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Abstract

Since the beginning of Ethereum, started the development of tools to aimed developers to not
introduce bugs with static analysis tools that show warnings to developers if they introduce some
bugs. However, vulnerabilities exist as shown by TheDAO attack, a very famous attack that stole a lot
of Ether. To try to reduce the probability of new future attacks of happening we introduce Conkas,
a modular static analysis tool that use symbolic execution to find traces that lead to vulnerabilities
and uses an intermediate representation (IR). The users can interact with Conkas via Command-Line
Interface (CLI) and the output will be the result of the analysis. Conkas supports Ethereum bytecode
or contracts written in Solidity and is compatible with all version of Solidity, but the analysis is
done at the bytecode level. Conkas support already 5 modules that detect vulnerabilities related to
DASP10 categories, being Arithmetic, Front-Running, Reentrancy, Time Manipulation and Unchecked
Low-Level Calls. Conkas is also easy to extend, meaning that you can add your custom modules to
detect other types of vulnerabilities. We analyse Conkas with SmartBugs and our tool has the best
precision, with 54%.
Keywords: Ethereum Virtual Machine, Blockchain, Smart Contracts, Static Analysis, Symbolic
Execution

1. Introduction
Nowadays the technology revolution is constant in
such a way that is possible to obtain solutions that
some years ago are unthinkable. Blockchain exists
since some years ago and is an innovative tech-
nology. Later, in 2009, Satoshi Nakamoto intro-
duces Bitcoin [16], a crypto-coin that not rely on
third-party trust. Thanks to Blockchain, Bitcoin
gain a lot of popularity because it ensures con-
sensus with all participants in the network. This
distributed consensus is ensured with an algorithm
called Proof-of-Work (PoW) that also make a Sybil-
attack1 unworkable [4]. Ethereum allows any user
to create a program, called Smart Contract, and run
in this distributed network. Ethereum also has a
cryptocurrency called Ether (Eth), and those Smart
Contracts can send and receive Ether between each
other via transactions. Once a Smart Contract is
deployed, the owner of that contract can no longer
make updates to fix it if someone finds a vulnera-
bility.

Smart Contracts are programs that are executed

1A Sybil-attack consists of a participant playing several
identities simultaneous, and the network can have more false
identities than real identities, allowing the participant to take
control of the network.

by nodes or peers in the network (blockchain). Nick
Szabo describe a Smart Contract as a vending ma-
chine that shares exactly the same properties as a
Smart Contract in blockchain [21]. A vending ma-
chine has hard-coded some rules that define the be-
haviour in certain conditions and execute some ac-
tions based on those conditions. Smart Contracts
can implement a series of applications like finan-
cial, insure, etc. Ethereum was the first platform in
blockchain to implement a virtual machine Turing-
Complete [24]. These contracts are written in a
language like Solidity [3], the most used nowadays,
and are compiled to Ethereum bytecode that will
be executed at Ethereum Virtual Machine (EVM).

Smart Contracts are far from vulnerabilities free
and some of it was exploited in the past, leading to
a loss in terms of money, like TheDAO attack [5]. In
Ferreira et al. [8] was created a manually annotated
dataset with vulnerable contracts and the results
show that none of the tools was able to find 50% of
the vulnerable contracts. If someone would like to
analyse some smart contract in order to see if it has
some vulnerability, the probability of finding a true
positive is low as shown by Ferreira et al..

This paper present Conkas, a modular and static
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analysis tool based on symbolic execution that tries
to find a trace that leads to some vulnerability.
It is also easy to add custom modules to detect
new types of vulnerabilities. The tool provides a
Command-Line Interface (CLI) where users can in-
teract with Conkas. The tool supports smart con-
tracts written in solidity or just the Ethereum byte-
code. We describe the architecture of our tool, how
easy is to add more modules to detect new types of
vulnerabilities, how easy is to add more EVM in-
structions that can emerge with new updates from
Ethereum in order to keep updated our tool and de-
scribe the 5 modules that Conkas already support.
These modules are based on DASP10 [9] and can
detect vulnerabilities of the following categories:
Arithmetic, Front-Running, Reentrancy, Time Ma-
nipulation and Unchecked Low-Level Calls. Conkas
uses an intermediate representation (IR) which is
Rattle [20] but we made some modifications to make
it even stronger and fit our needs. We will describe
those modifications as well.

2. Background

In this section, we introduce Blockchain technology,
Ethereum, Smart Contracts and Ethereum Virtual
Machine, how they act and work. Then we in-
troduce the 5 types of categories that Conkas al-
ready support, based on DASP10, which is Arith-
metic, Front-Running, Reentrancy, Time Manipu-
lation and Unchecked Low-Level Calls.

2.1. Blockchain

Blockchain is replicated by all nodes. It is orga-
nized like a chain of block’s hash ordered by time,
where each block has several fields. Simplifying it
can be seen like a database or a linked-list belong-
ing to a specific network where each block only has
a reference to the previous block. When a block is
added it can never be updated nor removed from
this database or linked-list, being immutable. Ex-
ists permissionless networks, which means that that
network is public because there is no need for per-
missions to be part of that network. In the other
side, permissioned networks are private networks,
meaning that if a user wants to join, he needs per-
mission to join. Each block to be added to the
blockchain needs to be mined by a miner and the
miner needs to satisfy some restrictions imposed
by the network to add successfully that block. In
each epoch, each miner proposes a block to add
to the blockchain, and in that block are present a
list of transactions that this miner include in that
block. To a miner successfully add a block to the
Ethereum network he needs to perform a Proof-of-
Work (PoW). If the miner finds a solution that sat-
isfies the PoW, this miner broadcast the block to
the other miners and the other miners need to ver-
ify whether the solution proposed is correct in order

to add to their blockchain. This protocol is called
Nakamoto consensus. For more detail the reader
can read the Bitcoin paper [16] or the Ethereum
paper [4].

2.2. Ethereum

Ethereum was created by Vitalik Buterin in 2014
and formally written by Gavin Wood [24]. It is a
decentralized platform that sits above blockchain
technology. This network is permissionless and
what makes it different from Bitcoin is that it
supports Smart Contracts that are executed in
Ethereum Virtual Machine (EVM).

The state of the Ethereum is equal to the last
block added to the blockchain and it consists of the
mapping of addresses to accounts. It is like a dic-
tionary where the key is an address (of 160 bits)
and the value is the account. Being σ the last state
of the blockchain and γ an address of an account,
then σ[γ] gives us the last state of that account at
address γ.

Ethereum supports contract accounts which con-
tain cryptocoins, code to be executed and persistent
memory. It also supports externally owned account
which only contains cryptocoins and is controlled
by a private key. A user that wants to transfer
some cryptocoins or interact with a contract needs
to make a transaction.

2.3. Smart Contracts

Smart Contracts are an autonomous agent stored in
the blockchain. It is identified by an address of 160
bit and the code that represents the smart contract
can manipulate variables like a traditional program-
ming language. These smart contracts cannot be
updated being extremely important that they do
not have any bugs before they are deployed.

The most common language to write Smart Con-
tracts is Solidity, an object-oriented programming
language, influenced by many languages like C++,
Python and Javascript. The code is compiled to be
executed in EVM.

2.4. Ethereum Virtual Machine

EVM executes code present in Smart Contracts
written in a Turing-complete language and with
that exists the problem of non-termination. To
mitigate this problem, the creator of Ethereum in-
troduced the gas concept. Each EVM instruction
has a pre-defined price, meaning the necessary gas
to execute that instruction. When a user sends a
transaction to invoke a contract, this user needs to
specify the amount of gas that is willing to provide,
called gasLimit. It also needs to provide what is
the price by a unit of gas, called gasPrice. If the
execution runs out-of-gas the execution is aborted
with an exception and the state are reverted to the
initial state.
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The EVM operates in pseudo-registers of 256 bit,
meaning that it does not operate under registers but
under an expandable stack that is used to pass ar-
guments to functions and other opcodes. The stack
uses 256-bit values and has a maximum of 1024 en-
tries, being volatile. Memory is a byte-array struc-
ture and can be read or written starting from any
index and arbitrary length. It is initialized with 0
size and can only be extended, being volatile also.
Storage is a dictionary of 256 bit to 256 bit, and it
is persistent.

2.5. Known Vulnerabilities
In this subsection, we introduce the five categories
of vulnerabilities that Conkas detect and we also
show a way of mitigating when possible.

2.5.1 Reentrancy

This vulnerability is the most known because of the
TheDAO attack [5]. In Ethereum, when a contract
invokes another, the execution of the contract waits
until the other contract finish to remain the execu-
tion. An attacker can take profit of this intermedi-
ate state. The first way that exists to mitigate this
type of vulnerability is to avoid the call function
and use the send function or the transfer function.
These two function restricts the gas of the execution
to 2300, a predefined value. With this amount of
gas, any contract that calls another will abort with
a RunOutOfGas exception, reverting the transac-
tion. However, this is not true anymore due to an
update of Ethereum that change some gas associ-
ated with each instruction [13]. Other mitigations
are to use the Checks-Effects-Interactions pattern
or a guard pattern.

2.5.2 Arithmetic

Arithmetic vulnerabilities are integer overflow/un-
derflow and occur when a variable cannot hold a
specific value and store another. This type of vul-
nerability is well-known from other contexts and it
is the same in EVM context. One way to mitigate
this type of vulnerability is to use a well-known li-
brary to add, subtract, etc (e.g. SafeMath2).

2.5.3 Unchecked Low-Level Calls

In Ethereum exists several ways to a contract in-
voke another, by several instructions, for exam-
ple, CALL, CALLCODE, DELEGATECALL and
STATICCALL. These instructions are considered
low-level instructions. When a user writes a con-
tract, the user will use higher-level functions to call
another contract like send or transfer. However,

2https://github.com/OpenZeppelin/openzeppelin-con

tracts/blob/master/contracts/math/SafeMath.sol

send does not propagate exceptions, only return
false when an exception occurs. If the callee execu-
tion aborted with an exception, and the user uses
the send function and does not check the return
value, the caller execution will continue as nothing
happened. To mitigate this type of vulnerability is
recommended to use the transfer function or when
using other functions or directly use low-level in-
structions, check the return value in order to handle
exceptions.

2.5.4 Front-Running

This vulnerability is also known as Transaction Or-
der Dependence (TOD). It happens when exists two
transactions (T1 and T2) and each of them invokes
the same contract. Transaction T1 can occur in
state σ or in state σ′ if transaction T2 occur first
and results in that state σ′. This order is chosen by
a miner. A malicious user can take profit with this.
Imagine a case where a user submits a solution to a
puzzle, the malicious user can see the solution and
he can create another transaction with the solution
saw and provide a much higher gas in order to be
mined first, receiving the award. There is no known
way to mitigate this type of vulnerability because
the order of transactions is dependent on miners.
The developers need to take care of this.

2.5.5 Time Manipulation

The contracts may need to have timely information,
and this information can be obtained by a vari-
able which is block.timestamp. This variable just
reads the information present in the block where
the transaction is found. However, this information
is controlled by miners and developers should avoid
using it. In Ethereum specification (yellow paper)
there is none restriction about this value, it only
mentions that it needs to be higher than the pre-
vious block. In Ethereum Geth3 and Parity4 im-
plementations, both reject times that deviates 15
seconds from the actual time. There is no known
form to mitigate this type of vulnerability because
the miners control this information, the only way is
for developers to avoid the use of block.timestamp.

3. Related Work
We studied tools that use symbolic execution and 3
tools that use an IR. We studied Oyente [12], a well-
known tool in this field. They analyse bytecode and
start to construct a CFG and then iterate over all
possible path generating traces. These traces are

3https://github.com/ethereum/go-ethereum/blob/b71

334ac3de38338e618aaf8ea6b4a884d2d80f5/consensus/etha

sh/consensus.go#L46
4https://github.com/openethereum/openethereum/blo

b/ee2b16dfe4895c19c052322a588878e447a13706/ethcore/s

rc/verification/verification.rs#L392
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then passed to a module that makes the analysis.
They use Z3 to reduce the search space. Oyente can
detect vulnerabilities of type Transaction Order De-
pendence (TOD), Timestamp Dependence, Mishan-
dled Exceptions and Reentrancy. There are a lot of
other tools that are based on Oyente [17, 2, 22, 11].
We studied another symbolic executing tool called
Mythril [15]. It constructs a CFG and in this, it
makes their symbolic analysis. Mythril uses Z3 as
well to prune the search space. Manticore [14] is
another symbolic execution tool that is capable of
doing their analysis at x86/x64 and ARM binaries
and on Smart Contracts.

Zeus [10] is a tool that uses an IR. It takes the
solidity code and policies as input and it will check
whether the solidity code meets these policies. The
solidity code is converted to LLVM bitcode that act
as an IR and the assertions of the policies are in-
troduced. Then it invokes a verifier to determine
whether the assertions are violated. Securify [23]
creates their own IR. It takes as input the byte-
code and is transformed into Single Static Assign-
ment (SSA). Then it makes a static analysis in all
paths and creates Datalog facts. Then, these Dat-
alog facts are evaluated to check whether the vio-
lation patterns are violated. Slither [7] also creates
its own IR. It receives as input the Abstract Syntax
Tree (AST) and recovers some information, like the
CFG, contract inheritance and a list of solidity ex-
pressions. Then it converts to SlithIR [6], a custom
IR, that uses SSA form. Later, it analyses the code
looking for vulnerabilities.

We also studied other intermediate representa-
tions like Rattle [20] that we used in our tool. Be-
yond that, SlithIR does not fit our needs because
it needs the source code. The solidity authors also
have their IR, YUL [19] but it has less information
than Rattle and does not use instructions in SSA
form. EthIR [1] is another IR that is an extension
of Oyente tool and produce a rule-based represen-
tation (RBR).

4. Conkas
In this section, we introduce Conkas a modular
static analysis tool that uses the symbolic execu-
tion model. We describe Rattle and our modifica-
tions in order to use as our Intermediate Represen-
tation (IR). We will describe our architecture and
how easy is to add more modules to implement cus-
tom policies. Conkas will be publicly available on
GitHub 5.

4.1. Rattle
Rattle6 is developed by Ryan Stortz and is a tool
designed to work with Smart Contracts already
deployed in Ethereum blockchain, working with

5https://github.com/nveloso/conkas
6https://github.com/crytic/rattle

ethereum bytecode. Rattle constructs a Control
Flow Graph (CFG), creates an Intermediate Rep-
resentation (IR) in the form of Static Single As-
signment (SSA) and instructions are converted from
stack form to a register form. With this transfor-
mation, Rattle can remove several instructions like
DUP’s, SWAP’s, PUSH’s and POP’s.

This tool uses a disassembler from Manticore’s
tool and we change it to a library called pyevmasm7

in order to be up to date with new instructions. The
other modification was to change the function that
removes the swarm hash, which is a hash appended
to the bytecode. The old function generated errors
when a swarm hash has a different signature than
the expected. The swarm hash can have several sig-
natures and new ones can emerge, so we modify it
to check the length of the swarm hash and remove
it. We also add more restrictions to other functions
because it was missing and sometimes we got er-
rors. When we have the instructions in SSA form
we sometimes end up with PHI instructions. Rat-
tle removes the PUSHs instructions and by that, we
did not know in which path the values are created,
so we modify Rattle to keep some PUSHs instruc-
tions only when these instructions are related to
PHI instructions. We also update some jump loca-
tions when intermediate blocks were removed due
to some optimizations. We also add a variable to
one class to have the necessary information to later
do the mapping between instructions to line num-
bers in Solidity file. We made also minor changes
that can be seen in our fork of Rattle8.

4.2. Conkas’ Architecture

Conkas uses a modular architecture and can be seen
in Figure 1.

Conkas makes available a Command-Line Inter-
face (CLI) where users can interact with it. The
users can provide the bytecode associated with a
contract that they want to analyse or they can pro-
vide the Solidity source code. When source code
is provided this will be compiled using a compiler
that best suits. At the moment, it is only possi-
ble to provide source code written in Solidity. The
bytecode will be passed to Rattle module.

In Rattle module it will elevate the bytecode to
an IR and instructions will be converted to SSA
form and converted from a stack form to a register
form. The CFG will also be constructed. These
artefacts will be passed to the next module which
is Symbolic Execution Engine.

The Symbolic Execution Engine is responsible to
iterate over CFG and generate traces. A trace is
a possible path to be executed and contains infor-
mation like the register, memory, storage, return

7https://github.com/crytic/pyevmasm
8https://github.com/nveloso/rattle
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Figure 1: Architecture of Conkas tool. In Blue the modified module already existing. In grey the module
already existing.

value, depth hit, restrictions to follow this path, the
context where it is executed and information if the
transaction was reverted, stopped, if it is destroyed
or hit an invalid instruction. When it hits a con-
ditional JUMP the engine will always iterate first
over the false condition. To prevent that the engine
will run forever exists the concept of depth, and if a
max depth was hit it will stop the execution of that
path. This module creates symbolic variable and
symbolic expressions using the module SMT Solver
Z3.

Those traces generated by the Symbolic Execu-
tion Engine will be provided to Detectors module.
In this module exist sub-modules, one responsi-
ble to detect a category of vulnerability. Conkas
support 5 categories, Arithmetic, Front-Running,
Reentrancy, Time Manipulation and Unchecked
Low-Level Calls. Each sub-module returns the vul-
nerabilities founded to the user. This module also
queries STM Solver Z3 to check if some constraints
are possible or not. It can also create new con-
straints and asks Z3 to verify whether the constraint
is possible or not in order to determine whether a
vulnerability exists or not.

4.3. System Requirements

Conkas is written in Python3 and needs an envi-
ronment with Python3 and the following modules:
cbor2, py-solc-x, pycryptodome, pyevmasm, solid-
ity parser and z3-solver. There is also a docker im-
age available.

4.4. Supported Vulnerability Modules

The submodule that is responsible to check vulner-
abilities of type arithmetic is capable of detect in-
teger overflow and underflow. The overflows are

detected at instructions ADD and MUL and the
underflows are detected at instruction SUB. There
are a lot of benign overflows and underflows and
to identify those benign vulnerabilities, we made a
heuristic.

Reentrancy vulnerabilities can occur when exists
a CALL instruction in which the storage variable
that holds Ether to send is different from zero at
the moment of the CALL instruction or when exists
a write to storage that holds Ether after sending
it. We need to check if CALL instruction can be
invoked again and for that, we check if the previous
restrictions before CALL instruction can be true
again with the updated values at CALL instruction,
and if it is true, it is vulnerable. But this is not
enough. We can have a case where we have a storage
counter that is incremented in every call and a stack
variable is created with counter value and at the
end of the function, it checks if this stack variable
is equal to the counter variable and if not it must
revert in order to be considered not vulnerable. For
that we need to check for a condition at the end of
the function and see if the one value is a stack value
and the other is a storage value and check if they
have the same value. When they are different, the
transaction needs to revert to be considered safe,
otherwise is false. The policy for this submodule
is not exactly what we described above because the
symbolic variables have no information about where
it belongs.

The policy created to detect Time Manipulation
vulnerabilities is to verify if exists constraints in
which an operand is based on time. The only in-
struction that is based on time is the TIMESTAMP
instruction. We need also check the return value of
a function, if some storage variable is set to a vari-
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able based on time or if it is an input to SHA3
instruction.

Front Running policy only considers Timestamp
Order Dependence (TOD), and we check if we have
a function that can change a storage variable and
that variable is used in a CALL instruction. We also
check if we have another function that just uses this
storage value in a CALL instruction.

The last policy created is to detect Unchecked
Low-Level Calls and is straightforward. We need to
check if the return value of the CALL instruction is
present in the constraints of that trace.

4.5. How easy is to add new modules
Conkas was designed for a developer with basic
knowledge of programming might add easily new
modules to detect other types of vulnerabilities.
This way, the only thing that he needs to do is to
add an entry to the object inside the file init .py
inside vuln finder folder, being the key the name of
the module and the value the function to be called.
This function needs to follow the signature as shown
in Listing 1.

1 def vu ln x ana ly s e ( t r a c e s : [
Trace ] , f i n d a l l : bool ) −> [
V u l n e r a b i l i t y ] :

2 pass

Listing 1: Function’s signature to add new
modules

This function receives the traces generated by
the Symbolic Execution Engine and a boolean that
when it is true it means that the module should find
all vulnerabilities and not to stop when it finds one.
As a return value, the function should return a list
of Vulnerability instances.

4.6. How easy is to add new EVM instructions
In order to keep Conkas up to date, it is necessary
to be easy to add new EVM instruction that can
emerge with Ethereum updates. To add new EVM
instructions the logic is the same as mentioned in
subsection 4.5. The object to add the function re-
sponsible to symbolically execute is in file init .py
at sym exec/instruction folder. The function signa-
ture can be seen in Listing 2.

1 def i n s t x ( i n s t r u c t i o n :
SSAInstruct ion , s t a t e : State )
−> [ SSABasicBlock ] :

2 pass

Listing 2: Function’s signature to add new
instructions

The first argument is an instance of SSAInstruc-
tion and the second argument is an instance of State
and can return a list of instances of type SSABa-
sicBlock.

4.7. Symbolic Memory Access
In symbolic execution exists a problem that is the
symbolic access of a data structure like the indexes
and/or the length. In EVM some instructions can
read or write in memory and receive as argument
the index and the length. If index and/or length are
symbolic it is not trivial to execute that. In both
cases, the tool will approximate the solution. The
approach done was when the length is symbolic,
the instruction returns a new symbolic variable, like
in [11]. If the length is concrete but the index is
symbolic then the value read or stored is divided
into bytes and the index will be each symbolic byte
added 1 until reach the length.

4.8. Unit Tests
Unit tests give some guarantees when something
changes in the source code. Conkas has several unit
tests for all EVM instructions that Conkas support.
For each EVM instruction exists on average 2 unit
tests, with a total of 194 unit tests. Beyond that,
we write 14 contracts written in Solidity to test our
modifications of Rattle, see subsection 4.1. These
tests were verified manually, one by one, to check
that Rattle works as expected and make more ro-
bust.

4.9. Command-Line Interface (CLI)
Conkas makes available a Command-Line Interface
(CLI) that allow users to interact with Conkas.
Users must provide a file with Ethereum bytecode
of a contract that the user want to analyse or the
source code of the contract written in Solidity, how-
ever, the analysis is done at the bytecode level. It
is possible for the user to specify which categories
of vulnerability he wants to detect and has a flag to
specify if he wants to stop as soon as Conkas finds
a vulnerability or not. Users can define the logging
level and the max depth to limit the search space.
Users can also specify a value for timeout that will
be used in Z3 when Conkas queries it to determine
if some restrictions are satisfiable or not. To see the
help message users can invoke Conkas like this:

$ python3 conkas . py −h

An example of an invocation that will analyse
only reentrancy vulnerabilities and will find for all
reentrancy vulnerabilities that is in some file.evm
file is as follow:

$ python3 conkas . py −vt
reentrancy −fav s o m e f i l e . evm

4.10. Known Limitations
Conkas have a known limitation that inherited from
Rattle which is it cannot look for contracts that
depend on libraries, even if these dependencies are
declared in the same file as the contract.

6



5. Results

In this section, we describe and discuss the results
of the comparison of other static analysis tools with
Conkas. We can analyse in two ways. The tra-
ditional way, which is, each tool creates its own
dataset, extracting contracts from Etherscan9 be-
tween some dates, and run all tools against that
dataset and show the results. Another way is to
contact the authors and request for those datasets,
as been done in Pérez and Livshits [18]. However,
we believe that this is not the way it should be done
and we use a publicly available framework for the
dataset to be equal to every tool. We use Smart-
Bugs [8] to do our analysis. We easily added Conkas
to this framework and started to do the analysis
with 10 different tools. SmartBugs has two differ-
ent datasets, one is much bigger than the other.
The one that we used is the smaller one because
the vulnerabilities are manually annotated.

5.1. True Positive Rate

The script used to generate the comparison results
gathered by each tool only count a true positive
when a tool indicates the correct vulnerability cat-
egory and the line number where the vulnerability
occur in the source code. In Table 1 are shown the
results with this criterion. The results show that is
visible that most of the tools do not detect much
of vulnerabilities. Conkas is the only tool that is
above 50% and the Smartcheck and Slither are the
most closer tools with 42% and 40% respectively.
The others have a low percentage of true positives.
We conclude that these results could be better if we
extend the line number interval because one prob-
lem we faced when developing Conkas was to give
the correct line number.

In order to have a comparison a little much fair
and to not penalize other tools with such a low suc-
cess rate we modified the criterion a little bit and
now for a vulnerability be considered a true posi-
tive each tool must indicate the correct vulnerabil-
ity category and the line number where the vulner-
ability occurs in source code with an interval of -5
to +5. This criterion is used for the rest of this pa-
per. A new version of the Table 1 is shown in Table
2.

In Table 2 the results are a little bit better for
some tools. Honeybadger, Manticore and Mythril
were the most that benefit with this new criterion.
Conkas is still the best tool compared to all oth-
ers. Smartcheck is the tool that detects the higher
number of different categories having an advantage
related to others. The tools that detect the same
number of different categories are Manticore and
Mythril, detecting 5 different categories. Conkas
detects the double of vulnerabilities compared to

9https://etherscan.io/

Manticore and detects 6% more than Mythril. The
delta line is the difference between the percentage
by each tool of the Table 1 with Table 2. Conkas
detects more 3 vulnerabilities because when the vul-
nerability is in the return value, the line number
returned is at the function declaration.

5.1.1 What is missing to get 100%?

It was possible to assess that there are some con-
tracts in Arithmetic category that are annotated
with vulnerabilities, however, when these contracts
are compiled, those vulnerabilities are gone because
the vulnerability is in dead code. There are 4 vul-
nerabilities of this type, so Conkas cannot reach
100% precision because of this.

The low precision in Front Running category is
due to the fact that this category has several sub-
categories, and we just look for Transaction Order
Dependence (TOD) which is only one subtype.

Concerning Reentrancy category, Conkas some-
times report the line number incorrectly because we
retrieve the line number associate with the CALL
instruction. If a function calls another and the vul-
nerability only happens when the execution came
from this path we will retrieve the line number in
the callee function, but it should be in the caller
function. It happens 2 times. Exists one contract
that has a library dependency, so we cannot analyse
that contract and that contract has 2 vulnerabilities
annotated.

Conkas does not have 100% precision in
Unchecked Low-Level Calls because sometimes we
reach the maximum depth allowed and miss some
vulnerabilities. We do not extend this value because
it will increase the time necessary to analyse, but
it can be done if it is the only contract to analyse.
We faced others contracts that eliminate CALL in-
structions when they are compiled, removing the
vulnerabilities. We cannot measure how many con-
tracts this happen because this sub dataset is much
bigger than the others.

5.2. False Positives
In Table 3 are shown the false positives for each
tool and for each category. Conkas is the tool that
has the higher number of false positives. However,
we checked the dataset of SmartBugs and conclude
that are some vulnerabilities that exist and are not
annotated. We retrieve the files that Conkas re-
port false positive as well from Mythril, Slither and
Smartcheck to manually verify if the false positives
are real or are true positives. We selected just these
tools because they have the best true positive rate,
above 40%. We chose randomly based on the hash
of the name of the file of those files. We chose the
MD5 hash function because we hope it will be as
uniform as possible. The files selected are the ones

7
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Category Conkas Honeybadger Maian Manticore Mythril Osiris Oyente Securify Slither Smartcheck Total

Access Control 0/24 0% 0/24 0% 0/24 0% 0/24 0% 4/24 17% 0/24 0% 0/24 0% 0/24 0% 6/24 25% 2/24 8% 8/24 33%
Arithmetic 19/23 83% 0/23 0% 0/23 0% 1/23 4% 7/23 30% 13/23 57% 16/23 70% 0/23 0% 0/23 0% 1/23 4% 22/23 96%
Denial Service 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0%
Front Running 2/7 29% 0/7 0% 0/7 0% 0/7 0% 1/7 14% 0/7 0% 2/7 29% 2/7 29% 0/7 0% 0/7 0% 2/ 7 29%
Reentrancy 30/34 88% 0/34 0% 0/34 0% 2/34 6% 15/34 44% 21/34 62% 28/34 82% 14/34 41% 33/34 97% 30/34 88% 33/34 97%
Time Manipulation 5/7 71% 0/7 0% 0/7 0% 2/7 29% 0/7 0% 1/7 14% 0/7 0% 0/7 0% 2/7 29% 1/7 14% 6/ 7 86%
Unchecked Low Calls 61/75 81% 0/75 0% 0/75 0% 0/75 0% 27/75 36% 0/75 0% 0/75 0% 49/75 65% 48/75 64% 60/75 80% 70/75 93%
Other 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/ 5 0%

Total 117/224 52% 0/224 0% 0/224 0% 5/224 2% 54/224 24% 35/224 16% 46/224 21% 65/224 29% 89/224 40% 94/224 42% 141/224 63%

Table 1: Results with criterion that must indicate the correct vulnerability category and line number in
source code

Category Conkas Honeybadger Maian Manticore Mythril Osiris Oyente Securify Slither Smartcheck Total

Access Control 0/24 0% 0/24 0% 0/24 0% 5/24 21% 4/24 17% 0/24 0% 0/24 0% 1/24 4% 6/24 25% 2/24 8% 8/24 33%
Arithmetic 19/23 83% 0/23 0% 0/23 0% 13/23 57% 16/23 70% 13/23 57% 18/23 78% 0/23 0% 0/23 0% 1/23 4% 22/23 96%
Denial Service 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 0/14 0% 1/14 7% 1/14 7%
Front Running 2/7 29% 0/7 0% 0/7 0% 0/7 0% 2/7 29% 0/7 0% 2/7 29% 2/7 29% 0/7 0% 0/7 0% 2/ 7 29%
Reentrancy 30/34 88% 19/34 56% 0/34 0% 15/34 44% 25/34 74% 21/34 62% 28/34 82% 14/34 41% 33/34 97% 30/34 88% 33/34 97%
Time Manipulation 7/7 100% 0/7 0% 0/7 0% 4/7 57% 0/7 0% 2/7 29% 0/7 0% 0/7 0% 3/7 43% 2/7 29% 7/ 7 100%
Unchecked Low Calls 62/75 83% 0/75 0% 0/75 0% 9/75 12% 60/75 80% 0/75 0% 0/75 0% 50/75 67% 51/75 68% 61/75 81% 70/75 93%
Other 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 0/ 5 0%

Total 120/224 54% 19/224 8% 0/224 0% 46/224 21% 107/224 48% 36/224 16% 48/224 21% 67/224 30% 93/224 42% 97/224 43% 143/224 64%
Delta 2% 8% 0% 19% 24% 0% 0% 1% 2% 1% 1%

Table 2: Results with criterion that must indicate the correct vulnerability category but with a line
number in source code with an interval of -5 to +5

that the hash terminates in 1,2 or 3 because we only
want to analyse about 20% of them for each tool.
However, if the false positives that will be manu-
ally analysed in each category are below than 10
we increased the percentage by checking if the hash
terminates with the next character, which is 4, un-
til we have at least 10 false positives to manually
analyse in each category.

We then proceed to update the Table 3 with the
new numbers based on our manual verification and
the results can be seen in Table 4.

The false positives of Conkas decrease in almost
every category, however, the arithmetic category is
the most punished. We have less false positives than
Mythril and in Unchecked Low Calls, we have the
lowest number of false positives. In our analyses
we observed that Slither’s report has a lot of line
numbers, it reports almost every line number in the
file. The script used in our analysis check if there is
any line number where exists a true positive and the
other are not counted to false positives. With this
in mind, we can conclude that our tool, in practice,
have lower false positives than Slither as well, being
Smartcheck the tool with less false positives.

5.3. Performance

The performance of the tools is a point to be in
account because if a tool lingers a lot to analyse a
contract the user will be unsatisfied. The setup used
was a virtual machine running Ubuntu 18.04.5 LTS
with 4 cores of the CPU Intel(R) Xeon(R) E5-2620
v4 @ 2.10GHz and with 16GB of RAM. In Table 5
is shown, in each line, the average time needed and
the total time execution for each tool.

Manticore is by far the most slower tool followed
by Maian. Slither has the best performance with

just 4 seconds on average. Conkas is behind Oyente
but ahead of Mythril. However, Oyente does not
have the extra step to elevate bytecode to an IR.
Slither and Smartcheck analyse the source code and
does not have the step of compiling nor execute each
instruction symbolically.

5.4. Tools Combined

In Table 6 are shown the possible combinations of
each tool based on the true positive rate of each
one, using as a metric the union of the detected
vulnerabilities.

With these results, the best choice goes to Conkas
with Mythril or Conkas with Slither, with the best
percentage of 58% in both choices. In the other
hand, Slither in each report is very verbose show-
ing a lot of lines where the vulnerabilities can hap-
pen, being almost all of them false positives, so
we recommend Conkas and Mythril. Conkas and
Smartcheck can also be a good choice, with less 1%
but Smartcheck is the tool that shows the lowest
number of false positives and is faster than Mythril.

5.5. Analysis Limitations

One limitation of our analysis is that Conkas were
not tested with contracts written in Solidity with
versions higher or equal to 0.6.0. The SmartBugs
dataset used does not provide any contract written
in these conditions. We tested only two contracts
with reentrancy vulnerability, each of them writ-
ten in 3 different versions, 0.4.25, 0.5.17 and 0.6.7.
Conkas does not throw any error on both contracts
in all versions and report the expected vulnerabili-
ties.
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Category Conkas Honeybadger Maian Manticore Mythril Osiris Oyente Securify Slither Smartcheck Total

Access Control 0 0 11 60 43 0 0 5 34 2 155
Arithmetic 306 0 0 9 203 200 377 0 0 24 1119
Denial Service 0 0 0 0 0 41 83 0 13 29 166
Front Running 24 0 0 0 53 0 60 202 0 0 339
Reentrancy 221 0 0 17 119 30 26 80 48 21 562
Time Manipulation 71 0 0 6 0 6 10 0 2 0 95
Unchecked Low Calls 35 0 0 5 30 0 0 96 45 13 224
Other 0 11 4 47 67 0 0 0 31 17 177

Total 657 11 15 144 515 277 556 383 173 106 2837

Table 3: Number of false positives

Category Conkas Honeybadger Maian Manticore Mythril Osiris Oyente Securify Slither Smartcheck Total

Access Control 0 - - - 43 - - - 34 2 79
Arithmetic 217 - - - 179 - - - 0 14 410
Denial Service 0 - - - 0 - - - 13 29 42
Front Running 13 - - - 48 - - - 0 0 61
Reentrancy 99 - - - 102 - - - 44 8 253
Time Manipulation 33 - - - 0 - - - 2 0 35
Unchecked Low Calls 0 - - - 25 - - - 45 6 76
Other 0 - - - 67 - - - 31 17 115

Total 362 - - - 464 - - - 169 76 1071
Delta 295 - - - 51 - - - 4 30 1766

Table 4: Number of false positives updated

6. Conclusions

We started describing blockchain, Ethereum, Smart
Contracts and Ethereum Virtual Machine. We also
describe the vulnerabilities that Conkas detect and
study the state of the art. Next, we introduce
Conkas, a modular tool of static analysis, easy to
add new modules where users can write their own
policies and easy to add EVM instructions. We
introduce Rattle and made some modifications to
adapt to be part of Conkas as an IR. We analyse
Conkas, like the performance against other tools us-
ing SmartBugs framework. Analyse also the true
positive rate between all tools and Conkas had the
higher percentage. We show the false positives of
each tool and manually verified, for about 20% of
the files that have at least one false positive, be-
ing Smartcheck the tool that has less false positives
followed by Conkas that improved well. We also
analyse the combination of tools using as metric
the union of vulnerabilities detected by each tool.
With Conkas we hope that developers and security
engineers can use to automate the analysis of Smart
Contracts.

6.1. Future Work

Some suggestion to future work includes improv-
ing the Symbolic Execution Engine increasing the
level of variable information (e.g. where they were
declared). We could also add the possibility to
use different strategies in path exploration, improve
the arithmetic module, add more modules to detect
more vulnerability categories, add newer EVM in-
structions when they emerge and eliminate the lim-
itations of Rattle.
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