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Abstract

Vulnerability detection and repair is a demanding and expensive part of the software development pro-

cess. As such, there has been an effort by researchers to develop new and better ways to automatically

detect and repair vulnerabilities. DifFuzz is a state-of-the-art tool for automatic detection of timing side-

channel vulnerabilities, a type of vulnerability that is particularly difficult to detect and correct. Despite

recent progress made with tools such as DifFuzz, work on tools capable of automatically repairing timing

side-channel vulnerabilities is scarce.

We propose a new tool for automatic repair of timing side-channel vulnerabilities in Java code. The

tool works in conjunction with DifFuzz and it was able to repair 56% of the vulnerabilities identified in

DifFuzz’s dataset. The results show that the tool can indeed automatically correct timing side-channel

vulnerabilities, being more effective with control-flow based timing side-channel vulnerabilities.
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Resumo

A detecção e reparação de vulnerabilidades é uma parte exigente e desafiante do processo de desen-

volvimento de software. Por isso, tem havido um esforço por parte dos investigadores para desenvolver

novas e melhoradas formas de detectar e corrigir de forma automática vulnerabilidades. DifFuzz é

uma ferramenta de ponta para a detecção automática de vulnerabilidades ‘timing side-channel’, um

tipo de vulnerabilidade que é particularmente difı́cil de detectar e corrigir. Apesar do progresso recente

alcançado com ferramentas como o DifFuzz, há pouco trabalho em ferramentas capazes de corrigir de

forma automática vulnerabilidades ‘timing side-channel’.

Propomos uma nova ferramenta para a correcção automática de vulnerabilidades ‘timing side-channel’

em código Java. A ferramenta funciona em conjunto com o DifFuzz e foi capaz de reparar 56% das vul-

nerabilidades identificadas no dataset do DifFuzz. Os resultados mostram que a ferramenta pode cor-

rigir de forma automática vulnerabilidades ‘timing side-channel’, sendo mais eficaz em vulnerabilidades

‘control-flow based timing side-channel’.

Palavras Chave

Java, Vulnerabilidades Timing Side-Channel, Detecção automática de vulnerabilidades, Reparação au-

tomática de vulnerabilidades, Segurança, Modificação de Código
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Software is increasingly more present in the world and our lives. Virtually all industries today use soft-

ware in one way or another. These industries range from retail, healthcare, and finance to government

and defense. The software these industries use must be as secure as possible since software defects

can lead to the loss of billions of euros in revenue or lawsuits, or it can even harm the health and well-

being of millions of people around the world. So, companies must regularly check their software for bugs

and vulnerabilities, either running unit tests or analyzing the code.

There are many kinds of bugs and vulnerabilities. A bug is an issue that leads to an expected

scenario not running, for instance trying to login with correct credentials and failing. On the other hand,

a vulnerability is an issue that leads to an unexpected scenario running, for instance trying to login with

fake credentials and succeeding [4]. To put it in other terms, a bug is a failure in an application that

can lead to an unsuccessful use of the application by the user, while a vulnerability is a failure in an

application that can lead to wrongful use of the application, causing security issues.

Bugs can be detected using software tests and the quality of the tests impacts the odds of detecting

a bug. As such it is important to create many and comprehensive test cases. However, the detection of

vulnerabilities can be difficult since a vulnerable application can pass all tests or even completely fulfil

its correctness specification. Different types of vulnerabilities have different difficulty levels of detection.

Perhaps one of the hardest types of vulnerabilities to be detected are side-channel vulnerabilities.

A side-channel is any observable side effect of a computation. The side effects can manifest them-

selves in several ways: for example, in the difference in computation time, in power consumption, sound

production, and electromagnetic radiation emitted. A more in-depth explanation of side-channel attacks

can be found in [5, 6]. Some side-channel vulnerabilities are easier to exploit than others since some

require specific devices. All of these side effects can be taken advantage of to attack a system. How-

ever, most of the side-effects require that the attackers have physical access to the system they are

trying to attack, since they would need to gather the information directly from the system, like measuring

the power consumption, the production of sound, or the emission of electromagnetic radiation. On the

other hand, side-effects such as the difference in computation time and response size do not require the

attackers to be in direct contact with the systems. This enables the possibility of remote attacks, thus

exposing the systems to a larger number of attackers. Detecting and fixing a side-channel vulnerability

based on response size is, in general, easy, since they mainly occur in the creation of the response to

be sent to the client. In contrast, side-channel vulnerabilities based on measuring differences in com-

putation time, also known as timing side-channel vulnerabilities, can occur at multiple program points:

they can occur on a simple method to compare strings, or on a large and complex parallel computa-

tion. There are multiple real-world applications that were found to be vulnerable to timing side-channel

attacks. For instance, Nate Lawson et al. discovered a timing side-channel vulnerability in Google’s

Keyczar Library [7]. Another example is the timing side-channel vulnerability discovered in Xbox 360 [8].

3



Moreover, the authors of DifFuzz [1], a state-of-the-art tool for automatic detection of timing side-channel

vulnerabilities, found new vulnerabilities in Apache FtpServer [9] and AuthMeReloaded [10].

As timing side-channel vulnerabilities are extremely difficult to detect, there is a great effort by re-

searchers to develop tools and methods capable of automatically detecting these vulnerabilities [1–3].

Despite this, once vulnerabilities are found, developers must correct them manually, which in some cases

can be difficult, time-consuming and prone to errors. As such, the goal of this project is to ease the

correction of vulnerabilities by developing a tool capable of automatically repairing timing side-channel

vulnerabilities. Even though the ideas developed are general and can be used in any language, we focus

on the Java programming language since according to GitHub [11], Java is the second language with

more contributors in public and private repositories and is still the most used language for enterprise

applications according to other sources, such as Cloud Foundry [12] and IBM [13]. The tool developed,

called DifFuzzAR, is designed to work in conjunction with DifFuzz [1] and we evaluate it using the same

dataset that was used to evaluate DifFuzz. Although DifFuzzAR has some limitations, it repaired 56% of

the vulnerabilities identified in DifFuzz’s dataset. This shows that DifFuzzAR has the potential to simplify

substantially the debugging process.

1.1 Work Objectives

The main goal of this project is to develop a tool for automatic repair of timing side-channel vulnerabilities

in Java code. More specifically, the objectives of this project are:

1. To develop the aforementioned tool so that it works in conjunction with DifFuzz [1]. For instance, it

can use DifFuzz’s already defined “drivers” to identify the vulnerable methods.

2. To identify patterns and any sort of computation that lead to timing side-channel vulnerabilities.

3. To propose (and implement) algorithms capable of correcting potential timing side-channel vulner-

abilities.

4. To evaluate the developed tool using the same dataset that was used to evaluate DifFuzz [1],

measuring how many vulnerabilities were automatically fixed. This dataset contains examples of

applications with timing side-channel vulnerabilities.

1.2 Contributions

The main contribution of this project is a software tool capable of repairing timing side-channel vulnera-

bilities in Java code. The tool is open-source and is available at:

4



https://github.com/RuiDTLima/DifFuzzAR

Moreover, this document documents patterns that can result in timing side-channel vulnerabilities. It

also includes a categorization of these vulnerabilities as early-exit, control-flow based, and mixed timing

side-channel vulnerabilities. A discussion on how to automatically correct this type of vulnerabilities

is also included. This information might be useful for researchers interested in developing automated

repair tools for fixing timing side-channel vulnerabilities.

Finally, the tool was evaluated on a dataset that is available to the research community, and it was

able to repair 56% of the identified timing side-channel vulnerabilities.

1.3 Thesis Outline

The rest of this document is structured as follows.

• Chapter 2 provides the background necessary to understand and to work on this project and

previous work related to this project. This includes a discussion on different types of timing side-

channel vulnerabilities and existing tools capable of automatically detecting these vulnerabilities.

• Chapter 3 provides a general overview of the tool developed, starting with how the tool is struc-

tured. Then it provides an overview of the modules responsible for finding the vulnerable method

and for correcting the vulnerability. This last one is divided into two parts, the correction of early-

exit timing side-channel vulnerabilities and the correction of control-flow based timing side-channel

vulnerabilities.

• Chapter 4 describes the development process followed to implement the tool. Here it is attempted

to convey the idea behind each module and the challenges that arise when developing them.

It starts by describing the module responsible for processing DifFuzz’s drivers, in search of the

vulnerable method. Next, the development of the modules for correcting the timing side-channel

vulnerabilities is described. Finally, it is explained the tool used to read and modify the Java code.

• Chapter 5 describes the process followed to evaluate the tool and presents the evaluation results.

• Chapter 6 concludes the report and lists some of the limitations of the tool. It also presents sug-

gestions of future work to improve the tool.
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Since software security is such an important subject, several studies have been done to help developers

optimize their software’s security. For example, Meng et al. [14] analyzed Stack Overflow posts and

found out that programmers are especially concerned about the implementation of security features and

how to make their code as secure as possible. They show that there has been an increase in the focus

of security and secure coding. They identify the five most common programming challenges to be:

1. Authentication: the correct use of authentication on their applications is one of the major con-

cerns of developers. For example, as shown by Meng et al. [14], many users were concerned

about integrating Spring security with different application servers or frameworks.

2. Cryptography: there is a great concern about key generation and usage.

3. Java EE security: in this API one of the most common challenges is the usage of declarative

security and programmatic security.

4. Access Control: many programmers still do not know how to restrict or relax the access permis-

sion of a software application for certain resources.

5. Secure Communication: there is still a great confusion on how to create, install, find or validate

an SSL certificate, and how to establish a secure connection.

These challenges, and the fact that many security breaches keep happening shows that program-

mers are not prepared to produce secure programs. This added to the fact that secure coding is a

complex task, and the documentation is minimal, increases the need for security tools of any kind.

2.1 Timing Side-Channel Vulnerabilities

A problem that arises in the five categories listed above, with particular importance in cryptographic

code, is the presence of timing side-channel vulnerabilities. Since this work will focus on timing side-

channel vulnerabilities, it is essential to understand their characteristics and some of the most common

ways they appear.

A timing side-channel vulnerability happens when a secret1 can be learned based on the time a

computation takes to complete. To put it differently, an application is vulnerable to timing side-channel

attacks when the time it takes to complete a computation depends on a given secret, e.g., a password.

There are multiple ways that a timing side-channel vulnerability can appear. Despite that, the most

common ones revolve around cycles where the termination condition depends on the secret, or with an

early exit condition dependent on the secret. They are also common when there is an unbalance in the

1A secret is any value, not known by an attacker, be it a password, a secret code, or any value that attackers attempt to learn.
In the context of this paper, a secret is a value that the attackers are trying to discover.
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control flow of code dependent on a secret. If the control flow of an application depends on a secret,

and the execution time of that application depends on the control flow, then the application is vulnerable

to timing side-channel attacks.

As a way to illustrate ways in which timing side-channel vulnerabilities show themselves, several

examples of code snippets vulnerable to timing side-channel attacks taken from research articles and

existing datasets of vulnerabilities are shown below.

2.1.1 Early Exit Vulnerabilities

Listing 2.1 and Listing 2.2 show two classic examples of early exit vulnerabilities. These listings show

two examples of different ways to check if the given password is correct. Although they look different,

the vulnerability is the same since in both there is an exit condition dependent on the secret, in this case

the parameter “sec”. In these examples, resourceful attackers can “find” the password by trying different

combinations of characters until they find the correct one. With this code, they know they found a correct

character simply by the time the function takes to respond. For example, if the password was “bcdef”

and the attackers tried with the password “abcde”, the function returns false, and they aren’t able to get

any information. If next, they tried with the password “bbcde”, they would know that the first character of

the password was correct simply because the function took extra clock cycles to return. With that, the

attackers know that the first character of the password is “b”. They can now repeat the process for the

other characters of the password until they find the correct one.

1 boolean pwcheck unsafe(byte[] pub, byte[] sec) {

2 if(pub.length != sec.length) {

3 return false;

4 }

5 for(int i = 0; i < pub.length; i++) {

6 if(pub[i] != sec[i]) {

7 return false;

8 }

9 }

10 return true;

11 }

Listing 2.1: Early Exit Vulnerable Code Snippet [1]

10



1 boolean loginBad(String username, byte[] guess) {

2 byte[] user pw = retrievePassword(username);

3 if(user pw == null)

4 return false;

5 for(int i = 0; i < guess.length; i++) {

6 if(i < user pw.length) {

7 if(guess[i] != user pw[i])

8 return false;

9 } else {

10 return false;

11 }

12 }

13 return true;

14 }

Listing 2.2: Unsafe Login [2]

Since these examples are quite simple, their solution is also simple. Changing a couple of lines of

code would correct the vulnerabilities shown. For example, when the timing side-channel vulnerability

is due to an early exit, the solution is to eliminate the early exit. In Listing 2.1, all that was needed

was to avoid the early exit that happens when the size of the secret does not match the size of the

user-submitted value. And to add a variable to hold the value true if the secret was equal to what the

user-submitted and false if they were different. However, only doing this still allows an attacker to uncover

secrets. As there would still be differences in the execution times of the application, some extra changes

would still be needed. These changes have only one objective, to make the application execution time

as independent of secrets as possible. With that, the application will be less efficient since it will execute

instructions that do not add any computational value. After all changes, the method in Listing 2.1 will be

the method in Listing 2.3.

1 boolean pwcheck safe(byte[] pub, byte[] sec) {

2 boolean unused;

3 boolean matches = true;

4 for(int i = 0; i < pub.length; i++) {

5 if(i < sec.length) {

6 if(pub[i] != sec[i]) {

7 matches = false;

8 } else {

9 unused = true;
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10 }

11 } else {

12 unused = false;

13 unused = true;

14 }

15 }

16 return matches;

17 }

Listing 2.3: Safe example of Listing 2.1 [1]

A similar approach can be followed for Listing 2.2. Since this snippet of code has the timing side-

channel vulnerability for the same reasons as Listing 2.1, the solution will be very similar to Listing 2.3.

That solution can be seen in Listing 2.4.

1 boolean loginSafe(String username, byte[] guess) {

2 boolean dummy, matches = true;

3 byte[] user pw = retrievePassword(username);

4 if(user pw == null)

5 return false;

6 for(int i = 0; i < guess.length; i++) {

7 if(i < user pw.length) {

8 if(guess[i] != user pw[i]) {

9 matches = false;

10 } else {

11 dummy = true;

12 }

13 } else {

14 dummy = true;

15 matches = false;

16 }

17 }

18 return matches;

19 }

Listing 2.4: Safe Login [2]

12



2.1.2 Control-Flow Based Vulnerabilities

A control-flow based timing side-channel attack happens when there is a significantly slow operation

that happens only when a condition is met. What this means is that an attacker can take notice of the

time a function takes to return and notice that that operation is executed. In Listing 2.5, if the condition

is true, two slow methods will be executed, while if the condition is false, the execution time will be much

faster.

1 BigInteger modPow(BigInteger base, BigInteger exponent, BigInteger modulus) {

2 BigInteger s = BigInteger.valueOf(1) ;

3 int width = exponent.bitLength();

4 for(int i = 0; i < width; i ++) {

5 s = s.multiply(s).mod(modulus);

6 if(exponent.testBit(width-i-1))

7 s = s. multiply(base).mod(modulus);

8 }

9 return s;

10 }

Listing 2.5: Example of branch dependent execution time [3]

A common problem with the solutions proposed for timing side-channel vulnerabilities is that they

typically make the code less efficient. This happens because a common cause of these vulnerabilities is

the use of methods with slow execution in conditional branches. As such, a common approach is to add

a similar operation to the other branches. With that, regardless of the branch executed, the execution

time will be as similar as possible. Examples of such a solution can be seen in Listing 2.6, which is a

corrected form of the method in Listing 2.5. In this examples, the parameter “exponent” is a secret.

1 BigInteger modPow1 safe(BigInteger base, BigInteger exponent, BigInteger modulus) {

2 BigInteger s = BigInteger.valueOf(1);

3 int width = exponent.bitLength();

4 for (int i = 0; i < width; i++) {

5 s = s.multiply(s).mod(modulus);

6 if(exponent.testBit(width-i-1))

7 s = s.multiply(base).mod(modulus);

8 else

9 s.multiply(base).mod(modulus);
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10 }

11 return s;

12 }

Listing 2.6: Safe example of Listing 2.5 [2]

2.1.3 Mixed Vulnerabilities

Some methods might suffer from both early-exit and control-flow based timing side-channel vulnera-

bilities. When this happens, the method is said to have a mixed timing side-channel vulnerability. To

correct the vulnerability it is necessary to correct the early-exit part of the vulnerability and the control-

flow part. This can be done in different ways. First, it can be corrected at the same time, meaning,

that while analysing the method, the repair program corrects an early-exit or control-flow based timing

side-channel vulnerability as they happen. Another option is to first correct one of the types of vulner-

ability and then correct the other type on the corrected version of the first type. For instance, we can

first correct an early-exit timing side-channel vulnerability and then correct the control-flow based timing

side-channel vulnerability in the previously repaired version.

As an example, Listing 2.7 shows a method with a mixed timing side-channel vulnerability (taken from

the dataset of DifFuzz [1]) where the parameter “a” is a secret. Following the correction of an early-exit

timing side-channel and then of a control-flow based timing side-channel, the final method should be

similar to the example in Listing 2.8.

1 public static boolean sanity unsafe(int a, int b) {

2 int i = b;

3 int j = b;

4 if (b<0)

5 return false;

6

7 if (a<0) {

8 return true;

9 } else {

10 while (i > 0) {

11 i--;

12 }

13 }

14 return false;
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15 }

Listing 2.7: Example of a Mixed timing side-channel vulnerability in a method

1 public static boolean sanity safe(int a, int b) {

2 System.out.println("a: " + a + ";b: " + b);

3 int i = b;

4 int j = b;

5 if (b<0)

6 return false;

7

8 if (a>0) {

9 while (i > 0) {

10 i--;

11 }

12 } else {

13 while (j > 0) {

14 j--;

15 }

16

17 }

18 return false;

19 }

Listing 2.8: Safe example of Listing 2.7

2.2 Automated Detection of Timing Side-Channel Vulnerabilities

Automatic detection of timing side-channel vulnerabilities has received substantial attention in recent

years. This area has been pushed in several directions, which can be divided into two different paths,

static and dynamic detection of timing side-channel vulnerabilities.

In 2017, Timos Antonopoulos et al. [2] developed a new way to prove the absence of timing side-

channels. They attempted to use decomposition instead of self-composition to prove the absence of

timing side-channels. Their idea as they put it was “... to partition the program’s execution traces in such

a way that each partition component is checked for timing attack resilience by a time complexity analysis

and that per-component resilience implies the resilience of the whole program.”. This means that their
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approach divides the program’s execution traces into smaller and less complex partitions. Then each

partition has their resilience to timing side-channels attacks checked through a time complexity analysis.

The authors’ idea is that the resilience of each component proves the resilience of the whole program.

To ensure that any pair of program traces with the same public input has a component containing both

traces, the construction of the partition is done by splitting the program traces at secret-independent

branches. The authors’ approach follows the demand-driven partitioning strategy that uses a regex-

like notion that they call trails, which identifies sets of execution traces, particularly those influenced by

tainted (or secret) data.

One extremely important concept discussed by the authors is the notion of k-safety property, which

is a property that involves k terminating runs of a program.

Since in this paper, the authors want to prove the absence of timing side-channel vulnerabilities, they

need k to be equal to 2, meaning 2 runs. So, any pair of executions whose computation uses the same

public inputs should have similar running times, with a maximum difference based on the machine they

run on. Although the authors focused on k equal to 2, their tool can be used for any value of k, greater

than 2.

Before this paper, other approaches employed self-composition, where they aim to reason about

multiple executions at once. However, the authors present the novel idea of decomposition, where they

prove a non-relational property about a trace, instead of proving a relational property about every pair of

execution traces. With that, the authors developed a tool called Blazer. That tool will first try to prove that

a partition has tight bounds on running times, which means that there is a limit to the partition running

time. If that is not possible, it will try to synthesize possible attacks. If there is a difference in running

time caused by secret values, then there is a possible attack. To check the effectiveness of the tool, the

authors evaluated it with a collection of 25 benchmarks, consisting of 12 benchmarks hand-crafted by

the authors, 7 from the literature and 6 fragments of the DARPA STAC challenge problems [15].

Taking as a basis the work developed by Timos Antonopoulos et al., in 2017, Jia Chen et al.

[3] presented the notion of ε-bounded non-interference, a variation of Goguen and Meseguer’s non-

interference principle [16]. The authors define ε-bounded non-interference as “[...], given a program P

and a ‘tolerable’ resource deviation ε, we would like to verify that the resource usage of P does not vary

by more than ε no matter what the value of the secret.”. The execution time of an application can be

affected by sources external to the application. As such, a minimum difference in execution time should

be expected and must be accepted. This minimum change is what the authors denoted as ε. To simplify,

ε-bounded non-interference means that regardless of the secret, the execution time of an application will

not vary by more than ε. Given that ε-bounded non-interference is an instance of a 2-safety property,

this verification is known to be harder than standard safety properties and the former has not been as

well-studied as the latter. To solve those challenges the authors combined “[...] relatively lightweight
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static taint analysis with more precise relational verification techniques for reasoning about k-safety (i.e.,

properties that concern interactions between k program runs).”.

To verify the ε-bounded non-interference property the authors present a new program logic called

Quantitative Cartesian Hoare Logic (QCHL), which is at the core of their technique. With Quantitative

Cartesian Hoare Logic the authors can “[...] prove triples of the form 〈φ〉 S 〈ψ〉, where S is a program

fragment and φ, ψ are first-order formulas that relate the program’s resource usage (e.g., execution

time) between an arbitrary pair of program runs.”. Thanks to the QCHL logic, symbolically executing two

copies of the program in lockstep allows a relational verification.

With that, the authors developed a tool called Themis. To prove that Themis works as a tool and

compares favourably to Blazer both in terms of accuracy and running time, the authors executed Themis

on several real-world Java applications, on the same examples used to test Blazer, on one benchmark

from the DARPA STAC project [15], and on seven other benchmarks with known vulnerabilities collected

from GitHub. With these tests, the authors showed that Themis can find previously unknown vulnerabil-

ities in widely used Java programs, that it can confirm that the repaired versions of vulnerable programs

do not exhibit the original vulnerability and that it compares favourably against Blazer.

These two papers improve the field of detection of side-channel vulnerabilities. However, both papers

used static analysis. As such, in 2019, Shirin Nilizadeh et al. [1] decided to take a new approach to the

field using dynamic analysis, introducing a new tool called DifFuzz. According to the authors, this tool

“[...] uses a form of differential fuzzing2 to automatically find program inputs that reveal side channels

related to a specified resource, such as time, consumed memory, or response size.”.

As previously mentioned, non-interference is too strong of a property, with regards to side-channel,

particularly in timing side-channel. As such, like in the previous articles, DifFuzz does not strictly check

non-interference, instead will try to find a set of values to be used as inputs so that the difference in

resource, in this case, time, between secret-dependent paths will be as large as possible.

DifFuzz can be used in programs written in any language. However, in their paper, the authors’

solution targets Java. DIfFuzz instruments a program to record its coverage and resource consumption

along the paths that are executed. As such, the inputs must maximize the code coverage. For that is

used the fuzz testing tool American Fuzzy Lop (AFL) [17], which using genetic algorithms, will mutate the

inputs using byte-level coverage. However, AFL only supports programs written in C, C++, or Objective

C, and DifFuzz is written in Java. To connect these two tools, the authors used Kelinci [18] that provides

AFL-style instrumentation for Java programs. This way, AFL does not know about the Java program

being tested. Then, the user must create a Fuzzing Driver, that parses the input provided by AFL and

executes two copies of the code, measuring the cost difference between the two. That cost difference

will be used to guide the AFL in the generation of more input values so the difference can be increased.

2Fuzzing is an automated testing technique in which invalid, unexpected or random data is provided as input to the program in
test.
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And this process is repeated for a predetermined time or until the user cancels the execution of the tool.

A diagram of the tool functionality can be seen in Figure 2.1.

To assess the correctness of DifFuzz, the authors decided to apply it to widely-used Java applications

and they found previously unknown vulnerabilities (later confirmed by the developers). They also applied

DifFuzz to complex examples from the DARPA STAC [15] program. Additionally, they compared their tool

with Blazer and Themis. Unlike Blazer and Themis, that can give false alarms given that both perform

static analysis, DifFuzz will not give false alarms since it performs dynamic analysis; however, it can not

prove the absence of vulnerabilities. To accurately compare DifFuzz with Blazer and Themis, the authors

evaluated DifFuzz on the same benchmarks used for Blazer and Themis, and on their corrected versions.

DifFuzz was able to find the same vulnerabilities as the other tools and also found vulnerabilities on

corrected versions of the benchmarks of Themis and Blazer.

As the authors state, they achieved their goals. However, there is still more that can be done to

improve this tool. Two of their proposed improvements are to add statistical guarantees to the tool and

to possibly add automated repair methods to eliminate the vulnerabilities discovered by DifFuzz. The

purpose of this project is to contribute to the latter

DriverInitial
Seed AFL

mutates

Kelinci
Server

Check increased cost
diference or

increased coverage

fuzzer-out-n

Figure 2.1: Overview of DifFuzz

2.3 Automated Repair of Software Bugs

The correction of a bug or vulnerability can be arduous and time-consuming because a correction can

be hard to understand and/or hard to achieve. As such, the field of research in Automatic Repair is very

active.

Automatic Repair consists in the correction of a software bug and/or vulnerability without human

intervention. When a developer runs an automatic repair tool on an application, it should correct all the

bugs in that application. This type of tool is increasingly more important given the growth of developed

software and the greater emphasis on the use of Continuous Integration. As such, it is important that

when developers check their software, using automatic detection tools, they can as easily automatically

correct the bugs found.

There are several benefits of automatic repair. One is to use automatic repair to repair bugs dur-

ing the development of an application. As previously mentioned, Continuous Integration is increasingly
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common in today’s software development process. As such, automatic repair tools can be integrated

into existing Continuous Integration pipelines. Automatic repair tools can also be used to repair vulner-

abilities. Extremely popular libraries and frameworks are constantly checked for vulnerabilities, as such,

automatic repair tools could be used to repair the vulnerabilities detected without requiring any human

interaction, increasing the safety of software as a whole. As software and programming become more

popular, increases the need for new and better ways to teach programming principles to newcomers. Au-

tomatic repair tools could be used to correct the code students create and guide them to better coding

practices. More examples can be found in the work developed by Claire Le Goues et al. [19].

Automatic repair can be divided into two different techniques, behavioural repair and state repair.

Behavioural repair as the name indicates consists in the modification of the program code, either the

source or the binary code. This modification can happen in the IDE, a continuous integration server or

even on the deployed software. This means that, once the automatic repair tool finishes, the developer

can look at the code, and learn from it, seeing how certain parts of the code should have been done.

State repair consists in the modification at runtime of the execution state. Being done at runtime means

that there is no correction of the code, and as such, next time the application is run, it will have the same

problems. Both families of automatic repair can be divided into several approaches. Given that in this

project it will be used behavioural repair, a few of its approaches are covered in this report.

The approaches to behavioural repair can be split into different types that explain how the repair is

processed, and what type of oracle3 is used. The first approach is Repair & Oracles. Here the automatic

repair is done concerning an oracle. The oracle used can be of varied types and its type influences how

the repair is done. The oracle can be a Test Suite, which is an input-output specification. In this type of

repair, a failing test case acts as a bug oracle, while the passing test cases are a regression oracle. This

means that the failing test case identifies the bug, while the passing test cases identify all the functionality

that should be maintained. There are tools developed with this type of repair such as Genprog [20] and

Nopol [21]. The oracle can take into account the pre and post conditions of the application. The repair

can also be driven by an Abstract Behavioural Model, such as a state machine encoding the object state

and the corresponding method calls.

Another approach is called Static Analysis. Here the automatic repair tool can be built on top or

be included in static analysis tools. In this case, it is part of the responsibility of a single tool the whole

process of discovering a bug and correcting it. In that case, the user does not need to worry about what

type of information should be given to the automatic repair tool. In this approach, the oracle is the static

analysis itself.

The final approach is called Crashing inputs. Crashing input can sometimes be confused with the

test suite, however, the main difference is that in the test suite, there are passing and failing test cases,

3Oracle indicates if the program works successfully, given the program and a way to detect if the program execution is as
expected.
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while crashing input simply “... refers to a violation of the non-functional contract ‘the program shall not

crash”’ [22].

There are many more repair approaches, however, given that they do not belong to the scope of this

work they will not be mentioned. However, more information can be found in the work developed by

Martin Monperrus [22]. In this work, the focus is on automatic repair with the use of Test Suites.

2.3.1 Automated Repair Tools

In 2012, Claire Le Goues et al. [20] presented a generic method for automatic software repair called

GenProg. They aimed to develop a way to repair applications without the need for formal specifications

or program annotations. That way, their tool could repair an application without preparing the source

code. Achieving this would be an outstanding accomplishment, since any developer could use GenProg

to repair software that they were using, without needing to understand or modify the code. To accomplish

this, GenProg receives as input the defected source code and a set of test cases. In the set of test cases,

at least one of them must be a failing negative test case and a set of passing positive test cases. The

negative test case encodes the fault to be repaired, meaning that it should be a use case where the

bug or vulnerability to be corrected can be noticed. The set of positive test case encodes the set of

functionality that can not be lost while repairing the bug. For instance, imagine an API where the bug to

correct is a POST request with a specific message, which is encoded in the negative test case. If the

set of positive test cases do not test the correct functionality of POST requests, then a simple repair for

the bug is to simply remove the POST requests functionality. As such, when using GenProg it is of the

utmost importance to make the test cases as complete as possible to avoid losing any functionality in

the application while assuring the best possibility that the bug will be repaired. This means that it is vital

to have great code coverage. GenProg uses genetic programming to search for a variant of the program

that retains all required functionality but does not have the bug in question. Genetic programming as the

name indicates is inspired by biological evolution and creates new program variations, called variants,

using crossover and computational mutation. A fitness function evaluates each variant’s desirability,

and the test cases are used to evaluate the desirability. The variants with high desirability are passed

to the next generation so that the process can be repeated until a variant passes all test cases or a

predetermined resource limit is reached. When developing GenProg, the authors decided that it should

only use statements from the program to be repaired instead of inventing new code, because, according

to the authors, the developer coded a correct version of the bug somewhere in the application.

To evaluate GenProg, the authors repaired 16 C programs, and on average, GenProg found a repair

in 357 seconds. They also found that 77% of the trials produced a repair. In the 16 patches achieved,

seven inserted code, seven deleted code, while two did both. One problem of GenProg is that it must be

manually initialized. To reduce this manual initialization, the authors proposed a prototype of a closed-
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loop repair system where the repair process is launched by real-time detection of bugs, and the system

input is recorded so that it can construct a negative test case automatically. To test the closed-loop, the

authors focused the experiments on three benchmarks consisting of security vulnerabilities in servers.

After running those experiments, the authors found that the GenProg did not break legitimate repairs

and addressed the given errors. Given that the repair time is low, it does not negatively influence

performance.

Although the authors achieve their goals, GenProg has some limitations. Such as the fact that

GenProg relies on test cases to identify important functionality of the application and to identify the

error to repair. This is a limitation because it is extremely important that the tests cases provided with

the application have 100% code coverage, or at the very least as close to 100% as possible. Since

GenProg will use the test cases to identify the functionality of the application and the bug to correct,

any functionality that is not included in the test cases might be deleted. Also, some properties of an

application can be hard to encode with test cases, such as race conditions, which GenProg cannot

repair. Another problem is the fact that if the patched program passes the test suite provided as input,

GenProg considers the repair acceptable. As such, the quality of the repair can be impacted by the

size and scope of the test suite. Given that for the repair to work, the bug must already be known,

this is a problem for the automation aspect of GenProg. Even though the authors’ closed-loop system

automatically detects bugs, it does not work for all types of faults. The final problem that the authors

refer, is the fact that the experimental setup and parameters were chosen based on the performance,

and as such might not be the optimal set of parameters values. GenProg was used to repair programs

written in C, but the ideas and findings of the authors can be adapted to other languages and can be

used as a starting point to new approaches, and as such, this paper is important regardless of the target

programming language.

In 2017 Jifeng Xuan et al. [21] presented Nopol, a new approach to automatically repair buggy

conditional statements. This approach takes as input a program and a set of test cases and outputs a

patch for the inputted program with a conditional expression. The set of test cases passed as input must

include the passing test cases to encode the expected behaviour of the application, and should include

at least one failing test case that encodes the bug. Unlike GenProg, which follows a generic approach

for automatic software repair, Nopol was built to focus on a specific type of bugs, bugs in conditional

statements. More precisely, buggy if conditions and missing precondition bugs. Buggy if conditions

occur when a bug is the condition of an ‘if’ statement. Missing precondition bugs happen when there

should be a condition before a statement, such as detecting null pointer or an invalid index to access an

array.

Nopol uses Ochiai, a spectrum-based ranking metric, as “[...] a fault localization technique to rank

statements according to their suspiciousness of containing bugs.”. The application’ statements are
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ranked in a descending order based on their suspiciousness score. As such the statements with a

higher suspiciousness score, closer to 1, will be at the top of the rank while the statements with the

lowest suspiciousness score, closer to 0, will be at the bottom. The suspiciousness score indicates

the likelihood that a statement contains a bug. If the statement is a condition, an ‘if’ statement, then

Nopol considers it a buggy ‘if’ condition. If the statement is any other statement except a branch or

loop statement, Nopol considers it a missing precondition candidate. Then each one of these state-

ments is processed in a phase called angelic fix localization, where conditional values in ‘if’ statements

are replaced by values that pass the failing test cases provided as input. If a value passes the failing

test cases, it is called an angelic value. In the case of a non-loop and non-branch statement, the an-

gelic fix localization skips that statement. If skipping the execution of that statement a failing test case

passes, then a potential fix location has been found, meaning there is a possibility that there is a missing

condition before that statement. In this work, the authors only consider missing precondition for single

statements and not blocks. If an ‘if’ condition is used multiple times in a failing test case, there might exist

a sequence of angelic values that pass that test. However, to avoid a combinatorial explosion, Nopol

does not consider this situation. All the statements where Nopol finds an angelic value are identified as a

fix location. Then, Nopol enters in the runtime trace collection phase. Here all test cases passed as input

are run, to collect the execution context of the fix location. The execution context includes the expected

outcome of conditional values, the static values in the program, and given that Nopol support automatic

repair for object-oriented programs, it also collects the nullness of all variables and the output of state

query methods4. As such, a repair created by Nopol might contain polymorphic calls. Next comes

the patch synthesis phase, where the collected context is converted into a Satisfiability Modulo Theory

(SMT) formula. If the SMT formula is satisfied, then that implies a program expression that preserves

the behaviour while fixing the bug, that is, the expression passes all the test cases. The expression that

satisfies the SMT formula is converted to source code. Otherwise, Nopol passes to the next statement

in the ranking.

To evaluate Nopol, the authors executed it on a dataset with 22 real-world bugs from Apache Com-

mons Math and Apache Commons Lang. In the dataset, there are 16 bugs with buggy if conditions and

6 bugs with missing preconditions. To build this dataset the authors extracted commits that modified a

maximum of five files, where an if condition was modified or added. Out of the 22 bugs, Nopol only failed

the repair of 5 bugs, four of which are related to timeout. From the 17 repairs, 13 are as correct as of the

manual patches. The authors reported that the average repair time of one bug was 24.8 seconds.

However, as a new approach to automatic repair, Nopol has some limitations identified by the authors.

When a failing test case executes both branches of an if condition, then Nopol can not find an angelic

value. To solve this, the test cases should be refactored into smaller test cases, where only one branch

4A method without arguments and with a primitive return type
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of the if condition is covered. Another limitation is an infinite loop caused by the angelic fix localization.

To correct this, the authors suggest setting a maximum execution time, however as they point out this is

impractical since it is hard to determine maximum execution time. Sometimes, in a given statement the

values true and false can make a test case pass, and as such the synthesis might not work for missing

preconditions. As it stands, Nopol only support calls to methods without parameters. As such, if the

necessary patch needs to have in a condition a method with parameters, Nopol cannot provide it. The

final limitation presented by the authors happens when in at least one test case, an object is null, and

the patch to be created contains a call to state query method of that object.

Despite these limitations, Nopol can be considered a success and can be used as a tool in real work

or it can be used as a foundation to new and improved approaches.

This paper is, in fact, an extension of previous work done by the same authors in 2014 [23]. However,

it was chosen to discuss this paper because it adds an evaluation on a real-world bug dataset, so that

it can be tested in an environment closer to reality and four detailed case studies that reference 4 bugs

corrected by Nopol, where the comparison of the automatic repair to a manual-repair is always different.

2.4 Automated Repair of Timing Side-Channel Vulnerabilities

The correction of a timing side-channel vulnerability is an arduous and error-prone task. To reduce

that hardship, there has been an effort to find ways to correct a timing side-channel vulnerability au-

tomatically. One of that example was Meng Wu et al. [24] that proposed a method based on program

analysis and transformation to eliminate timing side-channel vulnerabilities. According to the authors,

their solution produces a transformed program functionally equivalent to the original program but without

instruction and cache timing side-channels. They also claim that they ensure that the number of CPU

cycles taken to execute any path is independent of the secret data, and the cache behaviour of memory

accesses is independent of the secret data in terms of hits and misses. Their method is implemented in

LLVM (Low-Level Virtual Machine) and tested using libraries with a total of 19,708 lines of C/C++ code.

In their work, the authors identify a different type of timing side-channel vulnerability, cache-related

timing side-channel vulnerability which means that the memory subsystem may behave differently de-

pending on the values of the secret variables.

The method the authors created uses static analysis to identify the set of variables whose values

depend on the secret inputs. Then, to decide if those variables lead to timing side-channel vulnerabili-

ties, they check if the variables affect unbalanced conditional jumps, for instruction timing side-channel,

or accesses to memory blocks across multiple cache lines, for cache-related timing side-channel vul-

nerabilities. After this analysis, to mitigate the leaks, code transformation is performed to equalize the

execution time.
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Applying their methods, the authors created the tool SC-Eliminator, that takes as input the program

as LLVM bit-code and a list of secret variables and outputs the transformed program. This tool starts by

doing a series of static analysis to identify the sensitive variables and their associated timing leaks. Next,

the tool performs two transformations, one to eliminate the difference in execution time caused by un-

balanced conditional jumps and the other to eliminate the difference in the number of cache hits/misses

during the accesses of look-up tables.

Testing the tool, the authors claim that it is scalable, efficient and effective in removing instruction

and cache related timing side-channels. They also claim that the transformed program created by the

tool is only slightly bigger and slower than the original code.

2.5 Automated Testing of Java Software

Given that the idea behind this project is the automatic repair of timing side-channel vulnerabilities,

meaning that the source code will be modified without human intervention, it is necessary to ensure that

those modifications do not break any functionality of the modified code. For that, the original code must

have unit tests that can then run on the repaired version of the code.

However, the datasets of vulnerable code that are used to test this project (e.g. DifFuzz’s dataset)

do not contain any unit tests. As such, before proposing a correction for any of the examples in those

datasets, it is necessary to create unit tests for those examples. The problem is that creating unit tests is

a time-consuming activity. Besides that, the creation of unit tests is prone to errors. For those reasons,

automated approaches are of utmost importance.

The solution that this project adopts is the tool EvoSuite [25]. This tool automatically generates test

cases with assertions for classes written in Java code. To do this, Evosuite uses an approach that

generates and optimizes test suites to satisfy a coverage criterion. The generated tests use JUnit4.

Evosuite can either create new test suites for the classes in the project or it can add new test cases to

existing test suites. This tool can either be used on the command line or as a plugin for Eclipse, Intellij

IDEA or maven. Once the tests are created, they are no different than tests created manually, meaning

they can run like any other JUnit test. The only difference in the tests is that tests generated by EvoSuite

rely on the EvoSuite framework and as such needs to be on the classpath.
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This chapter presents the architecture of DifFuzzAR and describes the methodology used to identify

and repair timing side-channel vulnerabilities.

3.1 System Overview

DifFuzzAR is designed to work in conjunction with DifFuzz. In terms of its workflow, the tool needs to

first identify the vulnerable method to be repaired. For this, the tool assumes the existence of a Driver

file that can be used with DifFuzz. Once the vulnerable method is identified using the Driver, the tool will

attempt to repair the method. In the current version of the tool, it will attempt to repair Early-Exit Timing

Side-Channel vulnerabilities and Control-Flow Based Timing Side-Channel vulnerabilities.

DifFuzzAR was designed to be as modular as possible. This way if someone wants to add function-

ality to repair other types of vulnerabilities, they simply have to create a new independent module with

all the code capable of repairing that vulnerability and add a call to the new module in the tool. The one

thing that is intrinsic to the tool is the analysis of the Driver to identify the vulnerable method and the

class it belongs to. Once this identification is done, the tool searches for that method and sends it to the

module responsible for correcting an early-exit timing side-channel vulnerability. That module then cre-

ates a repaired version of the method and that version of the method is sent to the module responsible

for correcting a control-flow based timing side-channel vulnerability. That module then creates another

repaired version of the method and, given that it is the final module, the tool saves that method in a new

file that is a copy of the original file. In case the user decides to add a new module to correct another

vulnerability, can also decide the order by which each module repair the original code. However, the user

needs to be aware that correction of vulnerabilities can add or exacerbate another vulnerabilities. As

such, it is important to consider what is the order of the modules. For instance, the module responsible

for the correction of an early-exit timing side-channel vulnerability can add or exacerbate a control-flow

based timing side-channel, as such the module to correct an early-exit timing side-channel vulnerability

needs to happen before the module to correct a control-flow timing side-channel vulnerability. Besides

that, when creating a new module, the user must ensure that in some way the execution of the method

produces a Spoon method representation, CtMethod, of the correct method. This can either be as a

return value of the module, or the modification of the object the module receives as an argument. It will

be that CtMethod, that the tool will write in a new file as its output.

A basic overview of the tool code can be seen in Algorithm 3.1. An overview of the architecture of

the tool is also available in Figure 3.1.
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Algorithm 3.1: Tool Code Overview
processDriver(driverPath);
modifyCode(driverPath);
write new file with modified method;

Driver Vulnerable
Project

Driver
Process

Searches for 
invocation of 

vulnerable method

DifFuzzAR

Retrives vulnerable class

Early-Exit
Correction

sends 
vulnerable 

method
Control-Flow
Correction

sends 
modified 
method

sends 
modified 
method

creates 
new class with 

corrected method
Corrected
Class

Figure 3.1: Overview of DifFuzzAR

3.2 Identification of Vulnerable Methods

The first task of the tool is to uncover the vulnerable method that is to be repaired. Since this tool should

be used in conjunction with DifFuzz, the driver used for DifFuzz is also used to identify the vulnerable

method. Doing this reduces the manual work of the users and reduces errors. However, this also

means that the driver must be properly created so that the correct method is retrieved. For the tool to

properly identify the vulnerable method, the method invocation should be immediately preceded by a

call to Mem.clear(). This requirement follows from what is already stipulated for DifFuzz: while creating

a driver for DifFuzz, it is required to call the method Mem.clear(). Therefore, to use a DifFuzz driver

with DifFuzzAR it is simply a matter of ensuring that the vulnerable method is invoked immediately after

the call to Mem.clear(). The only instructions that can be between the invocation of Mem.clear() and

that of the vulnerable method are a constructor invocation, a ‘try’ keyword (meaning that the vulnerable

method invocation is surrounded by a ‘try’ block), or an ‘if’ keyword (meaning that the vulnerable method

invocation is the first instruction of the ‘then’ or ‘else’ block).

The search for the instruction after the Mem.clear() instruction is done twice since in the driver the

vulnerable method will be invoked twice and that way the tool can discover what parameter of the method

is the secret since it will be the one where a different argument is used in the two invocations of the

method. As such, in the driver, the user must ensure to use the same argument for the public parameters

and different ones for the secret. Taken as an example the two method invocations shown in Listing 3.1,

the second parameter is considered by the tool as the secret, since it is the only argument that changes.
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1 vulnMethod(a, b, c);

2

3 vulnMethod(a, d, c);

Listing 3.1: Vulnerable method invocation example

In the identification of the vulnerable method, the tool also finds the path to the class file where

the method definition is, even if that class is an inner class in some package. The tool also validates

its findings of the vulnerable method by comparing the two instances and checking if name, class,

return type and the number of parameters are the same, while at least one argument is different. A

basic overview of the process of identifying the vulnerable method from the driver can be seen in the

Algorithm 3.2. In this process, given the path to the Driver file, the tool searches for the first occurrence

of Mem.Clear(). Once it finds it, analyses the next instruction, which should be a method invocation.

This method is considered by the tool as the vulnerable method to be corrected. The tool then searches

for the second occurrence of the Mem.Clear() and repeats the process. With the two invocations of the

vulnerable method, the tool will compare them to see if it is the same invocation, the arguments that

differ in the two invocations are considered the secrets of the method.

Algorithm 3.2: Identification of vulnerable method using DifFuzz driver
1: f← findDriverFile(driverPath)
2: instMem1, f’← findMemClear(f)
3: vulnOpt1← recordNextInstruction(instMem1)
4: instMem2← findMemClear(f’)
5: vulnOpt2← recordNextInstruction(instMem2)
6: valid← compareInstructions(vulnOpt1, vulnOpt2)

3.3 Correction of Vulnerabilities

In the current version of DifFuzzAR, the correction of a vulnerability is done in two separate phases: the

correction of an early-exit timing side-channel vulnerability followed by the correction of a control-flow

based timing side-channel vulnerability. This way, there are two separate modules, each responsible for

the correction of one type of timing side-channel vulnerability. As mentioned above, the addition of the

correction of a new type of side-channel vulnerability is as simple as writing the code responsible for that

correction and adding the module to the tool, as well as its invocation.

From the previous identification step, the tool knows which method was identified as vulnerable by

DifFuzz. However, it does not know the specific instruction or set of instructions that cause the vulnera-

bility. As such, the tool has to analyze the code and produce a correction that consists in a modification
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of the code to make its execution time as independent of the secret as possible. Algorithm 3.3 shows a

basic overview of the correction process. If the vulnerable method has more than one return statement,

then the tool considers it to have an early-exit and so the tool starts by correcting that vulnerability. After

that is done, the tool executes the module responsible for the correction of control-flow based timing

side-channel vulnerabilities.

Algorithm 3.3: Overview of the repair process
1: if numberReturns >1 then
2: vulnMethod← repairEarlyExit(vulnMethod)
3: end if
4: vulnMethod← repairControlFlow(vulnMethod)

3.3.1 Correction of Early-Exit Timing Side-Channel Vulnerabilities

Early-Exit timing side-channel vulnerabilities occur when there is an exit from the method that depends

on the secret and the execution time of the method is significant after that exit. The correction of this

type of timing side-channel vulnerability consists of the elimination of all ‘return’ statements except the

last one. However, the result of the execution of the method should be the same after the modification.

For that reason, every ‘return’ statement of the method will be replaced with an assignment of the value

being returned to a variable. That variable will either be the variable returned in the final return (if it

returns a variable) or a new one created with the return type of the method.

A more detailed description of the correction of this type of vulnerability is available in Section 4.3. In

Algorithm 3.4 is shown an overview of the correction process for early-exit timing side-channel vulnera-

bility. The tool starts by obtaining the element returned in the final return of the method. This element

should be a variable, if it is not the tool creates a new variable, were its type is the return type of the

method, and is initialized with the element obtained, referred from now on as return variable. Then, the

tool analysis every instruction of the method in search of a return statement, which will be replaced by

an assignment to the return variable with the value being returned. If that return statement happens after

a ‘while’ block, then the instruction is added before the ‘while’ block. If it is the last return statement,

then the value being returned is altered to be the return variable. If the return statement is inside an

‘if’ statement, then the condition of the ‘if’ statement is saved to be used to protect the variables used

in the condition. If the instruction under analysis uses any variable saved to be protected, then that

statement will be inside the ‘then’ block of a new ‘if’ statement, where the condition is the combination

of the negation of every condition that variable was part of. In the end is created a new method, with the

early-exit vulnerability corrected.

This simple modification can create or exacerbate a control-flow based timing side-channel vulnera-

bility. For instance, if an early-exit happens inside a cycle, where the stopping condition depends on a
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Algorithm 3.4: Correction of Early-Exit Timing Side-Channel Vulnerabilities
1: returnElem← obtainElemReturnedMethod(vulnMethod)
2: if !isVariable(returnElemen) then
3: returnElem← createVariable(returnElem)
4: end if
5: instruction← getNextInstruction(vulnMethod)
6: while exist(instruction) do
7: if isReturn(instruction) then
8: if afterWhileBlock(instruction) then
9: addAssignmentBeforeWhile(instruction, returnElem)

10: else if lastReturn(instruction) then
11: changeReturnElem(instruction, returnElem)
12: else
13: replaceWithAssignment(instruction, returnElem)
14: if insideIf(instruction) then
15: condition← saveCondition(instruction)
16: end if
17: end if
18: else if isVariableProtected(instruction) then
19: addIfToVariable(instruction)
20: end if
21: instruction← getNextInstruction(vulnMethod)
22: end while
23: newMethod← saveChanges()

secret, then the effect of the existing control-flow based timing side-channel vulnerability becomes more

prominent, i.e., the difference in execution time depending on the secret is greater since it will have more

instructions to execute. For instance, take as an example the listing 3.2, where the parameter “pw” is

a secret, from the application example PWCheck, from DifFuzz dataset. Here, the original method,

where the secret is the argument pw, suffers from a mixed timing side-channel vulnerability. There are

multiple return statements, indicating an early-exit timing side-channel vulnerability and, the conditions

of the ‘if’ branches depend on the secret indicating a control-flow based timing side-channel vulnerabil-

ity. However, after correcting the early-exit timing side-channel vulnerability, seen in the listing 3.3, the

effects of the control-flow based timing side-channel become more prominent, mostly because there are

instructions dependent on the secret that happen repeatedly, in this case, the ‘if’ statement inside the

cycle.

1 public static boolean pwcheck1 unsafe(byte[] guess, byte[] pw) {

2 if (guess.length != pw.length) {

3 return false;

4 }

5 int i;

6 for (i = 0; i < guess.length; i++) {
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7 if (guess[i] != pw[i]) {

8 return false;

9 }

10 }

11 return true;

12 }

Listing 3.2: Original Vulnerable Method

1 public static boolean pwcheck1 unsafe$Modification(byte[] guess, byte[] pw) {

2 boolean $1 = true;

3 if (guess.length != pw.length) {

4 $1 = false;

5 }

6 int i;

7 for (i = 0; i < guess.length; i++) {

8 if (((i < guess.length) && (i < pw.length)) && (guess[i] != pw[i])) {

9 $1 = false;

10 }

11 }

12 return $1;

13 }

Listing 3.3: Vulnerable Method after early-exit correction

3.3.2 Correct Control-Flow Timing Side-Channel Vulnerabilities

Control-flow based timing side-channel vulnerabilities happen when a slow operation is triggered by a

condition involving the secret. This can be the invocation of a slow executing method if a given condition

involving a secret is met or a cycle where the stopping condition depends on the secret. The correction

of this type of vulnerability involves the modification of the stopping condition of cycles that depend on a

secret to depend on a public argument or the replication of the block of instructions of the ‘then’ block to

the ‘else’ block, and vice-versa, of an ‘if’ statement where the condition depends on the secret.

A more detailed explanation of the correction process of control-flow based timing side-channel vul-

nerabilities is provided in Section 4.4. Algorithms 3.5 and 3.6 show an overview of the correction process

for this type of vulnerabilities. In this process, the tool starts by creating a list of the secrets and one

of the public arguments. The list of public arguments is final, while the list of secrets is updated during
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the analysis of the method. Every time, a variable is assigned with a value dependent on a secret,

that variable is added to the list of secrets. The tool also creates a map, to connect the newly created

variables with the old variables being replaced. The tool then starts to analyse each instruction, taking

actions according to the type of instruction and where the instruction happens.

If the instruction found is an assignment and that needs to be modified, then a new variable is created

and it is added to the list of replacement with the existing variable, and the instruction is changed so that

the variable being assigned to is the newly created one.

If the instruction found is a ‘for’ statement and the stopping condition uses a secret, the tool will

attempt to change the condition to use a public argument instead of the secret. This public argument

must be of the same type as the secret in the stopping condition. When the tool finds a ‘for’ statement it

will retrieve the body of the ‘for’ and will analyse each instruction of that block.

If the instruction found is an ‘if’ statement then the tool will retrieve the ‘then’ and ‘else’ blocks. If the

condition uses a secret, then the tool will try to modify the instructions of the ‘then’ block and then of the

‘else’ block, producing two new blocks with the modified versions of the instructions. Then, the modified

version of the ‘then’ block is added to the ‘else’ block and the modified version of the ‘else’ block is added

to the ‘then’ block. Otherwise, the tool will analyse each instruction of both blocks without adding new

instructions to either block.

If the instruction is an invocation, the tool will retrieve the target of that invocation. If the target is a

secret, then the tool will create a new variable to replace the target.

If the instruction is a local variable, the tool will retrieve the assigned value. If that value uses a

secret, then the variable assigned to will be considered a secret. If the value being assigned does not

use any variable that is used in the condition of the ‘if’ statement this instruction belongs to, then a new

variable to replace the variable assigned to is created.

If the instruction is a loop statement, then the tool will retrieve its body and will analyse each instruc-

tion of the body.

If the instruction is an operator assignment, then the tool will create a new variable to replace the one

being assigned to.

If the instruction is a ‘try’ block, then the tool will retrieve its body and will analyse its instructions.

If the instruction is a unary operator, the tool will retrieve the variable used. If that variable was

already replaced, then the tool will obtain the variable created as a replacement and will replace the

variable in the unary operator with the variable created for replacement.

If the instruction is a ‘while’ statement, the tool will replace the variables used in the stopping condi-

tion, either by variables already created as replacements or with newly created variables. Then the tool

retrieves the body of the tool and will analyse its instructions.

In the end is created a new method, with the control-flow based timing side-channel vulnerability
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corrected.

Algorithm 3.5: Correction of Control-Flow Based Timing Side-Channel Vulnerabilities - PART 1
1: secrets← createListOfSecrets(vulnMethod)
2: public← createListOfPublic(vulnMethod)
3: replacements← newMap()
4: instruction← getNextInstruction(vulnMethod)
5: while exist(instruction) do
6: if isAssignment(instruction) then
7: if valueAssignedUsesSecret(instruction, secrets) then
8: variable← getVariableAssignedTo(instruction)
9: secrets← addToSecrets(variable, secrets)

10: end if
11: if toModify(instruction) then
12: newVar← createNewVariable(instruction)
13: addToReplacements(replacements, instruction, newVar)
14: changeVariableAssignedTo(instruction, newVar)
15: end if
16: else if isForStatement(instruction) then
17: if conditionUsesSecret(instruction, secrets) then
18: changeConditionToUsePublic(instruction, secrets, public)
19: end if
20: traverseForBody(instruction)
21: else if isIfStatement(instruction) then
22: thenBlock← getThenBlock(instruction)
23: elseBlock← getElseBlock(instruction)
24: if conditionUsesSecret(instruction, secrets) then
25: modThen← modifyInstructions(thenBlock)
26: modElse← modifyInstructions(elseBlock)
27: addToStartOfBlock(modThen, thenBlock)
28: addToStartOfBlock(modElse, elseBlock)
29: else
30: traverseBlock(thenBlock)
31: traverseBlock(elseBlock)
32: end if
33: else if isInvocation(instruction) then
34: target← getInvocationTarget(instruction)
35: if isSecret(target, secrets) then
36: newTarget← createNewVariable(target)
37: addToReplacements(replacements, instruction, newTarget)
38: replaceTarget(instruction, newTarget)
39: end if
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Algorithm 3.6: Correction of Control-Flow Based Timing Side-Channel Vulnerabilities - PART 2
40: else if isLocalVariable(instruction) then
41: assigned← getValueAssigned(instruction)
42: if usesSecret(assigned, secrets) then
43: variableAssigned← getVariableAssignedTo(instruction)
44: secrets← addtoSecrets(variableAssigned, secrets)
45: else if !isPartOfConditionOfParentIf(instruction, assigned) then
46: newVar← createNewVariable(instruction)
47: addToReplacements(replacements, instruction, newVar)
48: changeVariableAssignedTo(instruction, newVar)
49: end if
50: else if isLoopStatement(instruction) then
51: traverseLoopBody(instruction)
52: else if isOperatorAssignment(instruction) then
53: newVar← createNewVariable(instruction)
54: addToReplacements(replacements, instruction, newVar)
55: changeVariableAssignedTo(instruction, newVar)
56: else if isTryBlock(instruction) then
57: traverseTryBody(instruction)
58: else if isUnaryOperator(instruction) then
59: var← getVariable(instruction)
60: if isInReplacements(replacements, var) then
61: replacement← getReplacement(replacements, var)
62: changeVariableUsed(instruction, replacement)
63: end if
64: else if isWhileStatement(instruction) then
65: condition← getStoppingCondition(instruction)
66: if usesReplacedVariable(condition, replacements) then
67: condition← getReplacement(replacements, instruction)
68: else
69: condition← createNewVariable(condition)
70: addToReplacements(replacements, instruction, condition)
71: end if
72: updateStoppingCondition(instruction, condition)
73: traverseWhileBody(instruction)
74: end if
75: instruction← getNextInstruction(vulnMethod)
76: end while
77: newMethod← saveChanges()
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This chapter presents the implementation details of DifFuzzAR. It starts by describing the development

of the component that, based on a DifFuzz driver, identifies the vulnerable method: the driver processor.

This is followed by a description of the two corrections currently implemented to fix early-exit and control

flow timing side-channel vulnerabilities. We also discuss the case when a method has both types of

vulnerabilities. It is also explained how the tool was developed so that it enables modularity. Finally, the

tools used for refactoring and for ensuring that refactorings are correct are described.

4.1 Software Tools Used

4.1.1 Refactoring Tools

To create this it was necessary to find a way for the tool to be able to not only read the code but also write

it. For this, it could be used any Java I/O library. The problem is that using any library would mean that

when reading the code, the tool would not know what type of instruction it was reading. This means that

that capability would have to be added to the tool. Which means, that not only was it necessary for the

tool to know how to repair a timing side-channel vulnerability but also, to know what type of instruction it

was reading, for instance, it needs to know the difference between an ‘if’ statement and a ‘for’ statement.

That would make this tool, extremely complex and would deviate the focus from the correction of timing

side-channel vulnerabilities to the ability to understand code.

For that reason, it was necessary to find a tool or library that would allow the tool, to read every

instruction of a Java file and know what type of instruction it was reading. To that purpose, it was found

two possibilities. The first is Javassist [26], Java Programming Assistant. This is a class library that

allows the editing of bytecodes in Java and enables Java programs to define new classes at runtime and

to modify a class file loaded by JVM. However, this tool is more focused on Java bytecode edition and it

would require more control to know when the tool was reading, the instructions of a ‘then’ block of an ‘if’

statement.

The second tool found is, Spoon [27], which is a metaprogramming library to analyze and transform

Java source code. One big advantage Spoon has over Javassist is the fact that it creates AST (Abstract

Syntax Tree) of the code read. This means an instruction would know it belongs to the body of a cycle,

and not directly to the method. As such, Spoon was chosen to be used in the tool. With that, the tool

can read the Driver in search of a specific instruction and know when an instruction is inside a ‘try’ block

for instance. By providing an AST of the code, it becomes easier to add instructions in a specific point

of the method, like adding the modification of a ‘then’ block to the ‘else’ block.
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4.1.2 Automated Test Generation

All the corrected examples were tested using the tool EvoSuite [25]. This tool provides a plugin that

can be added as part of a maven project and used to generate tests. For that, it was created a maven

project for each example that the correction was considered valid. In that project .pom file, EvoSuite

was added as a dependency alongside the application dependencies. Then, the project with the original

method, meaning the method before the correction of the tool, is built and tests are created by EvoSuite.

Executing these tests, they should all pass. After that, the vulnerable method is replaced by the corrected

method generated by the tool. The tests are now executed again, this time testing if the corrected method

is semantically correct, which means that to the same inputs it produces the same outputs as the original

method. DifFuzz can be executed on all examples considered semantically correct, to check if there is

no vulnerability.

4.2 Driver Processor

To reduce the manual work of users, and since DifFuzzAR is designed to work in conjunction with

DifFuzz, it was decided that the information about the vulnerable method would be retrieved directly

from the driver used by DifFuzz. It is assumed that the driver points correctly to the vulnerable method

and that it is part of the project folder containing the code to repair.

To identify the vulnerable method, the structure of available drivers in the dataset provided by DifFuzz

was analyzed. It was observed that a correct driver should measure the execution time of an invocation

of the vulnerable method. For that, it is necessary to invoke the method Mem.clear() right before the

invocation of the vulnerable method, so that the current cost of execution is reset. As such, the tool

checks each instruction present in the Driver and compares it to the instruction Mem.clear(). Once that

instruction is found then it is assumed that the next instruction of the Driver will be the invocation of the

vulnerable method. This can be seen in listing 4.1

1 public static void main(String[] args) {

2 if (args.length != 1) {

3 System.out.println("Expects file name as parameter");

4 return;

5 }

6

7 /* Read input. */

8 char[] validPassword userInputArray public;

9 String validPassword public;
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10 String storedPassword valid secret1;

11 char[] storedPassword array invalid secret2;

12 String storedPassword invalid secret2;

13

14 PasswordEncryptor pe = new ClearTextPasswordEncryptor(SAFE MODE);

15

16 List<Character> values = new ArrayList<>();

17 try (FileInputStream fis = new FileInputStream(args[0])) {

18 int i = 0;

19 int value;

20 while (((value = fis.read()) != -1) && (i < MAX PASSWORD LENGTH)) {

21 /* each char value must be between 0 and 127 and a printable

character */

22 value = value % 127;

23 char charValue = (char) value;

24 if (Character.isAlphabetic(charValue) | | Character.isDigit(charValue)

) {

25 values.add(charValue);

26 i++;

27 }

28 }

29

30 /* input must be non-empty */

31 if (i == 0) {

32 throw new RuntimeException("not enough data!");

33 }

34

35 validPassword userInputArray public = new char[values.size()];

36 for (i = 0; i < values.size(); i++) {

37 validPassword userInputArray public[i] = values.get(i);

38 }

39 validPassword public = new String(validPassword userInputArray public);

40

41 /* use a new String object to not have the same object, which might

result in an early return during comparison */

42 storedPassword valid secret1 = new String(pe.encrypt(validPassword public

));

43
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44 /* ensure same length for secrets */

45 storedPassword array invalid secret2 = new char[

storedPassword valid secret1.length()];

46

47 i = 0;

48 while (((value = fis.read()) != -1) && (i <

storedPassword array invalid secret2.length)) {

49 /* each char value must be between 0 and 127 and a printable

character */

50 value = value % 127;

51 char charValue = (char) value;

52 if (Character.isAlphabetic(charValue) | | Character.isDigit(charValue)

) {

53 storedPassword array invalid secret2[i] = charValue;

54 i++;

55 }

56 }

57

58 /* storedPassword array invalid secret2 must be completed */

59 if (i != storedPassword array invalid secret2.length) {

60 throw new RuntimeException("not enough data!");

61 }

62

63 storedPassword invalid secret2 = new String(

storedPassword array invalid secret2);

64

65 } catch (IOException e) {

66 System.err.println("Error reading input");

67 e.printStackTrace();

68 return;

69 }

70

71 System.out.println("public user input (password): " + validPassword public);

72 System.out.println("secret1 (valid stored password): " +

storedPassword valid secret1);

73 System.out.println("secret2 (invalid stored password): " +

storedPassword invalid secret2);

74
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75 Mem.clear();

76 boolean valid1 = pe.matches(validPassword public,

storedPassword valid secret1);

77 long cost1 = Mem.instrCost;

78 System.out.println("valid1=" + valid1);

79 System.out.println("cost1=" + cost1);

80

81 Mem.clear();

82 boolean valid2 = pe.matches(validPassword public,

storedPassword invalid secret2);

83 long cost2 = Mem.instrCost;

84 System.out.println("valid2=" + valid2);

85 System.out.println("cost2=" + cost2);

86

87 long diff = Math.abs(cost1 - cost2);

88 Kelinci.addCost(diff);

89 System.out.println("diff=" + diff);

90

91 System.out.println("Done.");

92 }

Listing 4.1: Example of simple Driver

After implementing this strategy, the tool was tested with the 58 drivers of all the examples provided

with the DifFuzz dataset. It was observed that there were Drivers the tool was not capable of finding the

invocation of the vulnerable method. After analysing the drivers where the tool could not find the correct

invocation of the vulnerable method, it was found that some drivers took a slight deviation from the most

common pattern. In particular, those drivers did not invoke the vulnerable method immediately after the

invocation of Mem.clear(). After some deliberation, it was concluded that this slight deviation should be

deemed valid and the tool was modified so that it could find the invocation of the vulnerable method in

those examples. This deviation could be aggregated in three groups which simplified the modifications

to the tool:

Group 1 The simplest deviation occurs when an object is created between the invocation of Mem.clear()

and the invocation of the vulnerable method. This normally happens when the vulnerable method is

an instance method and the object needed to invoke it is created before the invocation. This can be

seen in listing 4.2.
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1 public static void main(String[] args) {

2 if (args.length != 1) {

3 System.out.println("Expects file name as parameter");

4 return;

5 }

6 int n = 3;

7 String public ihash;

8 String secret iPassword1;

9 String secret iPassword2;

10

11 // Read all inputs.

12 List<Character> values = new ArrayList<>();

13 try (FileInputStream fis = new FileInputStream(args[0])) {

14 byte[] bytes = new byte[Character.BYTES];

15 int i = 0;

16 while (((fis.read(bytes)) != -1)) {

17 char value = ByteBuffer.wrap(bytes).getChar();

18 values.add(value);

19 i++;

20 }

21 } catch (IOException e) {

22 System.err.println("Error reading input");

23 e.printStackTrace();

24 return;

25 }

26 if (values.size() < n) {

27 throw new RuntimeException("Too less data...");

28 }

29

30 int m = values.size() / n;

31 System.out.println("m=" + m);

32

33 // Read secret1.

34 char[] secret1 arr = new char[m];

35 for (int i = 0; i < m; i++) {

36 secret1 arr[i] = values.get(i);

37 }

38 secret iPassword1 = new String(secret1 arr);
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39

40 // Read secret2.

41 char[] secret2 arr = new char[m];

42 for (int i = 0; i < m; i++) {

43 secret2 arr[i] = values.get(i + m);

44 }

45 secret iPassword2= new String(secret2 arr);

46

47 // Read public.

48 char[] public arr = new char[m];

49 for (int i = 0; i < m; i++) {

50 public arr[i] = values.get(i + 2 * m);

51 }

52 public ihash = new String(public arr);

53

54 System.out.println("secret iPassword1=" + secret iPassword1);

55 System.out.println("secret iPassword2=" + secret iPassword2);

56 System.out.println("public ihash=" + public ihash);

57

58 Mem.clear();

59 OSecurityManager manager = new OSecurityManager();

60 manager.checkPassword safe(secret iPassword1, public ihash);

61

62 long cost1 = Mem.instrCost;

63 System.out.println("cost1=" + cost1);

64

65 Mem.clear();

66 manager.checkPassword safe(secret iPassword2, public ihash);

67

68 long cost2 = Mem.instrCost;

69 System.out.println("cost2=" + cost2);

70

71 Kelinci.addCost(Math.abs(cost1 - cost2));

72 System.out.println(" |cost1-cost2 |=" + Math.abs(cost2-cost1));

73

74 System.out.println("Done.");

75 }

Listing 4.2: Example of Driver with constructor after Mem.clear()
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Group 2 A second deviation is when after the instruction Mem.clear() a ‘try’ block appears. When

this happens, the vulnerable method is considered to be the first instruction of the ‘try’ block. This

can be seen in listing 4.3.

1 public static void main(String[] args) {

2 if (args.length != 1) {

3 System.out.println("Expects file name as parameter");

4 return;

5 }

6

7 int startRow, rowsCount; // public

8 int usersLength1, usersLength2; // secret

9

10 /* Read input file. */

11 try (FileInputStream fis = new FileInputStream(args[0])) {

12 int value;

13

14 if ((value = fis.read()) == -1) {

15 throw new RuntimeException("Not enough data!");

16 }

17 startRow = Math.abs(value) % MAX INT VALUE;

18

19 if ((value = fis.read()) == -1) {

20 throw new RuntimeException("Not enough data!");

21 }

22 rowsCount = Math.abs(value) % MAX INT VALUE;

23

24 if ((value = fis.read()) == -1) {

25 throw new RuntimeException("Not enough data!");

26 }

27 usersLength1 = Math.abs(value) % MAX INT VALUE;

28

29 if ((value = fis.read()) == -1) {

30 throw new RuntimeException("Not enough data!");

31 }

32 usersLength2 = Math.abs(value) % MAX INT VALUE;

33

34 } catch (IOException e) {
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35 System.err.println("Error reading input");

36 e.printStackTrace();

37 return;

38 }

39

40 System.out.println("startRow=" + startRow);

41 System.out.println("rowsCount=" + rowsCount);

42 System.out.println("usersLength1=" + usersLength1);

43 System.out.println("usersLength2=" + usersLength2);

44

45 UsersTableModelServiceImpl ser1 = new UsersTableModelServiceImpl(

usersLength1);

46 long cost1 = 0L;

47 Mem.clear();

48 try {

49 // cost1 = Mem.instrCost;

50 String[][] res1 = ser1.getRows(startRow, rowsCount, null, null, true);

51 // cost1 = Mem.instrCost;

52 cost1 = res1.length;

53 } catch (IndexOutOfBoundsException e) {

54 // ignore;

55 }

56 System.out.println("cost1=" + cost1);

57

58 UsersTableModelServiceImpl ser2 = new UsersTableModelServiceImpl(

usersLength2);

59 long cost2 = 0L;

60 int startRow2 = startRow2;

61 int rowsCount2 = rowsCount;

62 Mem.clear();

63 try {

64 String[][] res2 = ser2.getRows(startRow2, rowsCount2, null, null, true

);

65 // cost2 = Mem.instrCost;

66 cost2 = res2.length;

67 } catch (IndexOutOfBoundsException e) {

68 // ignore;

69 }

47



70 System.out.println("cost2=" + cost2);

71

72 long diffCost = Math.abs(cost1 - cost2);

73 Kelinci.addCost(diffCost);

74 System.out.println("diff=" + diffCost);

75 System.out.println("Done.");

76

77 }

Listing 4.3: Example of Driver with try block after Mem.clear()

Group 3 The third deviation occurs when after the invocation of the instruction Mem.clear() an ‘if’

statement appears. When this happens, the invocation of the vulnerable method is considered to be

the first statement of either the ‘then’ or ‘else’ block. This normally happens when the driver used

for the safe and unsafe versions of an example are similar and the difference is only in the value

assigned to a boolean variable. That variable will then be used as a condition of an ‘if’ to decide

which method to invoke (either the safe or unsafe version). An example of this is:

1 public static void main(String[] args) {

2 if (args.length != 1) {

3 System.out.println("Expects file name as parameter");

4 return;

5 }

6

7 boolean pwCorrect;

8 String user = "";

9 String pw = "";

10

11 int minNumberOfBytes = Byte.BYTES + 2 * Character.BYTES;

12 int maxNumberOfBytes = Byte.BYTES + USERNAME MAX LENGTH * Character.BYTES

13 + PASSWORD MAX LENGTH * Character.BYTES;

14

15 List<Byte> valueList = new ArrayList<>();

16

17 try (FileInputStream fis = new FileInputStream(args[0])) {

18

19 /* Read all bytes up to the specified maximum. */

20 byte[] values = new byte[1];
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21 int i = 0;

22 while (fis.read(values) != -1 && i < maxNumberOfBytes) {

23 valueList.add(values[0]);

24 i++;

25 }

26 if (i < minNumberOfBytes) {

27 throw new RuntimeException("Not enough data!");

28 }

29

30 /* Determine boolean value for password correctness. */

31 pwCorrect = valueList.get(0) > 0 ? true : false;

32

33 /* Find available sizes for strings. */

34 int remainingSize = valueList.size() - 1;

35 int usernameSize;

36 int pwSize;

37 if ((remainingSize / 2) >= (USERNAME MAX LENGTH * Character.BYTES)) {

38 usernameSize = USERNAME MAX LENGTH * Character.BYTES;

39 } else {

40 usernameSize = remainingSize / 2;

41 }

42 if (usernameSize % Character.BYTES == 1) {

43 usernameSize--;

44 }

45 pwSize = Math.min(remainingSize - usernameSize, PASSWORD MAX LENGTH *

Character.BYTES);

46 if (pwSize % Character.BYTES == 1) {

47 pwSize--;

48 }

49

50 /* Assign bytes to the remaining strings. */

51 for (int j = 1; j < 1 + usernameSize; j += Character.BYTES) {

52 byte[] bytes = new byte[Character.BYTES];

53 for (int k = 0; k < Character.BYTES; k++) {

54 bytes[k] = valueList.get(j + k);

55 }

56 user += ByteBuffer.wrap(bytes).getChar();

57 }
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58 for (int j = 1 + usernameSize; j < 1 + usernameSize + pwSize; j +=

Character.BYTES) {

59 byte[] bytes = new byte[Character.BYTES];

60 for (int k = 0; k < Character.BYTES; k++) {

61 bytes[k] = valueList.get(j + k);

62 }

63 pw += ByteBuffer.wrap(bytes).getChar();

64 }

65

66 System.out.println("user=" + user);

67 System.out.println("pw=" + pw);

68

69 } catch (IOException e) {

70 System.err.println("Error reading input");

71 e.printStackTrace();

72 return;

73 }

74

75 UsernamePasswordCredentials cred = new UsernamePasswordCredentials(user,

pw, ""); // public info

76

77 /* Create Connection to database. */

78 DataSource ds = JdbcConnectionPool.create("jdbc:h2:~/pac4j-fuzz", "sa", ""

);

79 DBI dbi = new DBI(ds);

80

81 DbAuthenticator dbAuth = new DbAuthenticator();

82 dbAuth.dbi = dbi;

83

84 /* Prepare database. */

85 Handle h = dbi.open();

86 try {

87 String processedPW = dbAuth.getPasswordEncoder().encode(pw);

88 if (!pwCorrect) {

89 processedPW = processedPW.substring(0, processedPW.length() - 1)

90 + (char) (processedPW.charAt(processedPW.length() - 1) +

1);

91 }
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92 h.execute("insert into users (id, username, password) values (1, ?, ?)

", user, processedPW); // add user

93 } catch (Exception e) {

94 throw new RuntimeException(e);

95 } finally {

96 h.close();

97 }

98

99 Mem.clear();

100 boolean authenticated1 = false;

101 try {

102 if (RUN UNSAFE VERSION) {

103 dbAuth.validate unsafe(cred);

104 } else {

105 dbAuth.validate safe(cred);

106 }

107 if (cred.getUserProfile() != null) {

108 authenticated1 = true;

109 }

110 } catch (Exception e) {

111 }

112 long cost1 = Mem.instrCost;

113 System.out.println("authenticated1: " + authenticated1);

114 System.out.println("cost1=" + cost1);

115

116 /* Prepare database. */

117 h = dbi.open();

118 try {

119 h.execute("delete from users where id = 1"); // remove user

120 } catch (Exception e) {

121 throw new RuntimeException(e);

122 } finally {

123 h.close();

124 }

125

126 Mem.clear();

127 boolean authenticated2 = false;

128 try {
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129 if (RUN UNSAFE VERSION) {

130 dbAuth.validate unsafe(cred);

131 } else {

132 dbAuth.validate safe(cred);

133 }

134 if (cred2.getUserProfile() != null) {

135 authenticated2 = true;

136 }

137 } catch (Exception e) {

138 }

139 long cost2 = Mem.instrCost;

140 System.out.println("authenticated2: " + authenticated2);

141 System.out.println("cost2=" + cost2);

142

143 Kelinci.addCost(Math.abs(cost1 - cost2));

144

145 /* Clean database. */

146 h = dbi.open();

147 try {

148 h.execute("delete from users");

149 } catch (Exception e) {

150 throw new RuntimeException(e);

151 } finally {

152 h.close();

153 }

154

155 System.out.println("Done.");

156 }

Listing 4.4: Example of Driver with if block after Mem.clear()

To resolve this case, it is necessary to record the variable and its value. When the tool finds the

‘if’ statement where its condition is the variable found, the value of the variable is used to decide

whether to look in the first instruction of the ‘then’ block or the ‘else’ block.

Besides finding the name of the vulnerable method the tool also needs to retrieve the exact path for

the file containing the vulnerable method so that it can correct it. To do this the tool retrieves the name

of the class of the method. This can be done by checking the name of the class used to invoke the

method when the method is static or it can check the type of the object used to invoke the method when

the method is an instance method. When the tool finds the name of the class it can also retrieve the full

52



package that class belongs to.

After these modifications, the tool was capable of finding the correct vulnerable method of all the

examples in the DifFuzz dataset.

4.3 Correction of Early-Exit Timing Side-Channel Vulnerabilities

The main idea behind the repair of an early-exit timing side-channel vulnerability is to ensure that the

method contains a single return. As such, the first thing to do is to check if the method needs repairing

by checking if it contains at least two return statements.

Then, it is necessary to define what will be returned. The returned value will always be a variable

whose value is what would be returned if no modifications were done. If the method already returns a

variable, then that variable will be used as a replacement for the other returns of the method. Otherwise,

a new variable will be created with the starting value equal to the final return. That variable will hereafter

be referred to as the return variable.

Afterwards, each instruction of the method is analysed. Whenever the instruction under analysis is

a return statement it is transformed into an assignment. The returned value is assigned to the return

variable.

After every instruction is analysed, the final return is modified to ensure that it returns the return

variable.

As an example, consider the early-exit part of the vulnerability in listing 3.2, where the parameter

“pw” is a secret. Here, it is necessary to remove two return statements. However, the result of the

execution of the method must be the same. For that, the value returned will be saved in a variable and

that variable is returned at the end of the method execution. The result of the correction of the early-exit

part of the vulnerability of the method can be seen in listing 3.3. Here, it is created the variable $1, which

is the return variable and it is initialised with the value returned in the last return of the method. Then,

where there was a return statement, it is replaced with an assignment of the value being returned to $1.

Then, when the tool reaches the final return, it simply changes the value returned to be the variable $1.

Once this was done, the tool was tested, using EvoSuite, against every example of an early-exit tim-

ing side-channel in DifFuzz examples. In that test, the tool was able to correct several of the examples,

in a way that the produced code was according to what was expected.

While executing the tests it became clear that the correction created problems of IndexOutOfBounds

and other exceptions. This happens because some of the returns removed were protecting future in-

structions, e.g. checking if the index used to access an array is valid. So, the correction process needed

some modifications.

These modifications aim at ensuring that even after removing a return statement, certain statements
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remain protected. So every time the tool replaces a return statement from inside an ‘if’ statement, its

condition is analysed. If that condition checks if a variable is null, that variable is stored in a list. If that

condition, contains a variable read then that variable is stored alongside the original condition. Whenever

any of those variables is accessed again in a future statement a new condition is added. If that variable

is accessed in the stopping condition of a cycle then the whole body of the cycle becomes the ‘then’

block of a new ‘if’ statement where the condition will be all the conditions found where the variable used

in the stopping condition was part of. That ‘if’ statement then becomes the body of the cycle. If the

variable read is part of the value assigned in the definition of a new variable, then that local variable

statement will become the statement of the ‘then’ block of a new ‘if’ statement where the condition is

all the previous conditions found that used the variable. However, since the condition to be added was

used as an exit condition, to protect the variable, that condition must be negated. If an ‘if’ statements´

condition uses an array read, then before that array read, the index used to access the array is validated

by checking if it is less then the array size.

As an example, consider the early-exit part of the vulnerability in listing 4.5, where the parameter

“src” is a secret. Here the first ‘if’ statement checks if the value of srcLength is greater than the value of

totalLength. If so, returns immediately. However, to correct the early-exit part of the timing side-channel

vulnerability, that return alongside all returns need to be removed. This would break the functionality

of the code since the value of padLength should not be negative. To prevent this, the tool saves the

condition of the first ‘if’ statement and when in the creation of the variable padLength the method tries

to use variables that were protected, the tool creates a new ‘if’ statement where the condition is the

combination of the negation of the conditions where that variables were part of. In this case, since

the condition is the same for both variables, the new condition is simply the negation of that condition.

This way, the tool tries to ensure that no exceptions and that no breaks of the method logic exist. The

corrected version of the method can be seen in listing 4.6.

1 public static final String pad unsafe(String src, char padChar, boolean rightPad,

int totalLength) {

2 int srcLength = src.length();

3 if (srcLength >= totalLength) {

4 return src;

5 }

6 int padLength = totalLength - srcLength;

7 StringBuilder sb = new StringBuilder(padLength);

8 for (int i = 0; i < padLength; ++i) {

9 sb.append(padChar);

10 }
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11 if (rightPad) {

12 return src + sb.toString();

13 } else {

14 return sb.toString() + src;

15 }

16 }

Listing 4.5: Vulnerable Method

1 public static final String pad unsafe$Modification(String src, char padChar,

boolean rightPad, int totalLength) {

2 int $5 = 0;

3 int $4 = src.length();

4 int $3 = totalLength;

5 String $2;

6 String $1;

7 int srcLength = src.length();

8 StringBuilder $6 = new StringBuilder(srcLength);

9 if (srcLength >= totalLength) {

10 $1 = src;

11 } else {

12 $2 = src;

13 }

14 int padLength = 0;

15 if (!(srcLength >= totalLength)) {

16 padLength = totalLength - srcLength;

17 } else {

18 $5 = $3 - $4;

19 }

20 StringBuilder sb = new StringBuilder(padLength);

21 for (int i = 0; i < totalLength; ++i) {

22 if (i < padLength) {

23 sb.append(padChar);

24 } else {

25 $6.append(padChar);

26 }

27 }

28 if (rightPad) {
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29 $1 = src + sb.toString();

30 } else {

31 $1 = sb.toString() + src;

32 }

33 return $1;

34 }

Listing 4.6: Vulnerable Method after early-exit correction

In the end, a new version of the class that contains the vulnerable method is created. This ver-

sion is similar to the original version, except that it contains an extra method called VulnerableMethod-

Name$Modification. So, if the users want to use the corrected version, they must replace the original

method for the corrected method.

The tool corrects the method indicated in the Driver used for DifFuzz and does not check if the

vulnerability is instead in a method invoked by the indicated method. As such, the user should ensure

that the Driver points to the vulnerable method.

4.4 Correction of Control-Flow Based Timing Side-Channel Vul-

nerabilities

Control-Flow based timing side-channel vulnerabilities happen when based on the value of a secret the

executing time of a method differs, either because it executes more iterations of a cycle or because it

takes a path on a branch that takes longer to execute. So, to repair the control-flow based timing side-

channel vulnerability it is necessary to ensure that no cycle iterations depend on a secret and that in a

conditional statement each branch execution time is similar if the condition depends on a secret.

To correct this type of timing side-channel vulnerability the method secret arguments are kept in a

list, and the public arguments are kept on another. Then the tool analysis each instruction of the method.

When it finds a cycle, it checks its stopping condition. If it uses a secret, the tool tries to find from the list

of public arguments an argument of the same type as the secret and replaces it. This way the number

of instructions the cycle performs is independent of a secret.

When the tool finds an ‘if’ statement it checks its condition. If the condition uses a secret, then the

tool creates a modified version of the ‘then’ and ‘else’ blocks. Then, the modified version of the ‘then’

block is added to the ‘else’ block and the modified version of the ‘else’ block is added to the ‘then’ block.

The modified version contains all instructions that do not depend on any variable used in the condition.

In those instructions, if there is an assignment, it is created a new variable so that it can be assigned

instead of the original one. It is kept a record of all new variables and the variables they are replacing.
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Then, if another instruction of the current branch uses a replaced variable, that variable in that new

instruction is replaced for the previously created variable.

After analysing every instruction of the vulnerable method, the tool creates a copy of the method with

the modifications performed. And, for every variable created as a replacement for an existing variable,

their creation instruction is added to the method, except for when the new variable was created to

replace a variable being created. Those variables creation instructions are added to as early as possible

in the method, the only restriction is that when the variable created is created with an initial value, every

variable that is part of the creation must be created before that variable is created. Meaning, that the

new variable is placed in a position of the method where all the variables they depend on exist.

As an example, take the code in listing 4.7. Here, the method has a control-flow based timing

side-channel vulnerability, since its execution time depends on the value of a secret, in this case the

parameter “taint”. The ‘then’ and ‘else’ block, of the ‘if’ statement has different instructions with different

execution time. As such, to correct this vulnerability the tool will modify the instructions of both blocks

and add the modified version of the ‘then’ block to the ‘else’ block and the modified version of the ‘else’

block to the ‘then’ block. The difference in the instructions is that the assignment is not made to the

same variables, so as not to ruin the value of the original variable. As a result, the tool produces the

code in listing 4.8.

1 public static boolean array unsafe(int a[], int taint) {

2 System.out.println(a.length);

3 int t;

4 if (taint < 0) {

5 int i = a.length-1;

6 while (i >= 0) {

7 t = a[i];

8 i--;

9 }

10 } else {

11 int i = 0;

12 t = a[i] / 2;

13 i = a.length;

14 }

15 return false;

16 }

Listing 4.7: Example of method with control-flow based timing side-channel vulnerability
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1 public static boolean array unsafe$Modification(int[] a, int taint) {

2 int $2;

3 System.out.println(a.length);

4 int t;

5 if (taint < 0) {

6 int $3 = 0;

7 $2 = a[$3] / 2;

8 $3 = a.length;

9 int i = a.length - 1;

10 while (i >= 0) {

11 t = a[i];

12 i--;

13 }

14 } else {

15 int $1 = a.length - 1;

16 while ($1 >= 0) {

17 $2 = a[$1];

18 $1--;

19 }

20 int i = 0;

21 t = a[i] / 2;

22 i = a.length;

23 }

24 return false;

25 }

Listing 4.8: Corrected version of method with control-flow based timing side-channel vulnerability

Then, the tool was executed against all examples of DifFuzz that contain a control-flow based timing

side-channel vulnerability. The tool was capable of correcting some examples. Using EvoSuite, tests

were created for those examples that showed that the correction is semantically correct. DifFuzz was

executed on the corrected version of those examples showing that the tool corrected some examples.

However, this first round of tests also showed that the approach to the correction has some limita-

tions.

One of the limitations is that a variable used in a stopping condition or condition of an ‘if’ statement

might not be a secret argument but a variable whose value is influenced by the value of a secret. To also

correct those examples, every time a secret is used to provide the value of a variable, that variable also

becomes a secret and is added to the list.
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Another limitation happens when the ‘then’ block of an ‘if’ statement is an ‘if’ statement with an

invocation as a condition and a variable used in the condition of the former is also used in the condition

of the latter. When that happens, it is necessary to modify the condition of the inner ‘if’ statement. For

that, every invocation on the condition of the inner ‘if’ statement, is turned into a series of assignments

except for the invocation that returns a boolean since that one is used as the condition of the ‘if’ statement

to add to the modified ‘else’ block of the outer ‘if’ statement. As an example take the code in listing 4.9,

where the secret is the variable “map”. Here the condition of the first ‘if’ statement is an invocation that

uses the variables map and u. Then, when the condition is met, another ‘if’ statement is executed and in

its condition, there is a series of invocations that uses both variables used in the previous ‘if’ statement.

The tool to try and correct the vulnerability needs to modify the ‘then’ block and add it to the ‘else’ block.

To do this in this case, it needs to remove the series of invocations from the condition of the ‘if’ statement

and transform them into a series of invocation statements. The only invocation that can continue in the

condition is the one where the result is a boolean. One of the invocations can not be added to the ‘else’

block, because it uses variables that were used in the condition of the outer ‘if’ statement. Analysing

this invocation, the tool knows that it returns a String, and another of the invocations in the condition

also returns a String. As such, the tool duplicates that invocation to replace the invocation that can not

happen in the ‘else’ block. As a result, the tool produces the code in listing 4.10.

1 public static boolean login unsafe(String u, String p) {

2 boolean outcome = false;

3

4 if (map.containsKey(u)) {

5 if (map.get(u).equals(md5(p))) {

6 outcome = true;

7 }

8 }

9

10 return outcome;

11

12 }

Listing 4.9: Example of method with invocations in condition to modify

1 public static boolean login unsafe$Modification(String u, String p) {

2 boolean $4;

3 boolean $1 = false;
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4 boolean outcome = false;

5 if (map.containsKey(u)) {

6 if (map.get(u).equals(md5(p))) {

7 outcome = true;

8 } else {

9 $1 = true;

10 }

11 } else {

12 String $2 = md5(p);

13 String $3 = md5(p);

14 if ($2.equals($3)) {

15 $1 = true;

16 } else {

17 $4 = true;

18 }

19 }

20 return outcome;

21 }

Listing 4.10: Corrected version of method with invocations in condition

The other limitation happens when replacing a variable, if that variable is an array, then the tool would

only replace the array target and not its index. As such, if the variable used as the index of the array

was replaced, then when modifying that array access, it is necessary to replace the variable used as the

index. Another limitation with arrays is when a variable used in the condition of an ‘if’ statement is an

array, then the array to be added to the other branch, should be a newly created array. That array will be

created with the size of 1 and every access done to the array will be done to its first index.

After all these modifications the tool was able to successfully correct a few more examples of a

control-flow based timing side-channel vulnerability. However, the tool still is not able to correct all

examples.

4.5 Correction of Mixed Timing Side-Channel Vulnerabilities

Sometimes a method has an early-exit and a control-flow based timing side-channel vulnerability. For

that reason, the tool tries to correct both types of vulnerability in a single execution. If the method has

more than one return statement the tool tries to repair an early-exit timing side-channel vulnerability

producing a modified version of the method. Then, the tool tries to correct the control-flow based tim-

ing side-channel vulnerability in the modified version of the method, producing the final version of the
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method. This means that each module responsible for correcting a type of timing side-channel vulnera-

bility must return its modified version of the method. Since both repair processes create new variables

in the method, and a method can’t have two variables with the same name, the naming of a variable is

global to the tool and it keeps a record of the name of the last variable.

Once the tool started correcting both types of timing side-channel vulnerability it corrected more

examples of DifFuzz.
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In this chapter, we describe how the developed tool was evaluated. The evaluation consists in ensuring

that the refactored code is semantically correct and that it has no side-channel vulnerabilities. This chap-

ter presents both types of evaluation, explaining how they are done as well as why they are necessary.

5.1 Dataset Used

Since this project is inspired by the work developed for the tool DifFuzz it was decided that DifFuzz

would be used to help evaluate the tool. For that reason, the examples of DifFuzz were chosen to test

the tool. The dataset of DifFuzz contains 32 examples. However, one of the examples suffers from a

size side-channel, and in some, it was not possible to understand how they are vulnerable. Moreover,

in other examples the vulnerability did not follow the template of vulnerable method considered in this

project (more information can be seen in section 5.4.1). As such, to test the tool only 25 of those

examples were used. Those examples were categorized according to the type of vulnerability. Two of

the examples suffer from early-exit timing side-channel vulnerability. Eight of the examples contain a

control-flow based timing side-channel vulnerability. While the rest, meaning 15 examples, have a mixed

timing side-channel vulnerability.

5.2 Semantic Correction

To correct vulnerabilities in a method it is necessary to modify it. This modification can ‘break’ the

method, in the sense that its output will no longer be the same for the same input. As such, it is

important that after any modifications to a method, the same is tested to ensure that its functionality

remains. The same is true for modifications made by the tool. Although the tool does not test the

modifications automatically, the user of the tool should ensure that the method created by the tool still

works like the original method.

During the development of the tool, the application examples used by the authors of DifFuzz were

used to ensure that the tool was capable of correcting a vulnerability. However, these examples did not

include tests, so it was not possible to ensure the correction kept the functionality of the method. One

solution was to create unit tests for every example of DifFuzz. The problem with this solution is that the

process of creating tests is long and prone to errors. This is even worse, given that the examples are

small sections of huge applications, which would make the development of tests a difficult task. So, a

different solution was found, to create tests automatically. This would ensure that the creation of tests is

faster and less prone to error. To create tests automatically it was chosen the tool EvoSuite [25]. This

tool generates unit tests automatically for Java software and has a plugin allowing its integration with

Maven.
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So to test if the solution created by the tool is semantically correct, it is created a maven project for

the examples of DifFuzz to test. To these projects, EvoSuite is added as a dependency alongside the

original dependencies of the application in the .pom file. Then the project is compiled and the necessary

commands of EvoSuite, to create and add tests to the projects, are executed. These tests are created

and first run on the original code, the vulnerable one, to see if the tests are correct. Then, the vulnerable

method is replaced for the method created by the tool and the tests are executed again. If all tests

pass, then the solution created by the tool to correct the timing side-channel vulnerability is semantically

correct.

When creating tests for some examples, EvoSuite created tests that failed in the original code. Since

EvoSuite created tests for that specific code, this was taken as a bug and those tests ignored. Despite

this, those failing tests were still executed on the repaired version of the method and some of them

passed.

More details about the results of the semantic correction of the examples created by the tool can be

seen in the next section.

5.3 Vulnerability Correction

Once the tool repaired a vulnerable method and that repair is shown to be semantically correct it is

necessary to verify if the repair produced by the tool repaired the vulnerability. Since this project was

inspired by DifFuzz, that is the tool used to verify if there is any timing side-channel vulnerability. This

execution follows the scripts created by the authors of DifFuzz, the difference being that now besides the

safe and unsafe versions provided by the authors it is also tested the corrected version. The corrected

version is a copy of the unsafe version where the vulnerable method is replaced by the corrected version

created by the tool.

This test was performed in a remote server with a 32-processor Intel Xeon Silver 4110 at 2.10GHz

with 64GB of RAM running Debian Linux 10 and each version of the example ran for 2,5 hours. The

results of the execution of tests created by EvoSuite and of the analysis performed by DifFuzz can be

seen in Table 5.1.

That table shows that out of 32 examples, the tool was capable of correcting 14 examples which gives

a success rate of 43,7%. That is not a great number, but in those 32 examples, some are ignored, either

because the type of vulnerability is unknown or because its vulnerability is not able to be corrected by

the tool like the example Themis TourPlanner whose vulnerability is related to the size of the response.

So if it is only considered the examples that were attempted to correct then out 25 examples, the tool

successfully corrected 14 of them, making for a success rate of 56%. That is still not a great number

but it is more reassuring. Out of all the examples the tool tried to correct not all of them are semantically
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correct, meaning that the code lost some of the functionality after the repair. If it is only considered

semantically correct examples, then the total of examples is 22, which makes a success rate of 63,6%.

Dataset name Has secure
version?

Type Correction
Attempted

Semantically
Correct

Correct
Vulnerabil-
ity

Apache FtpServer Clear Yes Mixed Yes No -
Apache FtpServer Md5 Yes Early-Exit (If dependant) Yes No -
Apache FtpServer Salted Encrypt No Unknown No - -
Apache FtpServer Salted Yes Mixed Yes No -
Apache FtpServer StringUtils Yes Mixed Yes Yes Yes
Blazer Array Yes Control-Flow Yes Yes Yes
Blazer Gpt14 Yes Control-Flow Yes Yes No
Blazer K96 Yes Control-Flow Yes Yes Yes
Blazer LoopAndBranch Yes Control-Flow (ignored) No - -
Blazer Modpow1 Yes Control-Flow Yes Yes Yes
Blazer Modpow2 Yes Unknown No - -
Blazer PasswordEq Yes Early-Exit (If dependant) Yes Yes Yes
Blazer Sanity Yes Mixed Yes Yes Yes
Blazer StraightLine Yes Control-Flow Yes Yes Yes
Blazer UnixLogin Yes Control-Flow Yes Yes Yes
Example PWCheck Yes Mixed Yes Yes Yes
GitHub AuthmReloaded Yes Mixed Yes Yes Yes
STAC Crime No Unknown No - -
STAC Ibasys No Control-Flow Yes Yes No
Themis Boot-Stateless-Auth Yes Mixed Yes Yes No
Themis Dynatable No Mixed Yes Yes No
Themis GWT Advanced Table No Unknown No - -
Themis Jdk Yes Mixed Yes Yes Yes
Themis Jetty Yes Mixed Yes Yes Yes
Themis OACC No Mixed Yes Yes Yes
Themis OpenMrs-Core No Unknown No - -
Themis OrientDb Yes Mixed Yes Yes No
Themis Pac4j Yes Control-Flow Yes Yes Yes
Themis PicketBox Yes Mixed Yes Yes No
Themis Spring-Security Yes Mixed Yes Yes No
Themis Tomcat Yes Mixed Yes Yes No
Themis TourPlanner Yes Size Side-Channel No - -

Table 5.1: Results of tool

Some further analysis can be done of the obtained results. For example, if it is analysed only the

examples with an early-exit timing side-channel vulnerability, the result is the table 5.2. Here, it is clear

that out of 2 examples the tool was only capable of correcting successfully one of them. Even more, in

one of the examples, the correction created by the tool is not semantically correct.

Dataset name Has secure
version?

Type Correction
Attempted

Semantically
Correct?

Correct
Vulnerabil-
ity?

Apache FtpServer Md5 Yes Early-Exit (If dependant) Yes No -
Blazer PasswordEq Yes Early-Exit (If dependant) Yes Yes Yes

Table 5.2: Early-Exit results

The same analysis can be done for examples with control-flow based timing side-channel vulnerabil-

ities, which result can be seen in table 5.3. Here, the tool was capable of correcting 6 out of 9 examples,

giving a success rate of 66,7%. Out of the 9 examples, one of them is ignored because the vulnerability
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is not understood. So, if in the results that example is also ignored, then the tool corrected 6 out of 8

examples, making a success rate of 75%. As opposed to the correction of early-exit vulnerabilities, none

of the corrections proposed by the tool for this type of problem breaks the application, meaning that all

repairs are semantically correct.

Dataset name Has secure
version?

Type Correction
Attempted

Semantically
Correct?

Correct
Vulnerabil-
ity?

Blazer Array Yes Control-Flow Yes Yes Yes
Blazer Gpt14 Yes Control-Flow Yes Yes No
Blazer K96 Yes Control-Flow Yes Yes Yes
Blazer LoopAndBranch Yes Control-Flow (ignored) No - -
Blazer Modpow1 Yes Control-Flow Yes Yes Yes
Blazer StraightLine Yes Control-Flow Yes Yes Yes
Blazer UnixLogin Yes Control-Flow Yes Yes Yes
STAC Ibasys No Control-Flow Yes Yes No
Themis Pac4j Yes Control-Flow Yes Yes Yes

Table 5.3: Control-Flow results

The final type of timing side-channel vulnerability is Mixed, and its results can be seen in table 5.4.

In this case, the tool successfully corrected 7 out of 15 examples, making for a success rate of 46,7%.

In this case, the correction proposed by the tool breaks the application in two examples, which means

that the result of the execution of the tool in two examples is not semantically correct. So, the tool has a

13,3% chance of producing a solution that breaks the application and a 46,7% chance of correcting the

vulnerability.

Dataset name Has secure
version?

Type Correction
Attempted

Semantically
Correct?

Correct
Vulnerabil-
ity?

Apache FtpServer Clear Yes Mixed Yes No -
Apache FtpServer Salted Yes Mixed Yes No -
Apache FtpServer StringUtils Yes Mixed Yes Yes Yes
Blazer Sanity Yes Mixed Yes Yes Yes
Example PWCheck Yes Mixed Yes Yes Yes
GitHub AuthmReloaded Yes Mixed Yes Yes Yes
Themis Boot-Stateless-Auth Yes Mixed Yes Yes No
Themis Dynatable No Mixed Yes Yes No
Themis Jdk Yes Mixed Yes Yes Yes
Themis Jetty Yes Mixed Yes Yes Yes
Themis OACC No Mixed Yes Yes Yes
Themis OrientDb Yes Mixed Yes Yes No
Themis PicketBox Yes Mixed Yes Yes No
Themis Spring-Security Yes Mixed Yes Yes No
Themis Tomcat Yes Mixed Yes Yes No

Table 5.4: Mixed results

A final table with all examples considered invalid can be seen in table 5.5.

Analysing the results obtained from the tables it is clear that the tool is less effective when correcting

early-exit timing side-channel vulnerabilities, both in the probability of correcting the vulnerability and

of creating a correction that breaks the application. However, the tool is most successful when cor-
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Dataset name Has secure
version?

Type Correction
Attempted

Semantically
Correct?

Correct
Vulnerabil-
ity?

Apache FtpServer Salted Encrypt No Unknown No - -
Blazer LoopAndBranch Yes Control-Flow (ignored) No - -
Blazer Modpow2 Yes Unknown No - -
STAC Crime No Unknown No - -
Themis GWT Advanced Table No Unknown No - -
Themis OpenMrs-Core No Unknown No - -
Themis TourPlanner Yes Size Side-Channel No - -

Table 5.5: Invalid examples

recting control-flow based timing side-channel vulnerabilities, correcting the majority of the examples.

When correcting mixed timing side-channel vulnerabilities the tool has a good chance of repairing the

vulnerability but can also create a solution that breaks the application.

These results show the importance of having unit tests for the application before using the tool and

that while the tool still needs to be improved it can be used as a guideline to show developers how to

correct a vulnerability.

5.4 Dataset Examples

In this subsection, the invalid examples for which corrections were not attempted are described.

5.4.1 Invalid Examples

The first example is the one named apache ftpserver salted encrypt. Unlike the majority of DifFuzz

examples, this one does not contain a safe example. Meaning that the authors of DifFuzz did not provide

a correct version of the code. Although that does not make an example invalid, in this case, makes it

harder to understand the vulnerability. In this example, the method referred to as the vulnerable one is

called encrypt, where the secret is the second argument and can be seen in listing 5.1. Analysing the

method, it becomes clear that it does not contain an early-exit timing side-channel vulnerability, since

there is no condition dependant on the secret with an exit-condition; in fact, there is no condition at all.

And it does not suffer from a control-flow based timing side-channel vulnerability since in the only cycle

present in the method the number of interactions is fixed number.

1 public /*private*/ String encrypt(String password, String salt) {

2 long tmpCost = Mem.instrCost;

3 String hash = salt + password;

4 for (int i = 0; i < HASH ITERATIONS; i++) {

5 hash = EncryptUtils.encryptMD5(hash);
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6 }

7 return salt + ":" + hash;

8 }

Listing 5.1: Vulnerable method encrypt

Another example is blazer loopandranch. Unlike the previous one, for this one, it is provided a safe

version of the vulnerable method and in this case, the vulnerability is also understood as a control-flow

based timing side-channel vulnerability. The problem in this example, however, is with the correction.

Comparing the safe and unsafe versions, available in listing 5.2, of the method it is clear that the only

difference is in the first instruction of the ‘else’ block. In the safe version the instruction ‘taint = taint - 10’

is changed to ‘taint = taint + 10’. This modification requires a more detailed analysis than the one that

the tool is able. To correct a control-flow based timing side-channel vulnerability, the tool simply tries to

ensure that no cycle stopping condition depends on a secret and that for any branch execution where

the condition depends on a secret, the execution time is similar regardless of the value of the secret.

Neither of those attempts will correct this example as intended.

1 public static boolean loopAndbranch unsafe(int a, int taint) {

2 int i = a;

3

4 if (taint < 0) {

5 while (i > 0) {

6 i--;

7 }

8 } else {

9 taint = taint - 10;

10

11 if (taint >= 10) {

12 int j = a;

13 while (j > 0) {

14 j--;

15 }

16 } else {

17 if (a < 0) {

18 int k = a;

19 while (k > 0)

20 k--;

21 }
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22 }

23 }

24

25 return true;

26 }

Listing 5.2: Vulnerable method loopAndBranch

The next example is blazer modpow2. Like the previous one, for this example a safe version of

the vulnerable method is available. Analysing the vulnerable method, available in listing 5.3, it becomes

clear that it does not contain an early-exit timing side-channel vulnerability. However, since the secrets

of the method are the arguments exponent and width, the method may contain a control-flow based

timing side-channel vulnerability. Analysing the ‘if-else’ block it becomes clear that the same instructions

are executed regardless of the value of the secret. So the only way for a vulnerability would be the fact

that the stopping condition of the cycle depends on a secret. However, in the safe version, the stopping

condition of the cycle is the same, the only difference is two instructions in the ‘if-else’ block. That means

that the vulnerability present in the method is not something the tool could repair and for that reason,

this example is ignored.

1 //top-level modPow method: inline the custom implementation of fastMultiply

2 public static BigInteger modPow2 unsafe(BigInteger base, BigInteger exponent,

BigInteger modulus, int width) {

3 BigInteger r0 = BigInteger.valueOf(1);

4 BigInteger r1 = base;

5 // int width = exponent.bitLength(); // use width parameter because

bitlength is wrong for 0

6 for (int i = 0; i < width; i++) {

7 if (!exponent.testBit(width - i - 1)) {

8 r1 = fastMultiply inline(r0, r1).mod(modulus);

9 r0 = r0.multiply(r0).mod(modulus);

10 } else {

11 r0 = fastMultiply inline(r0, r1).mod(modulus);

12 r1 = r1.multiply(r1).mod(modulus);

13 }

14 }

15 return r0;

16 }
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Listing 5.3: Vulnerable method modPow2

Another example is stac crime. For this example, no safe version is provided which makes it harder

to understand the vulnerability. Analysing the code, available in listing 5.4, becomes clear that there is

no early-exit timing side-channel vulnerability since the only exit point of the method is the final instruc-

tion. However, this example might suffer from control-flow based timing side-channel since the stopping

condition of the cycle is dependant on the value of the secret. However, in this method, the secret is

also its only argument and the only value the method can depend on. Although not clear, that is the

best explanation of what type of timing side-channel vulnerability this method has. However, even if the

vulnerability is a control-flow based timing side-channel, the tool would not be able to correct it, since

in this case, it would try to replace the secret used in the stopping condition of the cycle for a public

argument of the method, which in this case does not exist.

1 public static byte[] compress(final byte[] in) throws IOException {

2 StringBuffer mSearchBuffer = new StringBuffer(1024);

3 final ByteArrayInputStream stream = new ByteArrayInputStream(in);

4 final InputStreamReader reader = new InputStreamReader((InputStream)stream);

5 final Reader mIn = (Reader)new BufferedReader((Reader)reader);

6 final ByteArrayOutputStream oStream = new ByteArrayOutputStream();

7 final OutputStreamWriter writer = new OutputStreamWriter((OutputStream)

oStream);

8 final PrintWriter mOut = new PrintWriter((Writer)new BufferedWriter((Writer)

writer));

9 String currentMatch = "";

10 int matchIndex = 0;

11 int tempIndex = 0;

12 int nextChar;

13 while ((nextChar = mIn.read()) != -1) {

14 tempIndex = mSearchBuffer.indexOf(currentMatch + (char)nextChar);

15 if (tempIndex != -1) {

16 currentMatch += (char)nextChar;

17 matchIndex = tempIndex;

18 }

19 else {

20 final String codedString = new StringBuilder().append("~").append(

matchIndex).append("~").append(currentMatch.length()).append("~")
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.append((char)nextChar).toString();

21 final String concat = currentMatch + (char)nextChar;

22 if (codedString.length() <= concat.length()) {

23 mOut.print(codedString);

24 mSearchBuffer.append(concat);

25 currentMatch = "";

26 matchIndex = 0;

27 }

28 else {

29 for (currentMatch = concat, matchIndex = -1; currentMatch.length

() > 1 && matchIndex == -1; currentMatch = currentMatch.

substring(1, currentMatch.length()), matchIndex =

mSearchBuffer.indexOf(currentMatch)) {

30 mOut.print(currentMatch.charAt(0));

31 mSearchBuffer.append(currentMatch.charAt(0));

32 }

33 }

34 if (mSearchBuffer.length() <= 1024) {

35 continue;

36 }

37 mSearchBuffer = mSearchBuffer.delete(0, mSearchBuffer.length() -

1024);

38 }

39 }

40 if (matchIndex != -1) {

41 final String codedString = new StringBuilder().append("~").append(

matchIndex).append("~").append(currentMatch.length()).toString();

42 if (codedString.length() <= currentMatch.length()) {

43 mOut.print(new StringBuilder().append("~").append(matchIndex).append(

"~").append(currentMatch.length()).toString());

44 }

45 else {

46 mOut.print(currentMatch);

47 }

48 }

49 mIn.close();

50 mOut.flush();

51 final byte[] bytes = oStream.toByteArray();
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52 mOut.close();

53 return bytes;

54 }

Listing 5.4: Vulnerable method compress

The next example is themis gwt advanced table. This also does not contain a safe version of the

vulnerable method. And it was also not possible to understand what type of vulnerability there is and

how to correct it. Analysing the code, available in listing 5.5, it is possible to conclude that the method

does not have an early-exit timing side-channel vulnerability since it only contains an exit point. Given

that the first two arguments, startRow and rowsCount, are the secrets and that rowsCount is used as

part of the stopping condition of the outer cycle, this method may suffer from control-flow based timing

side-channel vulnerability. However, even if that is the case, the stopping condition of the outer cycle

depends on the size of the array and as such can not be changed without breaking the application. For

that reason, this method is ignored.

1 public String[][] getRows unsafe(int startRow, int rowsCount, DataFilter[]

filters, String sortColumn,

2 boolean sortingOrder) {

3 User[] rowsData = getRowsData(startRow, rowsCount, filters, sortColumn,

sortingOrder);

4 int columnsCount = this.columns.length;

5 String[][] rows = new String[rowsCount][columnsCount];

6 for (int row = 0; row < rowsCount; row++) {

7 for (int col = 0; col < columnsCount; col++) {

8 String columnName = this.columns[col].getName();

9 rows[row][col] = ReflectionUtils.getPropertyStringValue(rowsData[row

], columnName);

10 }

11 }

12 return rows;

13 }

Listing 5.5: Vulnerable method getRows

Another example is themis openmrs-core. Like the previous example, this one also does not con-

tain a safe version of the vulnerable method. The method referenced in the Driver is available in list-

ing 5.6, where the secret is the argument hashedPassword and is used to determine if an exception
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should be thrown and is compared to the result of the invocation of other methods with a public argu-

ment. With that, it is safe to assume that the vulnerability is not in any of the other methods since they

do not get access to the secret. And the condition to throw the exception is necessary since without it

the method can not successfully execute. Therefore, this method is ignored.

1 public static boolean hashMatches(String hashedPassword, String passwordToHash) {

2 if (hashedPassword == null | | passwordToHash == null) {

3 throw new APIException("password.cannot.be.null", (Object[]) null);

4 }

5

6 return hashedPassword.equals(encodeString(passwordToHash))

7 | | hashedPassword.equals(encodeStringSHA1(passwordToHash))

8 | | hashedPassword.equals(incorrectlyEncodeString(passwordToHash));

9 }

Listing 5.6: Vulnerable method hashMatches

The final example is themis tourplanner. Unlike the previous example, this one contains a safe

version of the method. Analysing the method, available in listing 5.7, where both arguments are secrets

it becomes clear that not only does this method does not suffer from early-exit or control-flow based

timing side-channel vulnerability but is does not contain a timing side-channel vulnerability but a size

side-channel vulnerability. That means this example can not be used with the tool.

1 public void doGet(HttpServletRequest req, final HttpServletResponse res) throws

ServletException, IOException {

2 List<GHPoint> points = this.getPoints(req, "point");

3 TourResponse tourRsp = this.tourCalculator.calcTour(points);

4 List<String> list = this.tourSerializer.toList(tourRsp);

5 PrintWriter writer = res.getWriter();

6 String listStr = list.toString();

7 writer.append(listStr);

8

9 // Safe version

10 if (safe) {

11 int len = listStr.length();

12 assert (len <= MSG FULL LENGTH);

13 for (int i = len; i < MSG FULL LENGTH; ++i)
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14 writer.append(" ");

15 }

16 }

Listing 5.7: Vulnerable method doGet

5.4.2 Unsuccessful Examples

When using the tool on the examples deemed valid, the tool was still not able to successfully correct all

examples. In some, the correction although did not completely repair the vulnerability, it showed how to

correct that vulnerability and sometimes, even reduced the effects of the vulnerability, by reducing the

time difference of the method execution. As such, in those examples, the user could look at the code

and try to improve it to repair the vulnerability. The major problem is with some examples where the tool

created a faulty version of the method that did not compile. That means, that the user could not use the

tools’ method as a replacement for the original method, only as a source of inspiration to try to manually

repair the vulnerability.

As a warning for the method templates that the tool was not able to repair is now explained each failing

example and why it failed.

5.4.2.A Faulty Examples

The first example of a method that the tool could not correct is apache ftpserver clear. The solution

created by the tool can be seen in listing 5.8. The problem with this solution is in the ‘else’ block inside

the ‘if’ block, the stopping condition of the cycle involves a variable named $3, and there that variable

was not created yet. The variable $3 is supposed to be a replacement for the variable n, and since the

variable n is part of the condition of the ‘if’ block it can not be used in the corresponding ‘else’ block

and so needs to be replaced. The problem is that the variable n is replaced by $3, even before the tool

starts to modify that ‘if’ block. And when the variable is replaced, $3 is expected to be created in the

outer ‘else’ block, and so its creation will not be added at a point where the cycle can access it, making

the application not able to compile. One possible solution would be to, whenever a variable is replaced,

the creation of the new variable would be added as the first instruction after the creation of the replaced

variable. The problem with this solution is that this would add several extra instructions to the code and

would create several instructions with the same name. All that would make it so that it would not be

possible to minimize the execution time of the branches.
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1 public boolean isEqual unsafe$Modification(String thisObject, Object otherObject)

{

2 boolean $2 = false;

3 boolean $1 = false;

4 if (thisObject == otherObject) {

5 $1 = true;

6 } else {

7 $2 = true;

8 }

9 if (otherObject instanceof String) {

10 String anotherString = ((String) (otherObject));

11 int n = thisObject.length();

12 if (n == anotherString.length()) {

13 char[] v1 = thisObject.toCharArray();

14 char[] v2 = anotherString.toCharArray();

15 int i = 0;

16 $1 = true;

17 while ((n--) != 0) {

18 if (((i < v1.length) && (i < v2.length)) && (v1[i] != v2[i])) {

19 $1 = false;

20 } else {

21 $2 = false;

22 }

23 i++;

24 }

25 } else {

26 char[] $4 = thisObject.toCharArray();

27 int $5 = 0;

28 $2 = true;

29 while (($3--) != 0) {

30 $5++;

31 }

32 }

33 } else {

34 int $3 = thisObject.length();

35 char[] $4 = thisObject.toCharArray();

36 int $5 = 0;

37 $2 = true;
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38 while (($3--) != 0) {

39 $5++;

40 }

41 }

42 return $1;

43 }

Listing 5.8: Vulnerable method isEqual

Next are the examples apache ftpserver md5 and apache ftpserver salted. In these two exam-

ples, the vulnerable method is the same and so the correction of the tool and the reason it fails is the

same. As such, only the solution created by the tool to one of the examples is available in listing 5.9.

The problem with this solution is that it introduces ‘ArrayIndexOutOfBoundsException’. This is a problem

with trying to correct early-exit timing side-channel vulnerabilities because some times an early-exit of a

method is there to protect the access to an array. So, when correcting the vulnerability by removing that

return, the tool needs to ensure that any access to an array is protected. To do this, every time a return

instruction is replaced for an assignment, the tool records a combination between any variable used

in the condition and the condition itself. That way any time that variable is used in an instruction, that

instruction is protected by adding a combination of the negation of the conditions the variable was used

on. The problem in these examples is that the variables used in the condition of an ‘if’ statement are not

the same as the ones used to access the array in the first two instructions of the cycle. As such, the tool

will not add an ‘if’ statement as protection. A possible way to resolve this issue would be to know that

the variables used as the index to access the arrays ta and pa are the same as some of the variables

used in the condition of the ‘if’ statement outside the cycle. The problem with this is that the tool uses

the tool spoon to access the instructions of the method and that tool do not have the information or a

way to indicate that the variables are the same.

1 public boolean regionMatches$Modification(String thisValue, boolean ignoreCase,

int toffset, String other, int ooffset, int len) {

2 boolean $2 = true;

3 boolean $1 = true;

4 char[] ta = thisValue.toCharArray();

5 int to = toffset;

6 char[] pa = other.toCharArray();

7 int po = ooffset;

8 if ((((ooffset < 0) | | (toffset < 0)) | | (toffset > (((long) (thisValue.

length())) - len))) | | (ooffset > (((long) (other.length())) - len))) {
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9 $1 = false;

10 } else {

11 $2 = false;

12 }

13 while ((len--) > 0) {

14 char c1 = ta[to++];

15 char c2 = pa[po++];

16 if (c1 == c2) {

17 continue;

18 }

19 if (ignoreCase) {

20 char u1 = Character.toUpperCase(c1);

21 char u2 = Character.toUpperCase(c2);

22 if (u1 == u2) {

23 continue;

24 }

25 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {

26 continue;

27 }

28 }

29 $1 = false;

30 }

31 return $1;

32 }

Listing 5.9: Vulnerable method regionMatches

5.4.2.B Unsuccessful Correction

For some examples, the tool was capable of creating a version of the vulnerable method that compiled

and passed all unit tests available. However, the solution was not free of timing side-channel vulnerabil-

ities. As such, those examples are now referenced and the problem with the solution is explained.

The first example is themis dynatable. In this first example, the secret is not any of the arguments

passed to the method but instead is the argument passed to the constructor of the object that calls the

vulnerable method. However, for the tool to be able to correct the method, its original driver was changed

so that both arguments of the method are considered as secrets. That means that the method has an

early-exit timing side-channel vulnerability since there are two exit points of the method that depend

on the secret which is also true considering the secret passed to the constructor of the calling object
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which would be the variable people. And considering that a variable used in the stopping condition of

the cycle is a secret since its value is dependent on the secrets, the method also has a control-flow

based timing side-channel vulnerability. Meaning that this example has a mixed timing side-channel

vulnerability. Which means that to correct it, the tool must replace all early return statements for an

assignment, ensure that any variable that is being protected by that exit is still protected, and needs

to update the stopping condition of the cycle to not use a secret. As seen in the corrected version

of the vulnerable method, available in listing 5.10, the tool corrected the early-exit timing side-channel

vulnerability but was not able to repair the control-flow. This happens because to correct the control-flow

the tool would replace the secret used with the stopping condition with a public argument. However,

since both arguments of the method are considered secrets it has no arguments to chose from. So, it

can not modify the stopping condition of the cycle, which means it can not repair the vulnerable method.

1 public Person[] getPeople unsafe$Modification(int startIndex, int maxCount) {

2 int $4 = 0;

3 int $3 = startIndex;

4 Person[] $1;

5 Person[] results;

6 int peopleCount = people.size();

7 int $2 = Math.min(startIndex + maxCount, peopleCount);

8 int start = startIndex;

9 if (start >= peopleCount) {

10 results = NO PEOPLE;

11 } else {

12 $1 = NO PEOPLE;

13 }

14 int end = Math.min(startIndex + maxCount, peopleCount);

15 if (start == end) {

16 results = NO PEOPLE;

17 } else {

18 $1 = NO PEOPLE;

19 }

20 int resultCount = 0;

21 if ((!(start >= peopleCount)) && (!(start == end))) {

22 resultCount = end - start;

23 } else {

24 $4 = $2 - $3;

25 }
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26 results = new Person[resultCount];

27 for (int from = start, to = 0; to < resultCount; ++from , ++to) {

28 results[to] = people.get(from);

29 }

30 return results;

31 }

Listing 5.10: Vulnerable method getPeople

The next examples are themis orientdb and themis picketbox. Since the vulnerable method is

very similar in both examples, only the corrected version of themis orientdb is available in listing 5.11.

In this example, the vulnerable method has a mixed timing side-channel vulnerability. As such, the first

task of the tool is to ensure the method only contains a final return statement that returns the result of

the method execution, which successfully does. Then, it needs to ensure that any branch wherein the

condition is a secret regardless of the value of the secret the method execution time is similar. It also

needs to guarantee that there is no cycle in the method where the stopping condition does not depend

on a secret. Despite improving the method in those regards, the tool was not able to successfully ensure

all those requirements. The tool was not able to replace the secret used in the stopping condition of the

cycle because there is no public argument with the same type to replace the secret. Although the tool

reduces the branches execution time difference depending on the value of the secret, the difference is

still not small enough, since some instructions used in the ‘then’ block of the ‘if’ statement can’t be used

in the ‘else’ block since those instructions use variables used in the condition of the ‘if’ statement.

1 public boolean equals inline$Modification(String iPassword, String iHash) {

2 boolean $4 = false;

3 boolean $1 = false;

4 int n = iPassword.length();

5 int $5 = n;

6 if (n == iHash.length()) {

7 char[] v1 = iPassword.toCharArray();

8 char[] v2 = iHash.toCharArray();

9 int i = 0;

10 $1 = true;

11 while ((n--) != 0) {

12 if (((i < v1.length) && (i < v2.length)) && (v1[i] != v2[i])) {

13 $1 = false;

14 } else {

15 $4 = false;
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16 }

17 i++;

18 }

19 } else {

20 char[] $2 = iPassword.toCharArray();

21 int $3 = 0;

22 $4 = true;

23 while (($5--) != 0) {

24 $3++;

25 }

26 }

27 return $1;

28 }

Listing 5.11: Vulnerable method equals inline

The next example is themis spring-security. In this example, the tool needs to ensure that only one

return statement exists in the method and doing so needs to guarantee that all access done to variables

used as conditions for the early-exit remain protected. The tool also needs to replace the secret used in

the stopping condition of the cycle for a public argument. As seen in listing 5.12, the tool successfully

repaired the early-exit but not the control-flow based timing side-channel in the method. This happens

because the tool does not know a public argument with the same type as the secret used in the stopping

condition of the method.

1 static boolean equals unsafe$Modification(String expected, String actual) {

2 int $3 = 0;

3 boolean $2;

4 boolean $1;

5 byte[] expectedBytes = bytesUtf8(expected);

6 byte[] actualBytes = bytesUtf8(actual);

7 int expectedLength = (expectedBytes == null) ? -1 : expectedBytes.length;

8 int actualLength = (actualBytes == null) ? -1 : actualBytes.length;

9 if (expectedLength != actualLength) {

10 $1 = false;

11 } else {

12 $2 = false;

13 }

14 int result = 0;
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15 for (int i = 0; i < expectedLength; i++) {

16 if ((i < expectedLength) && (i < actualLength)) {

17 result |= expectedBytes[i] ˆ actualBytes[i];

18 } else {

19 $3 |= 0;

20 }

21 }

22 $1 = result == 0;

23 return $1;

24 }

Listing 5.12: Vulnerable method equals

Next is themis tomcat. This example is a case of a mixed timing side-channel vulnerability. As seen

in listing 5.13, the tool repairs the early-exit timing side-channel vulnerability of the method, however

when the argument username, which is the secret is invalid the result of the call to the method getPass-

word will be null, making the execution of the method matches faster than if the secret was valid. As

such, to correct this vulnerability, according to the safe version of the method, when the result of the

call to the method getPassword is null, slow instructions should be executed to ‘waste’ time, to slow the

execution of the method to pretend the secret was valid.

1 protected Boolean authenticate unsafe$Modification(Connection dbConnection,

String username, String credentials) {

2 Boolean $2 = true;

3 Boolean $1 = true;

4 if ((username == null) | | (credentials == null)) {

5 $1 = null;

6 } else {

7 $2 = null;

8 }

9 System.out.println("Looking up the user's credentials ...");

10 String dbCredentials = getPassword(dbConnection, username);

11 if (dbCredentials == null) {

12 System.out.println("User not found ...");

13 $1 = false;

14 } else {

15 System.out.println("User not found ...");

16 $2 = false;
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17 }

18 boolean validated = matches(credentials, dbCredentials);

19 if (!validated) {

20 System.out.println("User not validated...");

21 $1 = false;

22 } else {

23 System.out.println("User not validated...");

24 $2 = false;

25 }

26 System.out.println("User is validated...");

27 return $1;

28 }

Listing 5.13: Vulnerable method authenticate

Another example is blazer gpt14, visible in listing 5.14. In this example, a problem is that a variable

is only considered a secret after the tool analysis the instruction where that variable was used in a

condition and this problem is more evident when executing the method because it happens inside a

loop. Inside the ‘for’ loop, there is another ‘for’ loop and inside this one there is an ‘if’ statement wherein

its condition is used the variable m. When the tool analysis this instruction it does not consider to be a

possible source of a timing side-channel vulnerability because neither the variable m nor the variable j is

a secret, only the variables b and n are secrets. However, at the end of the outer loop, the variable m is

considered a secret because in the final ‘if’ statement, depending on the value of b, a secret, the value

of m can be altered. Since this happens inside a loop, it affects its execution in subsequent iterations.

However, since the tool analysis the method in one passage through the code, it does not notice this

possible source of vulnerability. A way to correct this would be to modify the tool so that when it finds

a loop it does a first analysis of the body of the loop to update the list of secret variables. Then, it

would analyse the loop body again, but this time in search of possible sources for timing side-channel

vulnerability with the correct list of secrets.

1 public static BigInteger modular exponentiation inline unsafe$Modification(

BigInteger a, BigInteger b, BigInteger p) {

2 BigInteger $1 = BigInteger.valueOf(1);

3 BigInteger m = BigInteger.valueOf(1);

4 int n = b.bitLength();

5 for (int i = 0; i < n; i++) {

6 BigInteger p1;
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7 if (m.testBit(0)) {

8 p1 = m;

9 } else {

10 p1 = BigInteger.valueOf(0);

11 }

12 int n1 = m.bitLength();

13 for (int j = 1; j < n1; j++) {

14 if (m.testBit(j)) {

15 p = p.add(m);

16 }

17 }

18 BigInteger t = m.multiply(a).mod(p);

19 if (b.testBit(i)) {

20 m = t;

21 } else {

22 $1 = t;

23 }

24 }

25 return a;

26 }

Listing 5.14: Vulnerable method of example gpt14

Next is the example themis boot-stateless-auth, that can be seen in listing 5.15, where both pa-

rameters are secrets. In this example, the problem creates a slight increase in execution time depending

on the value of the secret, one that is hard to explore but exist nevertheless. In the ‘if’ statement of line

21 the variable a2 is checked for null and then its property length is compared to the variable length.

However if the variable a2 is null, the operator && is short-circuited and the comparison is faster. This

then happens again in the ‘if’ condition of line 27. However, this time the effects are greater because

not only are there more conditions to validate but it happens inside a loop, so the short-circuits happens

several times.

1 public static boolean unsafe isEqual$Modification(byte[] a, byte[] a2) {

2 int $3 = 0;

3 boolean $2 = true;

4 boolean $1 = true;

5 if (a == a2) {

6 $1 = true;
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7 } else {

8 $2 = true;

9 }

10 if ((a == null) | | (a2 == null)) {

11 $1 = false;

12 } else {

13 $2 = false;

14 }

15 int length = 0;

16 if (a != null) {

17 length = a.length;

18 } else {

19 $3 = 0;

20 }

21 if ((a2 != null) && (a2.length != length)) {

22 $1 = false;

23 } else {

24 $2 = false;

25 }

26 for (int i = 0; i < length; i++) {

27 if ((((a != null) && (i < a.length)) && ((a2 != null) && (i < a2.length))

) && (a[i] != a2[i])) {

28 $1 = false;

29 } else {

30 $2 = false;

31 }

32 }

33 return $1;

34 }

Listing 5.15: Vulnerable method of example themis boot-tateless-auth

Finally is the example stac ibasys, that can be seen in listing 5.16. In this example, the problem

with correction is connected to possible optimizations of the compiler. In lines 40 and 41, it is passed

as an argument to the method Math.abs the value stored in the position indicated by var16 of the

arrays imagedata and pcode respectively. Since the secret in this method is pcode, the variable var16

is influenced by the secret and thus is considered a secret, these instructions are influenced by the

secret. However, the lines 50 and 51 that compensate these instructions it is always accessed the

arrays imagedata and pcode in index 0, and this can be optimized by the compiler to be faster since it
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will access the same value.

1 public static void test$Modification(byte[] i, byte[] pcode) {

2 byte[] $3 = new byte[1];

3 boolean $2 = false;

4 byte[] imagedata = null;

5 boolean success = false;

6 boolean state = false;

7 try {

8 System.out.println("Loading passcode");

9 ScalrApplyTest b = new ScalrApplyTest();

10 ScalrApplyTest.setup(i);

11 BufferedImage p = b.testApply1();

12 int r = p.getWidth();

13 int h = p.getHeight();

14 int[] imageDataBuff = p.getRGB(0, 0, r, h, ((int[]) (null)), 0, r);

15 ByteBuffer byteBuffer = ByteBuffer.allocate(imageDataBuff.length * 4)

;

16 IntBuffer intBuffer = byteBuffer.asIntBuffer();

17 intBuffer.put(imageDataBuff);

18 ByteArrayOutputStream baos = new ByteArrayOutputStream();

19 baos.write(byteBuffer.array());

20 baos.flush();

21 baos.close();

22 System.out.println("Image Done");

23 ScalrApplyTest.tearDown();

24 byte[] pcodetest = new byte[128];

25 int csize = imageDataBuff.length / 128;

26 int ii = 0;

27 for (int i1 = 0; i1 < (csize * 128); i1 += csize) {

28 pcodetest[ii] = ((byte) (imageDataBuff[i1] % 2));

29 ++ii;

30 }

31 imagedata = pcodetest;

32 state = true;

33 } catch (Exception var15) {

34 System.out.println("worker ended, error: " + var15.getMessage());

35 }
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36 if (state) {

37 success = true;

38 for (int var16 = 0; (var16 < imagedata.length) && (var16 < i.length);

var16 += 4) {

39 if ((var16 < imagedata.length) && (var16 < pcode.length)) {

40 int var17 = Math.abs(imagedata[var16]);

41 int var18 = Math.abs(pcode[var16]);

42 boolean var19 = (var18 % 2) == (var17 % 2);

43 if (!var19) {

44 success = false;

45 } else {

46 $2 = false;

47 }

48 imagedata[var16] = ((byte) ((var19) ? 1 : 0));

49 } else {

50 int var17 = Math.abs(imagedata[0]);

51 int var18 = Math.abs(pcode[0]);

52 boolean $1 = (var18 % 2) == (var17 % 2);

53 if ($1) {

54 $2 = false;

55 } else {

56 $2 = false;

57 }

58 $3[0] = ((byte) (($1) ? 1 : 0));

59 }

60 }

61 System.out.println(" - status:" + success);

62 } else {

63 success = false;

64 }

65 }

Listing 5.16: Vulnerable method of example stac ibasys
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6.1 Conclusions

The main goal of this project was to develop a tool for automatic repair of timing side-channel vulnerabil-

ities in Java code. The project aimed at working in conjunction with DifFuzz [1] (for example, DifFuzz’s

already defined “drivers” were used to identify the vulnerable methods). During the development of

this project, patterns and any sort of computation that lead to timing side-channel vulnerabilities were

identified. Moreover, algorithms capable of correcting potential timing side-channel vulnerabilities were

proposed and implemented.

The tool developed was evaluated using the same dataset that was used to evaluate DifFuzz [1],

a dataset that contains examples of applications with timing side-channel vulnerabilities. The results

obtained show that 88% of the attempted corrections are semantically correct and 56% eliminate the

existing timing side-channel vulnerabilities.

Even though the results show that the tool can improve, can be used as a starting line for the de-

velopment of new and improved tools capable of correcting timing side-channel vulnerabilities and any

other type of vulnerability. For that reason, it is believed that the objectives of this project were met since

it lays the groundwork for new and better tools.

The tool is open-source and is available at:

https://github.com/RuiDTLima/DifFuzzAR

6.2 System Limitations and Future Work

Although this tool was built in an attempt to correct timing side-channel vulnerabilities regardless of how

they present themselves it is still possible that sometimes the repair created by the tool not only does

not repair the vulnerabilities but breaks some of the functionality of the method. As such, it is important

to do a manual analysis of the repaired method after the execution of the tool, not only to check if no

functionality is broken but also to beautify the changes, like the names of the variables. Besides that, it

is important that after the execution of the tool, the produced code is analysed again with DifFuzz to see

if the tool eliminated the vulnerability.

The tool assumes that the method referenced in the Driver is vulnerable and corrects it. As such, if

the Driver is not properly written or the method referenced is not the vulnerable one, but one that calls

the truly vulnerable method, then the tool will not be able to repair it.

Although the repair of a vulnerability is performed automatically, the tool needs to know how to repair

the vulnerability given a statement found. For instance, the tool needs to know how to correct a control-

flow based timing side-channel vulnerability, when it finds an ‘if’ statement. This information needs to be

added to the tool. As such, it is necessary to continuously improve the tool to be able to correct different
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code patterns that contain a vulnerability, or different instructions that cause the vulnerability.

If the tool is executed on the correction of a control-flow based timing side-channel vulnerability, it will

always try to repair the vulnerability again, which means it might break the original correction.

In the results presented in this report, the corrected version of some examples is presented as having

no timing side-channel vulnerability. However, they might have a vulnerability but in the results obtained

that vulnerability was not noticed. Despite this, the work developed for this report is open to others on

GitHub.

Despite the work performed for the development of this tool, there is still plenty of work that can be

done to improve the tool or even to develop a new and better tool.

Future work. One of the most important future directions for the tool is to add the ability to repair more

examples of timing side-channel vulnerabilities and to add the ability to repair other types of vulnerabili-

ties so that it can become a one-size-fits-all type of tool.

This tool can only be used after the use of DifFuzz. This means that the user must first use DifFuzz

to verify if the application has any timing side-channel vulnerability. Then, the user must use DifFuzz

again, but this time to pinpoint the specific method that is vulnerable. Only then, can the user feed the

last Driver to this tool, to correct the vulnerability. If the application has several methods with timing side-

channel vulnerabilities, this process must be repeated until all instances of vulnerability are repaired.

So, to spare the user of this trouble, a future improvement is to integrate the tool with DifFuzz. This way,

the user simply provides the new tool with a Driver to the application entry point, and then it searches

for every method with a timing side-channel vulnerability. This would mean that a new functionality had

to be created so that the tool could generate a Driver automatically.

Another future improvement for the tool is to transform it from a tool into a plugin to be used in the

build process of the application. This would reduce the amount of manual intervention needed by the

user. Another advantage of this is that being part of the build process can make it easier for other users

to use the tool.
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