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Abstract

This work focuses on the study of vibro-acoustic responses using the transmissibility concept with the
purpose of identifying vibro-acoustic sources. To do so, numerical methodologies developed by previous
authors are updated to obtain transmissibility functions in structural, acoustic and vibro-acoustic systems
with lower computational effort. Additionally, this work features experimental procedures to estimate
responses in acoustic and vibro-acoustic systems.

The numerical methodologies use the finite element method (FEM) (implemented in commercial
software ANSYS) to discretize the system. Then, the global matrices are imported to Matlab®, where
the transmissibility functions are estimated. Using the transmissibility concept, a Matlab® routine
is created to perform source localization in vibro-acoustic systems. The experimental procedures allow
evaluating the proximity to the numerical models, as well as determining how these models may be
updated.

In conclusion, it is intended that the developed methodologies and obtained results present a contri-
bution to the field of vibro-acoustic transmissibility, which is still relatively undeveloped.
Keywords: Vibro-Acoustics, Transmissibility Concept, Source Localization, Finite Element Method,
Computational Effort

1 Introduction
Despite recent advances in the area of vibro-acoustic
transmissibility, this concept remains quite undevel-
oped [1]. In this work, one intends to study not
only steady state responses and transmissibility func-
tions in the frequency domain, but also the use of the
transmissibility concept and its properties to conduct
source localization in vibro-acoustic systems.

The concept of transmissibility in single degree
of freedom (SDOF) systems is well known and has
been widely spread in literature concerning vibration.
However, the concept of multiple degree of freedom
(MDOF) transmissibility is more recent. The con-
cept of MDOF transmissibility in mass-spring sys-
tems is described in [2]. Transmissibility in mass-
spring MDOF systems is also present in [3], in which
the source identification problem is also discussed.
This concept is then generalized to continuous struc-
tural systems, as discussed in [4], in which are pro-
posed both numerical and experimental methods to
evaluate transmissibility in a simply supported beam.
More recently, the concept of MDOF transmissibility

was applied to acoustic systems. In [5], the trans-
missibility concept is applied to acoustic systems by
using it, not only to estimate pressure responses in
acoustic domains, but also to perform the localiza-
tion of acoustic sources in simplified aircraft models.
This is done by using a combined approach of the
FEM (with ANSYS APDL [6]) and Matlab® to esti-
mate transmissibility functions, a methodologie that
is used in the present work.

The concept of vibro-acoustic transmissibility as
well as its importance in operational transfer path
analysis (OTPA) is introduced in [7], and in [1] is de-
veloped a methodology for obtaining transmissibility
functions in coupled vibro-acoustic systems with fluid
structure interactions (FSI).

In the present work, the author takes on the
methodologies developed in [1, 5], and updates them
to evaluate vibro-acoustic transmissibility with lower
computational effort. Therefore, the main objectives
of this work are:

• Use transmissibility functions to estimate pres-
sures (unknown pressures) in a vibro-acoustic
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system for a given measured displacement
(known displacements) in the structure. This
is useful since some of these pressures are in
places of difficult access;

• Reduce the computational effort required to
extract the transmissibility functions in Mat-
lab®;

• Evaluate the potential of the concept of vibro-
acoustic transmissibility to perform source lo-
calization in coupled vibro-acoustic systems.

The numerical approach is based on the FEM,
implemented in ANSYS APDL. The models are de-
veloped in ANSYS, and the globally assembled matri-
ces are imported to Matlab®, where the transmissi-
bility matrices are computed. The source localization
algorithm is also implemented in Matlab® using the
estimated transmissibility functions. The experimen-
tal model is based on the procedures developed in [8],
and is used to obtain acoustic and vibro-acoustic re-
sponses in a wooden cavity. The experimental results
are compared with the numerical ones to assess the
amount of further updating required in these models.

Throughout the following sections, the most rele-
vant theoretical fundamentals are presented, the im-
plemented methodologies are briefly described, and
the results are presented along with a critical discus-
sion. To conclude, some final remarks and conclu-
sions are presented based on the results obtained.

2 Theoretical Background
This section contains the fundamentals concerning vi-
bration, acoustics and vibro-acoustics, including the
theory related to the transmissibility concept.

2.1 Vibration in MDOF systems
The general differential equation for vibration in
steady-state MDOF systems may be written for a dis-
placement {x(t)}, and an applied load {f(t)}, in the
time domain, as

[M ]{ẍ(t)}+ [C]{ẋ(t)}+ [K]{x(t)} = {f(t)} (2.1)

or, in the frequency domain, considering harmonic
displacements and loads, as

(−ω2[M ] + iω[C] + [K]){X} = {F} (2.2)

where [K], [C] and [M ] are the stiffness, damping,
and mass matrices respectively, {X} is the vector
of complex displacement amplitudes, and {F} is the
vector of complex load amplitudes. The dynamic
stiffness matrix [Z] is given by −ω2[M ]+ iω[C]+[K],
and its inverse is the receptance matrix [H].

2.2 Acoustic Waves
Combining the equations of mass and momentum
conservation (see [9]), and considering that for plane

waves p = c2ρ, one can obtain the 3D wave equation:

1

c2
∂2p

∂t2
−∇2p = 0 (2.3)

where c is the sound speed and p is the pressure of
the disturbance.

A dynamic acoustic system in steady state may
also be modelled, in the frequency domain, by a dif-
ferential equation [5]. This equation is similar to
equation 2.2 and may be expressed as

(−ω2[M ] + iω[C] + [K]){P} = {Q} (2.4)

where [M ], [C] and [K] are the acoustic mass, damp-
ing, and stiffness matrices respectively, {P} is the
vector of complex pressure amplitudes, and {Q} is
the vector of volume accelerations. Similarly to the
vibration problem, one can define the dynamic stiff-
ness matrix and the receptance matrix for an acoustic
system.

2.3 The Transmissibility Concept
The transmissibility concept may be established in
solid structures by defining a vector of harmonically
applied loads FA at coordinates A, a vector of un-
known response amplitudesXU at coordinates U , and
a vector of known response amplitudes XK at coor-
dinates K. Thus, one may write, in terms of the
receptance matrix [2]:

XU = HUAFA (2.5)

XK = HKAFA (2.6)

then, eliminating FA from the previous equation, one
obtains

XU = HUAH
+
KAXK (2.7)

and the displacement transmissibility matrix can be
defined as follows.

T
(A)
UK = HUAH

+
KA (2.8)

For evaluating transmissibility of forces in solid
structures, one has to consider the vectors of re-
sponses XK and XU , which correspond to the load
vectors FK and FU respectively, along with XC , the
responses in the remaining coordinates. By doing so,
one can write the following expression.XK

XU

XC

 =

HKK HKU

HUK HUU

HCK HCU

{FK

FU

}
(2.9)

Assuming that the responses at the reaction coordi-
nates XU are zero, one can obtain the transmissibility
matrix [2].

FU = −H−1UUHUKFK ⇒ TUK = −H−1UUHUK (2.10)
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As an alternative, one may also use the dynamic
stiffness matrix to determine the transmissibility ma-
trix. Assuming the same sets of coordinates and vec-
tors as in the previous case, but adding a vector of
fictitious loads FC , the following equation is obtained.FK

FC

FU

 =

ZKK ZKC ZKU

ZCK ZCC ZCU

ZUK ZUC ZUU

XK

XC

XU


(2.11)

Then, considering XU = 0 and defining

XE =

{
XK

XC

}
, FE =

{
FK

FC

}
(2.12)

one can obtain the following equations [2].

FU = ZUEZ
−1
EEFE ⇒ TUE = ZUEZ

−1
EE (2.13)

The concept of transmissibility may be general-
ized to the field of acoustics. As before, by defining
U as the set of unknown pressures, K as the set of
known pressures, and C as the set of the remain-
ing coordinates, one can write, as described in [5], in
terms of the receptance matrix [H]:PK

PU

PC

 =

HKK HKU

HUK HUU

HCK HCU

{QK

QU

}
(2.14)

and assuming no loads at coordinates C, by expand-
ing the system of two equations, considering QK to be
zero and solving for QU , one can obtain the following
equation for an imposed pressure at set U [5].

PK = HKUH
−1
UUPU ⇒ TKU = HKUH

−1
UU (2.15)

In this work, the concept of vibro-acoustic trans-
missibility is related to coupled vibro-acoustic sys-
tems. The finite element (FE) models for the un-
constrained degrees of freedom (DOFs) concerning
structural and acoustic systems, may be defined in
terms of the global assembled matrices by equation
2.2 and 2.4, respectively. To obtain the coupled
FE model, the coupling terms [KC{p}] (force load-
ing of the acoustic pressure on the elastic shell) and
−ω2[MC ]{u} (continuity between normal shell veloc-
ity and normal fluid velocity is ensured by adding this
term) must be added to the structural and acous-
tic FE models, respectively. Then, the coupled FE
model for vibro-acoustic systems may be defined as
[10],

([
KS KC

0 KA

]
+ iω

[
CS 0
0 CA

]
− ω2

[
MS 0
−ρ0KT

C MA

]){
u
p

}
=

{
FS

FA

}
(2.16)

where the subscripts A, S and C correspond to the
acoustic terms, structural terms, and coupling terms
respectively.

Considering U and K, the sets of coordinates
where the imposition is set and where the responses
are measured respectively, the vibro-acoustic trans-
missibility may be defined in terms of the receptance
matrix by writing the following equation [1].{

uU
PK

}
=

[
HUU HUK

HKU HKK

]{
FU

FK

}
(2.17)

Then, defining FU as a function of uU , and assuming
that FK is zero, one obtains the equation below.

PK = HKUH
−1
UUuU ⇒ TSF

KU = HKUH
−1
UU (2.18)

This case concerns a structural displacement imposi-
tion that leads to an acoustic pressure response. How-
ever, the case where an acoustic pressure imposition
leads to a structural response may also occur. If so,
the procedure to obtain the transmissibility matrix is
the same and, therefore, one can write the following
expression [1].

uK = HKUH
−1
UUPU ⇒ TFS

KU = HKUH
−1
UU (2.19)

3 Methodology
Here, the numerical and experimental methodologies
used to model and obtain the results of the anal-
ysed systems are described. These systems include
a mass-spring system, an acoustic tube, an acoustic
tube with a plate in one end with FSI, an acoustic
cavity, a vibro-acoustic cavity, and a simplified air-
craft interior.

3.1 Numerical Models
3.1.1 Mass-spring system

This system is that presented in [2], and is used
to evaluate force transmissibility. The goal is to ob-
tain the transmissibility matrix between the fixed
nodes and the nodes at which the loads are applied.
The FE model is created in Matlab®, as described
in [1], by introducing the global matrices and force
vectors as an input. Then, a cycle is created to ex-
tract [Z] and [H] over a previously defined frequency
range. The submatrices of [Z] and [H] are also cre-
ated in the cycle (according to equations 2.10 and
2.13), with respect to the coordinates between which
the transmissibility functions are to be determined.
Finally, the computed transmissibilities are compared
with those presented in [2], for verification purposes.

3.1.2 Acoustic and Vibro-acoustic Tube
Here, one intends to obtain the pressure distri-

bution inside an acoustic tube, and compare it with
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the analytical solutions available. Then, it is intended
to conduct transmissibility analyses in both acoustic
and vibro-acoustic tubes. The FE models concerning
these tubes are implemented in ANSYS APDL, and
are similar to the ones modelled in [1]. To do so, one
begins by creating a square with a 0.1 m side. Then,
a volume is created by extruding this square along
4 m in the normal direction. The mesh is then cre-
ated using FLUID30 elements, and a 1 Pa pressure
is imposed at one of the ends. The following mate-
rial properties are considered for the acoustic fluid:
the sound speed is 344 m/s; the mass density is 1.21
kg/m3, and the boundary admittance is 0. Modal
and harmonic analyses are conducted, and the pres-
sure distribution inside the tube is compared with an-
alytical solutions (see [11]) for verification purposes.

The global matrices are then imported to Mat-
lab® to estimate unknown pressure responses using
the transmissibility concept (equation 2.15), and a
methodology similar to the one described in 3.1.1.

The vibro-acoustic tube has the same geometry
and material properties as the acoustic tube. After
meshing the acoustic tube, one has to insert a plate
(SHELL181 elements) at one of the ends, and turn
the elements that are touching the plate to FSI ele-
ments, as described in [12]. The plate is considered to
have a longitudinal modulus of elasticity of 210 GPa,
a mass density of 7800 kg/m3, a Poisson ratio of 0.3,
and a 1 mm thickness. Then, a 1 N load is applied at
the center of the plate (along the normal direction to
the plate), and the displacement and rotation DOFs
are fixed along the plate’s edges. Lastly, the modal
and harmonic analyses are conducted, and the com-
puted transmissibilities are compared with the ones
obtained with Matlab® using the transmissibility
concept (using the methodology described in 3.1.1).
In this case, equation 2.18 must be modified, as de-
scribed later in section 3.3.

3.1.3 Acoustic and Vibro-acoustic Cavities
The main objective of these analyses is to nu-

merically obtain the pressure responses at some co-
ordinates, and to compare them with experimental
results. In the case of the vibro-acoustic cavity, an
algorithm is implemented to perform source identifi-
cation. The models of the cavities are also created
in ANSYS APDL. The acoustic cavity is modelled
as a 2D domain, and the vibro-acoustic cavity as a
3D system. To create the geometry of these mod-
els, one has to create several keypoints at the coordi-
nates of the cavity’s vertices. Then, lines are created
to connect all the keypoints, and an area is created
within those lines. In the case of the vibro-acoustic
cavity, the area is extruded along the normal direc-

tion to the intended height (0.1 m). The meshes are
then created with 0.025 m FLUID29 elements for the
acoustic cavity, and 0.05 m FLUID30 elements for
the vibro-acoustic cavity. The shell is inserted in the
vibro-acoustic cavity (SHELL181 elements), and the
displacement and rotation DOFs are fixed around the
edges of the plate. The elements touching the shell
are made FSI elements. The acoustic fluid has the
same properties as the fluid in the acoustic tube, and
the plate has a 205 GPa longitudinal modulus of elas-
ticity, a mass density of 7800 kg/m3, a thickness of
1 mm, and a Poisson ratio of 0.3. The unitary pres-
sures are then imposed in the 2D acoustic cavity, and
the 1 N harmonic load is applied to the plate (along
the normal direction to the plate) in the 3D vibro-
acoustic cavity. A harmonic and a modal analyses are
conducted, and the results of the 2D cavity are com-
pared with the results obtained experimentally. The
results of the vibro-acoustic harmonic analysis are
compared with the ones obtained using the transmis-
sibility concept in order to perform the identification
of sources. The Matlab® routines used to obtain
transmissibility functions are similar to the ones de-
scribed in 3.1.1. The methodology used in the source
localization problem is described in section 3.3. The
dimensions and specifications of both these cavities
are presented in 3.2.

3.1.4 Simplified Aircraft Interior
In this example, it is intended to estimate un-

known pressures at certain locations using both the
FEM and the transmissibility concept, for a given
imposed displacement on the elastic shell. It is also
intended to use the transmissibility concept to per-
form source identification. To create this model, a
half circle with a radius of 2.5 m is defined and ex-
truded along the normal direction for 3 m, making a
half cylinder with a 2.5 m radius and 3 m long.

Figure 3.1: Model of the aircraft interior.

Six chairs are then modelled with a 1.25 m height, a
0.1 m thickness on the back, legs and sit. The height
of the sit is 0.6 m, and the length and width are 0.4
m and 0.5 m respectively. The chairs have a longi-
tudinal space of 0.45 m along them, and their side
distance is 1 m. There are two rows of 3 chairs in
each side of the cabin. A schematic of the aircraft’s
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interior geometry is presented in figure 3.1.
Then, the mesh is created using FLUID30 ele-

ments with a maximum length of 0.25 m. A shell
is inserted around the entire fluid domain (1 source
case), or only on the two vertical walls (2 sources
case), and the elements touching the plates are turned
to FSI. In this case, all the boundaries are consid-
ered to be reflective, and the loads are applied on the
walls/floor along the direction normal to those sur-
faces. The loads are applied at coordinates (0;0;1.5)
m (case with 1 source), and at coordinates (0;1.35;3)
m and (0;1.35;0) m (case with 2 sources). The coor-
dinates of these points are related to the coordinate
axes in figure 3.1. The material properties of the
acoustic fluid are the same as in the previous cases,
and the shell has a longitudinal modulus of elastic-
ity of 205 GPa, a density of 7800 kg/m3, a Poisson
ratio of 0.3, and a thickness of 2 mm. Finally, the
displacement and rotation DOFs of the elastic shell
are fixed around the edges, and the harmonic analy-
ses are conducted. The obtained pressure responses
are compared with those obtained in Matlab® us-
ing the transmissibility concept. These pressure re-
sponses are also used in the vibro-acoustic source lo-
calization routine.

3.2 Experimental Model and Proce-
dure

The experimental setup consists of a wooden box
(the same as in [8]) with inner dimensions of 700
mm by 500 mm and 45o by 100 mm corners.
The box is covered with two acrylic plates with
thicknesses of 5 mm and 6 mm. In the acous-
tic setup, the microphones and speakers are placed
in holes, at specific coordinates (see table 3.1). A
picture of the wooden cavity along with the con-
sidered coordinate axes is presented in figure 3.2.

Figure 3.2: Wooden box cavity [8]
.

x (mm) y (mm)
S1 250 500
S2 700 350
K1 0 250
K2 0 350
U1 350 0
U2 500 0

Table 3.1: Coordinates of the points of interest in the
acoustic cavity [8].

For the vibro-acoustic setup, a steel plate is inserted
along x = 600 mm, and an excitation is created us-
ing a shaker at point P of coordinates (x, y, z) =
(600, 350, 50) mm.

The experimental procedure intends to obtain
the pressure responses in the cavity over a range of
frequencies. In the acoustic experimental setup, a
signal is generated in LabVIEW and conveyed to the
speakers. The pressure responses are then measured
by the microphones and processed in LabVIEW. In
the vibro-acoustic setup, an excitation is introduced
on the plate (point P ), and the pressure responses
are measured by the microphones and imported to
LabVIEW. The results obtained in these experiments
are then compared to the numerical results. The dif-
ferences between numerical and experimental results
dictate how much further updating is needed in the
numerical models.

The vibro-acoustic FE model used to analyse
the experimental cavity differs from that described
in 3.1.3. This model has an higher mesh refinement
(0.01 meters of maximum element size), and the plate
is only fixed on the edges that are in contact with the
wooden box.

3.3 Vibro-Acoustic Source Localiza-
tion Algorithm

The identification of vibro-acoustic sources is imple-
mented in Matlab® software. A measurement of an
arbitrary pressure response in the frequency domain
is imported from ANSYS and compared, in Mat-
lab®, with the response obtained at the same node
using the transmissibility concept for every possible
source. The correct source is the one that minimizes
the error function given by

εV A =

freq∑
i=1

[(Pmeas)i − (Pcalc)i]
2 (3.1)

which is a summation along every frequency sub-
step, where Pmeas is the pressure obtained in ANSYS,
Pcalc is the pressure obtained using the transmissibil-
ity concept, and freq is the number of the highest
frequency analysed in a given frequency range. The
estimated pressure Pcalc may be expressed as

Pcalc = TKUuU = HT
UKH

−1
UUuU (3.2)

where uU is the displacement estimation. The dis-
placement estimation matches the sum of the entries
in one line of the HUU matrix. For example, if one
has two sources, the sum of the first line of the ma-
trix is the displacement at the first source, and the
sum of the second line, the displacement at the sec-
ond source. Yet, this is only valid when there is no
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cross-talk. One should also notice that the submatri-
ces of [H] are manipulated in equation 3.2, present-
ing, therefore, differences between the ones derived
in equation 2.18. The way the global matrices are
retrieved by ANSYS motivates this manipulation.

3.4 Matlab® Code Optimization
The transmissibility analysis and the problem of
source localization usually do not require the entire
receptance matrix, but only a few entries. As a con-
sequence, obtaining [H] using the entire inverse of
[Z], is quite time consuming and retrieves a consider-
able amount of unnecessary data. This process may
be optimized by obtaining only the necessary entries
of [H] using the adjugate matrix and the following
equation.

[A]−1 = (det[A])−1 · [adj[A]] (3.3)

This is implemented in Matlab® by creating several
matrices (one per required entry), and by removing
row j and column i of these new matrices. Then, the
determinant of these matrices is computed and mul-
tiplied by -1 when i+ j is an odd number, concluding
the derivation of the entries of the adjugate matrix.
Finally, one divides these values by the determinant
of [Z], and obtains the required entries of [H].

One problem that arises with this method, is
that overflow frequently occurs when computing the
determinants. This might be solved by multiplying
the matrices by a constant and, therefore, change the
value of the determinant to fit Matlab®’s precision.
However, this method is highly unstable for larger
matrices, and in such cases, it may be difficult to im-
plement.

One alternative is to use the logarithm of the
determinants. Using LU factorization, the logarithm
of the determinant is computed by the summation of
the logarithm of every term in the diagonal of [U ]
(upper triangular matrix). One problem that arises
with this method, is that it loses the signal of the
determinant. However, the signal may be tracked if
one determines the signal of the determinants of [U ]
and of the permutation matrix [P ]. The entry of [H]
is then computed using

Hij = 10log(|det[A]|)−log(|det[Z]|) (3.4)

where [A] is the submatrix of [Z] obtained by elimi-
nating row j and column i from [Z].

4 Results and Discussion
In this section are presented the results obtained from
applying the methodologies described earlier.

4.1 Mass-spring system
The system in analysis is the MDOF mass-
spring system presented in figure 4.1. The mass
and stiffness parameters used in the construction
of the global matrices are the same as in [2].

Figure 4.1: MDOF mass-spring system [2].

The transmissibility matrix that relates the coordi-
nates of the supports with the coordinates where the
forces are applied is obtained by implementing the
methodology described in 3.1.1. The results obtained
for the first entry of the transmissibility matrix (T15)
are compared with the ones in [2] (figure 4.2).

Figure 4.2: Comparison between the obtained results
(on the top) and the results in [2] (on the bottom).

It can be observed that the results are similar.
However, there are some differences in the amplitudes
of the peaks. Such differences are related to the num-
ber of frequency substeps considered. In this case,
unit substeps are considered. If one used a larger
number of substeps, the amplitude differences would
be minimized. But the similarities between both re-
sults prove that the implemented algorithm is work-
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ing properly, and may be extended to the further
analyses.

4.2 Acoustic and Vibro-Acoustic
Tube

After creating the acoustic tube as described in 3.1.2,
a harmonic analysis is created for a frequency of 200
Hz, and the pressure distribution along the length of
the tube is obtained. Two cases are considered: the
first is of a tube with an imposed pressure of 1 Pa
at one end, and a reflective boundary at the other
end; the second case has the same imposed pressure,
but an anechoic boundary at the second end of the
tube. The results obtained along with the analyt-
ical solution are presented in figure 4.3, and show
that the tube with the reflective boundary requires a
higher mesh refinement than the tube with an ane-
choic boundary. For the tube with the anechoic end,
the solution quickly converged to the analytical one,
but, in opposition, the solution of the reflective tube,
when a mesh of 100 FEs is created (43 elements per
wavelength), is still far from the analytical solution.
Nevertheless, the results show that the solution is
converging to the analytical one with the increasing
refinement, proving that the FE model is producing
proper results.

Figure 4.3: Analytical and numerical results for a re-
flective (top) and an anechoic (bottom) end.

A new FE model is created by dividing a tube in 100
section of 4 elements, creating a centerline along the
tube and yielding a total of 909 DOFs and, there-
fore, 909×909 global matrices. Then, a transmis-
sibility analysis is conducted in Matlab®, and the
transmissibility function that relates the node where

the pressure is measured (at the mid-section of the
tube, along the centerline) with the node where the
pressure is imposed (at one end, at the center node) is
calculated over a 0 to 500 Hz frequency interval. This
is done using the full inverse of [Z] and, alternatively,
using the adjugate of [Z] to obtain only the neces-
sary entries of [H]. The elapsed and CPU times are
compared in table 4.1, proving that using only the
necessary entries of [H] requires less computational
effort.

Method Elapsed Time (s) CPU Time (s)

[inv[Z]]
1 424.151 423.933
2 428.396 427.895
3 426.517 426.039

[adj[Z]]
1 3.688 3.759
2 3.679 3.713
3 3.687 3.713

Table 4.1: CPU and elapsed time for an acoustic tube
scalar transmissibility analysis.

The vibro-acoustic tube is discretized with 24 el-
ements per wavelength in the longitudinal direction
(as in [1]). This model keeps the centerline previously
described to introduce the harmonic load at the cen-
ter of the plate located at the end, and to measure the
pressure response at the mid-section. The transmis-
sibility function obtained between these two DOFs is
presented in figure 4.4, and shows that the results ob-
tained from the FE model are the same as the results
obtained by using vibro-acoustic transmissibility in
Matlab®.

Figure 4.4: Comparison between the results obtained
using Matlab®’s transmissibility analysis, and those
obtained using the FEM for a vibro-acoustic tube.
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Method Elapsed Time (s) CPU Time (s)

[inv[Z]]
1 48.394 47.564
2 43.390 43.399
3 44.061 44.008

[adj[Z]]
1 2.072 2.090
2 2.088 2.153
3 2.065 2.121

Table 4.2: Simulation times for the transmissibility
analysis of a vibro-acoustic tube.

The FE model created has a total of 501 DOFs, and
the simulation times required to conduct the trans-
missibility analysis are presented in table 4.2. Once
again, extracting only the necessary entries of [H]
proves to be more efficient than using the entire in-
verse of [Z].

4.3 Acoustic and vibro-acoustic cavi-
ties

For the acoustic cavity, a sound signal comprised be-
tween 200 and 600 Hz is launched trough the speaker
located at S2, and the several pressure responses are
measured by the microphones at K1, K2, U1 and
U2.

The results presented in figure 4.6 show that not
all the resonances and anti-resonances that appear
in the numerical model (see figure 4.5) are present
in the experimental results. In addition, there are
deviations in frequency between the numerical and
experimental resonance peaks. These differences are
due to some approximations in the numerical model,
such as the fully reflective boundaries, and the 2D
model approximation. However, the presence of back-
ground noise, interference between electrical wiring
and equipment, and non-optimal sensor placement
may also be responsible for some of these differences.
Nevertheless, the numerical and experimental results
share some of the resonances and anti-resonances,
proving that the behaviour of the numerical model
may be updated to approximate the results.

Figure 4.5: Geometry of the modelled acoustic cavity.

Figure 4.6: Comparison between the numerical and
experimental results of the acoustic cavity.

Figure 4.7: Geometry of the modelled vibro-acoustic
cavity (cut at Z=50mm).

The numerical model of the vibro-acoustic cavity is
used to obtain pressure responses at specific coordi-
nates of the system. These pressure measurements
(at K2) are then imported to the vibro-acoustic
source localization routine. Two cases are consid-
ered. First, a case with only one load (source) ap-
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plied at point P (cordinates (0;350;50) mm in figure
4.7) (node 259), and a second case with one load at
point P and another at the point of the plate with co-
ordinates (0;100,50) mm (with respect to the axes in
figure 4.7) (combination 13). The results are obtained
with several different levels of added white noise to
evaluate the solution robustness.

It can be observed in figure 4.8 that with only
one source, despite becoming less prominent with the
increasing noise, the minimum remains in the correct
node and, as a consequence, the correct source is al-
ways identified for the several levels of noise. In the
case with two sources, the minimum also becomes less
prominent with the increasing noise but, in this case,
for a 5% noise addition, the program is no longer able
to identify the correct source combination. Neverthe-
less, it identified the correct sources with lower levels
of noise.

Figure 4.8: Results obtained with the vibro-acoustic
source localization routine for 1 (top) and 2 (bottom)
sources.

In the vibro-acoustic experimental setup, a
swept sin wave from 100 to 700 Hz is applied to the
plate and the pressure responses are measured at K1,
K2, U1 and U2. The results are obtained in Lab-
VIEW between 200 and 600 Hz. These results are
presented in figure 4.9 and show, once more, that
there are significant differences between the numer-
ical and experimental results. Some of the reasons
for these differences were previously mentioned in the
analysis of the acoustic cavity. However, in this case,
the differences are also due to the vibrations in the
wooden box, and to the boundary conditions applied
on the steel plate. Since the plate is considered to
be fixed on the edges that touch the wooden boards,

this boundary is more restrictive than the experimen-
tal one (plate fixed by two bolts in each side). This
means that, between the numerical and experimental
model, there will also be differences in the plate’s vi-
bration behaviour, causing differences in the results.

Figure 4.9: Comparison between the numerical and
experimental results of the vibro-acoustic cavity.

4.4 Simplified Aircraft Interior Anal-
ysis

The main objective of this analysis is to run the vibro-
acoustic source localization algorithm in a simplified
model of an aircraft.

As the number of possible sources of displace-
ment is quite high in this example, only 123 sources
(including the correct one) are studied. Also, to de-
crease the simulation time, the source identification
algorithm is only applied to a parcel of the frequency
range. The analysed frequencies are between 35 and
39 Hz, and no noise is added to the pressure mea-
surement obtained at the coordinates (0.75;1.25;1.5)
m (see axes in figure 3.1). The results obtained are
presented in figure 4.10, and, once again, the min-
imum occurs in the correct source location, proving
that the Matlab® routine is able to accurately iden-
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tify the displacement source.

Figure 4.10: Results obtained with the source local-
ization algorithm for the simplified aircraft model.

Usually, the results obtained using the transmissibil-
ity concept, match the ones obtained from the FE
model. However, this only happens when there is no
cross-talk. In the next example, two harmonic loads
are applied, one in each vertical wall, as described in
3.1.4. Then, a pressure response is measured at coor-
dinates (0;1.25;1.5) m, and compared with the result
obtained using the transmissibility concept.

Figure 4.11: Comparison between the results ob-
tained using ANSYS harmonic analysis and using
multi-point transmissibility analysis in Matlab®.

As it can be observed in figure 4.11, there are dif-
ferences between the results produced with the two
models. These differences only appear around a few
frequency intervals, and are related to the existence
of cross-talk between the two sources.

5 Conclusions
This work ”proves” that the transmissibility concept
may be applied to the estimation of pressure re-
sponses in vibro-acoustic systems, and to the iden-
tification of vibro-acoustic sources. However, the
vibro-acoustic source localization routine continues
to demand large simulation times for larger models,
even with the advances presented in terms of reducing
the computational effort. Nevertheless, the simplic-
ity of the proposed solutions make this concept quite
promising for OTPA.

Future developments in this area may include the
study of cross-talk cancellation, further updating in

the numerical and experimental models, and devel-
oping methodologies to study transmissibility func-
tions using a combined approach between Statistical
Energy Analysis and the MDOF transmissibility con-
cept.
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