Automatic Repair of Java Code with Timing
Side-Channel Vulnerabilities

Rui Lima
Universidade de Lisboa - Instituto Superior Técnico
Lisboa, Portugal
rui.tomas.lima@tecnico.ulisboa.pt

Abstract—Vulnerability detection and repair is a demanding
and expensive part of the software development process. As such,
there has been an effort by researchers to develop new and
better ways to automatically detect and repair vulnerabilities.
DifFuzz is a state-of-the-art tool for automatic detection of
timing side-channel vulnerabilities, a type of vulnerability that
is particularly difficult to detect and correct. Despite recent
progress made with tools such as DifFuzz, work on tools capable
of automatically repairing timing side-channel vulnerabilities is
scarce. We propose a new tool for automatic repair of timing
side-channel vulnerabilities in Java code. The tool works in
conjunction with DifFuzz and it was able to repair 56% of
the vulnerabilities identified in DifFuzz’s dataset. The results
show that the tool can indeed automatically correct timing side-
channel vulnerabilities, being more effective with control-flow
based timing side-channel vulnerabilities.

Index Terms—Java, Timing Side-Channel Vulnerabilities, Au-
tomatic Repair of Vulnerabilities, Security, Code Modification

I. INTRODUCTION

Software is increasingly more present in the world and our
lives. Virtually all industries today use software in one way
or another. It is thus important that software is as secure as
possible since software defects can lead to the loss of billions
of euros in revenue or lawsuits, or it can even harm the health
and well-being of millions of people around the world.

There are many kinds of bugs and vulnerabilities. A bug is
an issue that leads to an expected scenario not running, for
instance trying to login with correct credentials and failing.
On the other hand, a vulnerability is an issue that leads to
an unexpected scenario running, for instance trying to login
with fake credentials and succeeding [1]. Bugs can be detected
using software tests and the quality of the tests impacts the
odds of detecting a bug. As such it is important to create
many and comprehensive test cases. However, the detection of
vulnerabilities can be difficult since a vulnerable application
can pass all tests or even completely fulfil its correctness
specification. Different types of vulnerabilities have different
difficulty levels of detection. Perhaps one of the hardest types
of vulnerabilities to be detected are side-channel vulnerabili-
ties.

A side-channel is any observable side effect of a computa-
tion. The side effects can manifest themselves in several ways:
for example, in the difference in computation time, in power
consumption, sound production, and electromagnetic radiation
emitted. A more in-depth explanation of side-channel attacks

can be found in [2], [3]. Some side-channel vulnerabilities
are easier to exploit than others since some require specific
devices. All of these side effects can be taken advantage
of to attack a system. However, most of the side-effects
require that the attackers have physical access to the system
they are trying to attack, since they would need to gather
the information directly from the system, like measuring the
power consumption, the production of sound, or the emission
of electromagnetic radiation. On the other hand, side-effects
such as the difference in computation time and response size
do not require the attackers to be in direct contact with
the systems. This enables the possibility of remote attacks,
thus exposing the systems to a larger number of attackers.
Moreover, side-channel vulnerabilities based on measuring
differences in computation time, also known as timing side-
channel vulnerabilities, can occur at multiple program points:
they can occur on a simple method to compare strings, or on
a large and complex parallel computation. There are multiple
real-world applications that were found to be vulnerable to
timing side-channel attacks. For instance, Nate Lawson et al.
discovered a timing side-channel vulnerability in Google’s
Keyczar Library [4]. Another example is the timing side-
channel vulnerability discovered in Xbox 360 [5].

As timing side-channel vulnerabilities are extremely diffi-
cult to detect, there is a great effort by researchers to develop
tools capable of automatically detecting these vulnerabilities
[6]-[8]. Despite this, once vulnerabilities are found, developers
must correct them manually, which in some cases can be
difficult, time-consuming and prone to errors. As such, the
goal of this project is to ease the correction of vulnerabilities
by developing a tool capable of automatically repairing timing
side-channel vulnerabilities. Even though the ideas developed
are general and can be used in any language, we focus on the
Java programming language, since according to GitHub [9],
Java is the second language with more contributors in public
and private repositories and is still the most used language
for enterprise applications [10], [11]. The tool developed,
called DifFuzzAR, is designed to work in conjunction with
DifFuzz [8] and we evaluate it using the same dataset that
was used to evaluate DifFuzz. Although DifFuzzAR has some
limitations, it repaired 56% of the vulnerabilities identified
in DifFuzz’s dataset. This shows that DifFuzzAR has the
potential to simplify substantially the debugging process.

II. BACKGROUND AND RELATED WORK

Since software security is such an important subject, several
studies have been done to help developers optimize their soft-
ware’s security. For example, Meng et al. [12] analyzed Stack
Overflow posts and found out that programmers are especially
concerned about the implementation of security features and
how to make their code as secure as possible. They show that
there has been an increase in the focus of security and secure
coding. They identify the five most common programming
challenges to be related to authentication, cryptography, Java
EE security, access control, and secure communication.

A. Timing Side-Channel Vulnerabilities

A problem that arises in the five categories listed above, with
particular importance in cryptographic code, is the presence
of timing side-channel vulnerabilities. A timing side-channel
vulnerability happens when a secret' can be learned based on
the time a computation takes to complete. To put it differently,
an application is vulnerable to timing side-channel attacks
when the time it takes to complete a computation depends
on a given secret, e.g., a password. There are multiple ways
that a timing side-channel vulnerability can appear. Despite
that, the most common ones revolve around cycles where
the termination condition depends on the secret, or with an
early exit condition dependent on the secret. They are also
common when there is an unbalance in the control flow of code
dependent on a secret. If the control flow of an application
depends on a secret, and the execution time of that application
depends on the control flow, then the application is vulnerable
to timing side-channel attacks.

1) Early-Exit Vulnerabilities: ~An early-exit timing side-
channel vulnerability happens when the method contains exit
points where their execution depends on the value of a secret.
This is very common when checking if an array has a certain
length, if not then the execution of the method ends. If that
array is a secret, then that means that the execution time of the
method is dependent on the value of the secret, in this case,
on the size of the array.

2) Control-Flow Based Vulnerabilities: A control-flow
based timing side-channel attack happens when there is a sig-
nificantly slow operation that happens only when a condition is
met. What this means is that an attacker can take notice of the
time a function takes to return and notice that that operation
is executed.

3) Mixed Vulnerabilities: Some methods might suffer from
both early-exit and control-flow based timing side-channel
vulnerabilities. When this happens, the method is said to
have a mixed timing side-channel vulnerability. To correct
the vulnerability it is necessary to correct the early-exit part
of the vulnerability and the control-flow part. This can be
done in different ways. First, it can be corrected at the same
time, meaning, that while analysing the method, the repair

TA secret is any value, not known by an attacker, be it a password, a secret
code, or any value that attackers attempt to learn. In the context of this paper,
a secret is a value that the attackers are trying to discover.

program corrects an early-exit or control-flow timing side-
channel vulnerability as they happen. Another option is to
first correct one of the types of vulnerability and then correct
the other type on the corrected version of the first type. For
instance, we can first correct an early-exit timing side-channel
vulnerability and then correct the control-flow based timing
side-channel vulnerability in the previously repaired version.

B. Automated Detection of Timing Side-Channel Vulnerabili-
ties

Automatic detection of timing side-channel vulnerabilities
has received substantial attention in recent years.

In 2017, Timos Antonopoulos et al. [6] developed a new
way to prove the absence of timing side-channels. They
used decomposition instead of self-composition to prove the
absence of timing side-channels. Their approach divides the
program’s execution traces into smaller and less complex
partitions. Then each partition has their resilience to timing
side-channels attacks checked through a time complexity
analysis. The authors’ idea is that the resilience of each
component proves the resilience of the whole program. To
ensure that any pair of program traces with the same public
input has a component containing both traces, the construction
of the partition is done by splitting the program traces at
secret-independent branches. The authors’ approach follows
the demand-driven partitioning strategy that uses a regex-like
notion that they call trails, which identifies sets of execution
traces, particularly those influenced by tainted (or secret) data.

Before this paper, other approaches employed self-
composition, where they aim to reason about multiple exe-
cutions at once. However, the authors present the novel idea
of decomposition, where they prove a non-relational property
about a trace, instead of proving a relational property about
every pair of execution traces. Their method is implemented
in a tool called Blazer.

Jia Chen et al. [7] presented the notion of e-bounded
non-interference, a variation of Goguen and Meseguer’s non-
interference principle [13]. The authors define e-bounded non-
interference as “[...], given a program P and a ‘tolerable’
resource deviation €, we would like to verify that the resource
usage of P does not vary by more than € no matter what the
value of the secret’. The execution time of an application can
be affected by sources external to the application. As such,
a minimum difference in execution time should be expected
and must be accepted. This minimum change is what the
authors denote as €. To simplify, e-bounded non-interference
means that regardless of the secret, the execution time of an
application will not vary by more than €.

To verify the e-bounded non-interference property the au-
thors present a new program logic called Quantitative Carte-
sian Hoare Logic (QCHL), which is at the core of their
technique. With QCHL the authors can “[...] prove triples of
the form (¢) S (1), where S is a program fragment and ¢, v
are first-order formulas that relate the program’s resource usage
(e.g., execution time) between an arbitrary pair of program
runs”’. The authors implemented their technique in a tool

called Themis and showed that their tool can find previously
unknown vulnerabilities in widely used Java programs.

In 2019, Shirin Nilizadeh et al. [8] decided to take a new
approach to the field using dynamic analysis, introducing a
new tool called DifFuzz. According to the authors, this tool
“[...] uses a form of differential fuzzing® to automatically find
program inputs that reveal side channels related to a specified
resource, such as time, consumed memory, or response size”.
DifFuzz can be used in programs written in any language.
However, in their paper, the authors’ solution targets Java.
DifFuzz instruments a program to record its coverage and
resource consumption along the paths that are executed. As
such, the inputs must maximize the code coverage. For that,
they use the fuzz testing tool American Fuzzy Lop (AFL) [14],
which uses genetic algorithms and mutates the inputs using
byte-level coverage. However, AFL only supports programs
written in C, C++, or Objective C, and DifFuzz is written in
Java. To connect these two tools, the authors used Kelinci [15]
that provides AFL-style instrumentation for Java programs.
This way, AFL does not know about the Java program being
tested. Then, the user must create a Fuzzing Driver, that parses
the input provided by AFL and executes two copies of the
code, measuring the cost difference between the two. That cost
difference will be used to guide the AFL in the generation of
more input values so the difference can be increased. And this
process is repeated for a predetermined time or until the user
cancels the execution of the tool.

To assess the correctness of DifFuzz, the authors applied
it to widely-used Java applications and they found previously
unknown vulnerabilities (later confirmed by the developers).
They also applied DifFuzz to complex examples from the
DARPA STAC [16] program. Additionally, they compared
their tool with Blazer and Themis. Unlike Blazer and Themis,
that can give false alarms given that both perform static
analysis, DifFuzz will not give false alarms since it performs
dynamic analysis; however, it can not prove the absence of
vulnerabilities. To accurately compare DifFuzz with Blazer
and Themis, the authors evaluated DifFuzz on the same bench-
marks used for Blazer and Themis, and on their corrected
versions. DifFuzz was able to find the same vulnerabilities
as the other tools and also found vulnerabilities on corrected
versions of the benchmarks of Themis and Blazer.

As the authors state, they achieved their goals. However,
there is still more that can be done to improve this tool. Two of
their proposed improvements are to add statistical guarantees
to the tool and to possibly add automated repair methods
to eliminate the vulnerabilities discovered by DifFuzz. The
purpose of this project is to contribute to the latter.

C. Automated Repair Tools

In 2012, Claire Le Goues et al. [17] presented a generic
method for automatic software repair called GenProg, which
receives as input the defected source code and a set of test

2Fuzzing is an automated testing technique in which invalid, unexpected or
random data is provided as input to the program in test.

cases. In the set of test cases, at least one of them must
be a failing negative test case and a set of passing positive
test cases. The negative test case encodes the fault to be
repaired, meaning that it should be a use case where the bug or
vulnerability to be corrected can be noticed. The set of positive
test cases encodes the set of functionality that can not be lost
while repairing the bug. GenProg uses genetic programming
to search for a variant of the program that retains all required
functionality but does not have the bug in question. To evaluate
GenProg, the authors repaired 16 C programs, and on average,
GenProg found a repair in 357 seconds. They also found that
77% of the trials produced a repair. In the 16 patches achieved,
seven inserted code, seven deleted code, while two did both.

In 2017 Jifeng Xuan et al. [18] presented Nopol, a new
approach to automatically repair buggy conditional statements.
This approach takes as input a program and a set of test cases
and outputs a patch for the inputted program with a conditional
expression. The set of test cases passed as input must include
the passing test cases to encode the expected behaviour of the
application, and should include at least one failing test case
that encodes the bug. Unlike GenProg, which follows a generic
approach for automatic software repair, Nopol was built to
focus on buggy if conditions and missing precondition bugs.
Buggy if conditions occur when a bug is the condition of an
‘if” statement. Missing precondition bugs happen when there
should be a condition before a statement, such as detecting
null pointer or an invalid index to access an array. Nopol uses
Ochiai, a spectrum-based ranking metric that is used to rank
statements in a descending order based on their suspiciousness
score. The suspiciousness score indicates the likelihood that a
statement contains a bug. Each of these statements is processed
in a phase called angelic fix localization, where conditional
values in ‘if” statements are replaced by values that pass the
failing test cases provided as input. If a value passes the failing
test cases, it is called an angelic value. In the case of a non-
loop and non-branch statement, the angelic fix localization
skips that statement. If skipping the execution of that statement
a failing test case passes, then a potential fix location has
been found, meaning there is a possibility that there is a
missing condition before that statement. To evaluate Nopol,
the authors executed it on a dataset with 22 real-world bugs
from Apache Commons Math and Apache Commons Lang.
Nopol only failed the repair of 5 bugs, four of which are
related to timeout. From the 17 repairs, 13 are as correct as
of the manual patches. The authors reported that the average
repair time of one bug was 24.8 seconds.

D. Automated Repair of Timing Side-Channel Vulnerabilities

Meng Wu et al. [19] proposed a method based on program
analysis and transformation to eliminate timing side-channel
vulnerabilities. According to the authors, their solution pro-
duces a transformed program functionally equivalent to the
original program but without instruction and cache timing
side-channels. They also claim that they ensure that the num-
ber of CPU cycles taken to execute any path is independent of
the secret data, and the cache behaviour of memory accesses

is independent of the secret data in terms of hits and misses.
Their method is implemented in LLVM (Low-Level Virtual
Machine) and tested using libraries with a total of 19,708 lines
of C/C++ code.

The method the authors created uses static analysis to
identify the set of variables whose values depend on the
secret inputs. Then, to decide if those variables lead to timing
side-channel vulnerabilities, they check if the variables affect
unbalanced conditional jumps, for instruction timing side-
channel, or accesses to memory blocks across multiple cache
lines, for cache-related timing side-channel vulnerabilities.
After this analysis, to mitigate the leaks code transformation
is performed to equalize the execution time.

Applying their methods, the authors created the tool SC-
Eliminator, that takes as input the program as LLVM bit-
code and a list of secret variables and outputs the transformed
program. This tool starts by doing a series of static anal-
ysis to identify the sensitive variables and their associated
timing leaks. Next, the tool performs two transformations,
one to eliminate the difference in execution time caused by
unbalanced conditional jumps and the other to eliminate the
difference in the number of cache hits/misses during the
accesses of look-up tables.

III. SYSTEM OVERVIEW

DifFuzzAR is designed to work in conjunction with Dif-
Fuzz. In terms of its workflow, the tool needs to first identify
the vulnerable method to be repaired. For this, the tool assumes
the existence of a Driver file that can be used with DifFuzz.
Once the vulnerable method is identified using the Driver, the
tool will attempt to repair the method. In the current version
of the tool, it will attempt to repair Early-Exit Timing Side-
Channel vulnerabilities and Control-Flow Based Timing Side-
Channel vulnerabilities.

DifFuzzAR was designed to be as modular as possible. This
way if someone wants to add functionality to repair other
types of vulnerabilities, they simply have to create a new
independent module with all the code capable of repairing
that vulnerability and add a call to the new module in the
tool. The one thing that is intrinsic to the tool is the analysis
of the Driver to identify the vulnerable method and the class it
belongs to. Once this identification is done, the tool searches
for that method and sends it to the module responsible for
correcting an early-exit timing side-channel vulnerability. That
module then creates a repaired version of the method and that
version of the method is sent to the module responsible for
correcting a control-flow based timing side-channel vulnera-
bility. That module then creates another repaired version of
the method and, given that it is the final module, the tool
saves that method in a new file that is a copy of the original
file. In case the user decides to add a new module to correct
another vulnerability, can also decide the order by which each
module repair the original code. However, the user needs to be
aware that correction of vulnerabilities can add or exacerbate
another vulnerabilities. As such, it is important to consider
what is the order of the modules. For instance, the module

responsible for the correction of an early-exit timing side-
channel vulnerability can add or exacerbate a control-flow
based timing side-channel, as such the module to correct an
early-exit timing side-channel vulnerability needs to happen
before the module to correct a control-flow timing side-channel
vulnerability. Besides that, when creating a new module, the
user must ensure that in some way the execution of the method
produces a Spoon method representation, CtMethod, of the
correct method. This can either be as a return value of the
module, or the modification of the object the module receives
as an argument. It will be that CtMethod, that the tool will
write in a new file as its output.

An overview of the architecture of the tool is shown in
Figure 1.

IV. IDENTIFICATION OF VULNERABLE METHODS

The first task of the tool is to uncover the vulnerable
method that is to be repaired. Since this tool should be used
in conjunction with DifFuzz, the driver used for DifFuzz
is also used to identify the vulnerable method. Doing this
reduces the manual work of the users and reduces errors.
However, this also means that the driver must be properly
created so that the correct method is retrieved. For the tool to
properly identify the vulnerable method, the method invocation
should be immediately preceded by a call to Mem.clear().
This requirement follows from what is already stipulated for
DifFuzz: while creating a driver for DifFuzz, it is required
to call the method Mem.clear(). Therefore, to use a DifFuzz
driver with DifFuzzAR it is simply a matter of ensuring that
the vulnerable method is invoked immediately after the call
to Mem.clear(). The only instructions that can be between the
invocation of Mem.clear() and that of the vulnerable method
are a constructor invocation, a ‘try’ keyword (meaning that
the vulnerable method invocation is surrounded by a ‘try’
block), or an ‘if” keyword (meaning that the vulnerable method
invocation is the first instructions of the ‘then’ or ‘else’ block).

The search for the instruction after the Mem.clear() instruc-
tion is done twice since in the driver the vulnerable method
will be invoked twice and that way the tool can discover what
parameter of the method is the secret since it will be the one
where a different argument is used in the two invocations of
the method. As such, in the driver, the user must ensure to use
the same argument for the public parameters and different ones
for the secret. Taken as an example the two method invocations
shown in Listing 1, the second parameter is considered by the
tool as the secret, since it is the only argument that changes.

vulnMethod(a, b, c¢);

vulnMethod(a, d, c);

Listing 1. Vulnerable method invocation example

In the identification of the vulnerable method, the tool also
finds the path to the class file where the method definition
is, even if that class is an inner class in some package. The
tool also validates its findings of the vulnerable method by
comparing the two instances and checking if name, class,

Vulnerable
Project

Retrives vulnerable class
—

sends
vulnerable ——»|
method

Driver
Process

—

Searches for —
invocation of

Early-Exit
Correction

creates
P new class with —
corrected method

sends Control-Flow sends
Correction

Corrected
Class

method method

/vulnerable method

Driver

DifFuzzAR

Fig. 1. Overview of DifFuzzAR

return type and the number of parameters are the same,
while at least one argument is different. A basic overview
of the process of identifying the vulnerable method from
the driver can be seen in the Algorithm 1. In this process,
given the path to the Driver file, the tool searches for the
first occurrence of Mem.Clear(). Once it finds it, analyses the
next instruction, which should be a method invocation. This
method is considered by the tool as the vulnerable method to
be corrected. The tool then searches for the second occurrence
of the Mem.Clear() and repeats the process. With the two
invocations of the vulnerable method, the tool will compare
them to see if it is the same invocation, the arguments that
differ in the two invocations are considered the secrets of the
method.

Algorithm 1: Identification of vulnerable method us-
ing DifFuzz driver
1: f « findDriverFile(driverPath)
instMeml, f* < findMemClear(f)
vulnOptl < recordNextInstruction(instMem1)
instMem?2 < findMemClear(f”)
vulnOpt2 <— recordNextInstruction(instMem?2)
valid < comparelnstructions(vulnOpt1, vulnOpt2)

[RARRANE R

After implementing this strategy, the tool was tested with
the 58 drivers of all the examples provided with the DifFuzz
dataset. It was observed that there were Drivers the tool
was not capable of finding the invocation of the vulnerable
method. After analysing the drivers where the tool could not
find the correct invocation of the vulnerable method, it was
found that some drivers took a slight deviation from the most
common pattern. In particular, those drivers did not invoke
the vulnerable method immediately after the invocation of
Mem.clear(). After some deliberation, it was concluded that
this slight deviation should be deemed valid and the tool was
modified so that it could find the invocation of the vulnerable
method in those examples. This deviation could be aggregated
in three groups which simplified the modifications to the tool:

Group 1. The simplest deviation occurs when an object

is created between the invocation of Mem.clear()
and the invocation of the vulnerable method. This
normally happens when the vulnerable method is an
instance method and the object needed to invoke it
is created before the invocation.

Group 2. A second deviation is when after the instruction

Mem.clear() a ‘try’ block appears. When this hap-

pens, the vulnerable method is considered to be the
first instruction of the ‘try’ block.

Group 3. The third deviation occurs when after the
invocation of the instruction Mem.clear() an ‘if’
statement appears. When this happens, the invocation
of the vulnerable method is considered to be the
first statement of either the ‘then’ or ‘else’ block.
This normally happens when the driver used for the
safe and unsafe versions of an example are similar
and the difference is only in the value assigned to
a boolean variable. That variable will then be used
as a condition of an ‘if” to decide which method to
invoke (either the safe or unsafe version). To resolve
this case, it is necessary to record the variable and its
value. When the tool finds the ‘if’ statement where
its condition is the variable found, the value of the
variable is used to decide whether to look in the first
instruction of the ‘then’ block or the ‘else’ block.

Besides finding the name of the vulnerable method the tool
also needs to retrieve the exact path for the file containing
the vulnerable method so that it can correct it. To do this the
tool retrieves the name of the class of the method. This can
be done by checking the name of the class used to invoke the
method when the method is static or it can check the type of
the object used to invoke the method when the method is an
instance method. When the tool finds the name of the class it
can also retrieve the full package that class belongs to.

After these modifications, the tool was capable of finding the
correct vulnerable method of all the examples in the DifFuzz
dataset.

V. CORRECTION OF VULNERABILITIES

In the current version of DifFuzzAR, the correction of a
vulnerability is done in two separate phases: the correction
of an early-exit timing side-channel vulnerability followed by
the correction of a control-flow based timing side-channel
vulnerability. This way, there are two separate modules, each
responsible for the correction of one type of timing side-
channel vulnerability. As mentioned above, the addition of the
correction of a new type of side-channel vulnerability is as
simple as writing the code responsible for that correction and
adding the module to the tool, as well as its invocation.

From the previous identification step, the tool knows which
method was identified as vulnerable by DifFuzz. However, it
does not know the specific instruction or set of instructions that
cause the vulnerability. As such, the tool has to analyze the

code and produce a correction that consists in a modification
of the code to make its execution time as independent of the
secret as possible. Algorithm 2 shows a basic overview of the
correction process. If the vulnerable method has more than
one return statement, then the tool considers it to have an
early-exit and so the tool starts by correcting that vulnerability.
After that is done, the tool executes the module responsible
for the correction of control-flow based timing side-channel
vulnerabilities.

Algorithm 2: Overview of the repair process

1: if numberReturns >1 then
2: vulnMethod < repairEarlyExit(vulnMethod)
3: end if

4: vulnMethod < repairControlFlow(vulnMethod)

A. Correction of Early-Exit Timing Side-Channel Vulnerabil-
ities

The correction of early-exit timing side-channel vulnera-
bilities consists in the elimination of all ‘return’ statements
except the last one. However, the result of the execution of
the method should be the same after the modification. For
that reason, every ‘return’ statement of the method will be
replaced with an assignment of the value being returned to a
variable. That variable will either be the variable returned in
the final return (if it returns a variable) or a new one created
with the return type of the method.

Algorithm 3 shows an overview of the correction process
for early-exit timing side-channel vulnerability. The tool starts
by obtaining the element returned in the final return of the
method. This element should be a variable, if it is not the tool
creates a new variable, were its type is the return type of the
method, and is initialized with the element obtained, referred
from now on as return variable. Then, the tool analyses every
instruction of the method in search of a return statement,
which will be replaced by an assignment to the return variable
with the value being returned. If that return statement happens
after a ‘while’ block, then the instruction is added before the
‘while’ block. If it is the last return statement, then the value
being returned is altered to be the return variable. If the return
statement is inside an ‘if’ statement, then the condition of
the ‘if” statement is saved to be used to protect the variables
used in the condition. If the instruction under analysis uses
any variable saved to be protected, then that statement will
be inside the ‘then’ block of a new ‘if’ statement, where the
condition is the combination of the negation of every condition
that variable was part of.

In the end, a new version of the class that contains the
vulnerable method is created. This version is similar to the
original version, except that it contains an extra method called
VulnerableMethodName$Modification. So, if the users want
to use the corrected version, they must replace the original
method for the corrected method.

This simple modification can create or exacerbate a control-
flow based timing side-channel vulnerability. For instance, if

Algorithm 3: Correction of Early-Exit Timing Side-
Channel Vulnerabilities

1: returnElem < obtainElemReturnedMethod(vulnMethod)
2: if lisVariable(returnElemen) then

3: returnElem <— createVariable(returnElem)

4: end if

5: instruction <— getNextInstruction(vulnMethod)

6: while exist(instruction) do

7. if isReturn(instruction) then

8: if afterWhileBlock(instruction) then

9: addAssignmentBeforeWhile(instruction, returnElem)
10: else if lastReturn(instruction) then

11: changeReturnElem(instruction, returnElem)

12: else

13: replaceWithAssignment(instruction, returnElem)
14: if insidelf(instruction) then

15: condition < saveCondition(instruction)

16: end if

17: end if

18: else if isVariableProtected(instruction) then

19: addIfToVariable(instruction)
20: end if
21: instruction <— getNextInstruction(vulnMethod)

22: end while
23: newMethod < saveChanges()

an early-exit happens inside a cycle, where the stopping condi-
tion depends on a secret, then the effect of the existing control-
flow based timing side-channel vulnerability becomes more
prominent, i.e., the difference in execution time depending on
the secret is greater since it will have more instructions to
execute.

The tool corrects the method indicated in the Driver used for
DifFuzz and does not check if the vulnerability is instead in
a method invoked by the indicated method. As such, the user
should ensure that the Driver points to the vulnerable method.

B. Correct Control-Flow Timing Side-Channel Vulnerabilities

The correction of control-flow based timing side-channel
vulnerabilities involves the modification of the stopping con-
dition of cycles that depend on a secret to depend on a public
argument or the replication of the block of instructions of
the ‘then’ block to the ‘else’ block, and vice-versa, of an ‘if’
statement where the condition depends on the secret.

Algorithms 4 and 5 show an overview of the correction
process for this type of vulnerabilities. In this process, the
tool starts by creating a list of the secrets and one of the
public arguments. The list of public arguments is final, while
the list of secrets is updated during the analysis of the method.
Every time, a variable is assigned with a value dependent on
a secret, that variable is added to the list of secrets. The tool
also creates a map, to connect the newly created variables
with the old variables being replaced. The tool then starts to
analyse each instruction, taking actions according to the type
of instruction and where the instruction happens.

If the instruction found is an assignment and that needs to
be modified, then a new variable is created and it is added
to the list of replacement with the existing variable, and the

instruction is changed so that the variable being assigned to
is the newly created one.

If the instruction found is a ‘for’ statement and the stopping
condition uses a secret, the tool will attempt to change the
condition to use a public argument instead of the secret. This
public argument must be of the same type as the secret in
the stopping condition. When the tool finds a ‘for’ statement
it will retrieve the body of the ‘for’ and will analyse each
instruction of that block.

If the instruction found is an ‘if’ statement then the tool
will retrieve the ‘then’ and ‘else’ blocks. If the condition uses
a secret, then the tool will try to modify the instructions of the
‘then’ block and then of the ‘else’ block, producing two new
blocks with the modified versions of the instructions. Then, the
modified version of the ‘then’ block is added to the ‘else’ block
and the modified version of the ‘else’ block is added to the
‘then’ block. Otherwise, the tool will analyse each instruction
of both blocks without adding new instructions to either block.

If the instruction is an invocation, the tool will retrieve the
target of that invocation. If the target is a secret, then the tool
will create a new variable to replace the target.

If the instruction is a local variable, the tool will retrieve the
assigned value. If that value uses a secret, then the variable
assigned to will be considered a secret. If the value being
assigned does not use any variable that is used in the condition
of the ‘if’ statement this instruction belongs to, then a new
variable to replace the variable assigned to is created.

If the instruction is a loop statement, then the tool will
retrieve its body and will analyse each instruction of the body.

If the instruction is an operator assignment, then the tool
will create a new variable to replace the one being assigned
to.

If the instruction is a ‘try’ block, then the tool will retrieve
its body and will analyse its instructions.

If the instruction is a unary operator, the tool will retrieve
the variable used. If that variable was already replaced, then
the tool will obtain the variable created as a replacement and
will replace the variable in the unary operator with the variable
created for replacement.

If the instruction is a ‘while’ statement, the tool will
replace the variables used in the stopping condition, either
by variables already created as replacements or with newly
created variables. Then the tool retrieves the body of the tool
and will analyse its instructions.

In the end is created a new method, with the control-flow
based timing side-channel vulnerability corrected.

C. Correction of Mixed Timing Side-Channel Vulnerabilities

Sometimes a method has an early-exit and a control-flow
based timing side-channel vulnerability. For that reason, the
tool tries to correct both types of vulnerability in a single
execution. If the method has more than one return statement
the tool tries to repair an early-exit timing side-channel vul-
nerability producing a modified version of the method. Then,
the tool tries to correct the control-flow based timing side-
channel vulnerability in the modified version of the method,

Algorithm 4: Correction of Control-Flow Based Tim-
ing Side-Channel Vulnerabilities - PART 1

1: secrets < createListOfSecrets(vulnMethod)

2: public < createListOfPublic(vulnMethod)

3: replacements <— newMap()

4: instruction <— getNextInstruction(vulnMethod)
5: while exist(instruction) do
6
7
8

if isAssignment(instruction) then
if valueAssignedUsesSecret(instruction, secrets) then
variable <— getVariableAssignedTo(instruction)

9: secrets < addToSecrets(variable, secrets)

10: end if

11: if toModify(instruction) then

12: new Var <— createNew Variable(instruction)

13: addToReplacements(replacements, instruction, new Var)

14: changeVariableAssignedTo(instruction, new Var)

15: end if

16: else if isForStatement(instruction) then

17: if conditionUsesSecret(instruction, secrets) then

18: changeConditionToUsePublic(instruction, secrets, public)

19: end if

20: traverseForBody(instruction)

21: else if isIfStatement(instruction) then

22: thenBlock < getThenBlock(instruction)

23: elseBlock <— getElseBlock(instruction)

24: if conditionUsesSecret(instruction, secrets) then

25: modThen < modifyInstructions(thenBlock)

26: modElse <— modifylnstructions(elseBlock)

27: addToStartOfBlock(modThen, thenBlock)

28: addToStartOfBlock(modElse, elseBlock)

29: else

30: traverseBlock(thenBlock)

31: traverseBlock(elseBlock)

32: end if

33: else if isInvocation(instruction) then

34: target < getlnvocationTarget(instruction)

35: if isSecret(target, secrets) then

36: newTarget <— createNew Variable(target)

37: addToReplacements(replacements, instruction,
newTarget)

38: replaceTarget(instruction, newTarget)

39: end if

producing the final version of the method. This means that
each module responsible for correcting a type of timing side-
channel vulnerability must return its modified version of the
method. Since both repair processes create new variables in
the method, and a method can’t have two variables with the
same name, the naming of a variable is global to the tool and
it keeps a record of the name of the last variable.

VI. EVALUATION

In this section, we describe how the developed tool was
evaluated. The evaluation consists in ensuring that the refac-
tored code is semantically correct and that it has no side-
channel vulnerabilities. This chapter presents both types of
evaluation, explaining how they are done as well as why they
are necessary.

A. Dataset Used

Since this project is inspired by the work developed for the
tool DifFuzz it was decided that DifFuzz would be used to help

Algorithm 5: Correction of Control-Flow Based Tim-
ing Side-Channel Vulnerabilities - PART 2

40: else if isLocalVariable(instruction) then

41: assigned <— getValueAssigned(instruction)

42: if usesSecret(assigned, secrets) then

43: variableAssigned <— getVariableAssignedTo(instruction)

44: secrets <— addtoSecrets(variableAssigned, secrets)

45: else if !isPartOfConditionOfParentIf(instruction, assigned)
then

46: new Var <— createNew Variable(instruction)

47: addToReplacements(replacements, instruction, new Var)

438: changeVariableAssignedTo(instruction, new Var)

49: end if

50: else if isLoopStatement(instruction) then

51: traverseLoopBody (instruction)

52: else if isOperatorAssignment(instruction) then

53: newVar < createNew Variable(instruction)

54: addToReplacements(replacements, instruction, new Var)

55: changeVariableAssignedTo(instruction, new Var)

56: else if isTryBlock(instruction) then

57: traverseTryBody(instruction)

58: else if isUnaryOperator(instruction) then

59: var < getVariable(instruction)

60: if isInReplacements(replacements, var) then

61: replacement <— getReplacement(replacements, var)

62: changeVariableUsed(instruction, replacement)

63: end if

64: else if isWhileStatement(instruction) then

65: condition <— getStoppingCondition(instruction)

66: if usesReplacedVariable(condition, replacements) then

67: condition <— getReplacement(replacements, instruction)

68: else

69: condition < createNew Variable(condition)

70:

71: end if

72: updateStoppingCondition(instruction, condition)

73: traverseWhileBody(instruction)

74: end if

75: instruction <— getNextInstruction(vulnMethod)

76: end while
77: newMethod <— saveChanges()

evaluate the tool. For that reason, the examples of DifFuzz
were chosen to test the tool. The dataset of DifFuzz contains
32 examples. However, one of the examples suffers from a size
side-channel, and in some, it was not possible to understand
how they are vulnerable. Moreover, in other examples the
vulnerability did not follow the template of vulnerable method
considered in this project. As such, to test the tool only 25 of
those examples were used. Those examples were categorized
according to the type of vulnerability. Two of the examples
suffer from early-exit timing side-channel vulnerability. Eight
of the examples contain a control-flow based timing side-
channel vulnerability. While the rest, meaning 15 examples,
have a mixed timing side-channel vulnerability.

B. Semantic Correction

To correct vulnerabilities in a method it is necessary to modify
it. This modification can ‘break’ the method, in the sense that
its output will no longer be the same for the same input. As
such, it is important that after any modifications to a method,

the same is tested to ensure that its functionality remains. The
same is true for modifications made by the tool. Although the
tool does not test the modifications automatically, the user of
the tool should ensure that the method created by the tool still
works like the original method.

During the development of the tool, the application exam-
ples used by the authors of DifFuzz were used to ensure that
the tool was capable of correcting a vulnerability. However,
these examples did not include tests, so it was not possible to
ensure the correction kept the functionality of the method. One
solution was to create unit tests for every example of DifFuzz.
The problem with this solution is that the process of creating
tests is long and prone to errors. This is even worse, given that
the examples are small sections of huge applications, which
would make the development of tests a difficult task. So, a
different solution was found, to create tests automatically. This
would ensure that the creation of tests is faster and less prone
to error. To create tests automatically it was chosen the tool
EvoSuite [20]. This tool generates unit tests automatically for
Java software and has a plugin allowing its integration with
Maven.

So to test if the solution created by the tool is semantically
correct, it is created a Maven project for the examples of
DifFuzz to test. To these projects, EvoSuite is added as a
dependency alongside the original dependencies of the appli-
cation in the .pom file. Then the project is compiled and the
necessary commands of EvoSuite, to create and add tests to
the projects, are executed. These tests are created and first

addToReplacements(replacements, instruction, condition) run on the original code, the vulnerable one, to see if the

tests are correct. Then, the vulnerable method is replaced for
the method created by the tool and the tests are executed
again. If all tests pass, then the solution created by the tool to
correct the timing side-channel vulnerability is considered to
be semantically correct.

C. Vulnerability Correction

Once the tool repaired a vulnerable method and that repair
is shown to be semantically correct it is necessary to verify
if the repair produced by the tool repaired the vulnerability.
Since this project was inspired by DifFuzz, that is the tool
used to verify if there is any timing side-channel vulnerability.
This execution follows the scripts created by the authors of
DifFuzz, the difference being that now besides the safe and
unsafe versions provided by the authors it is also tested the
corrected version. The corrected version is a copy of the
unsafe version where the vulnerable method is replaced by
the corrected version created by the tool.

This test was performed in a remote server with a 32-
processor Intel Xeon Silver 4110 at 2.10GHz with 64GB
of RAM running Debian Linux 10 and each version of the
example ran for 2,5 hours. The results of the execution of
tests created by EvoSuite and of the analysis performed by
DifFuzz can be seen in Table I.

That table shows that out of 32 examples, the tool was
capable of correcting 14 examples which gives a success rate
of 43,7%. That is not a great number, but in those 32 examples,

some are ignored, either because the type of vulnerability
is unknown or because its vulnerability is not able to be
corrected by the tool like the example Themis TourPlanner
whose vulnerability is related to the size of the response. So
if it is only considered the examples that were attempted to
correct then out 25 examples, the tool successfully corrected
14 of them, making for a success rate of 56%. That is still not a
great number but it is more reassuring. Out of all the examples
the tool tried to correct not all of them are semantically correct,
meaning that the code lost some of the functionality after the
repair. If it is only considered semantically correct examples,
then the total of examples is 22, which makes a success rate
of 63,6%.

VII. CONCLUSIONS

The main goal of this project was to develop a tool for
automatic repair of timing side-channel vulnerabilities in Java
code. The project aimed at working in conjunction with
DifFuzz [8] (for example, DifFuzz’s already defined “drivers”
were used to identify the vulnerable methods). During the de-
velopment of this project, patterns and any sort of computation
that lead to timing side-channel vulnerabilities were identified.
Moreover, algorithms capable of correcting potential timing
side-channel vulnerabilities were proposed and implemented.

The tool developed was evaluated using the same dataset
that was used to evaluate DifFuzz [8], a dataset that contains
examples of applications with timing side-channel vulnerabil-
ities. The results obtained show that 88% of the attempted
corrections are semantically correct and 56% eliminate the
existing timing side-channel vulnerabilities.

Even though the results show that the tool can improve,
it can be used as a starting point for the development of
new and improved tools capable of correcting timing side-
channel vulnerabilities and other related vulnerabilities. For
that reason, it is believed that the objectives of this project
were met since it lays the groundwork for new and better
tools.

The tool is open-source and is available at:

https://github.com/RuiDTLima/DifFuzzAR

A. System Limitations

Although this tool was built in an attempt to correct timing
side-channel vulnerabilities regardless of how they present
themselves, it is still possible that sometimes the repair created
by the tool not only does not repair the vulnerabilities but
breaks some of the functionality of the method. As such, it is
important to do a manual analysis of the repaired method after
the execution of the tool, not only to check if no functionality
is broken but also to beautify the changes, like the names of the
variables. Besides that, it is important that after the execution
of the tool, the produced code is analysed again with DifFuzz
to see if the tool eliminated the vulnerability.

The tool assumes that the method referenced in the Driver is
vulnerable and corrects it. As such, if the Driver is not properly
written or the method referenced is not the vulnerable one, but

one that calls the truly vulnerable method, then the tool will
not be able to repair it.

Although the repair of a vulnerability is performed auto-
matically, the tool needs to know how to repair the vulnera-
bility given a statement found. For instance, the tool needs
to know how to correct a control-flow based timing side-
channel vulnerability, when it finds an ‘if’ statement. This
information needs to be added to the tool. As such, it is
necessary to continuously improve the tool to be able to correct
different code patterns that contain a vulnerability, or different
instructions that cause the vulnerability.

If the tool is executed on the correction of a control-flow
based timing side-channel vulnerability, it will always try to
repair the vulnerability again, which means it might break the
original correction.

In the results presented in this report, the corrected versions
of some examples are presented as having no timing side-
channel vulnerability. However, there is always the possibility
that they might have a vulnerability that remained unnoticed.
Despite this, the work developed for this report is open to
others on GitHub.

B. Future work

Despite the work performed for the development of this tool,
there is still plenty of work that can be done to improve the
tool. One of the most important future directions for the tool
is to add the ability to repair more examples of timing side-
channel vulnerabilities and to add the ability to repair other
types of vulnerabilities so that it can become a one-size-fits-all
type of tool.

This tool can only be used after the use of DifFuzz. This
means that the user must first use DifFuzz to verify if the
application has any timing side-channel vulnerability. Then,
the user must use DifFuzz again, but this time to pinpoint the
specific method that is vulnerable. Only then, can the user
feed the last Driver to this tool, to correct the vulnerability. If
the application has several methods with timing side-channel
vulnerabilities, this process must be repeated until all instances
of vulnerability are repaired. So, to spare the user of this
trouble, a future improvement is to integrate the tool with
DifFuzz. This way, the user simply provides the new tool with
a Driver to the application entry point, and then it searches for
every method with a timing side-channel vulnerability. This
would mean that a new functionality had to be created so that
the tool could generate a Driver automatically.

Another future improvement for the tool is to transform
it from a tool into a plugin to be used in the build process
of the application. This would reduce the amount of manual
intervention needed by the user. Another advantage of this is
that being part of the build process can make it easier for other
users to use the tool.

REFERENCES
[1] (2020) Bug vs Vulnerability: Know Both Your Enemies.

Accessed 2020-10-05. [Online]. Available: https://blog.smartdec.net/
bug-vs-vulnerability-d6d4dc4068bd

https://github.com/RuiDTLima/DifFuzzAR
https://blog.smartdec.net/bug-vs-vulnerability-d6d4dc4068bd
https://blog.smartdec.net/bug-vs-vulnerability-d6d4dc4068bd

[2]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

Dataset name Has secure | Type Correction Semantically | Correct
version? Attempted Correct Vulnerabil-
ity
Apache FtpServer Clear Yes Mixed Yes No -
Apache FtpServer Md5 Yes Early-Exit (If dependant) | Yes No -
Apache FtpServer Salted Encrypt | No Unknown No - -
Apache FtpServer Salted Yes Mixed Yes No -
Apache FtpServer StringUtils Yes Mixed Yes Yes Yes
Blazer Array Yes Control-Flow Yes Yes Yes
Blazer Gptl4 Yes Control-Flow Yes Yes No
Blazer K96 Yes Control-Flow Yes Yes Yes
Blazer LoopAndBranch Yes Control-Flow (ignored) No - -
Blazer Modpow1 Yes Control-Flow Yes Yes Yes
Blazer Modpow?2 Yes Unknown No - -
Blazer PasswordEq Yes Early-Exit (If dependant) | Yes Yes Yes
Blazer Sanity Yes Mixed Yes Yes Yes
Blazer StraightLine Yes Control-Flow Yes Yes Yes
Blazer UnixLogin Yes Control-Flow Yes Yes Yes
Example PWCheck Yes Mixed Yes Yes Yes
GitHub AuthmReloaded Yes Mixed Yes Yes Yes
STAC Crime No Unknown No - -
STAC Ibasys No Control-Flow Yes Yes No
Themis Boot-Stateless-Auth Yes Mixed Yes Yes No
Themis Dynatable No Mixed Yes Yes No
Themis GWT Advanced Table No Unknown No - -
Themis Jdk Yes Mixed Yes Yes Yes
Themis Jetty Yes Mixed Yes Yes Yes
Themis OACC No Mixed Yes Yes Yes
Themis OpenMrs-Core No Unknown No - -
Themis OrientDb Yes Mixed Yes Yes No
Themis Pac4j Yes Control-Flow Yes Yes Yes
Themis PicketBox Yes Mixed Yes Yes No
Themis Spring-Security Yes Mixed Yes Yes No
Themis Tomcat Yes Mixed Yes Yes No
Themis TourPlanner Yes Size Side-Channel No - -

TABLE T
RESULTS OF TOOL

Y. Zhou and D. Feng, “Side-channel attacks: Ten years after its publi-
cation and the impacts on cryptographic module security testing.” JACR
Cryptology ePrint Archive, vol. 2005, p. 388, 2005.

F. Koeune and F.-X. Standaert, “A tutorial on physical security and
side-channel attacks,” in Foundations of Security Analysis and Design
111. Springer, 2005, pp. 78-108.

Nate Lawson. Timing attack in Google Keyczar library. Accessed
2020-08-17. [Online]. Available: https://rdist.root.org/2009/05/28/
timing-attack-in-google-keyczar-library/

IVC Wiki. Xbox 360 Timing Attack. Accessed 2020-08-17. [Online].
Available: https://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack
T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and
S. Wei, “Decomposition instead of self-composition for proving the
absence of timing channels,” ACM SIGPLAN Notices, vol. 52, no. 6,
pp. 362-375, 2017.

J. Chen, Y. Feng, and I. Dillig, “Precise detection of side-channel vul-
nerabilities using quantitative cartesian hoare logic,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 875-890.

S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “Diffuzz: differential
fuzzing for side-channel analysis,” in Proceedings of the 41st Inter-
national Conference on Software Engineering. 1EEE Press, 2019, pp.
176-187.

GitHub. (2019) The state of the Octoverse. Accessed 2019-10-07.
[Online]. Available: https://octoverse.github.com/projects#languages
Cloud Foundry. (2020) These Are the Top Languages for Enterprise
Application Development And What That Means for Busines.
Accessed 2020-08-17. [Online]. Available: https://www.cloudfoundry.
org/wp-content/uploads/Developer-Language-Report_FINAL.pdf

IBM. (2020) Modern languages for the modern enterprise. Accessed
2020-08-17. [Online]. Available: https://developer.ibm.com/articles/
d-modern-language-modern-enterprise/

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-Argoty, “Se-
cure coding practices in java: Challenges and vulnerabilities,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). 1EEE, 2018, pp. 372-383.

J. A. Goguen and J. Meseguer, “Security policies and security models,”
in 1982 IEEE Symposium on Security and Privacy. 1EEE, 1982, pp.
11-11.

M. Zalewski, “American fuzzy lop,” 2017.
http://lcamtuf.coredump.cx/afl

R. Kersten, K. Luckow, and C. S. Pasareanu, “Poster: Afl-based fuzzing
for java with kelinci,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 2511-2513.

DARPA. (2020) Space/Time Analysis for Cybersecurity (STAC).
Accessed 2020-08-17. [Online]. Available: https://www.darpa.mil/
program/space-time-analysis-for-cybersecurity

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” leee transactions on
software engineering, vol. 38, no. 1, pp. 54-72, 2011.

J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34-55, 2016.

M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-
channel leaks using program repair,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 15-26.

(2020) EvoSuite: Automatic Test Suite Generation for Java. Accessed
2020-08-27. [Online]. Available: https://www.evosuite.org/

[Online]. Available:

https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack
https://octoverse.github.com/projects#languages
https://www.cloudfoundry.org/wp-content/uploads/Developer-Language-Report_FINAL.pdf
https://www.cloudfoundry.org/wp-content/uploads/Developer-Language-Report_FINAL.pdf
https://developer.ibm.com/articles/d-modern-language-modern-enterprise/
https://developer.ibm.com/articles/d-modern-language-modern-enterprise/
http://lcamtuf. coredump. cx/afl
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://www.evosuite.org/

	I Introduction
	II Background and Related Work
	II-A Timing Side-Channel Vulnerabilities
	II-A1 Early-Exit Vulnerabilities
	II-A2 Control-Flow Based Vulnerabilities
	II-A3 Mixed Vulnerabilities

	II-B Automated Detection of Timing Side-Channel Vulnerabilities
	II-C Automated Repair Tools
	II-D Automated Repair of Timing Side-Channel Vulnerabilities

	III System Overview
	IV Identification of Vulnerable Methods
	V Correction of Vulnerabilities
	V-A Correction of Early-Exit Timing Side-Channel Vulnerabilities
	V-B Correct Control-Flow Timing Side-Channel Vulnerabilities
	V-C Correction of Mixed Timing Side-Channel Vulnerabilities

	VI Evaluation
	VI-A Dataset Used
	VI-B Semantic Correction
	VI-C Vulnerability Correction

	VII Conclusions
	VII-A System Limitations
	VII-B Future work

	References

