"/> <!-- OLC representation of the agent location -->

3 </model>

Figure 3.3: Simpli�ed context model of the localization service.

Additionally, new beacons must be discoverable within a speci�c orchestrated room. Since

beacons register themselves to the closest KA in their vicinity (refer to Subsection 3.2.5), new

beacons are easily accounted for. Thus, a KA aggregates beacons logically by orchestrated room

in such a way that the logical boundaries of the area are ultimately drawn by the geographical

dispersion of the connected beacons, regardless of the real physical boundaries of the room.

During a proof of location, an orchestrator will need information about engaging beacons (and

respective trusted witnesses), like the value of speci�c attributes. For that reason, alongside with

relevant metadata, context models of the registered beacons are part of the persisted information

in KAs. That information becomes available to other KAs, since they are all nodes in the same

distributed knowledge network.

3.2.5 Adaptation Service

Beacons require a proxy to become discoverable and controllable by SureSpace (refer to Subsec-

tion 3.2.6). To achieve that, each beacon has an adaptation service (a type of DS2OS service),

that connects the beacon (and the trusted witness) to SureSpace. Each adaptation service has

a di�erent context model, required for inter-service communication (refer to Section 2.8), that

includes the represented entities (beacon and trusted witness) as context nodes.

As an example, consider an adaptation service (lightadaptationservice) that controls a

smart bulb (the beacon), and a light sensor (the trusted witness). These two devices require

appropriate context models that mirror their properties. Figure 3.4 shows the representation of

a simpli�ed context model of a smart bulb. isOn is a boolean used to control the beacon (if set

to true, the beacon is activated).

34

1 <model type="/complex/smartbulb">

2 <isOn type="/basic/boolean"/> <!-- boolean status of the beacon -->

3 </model>

Figure 3.4: Simpli�ed context model of a smart bulb.

Analogously, Figure 3.5 shows the representation of a simpli�ed context model of a light

sensor. samplingRate controls how many readings the sensor does per time unit, and intensity

is the value read by the sensor.

1 <model type="/complex/lightsensor">

2 <samplingRate type="/basic/number"/> <!-- how many readings per time unit -->

3 <intensity type="/basic/number"/> <!-- light intensity (any range) -->

4 </model>

Figure 3.5: Simpli�ed context model of a light sensor.

Figure 3.6 shows the representation of a simpli�ed context model of the described adaptation

service. It has two context nodes, beacon and witness, that represent the two entities controlled

by the service. Note that each context node sets the type attribute to match the corresponding

context model. This way, all properties of the device are implicitly included in the context node

(refer to Section 2.8).

1 <model type="/complex/lightadaptationservice">

2 <beacon type="/complex/smartbulb"/>

3 <witness type="/complex/lightsensor"/>

4 </model>

Figure 3.6: Simpli�ed context model of a light adaptation service.

To summarize, an adaptation service is a source of information. By looking at it, it becomes

evident which devices are being controlled, and what con�guration parameters are available for

each of them based on the properties of the respective context model. With this information,

the adaptation service implements beacon-speci�c functionality.

Adaptation services have a locking mechanism that prevents concurrent use by multiple

orchestrators. Before a beacon is activated for a proof of location, an orchestrator tries to

acquire the lock over the respective adaptation service. If the attempt fails, the proof of location

is aborted. Only when the same orchestrator releases the lock, which should happen in the end

of the proof of location, may other orchestrators activate the beacon. In practical terms, this

35

means that beacons are locked for a speci�c proof of location, and cannot be used at the same

by other orchestrators.

Ideally, a signal broadcast by a beacon is available within a certain radius of action, and must

not go beyond the physical boundaries of the orchestrated room. Thus, it makes sense that the

beacon is bound to a speci�c geographical location, where it is available. Since KAs are already

aware of their location (refer to Subsection 3.2.4), adaptation services must register themselves

to the KA responsible for their immediate vicinities.

3.2.6 Beacon and Witnesses

A beacon is a smart device embedded into the trusted infrastructure ready to be used in a proof

of location (e.g. a smart bulb). Beacons are usually actuators (they change the state of a physical

space), and exhibit special behavior when compared to other smart devices. By default, SureS-

pace is not aware of existing beacons by themselves, since they may not be directly connected

to the system. Thus, each beacon requires a proxy to become visible to, and controllable by the

system. That proxy is an adaptation service, that represents and controls exactly one beacon

(refer to Subsection 3.2.5). During the proof of location, each beacon generates and broadcasts

exactly one signal meant to be captured by, at least, one corresponding witness in the prover

device. A signal is something produced by a beacon that can be received by a corresponding

witness. For instance, visible light, emitted by a smart bulb (the beacon), and acknowledged by

a light sensor (the witness), could be used as a signal. In that case, it would be something phys-

ical, conveyed from beacon to witness. On the other hand, a random QR code on a display (the

beacon) could also be used as a signal, and it could be acknowledged by reading the word with a

camera (the witness). Thus, the de�nition is left open to avoid narrowing down the possibilities

to a small set of conventional signals, paving the way for out-of-the-box ideas. Theoretically,

any equipment can be used as a witness, provided it is able to receive signals from a speci�c

beacon. Witnesses in the prover device are untrusted, because they are not part of the trusted

infrastructure. Ergo, in SureSpace, we rede�ne the concept of a proof of location as a series of

signals, issued by a subset of beacons, that are received by, at least, one corresponding witness

in the prover device.

A signal is generated based on a set of quirky properties, that feed a deterministic signal

generator. If these properties are disclosed, the original signal can be easily replicated. Naturally,

signals have di�erent characteristics/features, and are susceptible to degradation induced by

multiple factors during their transmission. Moreover, witnesses have limited capabilities, and

might not be able to acknowledge all the characteristics of the signal, but only a subset of

36

them. Thus, what the witness receives is not the original signal, but a degraded representation

of some of its characteristics. In some cases, part of the characteristics of the signal can be

successfully derived from the analysis and/or processing of the degraded representation. To

the derived information we call proof ambient, because it represents the witness' knowledge

of the original signal. To maximize the accuracy of the proof ambient, diverse corresponding

untrusted witnesses, capable of acknowledging di�erent characteristics of the signal, can be used

simultaneously to derive more information.

To determine the legitimacy of the location proof, we measure the accuracy of the proof am-

bient by quantifying similarity between the original signal, that was transmitted by the beacon,

and the degraded representation, that was received by the witness. To do that, we require a

trusted representation of the signal from a trusted witness, embedded into the reliable infrastruc-

ture, capable of acknowledging the same set of characteristics, to ensure the two representations

are compatible. In some cases, usually when the infrastructure is not open for modi�cation,

trusted witnesses can be virtual. Without the need for real devices, virtual witnesses mimic the

behavior of receiving the signal through emulation to deliver the same functionality. Alongside

with a beacon, corresponding trusted witnesses, be them virtual or not, are represented and

controlled by the same adaptation service (refer to Subsection 3.2.5).

Witnesses may have limited storage capacity (if any at all). That means that, in most cases,

the collected information is ephemeral, and gets lost if not stored in time. Di�erent approaches

can be used to cope with this situation, usually by sending the information to a di�erent entity,

that stores the information.

3.2.7 Veri�er

Regarding the certi�cate processes chain, the veri�er is the last entity to engage in SureSpace.

It measures the reliability of a location proof by assessing the legitimacy of the proof ambient

derived by the prover (refer to Subsection 3.2.6).

Depending on the supported beacons, the veri�er must implement adequate criteria to ensure

that signal representations can be properly compared. For that reason, there is no pre-determined

assessment criteria for evaluating a location proof, since the de�nition of signal itself remains

abstract enough to encompass a variety of beacons. Moreover, veri�cation can take into account

application-speci�c criteria.

Regardless of the implementation details, the veri�er must output a boolean value that

represents the assessment result. If true, the location proof is accepted. In the end of the

evaluation, more information can be yield by the veri�er (like a con�dence interval).

37

Figure 3.7: Process diagram for the pre-authorization stage.

3.3 Location certi�cation process

This Section details the certi�cation process required to generate and verify a location proof

in SureSpace. The process encompasses three stages: pre-authorization, proof, and veri�cation.

Subsection 3.3.1 covers the pre-authorization stage, that issues a token used to trigger the next

stage � this authenticated token holds information like the beacons selected to engage in the

proof of location. Subsection 3.3.2 covers the proof stage, where the beacon orchestration takes

place � at this point in the process, the prover device is collecting the signals being broadcast

by beacons. To conclude, Subsection 3.3.3 covers the veri�cation stage, that culminates with

either the acceptance, or the rejection of the location proof generated by the prover.

3.3.1 Pre-authorization stage

A proof of location requires the orchestration of a subset of beacons scattered across a smart

location, like an orchestrated room. Beacon orchestration requires some context information to

be readily available at proof-time (like which beacons are engaging in the proof of location).

The objective of this stage, represented in Figure 3.7, is to produce an authorization, requested

by the prover and issued by an orchestrator, that is both:

1. An authenticated and single-use token used to trigger the proof stage;

2. A context information repository that stores relevant metadata necessary for the proof

stage.

First, the prover device determines its compatibility with the existing beacon-witness map-

ping (Device compatibility check step). A beacon is deemed supported by the prover device if and

only if it has, at least, one compatible untrusted witness (usually a sensor, like a light sensor).

38

Consequently, the set of supported beacons depends on the hardware properties of the prover

device.

The prover device estimates its location resorting to external mechanisms (Device location

estimation step). For instance, GPS can be used if the signal is strong enough. Upon locating the

prover device, GPS coordinates are then converted to a geocode. By default, OLC is used, but

other representations are supported (refer to Section 2.2). In the absence of a suitable localization

system (like in GPS-constrained environments), scanning an on-site QR code with the geocode

of the room might su�ce to locate the prover within the building. Naturally, other approaches

can be considered, provided they all conjoin to one of the supported geocodes. In the end of this

step, the prover requests a proof authorization to an orchestrator (Request authorization step).

Following the validation of the request, the orchestrator determines which beacons are avail-

able at the location reported by the prover (Adaptation service discovery step). Depending upon

the smart space topology, di�erent orchestrated rooms o�er di�erent beacons, discoverable via

adaptation services delivered within that room. To determine which beacons are available at the

reported location, the orchestrator:

1. Lists all orchestrated rooms (i.e. the same as listing all existing KAs)

2. Determines the closest one to the prover (by comparing the location returned by each

localization service to the location reported by the prover)

3. Discovers which beacons are available in that room (by checking which adaptation services

are registered to the KA)

Finally, the orchestrator selects beacons eligible for the proof of location (Eligible beacons

selection step). A beacon is eligible if and only if (1) it is supported by the prover device, and

(2) available at the prover location. If a beacon selection policy is in place, eligible beacons

might be narrowed down by the orchestrator to a smaller set, depending upon the policy criteria

(e.g. the security level of the room, or the prover's history of behavior). In the end of this step,

the orchestrator generates an authorization containing all the relevant information, stores it for

future use, and sends it to the prover as a token to trigger the proof stage.

3.3.2 Proof stage

This stage, represented in Figure 3.8, starts when the prover submits the proof authorization to

the orchestrator (Submit authorization step).

Beacons generate signals based on a set of quirky properties, used to feed a deterministic

signal generator (refer to Subsection 3.2.6). Ideally, the same beacon should not broadcast the

39

Figure 3.8: Process diagram for the proof stage.

same signal between two consecutive proofs of location. However, that guarantee is too strong,

so SureSpace focuses on minimizing the likelihood of that happening by preventing the reuse of

the same set of quirky properties. To that extent, a seed value is generated in an unpredictable

way (Generate random seed step), and used to populate these properties with pseudorandom

values derived from it. Naturally, these values are assigned based on the con�gurable properties

declared by the adaptation service of each beacon.

The orchestrator attempts to lock the adaptation services of the selected beacons, and one

failed attempt is enough to abort the proof of location (refer to Subsection 3.2.5). If all locks are

acquired, the orchestrator applies new pseudorandom values to the quirky properties (Con�gure

beacons step). When beacons are ready, they start broadcasting their signal in the vicinities. At

the same time, trusted witnesses (virtual or not) in the infrastructure, and untrusted witnesses

in the prover device start receiving the signals too.

Recall that witnesses have limited storage capacity, and that the collected information must

be stored in time in a di�erent support (refer to Subsection 3.2.6). Untrusted witnesses send

the information directly to the prover device, that safely stores the information. On the other

hand, trusted witnesses share the information with the orchestrator via the VSL (by updating

the corresponding properties of their context models).

Network latency has direct impact on the level of synchronization between orchestrator and

prover, since only upon clearance from the orchestrator will the prover initiate the process. If

desynchronized, �dead times� may occur in the beginning (beacons are broadcasting, but the

prover is waiting for clearance), and in the end of the process (beacons have ceased their activity,

but untrusted witnesses remain active). This phenomena should be mitigated in the veri�cation

stage, without relying on clock synchronization.

40

3.3.3 Veri�cation stage

Recalling Subsection 3.2.6, the accuracy of the proof ambient is the key factor to determine if a

location proof should be accepted or not. Theoretically, a proof of location is accepted if the proof

ambient is complete enough (with regard to all the signals broadcast by engaging beacons), and

accurate enough (if the extracted information is in line with the original signal's information).

Necessarily, and as addressed in Subsection 3.2.6, even in optimum conditions, signal degra-

dation will decrease the accuracy of the proof ambient. Internal factors (e.g. witnesses sensitivity,

and sensors sampling rate) and external factors (e.g ambient noise, radius of action of the bea-

con, beacon density, topology of the orchestrated room) might lead to a misrepresented, yet

legitimate, proof ambient. To account for such errors, a margin of error should be considered

when assessing the proof ambient, represented by a tolerance in the comparison of the trusted

representation of the original signal with its degraded representation.

To verify the location proof, the prover submits all signal representations to the veri�er. A

�nal judgment is yield, either accepting or rejecting the location proof. To avoid compromising

the versatility of the veri�cation step, the implementation details of the stage are left open.

3.4 Summary

In this Chapter, we presented the design rationale of SureSpace � combining the SureThing

proof system with the DS2OS dynamic discovery and provisioning of equipments � followed

by an in-depth presentation of its architecture, and location certi�cation process. In the next

Chapter, we discuss the implementation of the SureSpace prototype.

41

42

Chapter 4

SureSpace implementation

This Chapter covers the most relevant details about the implementation of the SureSpace pro-

totype. Section 4.1 explores the development environment of SureSpace, with special emphasis

on the tools that were used to implement the di�erent components. Section 4.2 motivates for

the need of a formally described technique used by beacons to broadcast their signals, and gives

two relevant examples of its application. Section 4.3 identi�es beacons currently supported by

SureSpace, and goes over the process of adding their full-�edged support. Section 4.4 details

how to estimate similarity between two representations of the same signal. Section 4.5 is a brief

summary of the Chapter.

4.1 Development platform

The prototype of SureSpace was developed as a Java project, using the JDK (Java Development

Kit) version 11. We used Maven 3.6.3 as the build automation tool, that manages the building

process, but also does version management for the used libraries. To facilitate dependencies

management, the project was organized into di�erent modules.

Module arduino implements a custom version of Ardulink 2, a complete, open-source Java

solution for the control and coordination of Arduino boards [ard] (this module is required

since we used Arduino equipment, as covered in Section 5.1). Module common implements

everything that needed to be shared between the di�erent modules (like the message struc-

ture introduced in Subsection 4.1.1, or the supported location representations listed in Sec-

tion 2.2). Respectively, modules ca, orchestrator, and verifier implement the functionality

of the certi�cate authority, the orchestrator, and the veri�er. Finally, module ds2os imple-

ments all the DS2OS services (adaptation, localization, and orchestration services) by extend-

ing available templates. Some modules were partially inspired in existing work by João Fer-

43

reira [FP18], but all the code was written from scratch. We used multiple dependencies to imple-

ment the project, from cryptographic dependencies (like org.bouncycastle:bcprov-jdk15on)

or certi�cate validation dependencies (like no.difi.commons:commons-certvalidator), to util-

ity dependencies (like org.apache.commons:commons-lang3) or communication dependencies

(like io.grpc:grpc-protobuf and io.grpc:grpc-stub, required by gRPC � refer to Subsec-

tion 4.1.1).

To bootstrap the distributed knowledge network, i.e. the VSL, KAs need to be launched one

by one, until they become peers of the same network (refer to Section 2.8). In practical terms,

a KA is bundled as an executable JAR �le, already con�gured to search for, and join other

KAs when launched. However, the default KA was no longer compatible with our setup, so we

modi�ed its source code (we were granted access by the DS2OS team), and recompiled it.

The prover was implemented as an Android mobile application, for a richer user-experience.

The application was compiled in Java 8, against API 30.

Subsection 4.1.2 identi�es the algorithms used for certi�cate generation and signing, and de-

tails identity assignment within the SureSpace domain. Subsection 4.1.1 analyses the underlying

protocols used for cross-entity communication, and argues for the need of a common message

structure shared by the data �ows.

4.1.1 Cross-entity communication

Regarding communication, data transfer �ows between entities are bi-directional, and are im-

plemented over di�erent underlying communication protocols. DS2OS entities (both KAs and

services) communicate with the VSL via REST connectors, using HTTPS as tunneling protocol

for secure communications. All remaining data transfer �ows are supported by gRPC (in Java),

following a remote invocation paradigm. gRPC uses Protocol Bu�ers (protobuf) to provide a

platform-independent representation of remote interfaces, allowing for future clients in di�erent

programming languages. It was chosen because of its e�ciency, and loose coupling between

clients and servers [grp].

In SureSpace, messages share a common payload format, illustrated in Figure 4.1, that (1)

allows for a standardized process of message validation, and (2) fosters the implementation

of the desired security properties (integrity, authentication, and non-repudiation). To prevent a

malicious user from forwarding messages to an entity of their choice, all messages hold information

about their source (�eld sender) and destination (�eld receiver) � entity identi�ers are used in

both �elds. Replay attacks are mitigated by the use of a securely generated random number (�eld

nonce), unique for each data �ow. For integrity, authentication, and non-repudiation purposes, a

44

Figure 4.1: Message structure shared in SureSpace.

digital signature is generated over the message (�eld signature) using SHA-512 with the source

entity's private key. To reduce the number of interactions with CAs, the source entity's certi�cate

(�eld certificate), used to validate the signature, is attached to the body of the message prior

to signing (the certi�cate is veri�ed during message validation).

4.1.2 Entity identi�cation

Each SureSpace entity is assigned a public key certi�cate that is part of a certi�cate chain that

starts with the SureSpace Root CA (refer to Subsection 3.2.2). Public/private key pairs are

generated using 2048-bit RSA, and certi�cates are signed using SHA-512. Moreover, each entity

is identi�ed by a hierarchical identi�er, unique within the SureSpace domain. That identi�er can

be directly obtained from the plain text representation of its certi�cate chain, by (1) mapping

certi�cates in the path into their aliases, and (2) concatenating them using a delimiter, preserving

order. For example, prover1 will be identi�ed by surespace://rca/pca/prover1 because its

certi�cation chain includes the SureSpace Root CA (alias rca), the SureSpace Prover CA (alias

pca), and prover1, respectively.

4.2 Beaconing technique

Signals are characterized by a variety of features, and can be classi�ed according to di�erent

metrics (their time length, for example). Signal classi�cation allows comparing signals based on

a set of common metrics, but not all metrics work for all contexts.

To determine whether a signal is appropriate for a proof of location, we classify it based

on two metrics: di�culty of replication, and di�culty of acknowledgment. Signals should be

45

di�cult to replicate without knowing the quirky properties used for their generation. If signals

have noticeable patterns or are reused, a malicious party can easily replicate them, perhaps

by trial-and-error. At the same time, signals must be versatile enough to account for common

limitations shared by compatible witnesses, so that signals can be easily acknowledged by most

witnesses. We introduce a simple technique based on time fragmentation to reach an equilibrium

between these two metrics.

Subsection 4.2.1 provides a description of the technique, summarized in Algorithm 1. Sub-

sections 4.2.2 describes the application of the technique to a hypothetical light signal. Likewise,

Subsection 4.2.3 describes the application of the technique to a hypothetical audio signal.

4.2.1 Technique description

Each signal is broken into a �xed number of consecutive, same-length fragments. Each fragment

is generated based on a set of quirky properties, populated with pseudorandom values obtained

from a seed. The sequence of fragments constitutes the signal.

For simplicity, we adopt the following notation:

� b ∈ B denotes beacon b, in the set of supported beacons, B

� w ∈Wb, b ∈ B denotes witness w, in the set of witnesses compatible with beacon b, Wb

� fb,i ∈ Fb, b ∈ B, i ≥ 1 denotes the i-th fragment of the set of fragments that compose a

signal broadcast by beacon b, Fb

� q ∈ Qfb,i , b ∈ B, i ≥ 1 denotes quirky property q, in the set of quirky properties used to

generate fragment fb,i, Qfb,i

� Sb = fb,1 ‖ fb,2 ‖ . . . ‖ fb,n, b ∈ B, i ≥ 1 denotes a signal with n ≥ 1 fragments, broadcast by

beacon b

Algorithm 1 proposes a pseudocode of the technique. This algorithm is executed by the

orchestrator in the proof stage (refer to Subsection 3.3.2). In the beginning, a random seed

is generated in a secure and unpredictable way via function UnpredictableSeed (line 1). Upon

that, the orchestrator attempts to lock the adaptation services of all beacons selected for the

proof of location (line 3). If the attempt fails, i.e. if, at least, one service fails to be locked, the

orchestrator resets the state and aborts the proof of location via function Abort (line 5). On

the other hand, if the attempt succeeds, a random number generator is created using the seed

(line 9) for each beacon selected for the location proof (line 8). At last, each adaptation service

generates their quirky properties via function GenerateQuirkyProperties (line 11). The number

46

of fragments, |Fb|, and the random number generator, random, are passed as arguments to that

function, that must assign a pseudorandom value to each quirky property of each fragment of

the signal. If the process fails, the orchestrator aborts via function Abort, already covered (line

13).

Algorithm 1 Time fragmentation technique.

1: seed← UnpredictableSeed();
2: try

3: LockAdaptationServices(B);
4: catch LockException
5: Abort();
6: end try

7:

8: for all b ∈ B do

9: random← Random(seed);
10: try

11: GenerateQuirkyProperties(|Fb|, random);
12: catch GenerationException
13: Abort();
14: end try

15: end for

In the next Subsections, we apply the technique to two representative signals: a light signal,

and an audio signal. Moreover, for each case, we provide the pseudocode for function Generate-

QuirkyProperties, executed by the respective adaptation services.

4.2.2 Light signal time fragmentation

Consider a light source (e.g. a LED) used as a beacon in a proof of location, blight, that can

switch between states on and off with period P ∈ [PMIN , PMAX [, measured in a convenient

unit (PMIN and PMAX are, respectively, the lowest and the highest supported periods). In the

proof stage, the beacon broadcasts a signal, Slight, split into n d-seconds fragments. During each

fragment flight,i, i = 1, 2, . . . , n, the beacon switches between states with a pseudorandom period

Pi (the quirky property), derived from the seed, forming a power-on and power-o� sequence with

rates that vary between fragments.

Theoretically, Pi can take any value in range [PMIN , PMAX [, and nothing prevents two pseu-

dorandom periods from being equal or close enough to generate similar or indistinguishable

fragments. To avoid this, we propose an approach that (1) prevents reusing the same period and

(2) reduces the probability of picking periods too close in the range.

At a higher level, the initial range is split into n subranges of equal length, shu�ed using

the seed, and exactly one period is pseudorandomly picked from each subrange, in a total of n

47

periods (one per fragment). Algorithm 2 provides a detailed explanation of our approach. The

adaptation service creates an empty array to store the n pseudorandom periods (line 2) � array

indices start at 1 for simplicity. The subranges length, length, is computed by dividing the

length of the initial range, given by PMAX − PMIN , by the number of fragments, |Fblight | (line

3). Upon that, a unique subrange is computed (lines 6 − 7) for each fragment (line 5), and the

union of all subranges equals the initial range, according to Equation 4.1.

[PMIN , PMAX [= [PMIN , PMIN + length[

∪ [PMIN + length, PMIN + 2× length[∪

. . .

∪ [PMIN + (n− 1)× length, PMAX [

(4.1)

Then, a pseudorandom period is picked between the lower bound of the subrange (inclusive)

and its upper bound (exclusive), drawn from the random number generator's sequence (line

9). Each pseudorandom period is added to the array in the right position (line 10), and the

array is shu�ed in the end, using the random number generator (line 13). If the array was not

shu�ed, periods would increase sequentally between fragments (i.e. Pi+1 > Pi would hold true

for all periods), creating an undesired pattern in the light signal. Finally, each quirky property

Pi, i = 1, 2, . . . , n is assigned the i-th pseudorandom period (line 15).

Algorithm 2 Generate quirky properties for a light signal.

1: procedure GenerateQuirkyProperties(|Fblight |, random)
2: periods = [];

3: length =
PMAX − PMIN

|Fblight |
;

4:

5: for i← 1, 2, . . . , |Fblight | do
6: lower = PMIN + (i− 1)× length;
7: upper = lower + length;
8:

9: period = random.next(upper − lower) + lower;
10: periods [i] = period;
11: end for

12:

13: periods.shu�e(random);
14: for i← 1, 2, . . . , |Fblight | do
15: Pi ← periods [i];
16: end for

17: end procedure

Regarding its nature, Slight is visible light, produced by the light source from electric current.

Light can be described as either a particle or a wave, and has di�erent properties that can be

48

acknowledged depending on the receiver. A light sensor, for instance, can measure the light

intensity, but cannot determine what color the light is. A spectroradiometer, on the other hand,

is able to measure the wavelength of the light (which can, then, be interpreted as a color).

For this purpose, consider a light sensor used as a witness in the same proof of location,

wlight, capable of measuring light intensity in a convenient unit, at a sampling rate not less than

Pi
−1, ∀i. Plotting the measurements over time o�ers a representation of Slight based on one

of its properties (light intensity). The analysis of that representation may con�rm signi�cant

variations in light intensity, which are an interpretation of the power-on and power-o� sequence.

It is important to mention that PMIN and PMAX should be picked carefully. These values

must be adequate considering (1) the length of the light signal and (2) the sampling rates of

witnesses expected to receive the signal. If PMIN is too low, witnesses may miss variations in

light intensity that occur in-between samples. Conversely, if PMAX is too high, witnesses may

not detect any variation in light intensity during the fragment.

4.2.3 Audio signal time fragmentation

Consider an audio source (e.g a speaker) used as a beacon in a proof of location, baudio. The bea-

con can be programmed to play any song out of a prede�ned set of m songs, and

songId ∈ {0, 1, . . . ,m− 1} is the index of the song to be played. This song is any regular

song that plays on the radio, and we consider it over any synthesized melody because a song

is more easily tolerated by the human ear for extended periods of time. During its activity,

the beacon broadcasts a signal, Saudio, with a single d-seconds fragment, and a pseudorandom

songId ∈ Qfbaudio ,1
(the only quirky property) is derived from the seed.

According to Algorithm 3, the adaptation service generates a pseudorandom song index,

between 0 (inclusive) and m (exclusive), drawn from the random number generator's sequence

and assigned to songId (line 2).

Algorithm 3 Generate quirky properties for an audio signal.

1: procedure GenerateQuirkyProperties(|Fbaudio |, random)
2: songId = random.next(m);
3: end procedure

Regarding its nature, Saudio is a sound, produced by the audio source that converts an

electric audio signal into a corresponding sound. Sound is propagated as an acoustic wave, often

simpli�ed to sinusoidal waves characterized by amplitude, frequency, speed, and direction. Not

all properties can be determined with the same ease. For instance, �nding the direction of an

acoustic wave requires acoustic source localization, usually applying a TDoA technique (refer to

49

Subsection 2.4.4) between couples of acoustic sensors [MNV03]. On the other hand, amplitude

can be measured using a sound sensor.

For this purpose, consider a sound sensor used as a witness in the same proof of location,

waudio, capable of measuring sound amplitude in a convenient unit. Plotting the measurements

over time o�ers a representation of Saudio based on one of its properties (audio amplitude). The

analysis of that representation may con�rm variations in amplitude and frequency that match

the song being played.

4.3 Supported beacons

Adding support for a new beacon in SureSpace requires writing its context model with all the

con�gurable properties (the trusted witness requires its own context model too), and implement-

ing the adaptation service, so that the beacon can be discoverable. Furthermore, to be eligible

for the proof of location, the beacon must have, at least, one corresponding untrusted witness

in the prover device (refer to Subsection 3.2.6). Thus, although implicit, adding support to a

beacon also requires having, at least, one compatible witness in the prover device, so that the

constructed representations can be correctly compared.

This Section goes over these steps to add support for a light beacon (refer to Subsection 4.3.1),

and an audio beacon (refer to Section 4.3.2).

4.3.1 Light beacon and witnesses

Based on the example in Subsection 4.2.2, we considered a light beacon capable of switching

between states on and off with a con�gurable period. Figure 4.2 is a simpli�ed context model

of the beacon, where isOn is a boolean used to control the beacon (if set to true, the beacon is

working), and switchingPeriod is the time it takes for the beacon to switch between states (in

seconds).

1 <model type="/complex/beacon">

2 <isOn type="/basic/boolean"/>

3 <switchingPeriod type="/basic/number"/>

4 </model>

Figure 4.2: Simpli�ed context model of a light beacon.

As trusted witness, we considered a light sensor capable of measuring light intensity at a

con�gurable sampling rate not less than switchingPeriod−1. Figure 4.3 is a simpli�ed context

50

model of the trusted witness, where intensity is the measured light intensity (in a convenient

unit), intensitySamplingRate is the sampling rate at which the sensor is reading (in Hertz),

and isOn is a boolean used to control the witness (if set to true, the witness is working). The

orchestration service subscribes the intensity attribute on the trusted witness context model.

Every time the attribute value changes because of a new measurement, the orchestration service

is noti�ed. At that moment, the value is timestamped (in milliseconds), and stored in the

orchestrator to compose the trusted representation of the light signal.

1 <model type="/complex/witness">

2 <intensity type="/basic/number"/>

3 <intensitySamplingRate type="/basic/number"/>

4 <isOn type="/basic/boolean"/>

5 </model>

Figure 4.3: Simpli�ed context model of a light witness.

As untrusted witness, we consider any device capable of measuring light intensity to ensure

both witnesses acknowledge the same property of the signal (intensity).

4.3.2 Audio beacon and witnesses

Based on the example in Subsection 4.2.3, we considered an audio beacon capable of playing a

speci�c song out of a set of songs stored in a raw format (like WAV). Figure 4.4 is a simpli�ed

context model of the beacon, where isOn is a boolean used to control the beacon (if set to true,

the beacon is working), and songId is the index of the song to be played.

1 <model type="/complex/beacon">

2 <isOn type="/basic/boolean"/>

3 <songId type="/basic/number"/>

4 </model>

Figure 4.4: Simpli�ed context model of an audio beacon.

As trusted witness, we considered a sound sensor capable of measuring the sound amplitude

at a speci�ed sampling rate. Figure 4.5 is a simpli�ed context model of the trusted witness, where

amplitude is the measured sound amplitude (in a convenient unit), amplitudeSamplingRate is

the sampling rate at which the sensor is reading (in Hertz), and isOn is a boolean used to control

the witness (if set to true, the witness is working).

51

The trusted witness was implemented as fully virtual to demonstrate the feasibility of the

approach. Since we have access to the songs in a raw format, it is possible to emulate the

behavior of a physical witness. Every amplitudeSamplingRate−1 s, the virtual witness reads

the sound amplitude from the �le, and updates the amplitude attribute on its context model,

which has been subscribed by the orchestration service. Every time the attribute value changes,

the orchestration service is noti�ed. At that moment, the value is timestamped (in milliseconds),

and stored in the orchestrator to compose the trusted representation of the audio signal.

1 <model type="/complex/witness">

2 <amplitude type="/basic/number"/>

3 <amplitudeSamplingRate type="/basic/number"/>

4 <isOn type="/basic/boolean"/>

5 </model>

Figure 4.5: Simpli�ed context model of an audio witness.

As untrusted witness, we consider any device capable of measuring sound amplitude to ensure

both witnesses acknowledge the same property of the signal (amplitude).

4.4 Veri�er implementation

The veri�er measures the accuracy of the proof ambient to determine the legitimacy of a location

proof (refer to Subsection 3.2.6). In other words, it quanti�es similarity between di�erent repre-

sentations of the same signal: a degraded one (from untrusted witnesses in the prover device),

and a trusted one (from trusted witnesses in the infrastructure). If more than one beacon is used

(and, thus, more than one signal is involved), these values need to be weighted, since di�erent

signals may contribute di�erently to the overall accuracy of the location proof.

In our context, based on the set of supported beacons, we use the MATLAB Engine API for

Java to quantify similarity. For signal processing, we require additional toolboxes, namely the

Signal Processing Toolbox, the Statistics and Machine Learning Toolbox, and the Communica-

tions Toolbox [mat].

This Section details the approaches used for comparing representations of the same signal,

for both light signals (refer to Subsection 4.4.1), and audio signals (refer to Subsection 4.4.2).

Moreover, it details how multiple signals are handled by the veri�er (refer to Subsection 4.4.3).

52

4.4.1 Light signal representations similarity estimation

Representations may be sampled at di�erent rates, impeding their comparison. To bring them

to a common rate, we upsample the representation with the lowest frequency, using linear in-

terpolation. This process produces an approximation of the representation that would have

been obtained by sampling at a higher rate. Upsampling does not change the accuracy of the

representation itself, since new samples are estimated based on existing ones.

Since clock synchronization between the prover and the system is not a requirement, a po-

tential delay between representations may exist. To align them without relying on timestamps,

we use correlation to determine where representations overlap the most, and then align them.

At last, we normalize both representations, and calculate the linear correlation coe�cient

between them, corrlight 1, given by Equation 4.2

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4.2)

where r is the linear correlation coe�cient, n is the number of samples in the representations

(they have the same size), xi and yi are the sample points, and x̄ and ȳ are the means of the

samples. This coe�cient measures the linear relationship between the two representations, and

is used as an estimate of their similarity.

4.4.2 Audio signal representations similarity estimation

Just like in the case of light representations, audio representations may be sampled at di�erent

rates, and may not be aligned, impeding their direct comparison. However, audio and light

signals are fundamentally di�erent, and so are their representations. For that reason, we cannot

follow the previous approach. Instead, after normalization, we use dynamic time warping to

resample and align the representations. This algorithm stretches the two representations onto

a common set of instants, such that the sum of the Euclidean distances between corresponding

points is smallest. Then, we calculate the linear correlation coe�cient between the aligned

representations, corraudio 1, and use it as a �rst estimate of their similarity.

To improve the estimate, we calculate the power spectrum of the two representations. Simply

put, a power spectrum is a frequency-domain interpretation of an audio signal representation

because it describes the distribution of power (sound amplitude) into frequency components.

In this context, this information is relevant because each song has a di�erent time-frequency

structure. Thus, we calculate the linear correlation coe�cient between the power spectra of the

two representations, corraudio 2, and use it as a second estimate of their similarity.

53

The two estimates are weighted for a �nal similarity estimate, given by Formula 4.3

w1 × corraudio 1 + w2 × corraudio 2, w2 = 1− w1 (4.3)

Weights w1 and w2 must be tuned based on a training set, since they are necessarily beacon-

and witness-dependent.

4.4.3 Combined signals similarity estimation

In the presence of more than one signal, individual similarity estimates are weighted for a �nal

similarity estimate, given by Formula 4.4

w3 × corrlight 1 + w4 × (w1 × corraudio 1 + w2 × corraudio 2), w4 = 1− w3 (4.4)

This value is the �nal estimate of the accuracy of the proof ambient, and, thus, it is the value

used to determine if a location proof should be accepted. Once again, weights w3 and w4 need

to be tuned, as discussed in Subsection 4.4.2.

4.5 Summary

In this Chapter, we started by describing the development environment of SureSpace, going

over the tools that were used to implement the di�erent components. We detailed how entities

are identi�ed in SureSpace, and how they communicate through di�erent underlying protocols.

We presented a simple technique based on time fragmentation that allows beacons to broad-

cast complex signals, and gave two representative examples of the application of the technique.

We explained how beacons become supported by SureSpace, and provided details about the

implementation of two beacons. Finally, we proposed a simple approach to estimate similarity

between two representations of the same signal. The developed prototype is evaluated in the

next Chapter.

54

Chapter 5

Evaluation

In this Chapter, we present the experimental setup used to evaluate the SureSpace prototype,

describe the evaluation criteria, and discuss the evaluation results. Section 5.1 describes the

orchestrated area, the equipment used for the proofs of location (both in the infrastructure, and

in the prover device), and explains the evaluation criteria used to assess the prototype. Section 5.2

details how important parameters were tuned to maximize the accuracy of the prototype, and

justi�es the approach used to conduct the experiments. Section 5.3 addresses the e�ectiveness of

SureSpace, discussing relevant examples of some location proofs. Finally, Section 5.4 measures

the performance of the prototype under attack.

5.1 Experimental setup

Conceptually, our approach �ts any orchestrated area, regardless of its physical traits (e.g.

blueprint complexity, or coverage area), provided that the equipment being used for beacons

and witnesses is adequate. For the experimental setup, we used inexpensive equipment, with less

accuracy, but more representative of commodity equipment that we expect to �nd in a smart

building. We dropped room-level orchestration, and opted for a smaller, yet representative,

orchestrated area shown in Figure 5.1.

Recall the notation introduced in Subsection 4.2.1, where b denotes a supported beacon, and

w a corresponding witness. Based on the set of supported beacons (refer to Section 4.3), we

used a Grove Chainable RGB Led V2.0 as light beacon, blight, a Grove Light Sensor V1.2 as

trusted light witness, wlight, and a JBL GO 2 Speaker, connected to a Grove MP3 V2.0 module,

as audio beacon, baudio. The trusted audio witness, waudio, is fully virtual, eliminating the need

for physical equipment (refer to Subsection 4.3.2). For connectivity reasons, blight, wlight, and

the Grove MP3 V2.0 module were all connected to a Grove Base Shield V2.0 for an Arduino

55

Figure 5.1: Experimental setup components and orchestrated area.

Uno board. The prover device was a Huawei Mate 20 Pro Android smartphone, shipped with

Android 10, equipped with a built-in ambient light sensor, the untrusted light witness, w′light,

and a microphone, the untrusted audio witness, w′audio. During the proof of location, the prover

device is steady in the center of the orchestrated area, as depicted.

We built a dataset by running 80 location proofs under the same representative controlled sce-

nario. Each location proof delivered four signal representations (two representations per signal,

a trusted one and an untrusted one). To be assessed, a location proof is submitted to the veri�er

to estimate the similarity between the two light signal representations (refer to Subsection 4.4.1),

and the similarity between the two audio signal representations (refer to Subsection 4.4.2). These

two estimates are weighted for a �nal similarity estimate, that leads either to the acceptance or

to the rejection of the location proof (refer to Subsection 4.4.3).

In some cases, the veri�er may classify location proofs incorrectly, either by accepting a

location proof that should be rejected (false positive), or, conversely, by rejecting a location

proof that should be accepted (false negative). The accuracy of this judgment, based on the

number of incorrect classi�cations, is a good metric to evaluate SureSpace. In particular, we

consider the false positive rate (FPR), which is the percentage of all negatives that still yield

positive, the false negative rate (FNR), which is the percentage of positives that yield negative,

and the success rate, which is the percentage of correct classi�cations. Intuitively, FPR and

FNR are inversely proportional to the success rate. Thus, ideally, the veri�er should focus on

minimizing both FPR and FNR.

To ensure the reproducibility of the experiments, the duration of the proof stage was set

to 30 seconds in all proofs of location (a reasonable value in a human time-scale that works

in the meeting room scenario we presented in the beginning of Chapter 3). Regarding the

56

audio component, beacon baudio could choose between 20 di�erent prede�ned songs, all sampled

at 44.1 kHz (refer to Subsection 4.2.3). Regarding the light component, light signals were

broken into two 15-seconds fragments, and beacon blight could switch between states with a

pseudorandom period P ∈ [0.5, 7.5[(refer to Subsection 4.2.2). The upper bound of the range

is 7.5s (=
15s

2
) to ensure that light signal fragments generate, at least, one complete on-off

sequence (i.e. the beacon is powered on, and then it is powered o� for the same amount of time at

least once). The lower bound of the range is 0.5s to ensure compatibility with all light witnesses

(based on the information we collected, w′light, the Android ambient light sensor, is the light

witness that reports the lowest sampling rate of ≈ 2Hz).

5.2 Optimal weight tuning

As addressed in Section 4.4, weight tuning is required for our experimental evaluation. We

started by dividing our dataset into two subsets: a training set, and a test set. Following the

Pareto principle, the training set accounted for 20% of the dataset (i.e. 16 location proofs), and

the test set accounted for the remaining (i.e. 64 location proofs). This way, we ensured the

test set was large enough to yield statistically meaningful results, and was representative of the

dataset as a whole (because all location proofs shared the same con�guration parameters).

In the �rst place, and to be able to estimate similarity between two audio signal represen-

tations, we need to tune weights w1 and w2 using the training set (refer to Subsection 4.4.2).

We crossed audio signal representations from all location proofs in the training set, ending with

256 combinations (16 × 16), from which 16 should be accepted (the number of legitimate lo-

cation proofs), and 240 should be rejected (the number of fabricated location proofs). In small

steps of 0.001, we varied w1 (recall that w2 = 1 − w1) to �nd the optimal combination that

would minimize FPR + FNR. Figure 5.2 plots the sum as a function of w1. The local min-

ima is at w1 = 0.661, which means that 〈w1, w2〉 = 〈0.661, 0.339〉 o�ers the best success rate

(FPR = 33.33% and FNR = 37.50%). Replacing w1 and w2 in Formula 4.3, the audio signal

representations similarity estimate is given by Formula 5.1

0.661× corraudio 1 + 0.339× corraudio 2 (5.1)

Then, we tuned weights w3 and w4 to be able to estimate the �nal similarity (refer to Sub-

section 4.4.3), that would determine if a location proof is either accepted or rejected. Following

the same approach, we crossed audio and light signals from all location proofs in the training set,

and varied w3 (recall that w4 = 1 − w3) to �nd the optimal combination that would minimize

57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 w
1

70

75

80

85

90

95

100

 F
P

R
 +

 F
N

R

 w
1
 =

0.
66

1

Figure 5.2: Optimal value of w1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 w
3

0

20

40

60

80

 F
P

R
 +

 F
N

R

 w
3
 =

0.
43

6

Figure 5.3: Optimal value of w3.

FPR+FNR. Figure 5.3 plots the sum as a function of w3. The local minima is at w3 = 0.436,

which means that 〈w3, w4〉 = 〈0.436, 0.564〉 o�ers the best success rate (FPR = 7.50% and

FNR = 6.25%). Replacing all weights in Formula 4.4, the �nal similarity estimate is given by

Formula 5.2

0.436× corrlight 1 + 0.564× (0.661× corraudio 1 + 0.339× corraudio 2) (5.2)

5.3 Approach e�ectiveness

Next, we validated our approach by testing our signal representation similarity estimate against

the test set. We crossed light and audio signal representations from all location proofs in the test

set, ending with 4096 combinations (64 × 64), from which 64 should be accepted (the number

of legitimate location proofs), and 4032 should be rejected (the number of fabricated location

proofs). In the end, the veri�er classi�ed location proofs correctly in 94.78% of the cases, with

58

rates FPR = 5.06% and FNR = 15.63%.

For demonstration purposes, consider the two light signal representations of a location proof

accepted by the veri�er. Figures 5.4a and 5.4b plot the normalized light intensity read by the

trusted witness, and the untrusted witness, respectively, upon the processing steps described

in Subsection 4.4.1. It becomes evident that the light signal is split into two fragments, with

the second fragment starting at around 15 s. At that moment, the rate at which blight changes

between states on and off decreases. However, Figure 5.4a presents sharp variations in light

intensity, with some noticeable spikes, while Figure 5.4b presents smoother variations. This

di�erence can be explained by the very di�erent sampling rates at which both witnesses work.

Based on the information we collected, wlight (the Arduino light sensor) works at ≈ 14 Hz, while

w′light (the Android ambient light sensor) works at ≈ 2 Hz. For that reason, the trusted witness

is aware of the commence of the second fragment, while the untrusted witness misses it, since it

occurs in-between samples. Notwithstanding, Figure 5.4c emphasizes how both representations

overlap, suggesting both witnesses were exposed to the same light conditions and, thus, engaged

in the same proof of location.

Additionally, consider the two audio signals representations of a location proof accepted by

the veri�er. Figures 5.5a and 5.5b plot the normalized sound amplitude read by the virtual

trusted witness, and the untrusted witness, respectively, upon the processing steps described in

Subsection 4.4.2. As described in Subsection 4.2.3, the signal is not split into multiple fragments,

because the song being played already creates a pattern in sound amplitude by itself. Although

both representations overlap, as emphasized in Figure 5.5c, there is a �clear� di�erence between

both representations. Figure 5.5a presents stronger and neater variations in sound amplitude,

while Figure 5.5b looks like a sketchy version of the trusted representation, with noticeable spikes

and periods of constant sound amplitude. Once again, this is a consequence of sampling the same

sound at di�erent sampling rates. Based on the information we collected, waudio (the virtual

trusted witness) works at ≈ 30 Hz, while w′audio (the Android microphone) works at ≈ 12 Hz.

The power spectra of both representations, depicted in Figure 5.5d, shows prominent peaks

in magnitude occurring around the same frequencies. This suggests that both witnesses were

capturing the same song being played by baudio, since each song has a di�erent time-frequency

structure.

In Section 5.2, we estimated the optimal values for weights w1 and w2, and concluded that

w1 > w2. In practical terms, and in the context of the training set, corraudio 1 (calculated from

data in Figure 5.5c) o�ers a better similarity estimate than corraudio 2 (calculated from data in

Figure 5.5d). Furthermore, we concluded that w4 > w3, meaning that the audio signal similarity

59

0 5 10 15 20 25 30

Time (s)

-1

0

1

N
or

m
al

iz
ed

in
te

ns
ity

(a) Light signal representation by wlight.

0 5 10 15 20 25 30

Time (s)

-2

0

2

N
or

m
al

iz
ed

in
te

ns
ity

(b) Light signal representation by w′
light.

0 5 10 15 20 25 30
Time (s)

-2

0

2

N
or

m
al

iz
ed

in
te

ns
ity

 wlight

 w' light

(c) Light signal representations overlapping.

Figure 5.4: Trusted and untrusted light signal representations comparison.

60

0 5 10 15 20 25 30

Time (s)

-2

0

2

4

N
or

m
al

iz
ed

am
pl

itu
de

(a) Audio signal representation by waudio.

0 5 10 15 20 25 30

Time (s)

-2

0

2

4

N
or

m
al

iz
ed

am
pl

itu
de

(b) Audio signal representation by w′
audio.

0 5 10 15 20 25 30
Time (s)

-2

0

2

4

N
or

m
al

iz
ed

am
pl

itu
de

 waudio

 w'audio

(c) Audio signal representations overlapping.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency (Hz)

0

2

4

6

M
ag

ni
tu

de

 waudio

 w'audio

(d) Audio signal representations spectra overlapping.

Figure 5.5: Trusted and untrusted audio signal representations comparison.

61

estimate is the decisive factor when accepting or rejecting a location proof. However, because

w3 6= 0, the light signal similarity estimate is a complementary information that helps the veri�er

by increasing the success rate.

5.4 Resistance to attacks

At a higher level, we can consider that SureSpace has successfully resisted an attack when it

rejects an illegitimate location proof. From another angle, we care about the number of false

positives, which represent a situation where a location proof fabricated by an attacker is accepted

when it should have been rejected. Thus, we consider the FPR as the only metric to evaluate

SureSpace's resistance to attacks (as de�ned in Section 5.1).

Based on the low-level capabilities of a SureSpace attacker (refer to Chapter 3), we consider

two attackers that try to prove their false presence by manipulating signals:

A1 Receives the signal from exactly one random beacon, but not from the others (since beacons

can have di�erent radius of action);

A2 Combines legitimate signals representations to derive a synthesized proof ambient from

them.

Since we used two beacons in our experiments, attacker A1 can either (1) receive the light

signal but not the audio signal, or (2) receive the audio signal but not the light signal. Based on

Formula 5.2, used to determine if a location proof should be accepted, we con�rm that signals

have similar weights (0.436 vs 0.564), so we expect location proofs to be rejected if an attacker

only provides the representation of one of the signals. To simulate attacker A1, we used the

4032 fabricated location proofs that should be rejected by the veri�er (refer to Section 5.3), and,

depending on the scenario, (1) or (2), we discarded one of the signal representations when sending

the location proof to the veri�er. In both scenarios, we obtained FPR = 0.00 %, meaning that

the veri�er successfully rejected all location proofs fabricated by the attacker.

In Section 5.3, we combined legitimate signal representations from di�erent location proofs

to fabricate new illegitimate location proofs. In fact, we were already simulating attacker A2,

and determined FPR = 5.06 %. We believe that the technique introduced in Subsection 4.2.1

contributed to increase SureSpace's resilience against this type of attacks. Because signals are

split into di�erent fragments, and each fragment has unique characteristics within the same

signal, the likelihood of broadcasting the same signal twice is low. For that reason, combining

signals from di�erent location proofs is not an e�ective attack against SureSpace, because the

veri�er is capable of telling they were generated for di�erent location proofs.

62

Chapter 6

Conclusion

Location certi�cation systems have been proposed to counterbalance the lack of trustworthy

mechanisms that provide a user's real location. Existing systems, like SureThing, resort to wit-

nesses that attest to the presence of a prover with varying degrees of trustworthiness. Meanwhile,

smart spaces have evolved to become an enabling environment for the exchange of information

between heterogeneous smart devices. When interconnected, they can be programmed to deliver

valuable context-aware services to the �nal user. However, interoperability issues between these

devices pose a problem to the orchestration capabilities of smart spaces. Orchestration systems,

like the DS2OS, focus on improving these capabilities by providing a framework to discover and

control these smart devices with relative ease, regardless of their speci�cs.

6.1 Achievements

In this work, we presented SureSpace, a location certi�cation system designed for smart environ-

ments. It leverages the capabilities of both SureThing, that de�nes procedures and techniques

for proofs of location, and DS2OS, that provides control over diverse smart devices for orches-

tration purposes. SureSpace relies on smart devices that broadcast precon�gured signals, and

witnesses that capture these signals, to certify location at a speci�c time and place, without

requiring the presence of other users. The system was evaluated in laboratory conditions with

inexpensive Arduino-compatible equipment. It was shown to be e�ective using light and audio

signals, with a success rate up to 94.78%. Moreover, we evaluated SureSpace's resistance to

attacks by simulating the capabilities of rogue provers, that try to prove their false presence.

63

6.2 Future work

In its current version, the success rate of SureSpace depends greatly on the weights used to esti-

mate similarity between signal representations. Our primary objective was to show the feasibility

of the idea, so we used a basic approach for optimal weight tuning that yielded good results. As

future work, we consider the possibility of implementing more complex and robust methods for

optimal weight tuning, that could possibly improve the e�ectiveness of SureSpace.

Also, we consider a new approach to verify location proofs. Currently, to assess a location

proof, the prover submits all the collected information to the veri�er, that quanti�es similarity

between di�erent representations of the same signal. Instead, we could follow a challenge-response

approach to simplify the process while preserving its success rate. In this scenario, the veri�er

challenges the prover about a speci�c location proof, by asking a question whose answer can

be deduced from the proof ambient. For example, and considering the light signal, we could

consider questions like �For how long was the beacon in the on state?�. Or even �Was the beacon

switching between states faster in the �rst fragment?�. This allows the participation in a proof

of location without disclosing the complete captured signal.

In SureSpace, provers are assigned identi�ers that do not change over time, becoming long-

term identi�ers. They can be used to distinguish between the creators of di�erent location proofs.

If a malicious party gains access to the record of past location proofs, sensitive information (like

time, location, and even device speci�cations � based on the set of beacons supported by the

prover device) can be disclosed. To prevent this, we suggest the implementation of an adapted

version of the privacy protection mechanism proposed in [BPB13]. Provers are still assigned long-

term identi�ers by a long-term CA. These identi�ers are not used in regular communications,

and must not be disseminated to the public. Instead, provers use short-term identi�ers, known

as pseudonyms, assigned by a pseudonym CA, that change regularly over time, preserving the

real identity. In some cases, however, resolving the pseudonym (i.e. retrieving the appropriate

long-term identi�er from it) should be possible (e.g. when the orchestrator wants to validate the

prover identity). To address this, the mechanism proposes a protocol that allows pseudonym

resolution under de�ned and controllable conditions. This mechanism can be added to a future

version of SureSpace.

Finally, SureSpace could be evaluated in an actual smart environment, and, later, in a smart

building, using available smart devices, like smart bulbs, and smart speakers. The adoption

of SureSpace would also require the development of an improved end-user mobile application.

Then, it could be used in real-world applications, like a check-in app for physical meetings.

64

References

[ACD+06] Claudio A. Ardagna, Marco Cremonini, Ernesto Damiani, Sabrina De Capitani

di Vimercati, and Pierangela Samarati. Supporting Location-Based Conditions

in Access Control Policies. In Proceedings of the 2006 ACM Symposium on Infor-

mation, Computer and Communications Security, ASIACCS '06, page 212�222,

New York, NY, USA, 2006. Association for Computing Machinery.

[AL19] Georg Aures and Christian Lübben. DDS vs. MQTT vs. VSL for IoT. Network,

1, 2019.

[ard] Ardulink 2. https://github.com/Ardulink/Ardulink-2. Accessed: 2020-12-21.

[BK11] Rahul C Basole and Jürgen Karla. On the evolution of mobile platform ecosystem

structure and strategy. Business & Information Systems Engineering, 3(5):313,

2011.

[BMBB14] AH Buckman, Martin May�eld, and Stephen BM Beck. What is a smart building?

Smart and Sustainable Built Environment, 3(2):92�109, 2014.

[BPB13] Norbert Biÿmeyer, Jonathan Petit, and Kpatcha M Bayarou. CoPRA: Condi-

tional pseudonym resolution algorithm in VANETs. In 2013 10th annual confer-

ence on wireless on-demand network systems and services (WONS), pages 9�16.

IEEE, 2013.

[CCCDP13] Eyüp S Canlar, Mauro Conti, Bruno Crispo, and Roberto Di Pietro. Crepuscolo:

A collusion resistant privacy preserving location veri�cation system. In 2013

International Conference on Risks and Security of Internet and Systems (CRiSIS),

pages 1�9. IEEE, 2013.

[CP20] João Costa and Miguel L. Pardal. A Witness Protection for a Privacy-Preserving

Location Proof System, 2020.

65

https://github.com/Ardulink/Ardulink-2

[CPTT18] Mario Collotta, Giovanni Pau, Timothy Talty, and Ozan K Tonguz. Bluetooth

5: A concrete step forward toward the iot. IEEE Communications Magazine,

56(7):125�131, 2018.

[FP18] João Ferreira and Miguel L. Pardal. Witness-based location proofs for mobile

devices. In 17th IEEE International Symposium on Network Computing and Ap-

plications (NCA), November 2018.

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of Things (IoT): A vision, architectural elements, and

future directions. Future generation computer systems, 29(7):1645�1660, 2013.

[grp] About gRPC | gRPC. https://www.grpc.io/about/. Accessed: 2020-12-23.

[HC16] Qiwei Han and Daegon Cho. Characterizing the technological evolution of smart-

phones: insights from performance benchmarks. In Proceedings of the 18th An-

nual International Conference on Electronic Commerce: e-Commerce in Smart

connected World, pages 1�8, 2016.

[HGK+18] Haosheng Huang, Georg Gartner, Jukka M Krisp, Martin Raubal, and Nico

Van de Weghe. Location based services: ongoing evolution and research agenda.

Journal of Location Based Services, 12(2):63�93, 2018.

[HHFM17] Daniel Hintze, Philipp Hintze, Rainhard D Findling, and René Mayrhofer. A

large-scale, long-term analysis of mobile device usage characteristics. Proceedings

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(2):1�

21, 2017.

[LLL13] Kaikai Liu, Xinxin Liu, and Xiaolin Li. Guoguo: Enabling �ne-grained indoor

localization via smartphone. In Proceeding of the 11th annual international con-

ference on Mobile systems, applications, and services, pages 235�248. ACM, 2013.

[mat] Products and Services - MATLAB & Simulink. https://www.mathworks.com/

products.html. Accessed: 2020-12-12.

[MNV03] Enzo Mumolo, Massimiliano Nolich, and Gianni Vercelli. Algorithms for acoustic

localization based on microphone array in service robotics. Robotics and Au-

tonomous systems, 42(2):69�88, 2003.

[Pah14] Marc-Oliver Pahl. Distributed Smart Space Orchestration. Dissertation, Technis-

che Universität München, München, 2014.

66

https://www.grpc.io/about/
https://www.mathworks.com/products.html
https://www.mathworks.com/products.html

[PD18] Anachack Phongtraychack and Darya Dolgaya. Evolution of mobile applications.

In MATEC Web of Conferences, volume 155, page 01027. EDP Sciences, 2018.

[PL19] Marc-Oliver Pahl and Stefan Liebald. A Modular Distributed IoT Service Dis-

covery. In 2019 IFIP/IEEE Symposium on Integrated Network and Service Man-

agement (IM), pages 448�454. IEEE, 2019.

[plu] Plus Codes. https://maps.google.com/pluscodes/. Accessed: 2020-08-02.

[PP+16] Keyur K Patel, Sunil M Patel, et al. Internet of Things - IOT: de�nition, char-

acteristics, architecture, enabling technologies, application & future challenges.

International journal of engineering science and computing, 6(5), 2016.

[RSA+13] Mirco Rossi, Julia Seiter, Oliver Amft, Seraina Buchmeier, and Gerhard Tröster.

RoomSense: an indoor positioning system for smartphones using active sound

probing. In Proceedings of the 4th Augmented Human International Conference,

pages 89�95. ACM, 2013.

[SW09] Stefan Saroiu and Alec Wolman. Enabling new mobile applications with location

proofs. In Proceedings of the 10th workshop on Mobile Computing Systems and

Applications, page 3. ACM, 2009.

[VBCMV+12] Mario Vega-Barbas, Diego Casado-Mansilla, Miguel A Valero, Diego López-de

Ipina, José Bravo, and Francisco Flórez. Smart spaces and smart objects in-

teroperability architecture (S3OiA). In 2012 Sixth International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing, pages 725�730.

IEEE, 2012.

[wha] what3words /// the simplest way to talk about location. https://what3words.

com/. Accessed: 2020-08-02.

[WYM18] Xuyu Wang, Zhitao Yu, and Shiwen Mao. DeepML: Deep LSTM for indoor local-

ization with smartphone magnetic and light sensors. In 2018 IEEE International

Conference on Communications (ICC), pages 1�6. IEEE, 2018.

[ZC11] Zhichao Zhu and Guohong Cao. APPLAUS: A privacy-preserving location proof

updating system for location-based services. In 2011 Proceedings IEEE INFO-

COM, pages 1889�1897. IEEE, 2011.

67

https://maps.google.com/pluscodes/
https://what3words.com/
https://what3words.com/

[ZGL19] Faheem Zafari, Athanasios Gkelias, and Kin K Leung. A survey of indoor local-

ization systems and technologies. IEEE Communications Surveys & Tutorials,

2019.

[ZP15] Faheem Zafari and Ioannis Papapanagiotou. Enhancing ibeacon based micro-

location with particle �ltering. In 2015 IEEE Global Communications Conference

(GLOBECOM), pages 1�7. IEEE, 2015.

68

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Objectives
	1.2 Outline

	2 Background & Related Work
	2.1 Internet of Things
	2.2 Location representation
	2.2.1 Open Location Code
	2.2.2 What3words

	2.3 Indoor localization overview
	2.4 Indoor localization techniques
	2.4.1 Received Signal Strength Indicator
	2.4.2 Angle of Arrival
	2.4.3 Time of Flight
	2.4.4 Time Difference of Arrival
	2.4.5 Fingerprinting
	2.4.6 Summary

	2.5 Indoor localization technologies
	2.5.1 Wi-Fi
	2.5.2 Bluetooth
	2.5.3 Radio Frequency Identification
	2.5.4 Visible light
	2.5.5 Acoustic signal
	2.5.6 Ultrasound
	2.5.7 Summary

	2.6 Indoor localization systems
	2.6.1 Acoustics based
	2.6.2 BLE based
	2.6.3 DeepML for indoor localization with smartphone magnetic and light sensors
	2.6.4 RoomSense
	2.6.5 Summary

	2.7 Proof of location systems
	2.7.1 Workflow overview
	2.7.2 APPLAUS
	2.7.3 Crepuscolo
	2.7.4 SureThing
	2.7.5 Summary

	2.8 Smart space management with DS2OS
	2.9 Summary

	3 SureSpace design
	3.1 Overview
	3.2 Architecture
	3.2.1 Prover
	3.2.2 Certificate Authority
	3.2.3 Orchestrator
	3.2.4 Knowledge Agent
	3.2.5 Adaptation Service
	3.2.6 Beacon and Witnesses
	3.2.7 Verifier

	3.3 Location certification process
	3.3.1 Pre-authorization stage
	3.3.2 Proof stage
	3.3.3 Verification stage

	3.4 Summary

	4 SureSpace implementation
	4.1 Development platform
	4.1.1 Cross-entity communication
	4.1.2 Entity identification

	4.2 Beaconing technique
	4.2.1 Technique description
	4.2.2 Light signal time fragmentation
	4.2.3 Audio signal time fragmentation

	4.3 Supported beacons
	4.3.1 Light beacon and witnesses
	4.3.2 Audio beacon and witnesses

	4.4 Verifier implementation
	4.4.1 Light signal representations similarity estimation
	4.4.2 Audio signal representations similarity estimation
	4.4.3 Combined signals similarity estimation

	4.5 Summary

	5 Evaluation
	5.1 Experimental setup
	5.2 Optimal weight tuning
	5.3 Approach effectiveness
	5.4 Resistance to attacks

	6 Conclusion
	6.1 Achievements
	6.2 Future work

	References

