
FPGA-based Accelerator for High-order Epistasis
Detection

Gaspar Minderico Ribeiro
Instituto Superior Técnico

Av. Rovisco Pais 1, Lisboa, Portugal
gasparmribeiro@tecnico.ulisboa.pt

Abstract—The classic approach to Genome-Wide Association
Studies (GWAS) attempts to find a relation between one or more
Single Nucleotide Polymorphisms (SNPs) contributing to the
manifestation of a certain disease or trait. However, most genetic
diseases do not depend on the individual effect of one or more
SNPs, but rather on the interactions between several SNPs, also
known as epistasis. Detecting epistasis for high-order interactions
results in a huge computational complexity, as the number of
SNP combinations evaluated exponentially grows with the order
of the interactions. For this reason, state-of-the-art exhaustive
search-based methods for epistasis detection rely on Graphics
Processing Units (GPUs) and Field Programmable Gate Arrays
(FPGAs) to provide high-performance solutions for second-order
interactions. Nevertheless, only rare attempts are made to tackle
third-order interactions, and the ones that exist are not scalable
for higher-order interactions and could be further optimized.

In this thesis, the flexibility and scalability limitations of
the existing FPGA implementations are addressed, while a
novel parameterizable architecture is proposed that enables the
deployment of FPGA-based accelerators targeting any order of
interactions in modern FPGAs. The resulting implementations
can target any dataset size and provide higher performance
and energy efficiency than the state-of-the-art FPGA-based
architectures. In particular, performance gains of up to 80x and
3x are achieved when compared to existing second and third-
order implementations, respectively, while also providing average
energy efficiency improvements of 79x. Finally, the proposed
architecture allowed for the implementation of a fourth-order
epistasis detection accelerator in an FPGA platform.

Index Terms—Genome-Wide Association Studies, Epistasis
Detection, FPGA Accelerator

I. INTRODUCTION

During the past two decades, Genome-Wide Association
Studies (GWAS) have been used to find a relationship between
genetic variations and the manifestation of a phenotype, such
as a disease or trait [1]. Typically, GWAS attempt to find an
association between one or more single-nucleotide polymor-
phism (SNP) (which is the most common genetic variation in
the human genome), with a certain disease. This association is
usually performed via an observational case-control study, by
comparing several SNPs from a group of patients that suffer
from the disease (cases), with a group of people that do not
suffer from the disease (controls). This approach has been used
with variable degree of success, in identifying genetic markers
associated with some diseases, such as age-related macular de-
generation [2]. However, some more complex genetic diseases,
such as type II diabetes [3], are not possible to explain using
the traditional GWAS approach. This happens largely because

gene-gene interactions and environmental factors are ignored
when following a classic GWAS approach [4]. The effect of
the interaction between multiple SNPs in the manifestation of
a certain phenotype is known as epistasis [5].

Epistasis detection has been successfully used to study
several complex diseases such as Late-Onset Alzheimer’s
Sisease [6] or asthma [7]. However, epistasis detection is a
highly computationally intensive task, as the number of com-
binations to be tested increases exponentially with the order of
interactions (almost 200 million pair-wise combinations exist
in a dataset with 20 000 SNP, but the same dataset contains
more than 1.3 trillion and 6.6 quadrillion third and fourth-
order combinations, respectively). Due to that relation, most
exhaustive-based methods for detecting epistasis (in which
all the possible combinations are individually evaluated) are
typically limited to second-order interactions, since performing
higher-order epistasis detection over a larger dataset often
results in an infeasible execution time.

In addition to methods based an exhaustive search, other
methods attempt to reduce the computational burden by reduc-
ing the search space [8], therefore only evaluating a fraction of
the SNPs available in the dataset. However, as the pre-filtering
stage might filter out SNPs that are relevant to the phenotype,
those methods are generally less accurate than exhaustively
search all possible combinations.

Due to the mentioned computational complexity, most epis-
tasis detection implementations often only target second-order
or, at most, third-order interactions. However, detecting higher-
order epistatic interactions for complex traits is absolutely
crucial as they are likely to have severe implications on certain
phenotypes [9]. As such, the need arises for better implemen-
tations that take advantage of the technological advances in the
hardware field to overcome the computation burden associated
with performing higher-order epistasis detection based on an
exhaustive search over large datasets.

Methods to detect epistasis based on software running on
multi-core CPUs are mostly inefficient, due to their limitations
in exploiting the existent data parallelism. For example, pro-
cessing a dataset with 500 000 SNPs on 2 quad-core Intel
Xeon processors takes 19 hours for second-order epistasis
[10]. On the other hand, thanks to their high core count,
GPUs are efficient in exploring the data-level parallelism, as
multiple operations can be executed in parallel [11]. As such,
GPUs have been proven effective to perform second-order

[12], and even third-order in over relatively big datasets in
a reasonable amount of time [12], [13]. However, not many
attempts to performing fourth-order epistasis detection based
on exhaustive search have been made, due to the massive
amount of combinations to be tested even for a dataset with
just a few thousand SNPs.

Alternatively, due to their reconfigurability, FPGAs can be
used to implement a logic circuit that takes advantage of
the data-parallelism existent in epistasis detection. Although
FPGAs have been successfully used to implement custom ac-
celerators in a wide range of bioinformatics applications [14],
[15], such as in sequence alignment [16], [17]. Few attempts
deploying accelerators for epistasis detection in FPGAs have
been proposed. In particular, second [18] and third-order [19]
implementations showed promising results, although they are
not easily scalable for higher-order interactions, only work
for a limited range of patients, and offer limited performance
and energy efficiency. Improvements to the FPGA technology
made in the last decades [20], suggest that, in the future,
higher-order exhaustive search epistasis detection could be
performed in FPGAs. However, due to the lack of scalability
with the order of interaction of the existent implementations
and complexity of hardware design, the need for a new
method to deploy efficient custom architectures to perform
higher-order epistasis detection in FPGAs arises. As such,
this paper proposed a novel general architecture that can
be used to deploy FPGA-based accelerators targeting any
order of interactions, and datasets of any size. The generated
accelerators also provide higher performance (3× faster than
[19]) and energy efficiency (79× better than [18]).

II. BACKGROUND ON GENETICS AND EPISTASIS
DETECTION

In order to understand epistasis, it is fundamental to realize
the basis of genetics and hereditary. All the genetic information
of a living being is encoded in the Deoxyribonucleic acid
(DNA). The DNA is a molecule composed of two intertwined
polynucleotide chains creating a double helix. Each polynu-
cleotide chain is formed by a group of nucleotides, linked
together by covalent bonds. The nucleotides themselves are the
basic constituents of the DNA molecule, and are composed of
a sugar, called deoxyribose, a phosphate group, and one of four
nitrogen nucleobases: Adenine (A), Cytosine (C), Thymine
(T), and Guanine (G). It is through the nitrogen bases in each
nucleotide that the two DNA strands are linked, forming a
base-pair, with the combinations A-T and C-G.

Genes, defined in biology as sequences of nucleotides, are
responsible for the transfer of information between an indi-
vidual and their offspring, causing the inheritance of physical
traits (such as the color of the eyes or hair). The whole
human genome is constituted by 23 pairs of chromosomes
(sequences of DNA), in which, each gene occupies a specific
fixed position inside a chromosome, maned a locus. A variant
of a gene in the same locus is called an allele (different alleles
can cause different phenotypical traits). Each locus is defined

by two alleles, one in each chromosome of the pair, each one
of those alleles is inherited by one of the parents.

A Genome-wide association study (GWAS) is an obser-
vational study of genetic variants in the entire genome of
an organism, encompassing multiple individuals, displaying
different phenotypes for a certain trait or disease. The main
objective of such methods is to find if any genetic variations
can be associated with the genetic trait being tested. The most
common genetic variation in the human genome is the Single-
nucleotide polymorphism (SNP), which represents a difference
in a single nucleotide, at a specific position in the DNA.
GWAS typically focus on the association between SNPs and
the phenotype, considering that the SNPs have independent
effects on the said phenotype or disease. This approach has
been successfully used to identify a susceptibility to some
diseases, such as as myocardial infarction [21] or age-related
macular degeneration [22]. However, as this approach neglects
the effect of the interaction of two or more SNPs, it provides
limited results on more complex genetic diseases.

Accordingly, Epistasis can be defined as the interaction
between genes to the definition of a phenotype. It takes into
account that a phenotype can be caused by not only the
independent effect of a locus, but also by the effect that
different loci, have on each other on creating that phenotype
[23].

A. Epistasis Detection

Exhaustive search methods to detect epistasis are typically
divided in the creation of contingency tables for all possible
combinations and the use of a statistical test (often referred
to as objective function) to extract information from the
contingency tables. These reflect the frequency distribution of
all possible SNP combinations in the dataset throughout the
individuals. In particular, one contingency table is created for
each combination of SNPs, which is then used to compare the
frequency of each interaction.

The number of contingency tables to be created (one for
each possible combination) depends on the number of SNPs
in the dataset and the order of the interactions, and is given
by: ∏k−1

i=0 (N − i)

k!
, (1)

where N is the number of SNPs in the dataset and K represents
the order of interactions. As each SNP can assume 3 different
states and each table holds information relative to the cases
and controls group, the number of entries of a contingency
table is given by (2 ∗ 3K). Table I shows an example of half a
contingency table (either for cases or controls), for second-
order interactions between SNPs, where each entry of the
table (nxy) denotes the number of times which that interaction
occurs throughout all the individuals.

In an attempt to decrease the computational burden of
epistasis detection, a new approach [11] proposed that the
SNPs can be represented in a notation that allows for the use
of simple bit-wise operations to calculate the entries of the

TABLE I
HALF OF A CONTINGENCY TABLE FOR PAIR-WISE INTERACTIONS

SNP B
0 1 2

0 n00 n01 n02

SNP A 1 n10 n11 n12

2 n20 n21 n22

TABLE II
BINARY REPRESENTATION OF ONE SNP

SNP A 0 1 2 (...) 2 0

A0 1 0 0 (...) 0 1
A1 0 1 0 (...) 0 0
A2 0 0 1 (...) 1 0

contingency tables, by coding one SNP as a combination of
3 bits in a one-hot notation (depicted in Table II). The three
vectors needed to code a SNP are referred to as genotype
zero vector (G0), genotype one vector (G1) and genotype two
vector (G2), and are as wide as the number of patients in
the dataset. Note that G2s can be inferred by a bit-wise XOR
between G0 AND G1. Therefore, only 2 bits are needed to
store each SNP in the dataset, as G2 of a SNP is generated in
hardware when needed.

Using this representation, the entries of the contingency
tables are generated by simply performing a bit-wise AND
between all the three vectors of the SNPs that compose the
Kth order combination and a population count (PopCount)
operation (to count the number of ones) over the resulting 3K

vectors.
After the creation of the contingency tables (which represent

the SNP-SNP interactions), it is necessary to extract meaning-
ful information from them. To do so, a statistical test needs
to be performed using the generated data. The functions that
are used to obtain relevant information from the generated
contingency tables are often referred to as objective functions.
These are used to evaluate the significance that each interaction
has on the phenotype. Several objective functions are used in
epistasis detection, including functions based on the chi-square
test [24], ROC-curves [25] and regression modules [26]. There
are also objective functions based on information theory [27],
such as information gain [28] and mutual information [19],
[27]. Some methods even propose the use on two or more
objective functions for detection epistasis [29]. The method
proposed in this paper adopts Mutual Information (MI) as
the objective function, due to its simple implementation in
hardware.

MI is an information theory concept used to quantify the
mutual dependence between two random variables and it can
be defined using their entropy, such that:

I(X;Y) = H(X) +H(Y)−H(X,Y) (2)

MI can be used as an objective function, as the genotype

and the disease (phenotype) can be defined as the random
variables X and Y as in Equations 3 and 4 respectively, where
nx represents entries of a contingency table, Nx the total
number of patients, and the indexes 0 and 1 represent cases
and controls, respectively. In Equation 3, the accumulation is
done for all entries of the contingency table. Note that for
a balanced dataset, containing the same amount of cases and
controls results in H(Y) = 1, which simplifies the calculation.

H(X) = −
∑

[P (n0 + n1) ∗ log2(P (n0 + n1))] (3)

H(Y) = −[P (N0) ∗ log2(P (N0))

+ P (N1) ∗ log2(P (N1))] (4)

Using Equations 2, 3 and 4 and attending to the fact that
P (n) = n

N , where N is the total number of patients in the data
set, the MI calculation for each contingency table is given by

I(X;Y) =
N [H(X)−H(X,Y)]

N
−H(Y), (5)

where

N [H(X)−H(X,Y)] =
∑

[n0 ∗ log2(n0)

+ n1 ∗ log2(n1)− (n0 + n1) ∗ log2(n0 + n1)], (6)

The higher the mutual information value of an interaction,
the more likely that interaction is to influence the phenotype
(disease).

B. FPGAs in Epistasis Detection

FPGA-based accelerators for exhaustive search epistasis
detection of second and third-order interactions have been
proposed [18], [19]. However, they still lack in flexibility,
scalability, performance and energy efficiency limiting their
applicability.

The architecture for pair-wise epistasis detection proposed
in [18] manages to perform second-order epistasis detection on
a dataset with 500 000 SNPs and 5000 patients in 4 minutes.
Which results in a speedup of about 285× when compared
to an implementation running on two Intel Xeon quad-core
CPUs, with both implementations running the iLOCi objective
function [10]. This architecture is organized in a systolic array
topology, where each Processing Element (PE) stores one SNP
and processes it against the SNPs that are being streamed
throughout all the PEs. This architecture is implemented in
a RIVYERA S6-LX150 accelerator, containing 128 Xilinx
Spartan-6 LX150 FPGAs, which results in a very high power
consumption (780W).

An other architecture to detect third-order epistasis in an
FPGA proposed in [19] is implemented in a Virtex7-VX690T
and in a Kintex7-K325T FPGA. This implementation provides
a speedup of 363× and 181× when implemented in a Virtex7-
VX690T and in a Kintex7-K325T FPGA, respectively, when
compared against a software application running in an Intel

Core-i7 Sandy Bridge @3.20 GHz 6-core CPU, for a dataset
with 10 000 SNPs and 5 000 samples.

Similarly to the second-order architecture [18], this architec-
ture is based on a systolic array for the creation of contingency
tables. However, each PE stores data referring to two SNPs
(to process against the SNP being streamed) to create the
contingency tables for third-order interactions, which means
that each PE stores twice the data of the PEs in the second-
order architecture.

Despite providing significant performance improvements
over CPU applications, the mentioned architectures are de-
signed for a specific number of patients, which means they can
not be used with any dataset. Also, they are not scalable with
the order of interactions, as the amount of data to be stored in
each PE increases with the order of interactions, which would
exhaust the BRAM availability limiting the number of PEs
that can be implemented.

Consequently, the accelerator architecture for FPGA plat-
forms that is now proposed is generated by a specially devised
method that allows the parameterization of the architecture for
any order of interactions and any number of patients. Such a
solution presents a two-fold benefit when compared to existing
FPGA-based solutions, by not only enabling the deployment
of specialized accelerators for higher than third-order epistasis
detection in FPGAs, and by allowing a design-time parameter-
ization to support an arbitrary number of patients, according
to the targeted dataset. It is also capable of providing higher
performance and energy efficiency than the state-of-the-art
implementations.

III. SPECIALIZED ACCELERATOR ARCHITECTUREFOR
HIGH-ORDER EPISTASIS DETECTION

The proposed system is composed of an FPGA-based cus-
tom accelerator, to create contingency tables and calculate their
MI value. The accelerator is connected to a host GPP who
runs the software application that is responsible to control the
processing order and to manage the data transfers from the
memory that holds the dataset to the FPGA.

The proposed system was implemented in Xilinx Zynq-
7000 and Zynq-Ultrascale+ System on Chips (SoCs). The
Zynq family of SoC provides an ARM GPP tightly-coupled an
FPGA device that can be used as an accelerator. The commu-
nication between the GPP and the FPGA-based accelerator
and the data transfers from the memory to the FPGA are
made though an AXI4 interface that is managed by a software
application running in the GPP. However, the implementation
of the proposed system is not limited to the use of a Zynq
SoC or to a tightly coupled system. A board containing an
FPGA can, for example, be connected to a host computer via
PCI-Express, as the proposed accelerator architecture can be
implemented in any FPGA.

A simplified overview of the proposed generic architecture
is depicted in Figure 1. The proposed architecture is composed
by a chain of Contingency Table Units (CTUs), and a set of
reconstruction units, shared among several CTUs, depending
on the number of patients in the dataset. The MI scores for

each contingency table are then calculated and the best values
are stored. The Count Last unit in the beginning of the array,
is used to count the number of received words and serves as
a control unit for the systolic array. The proposed architecture
can be divided into two main sections: (i) the creation of
the partial contingency tables in the systolic array, and their
subsequent reconstruction; (ii) and the calculation of the MI
value for each table.

A. Data Representation

The proposed accelerator accepts datasets stored in the
binary representation detailed in Section II-A streamed one
SNP at a time. The number of words that are used to send an
entire SNP must be even, as the first word corresponds to the
G0 of the first R/2 cases and R/2 controls, and the second
word is used to send the G1 of the same patients (R represents
the width of the interface). As such, the number of words used
to stream one SNP is given by Equation 7 where #Patients
is the number of patients in the dataset.

#Words SNP =

⌈
#Patients

R/2

⌉
+

((
#Patients

R/2

)
mod 2

)
(7)

Each save value unit stores the X best MI values (repre-
sented in single-precision floating-point format), and as many
32-bit words as the order of interactions (to identify the
combination). Consequently, after the processing of all the
possible combinations, each save value unit streams X MI
values and (X ∗K) SNP identifiers (where K corresponds to
the order of interactions) to the Host, each of them stored in
32-bits. Therefore, the number of words that are streamed to
the host is given by Equation 8, where N save units is the
number of save units implemented in the design.

#Words res =

⌈
32 ∗ (1 +K)

R

⌉
∗X ∗N save units (8)

The host is then responsible to sort the combinations and
present the X best combinations to the user.

Whenever the number of patients is not divisible by R/2,
dummy patients are added to that dataset that are ignored by
the architecture, until a number of patients divisible by R/2
produced, this is contemplated in Equation 7 by the ceiling
of the first term. Also, if the first term of the equation does
not produce an even number of words, another word is added,
meaning that R/2 dummy patients are added to the last pair
of words.

B. Contingency Table Creation

Contrarily to the state-of-the-art architecture [19], only the
first unit of the systolic array stores more than one SNP,
independently of the order of interactions. As such, to process
interactions of order K, (K − 1) SNPs are stored in the
first, from which, (K−2) are propagated through the systolic

Fig. 1. Generic architecture overview

array ate the same time as the SNP that is streamed from the
memory. Therefore, each unit in the systolic array will have
access to the SNP that is being streamed from the memory, the
SNP that it stores, and the (K−2) SNPs that are stored in the
first unit, totalizing the K SNPs needed to process a Kth-order
interaction. This solution allows for the use of significantly less
BRAMs than the state-of-the-art implementation.

In CTUs that compose the systolic (depicted in Figure 2),
only one SNP is stored (except in the first), since the (K −
2) SNPs that are stored in the first unit are being streamed
throughout the systolic array at the same rate as the SNP that
comes through the data in port. As such, every unit has access
to different combinations of SNPs of the Kth order, having to
store only one SNP, requiring each unit to have [1+(K−2)∗3]
inputs, and output ports, and additional output ports to sent the
contingency tables to the reconstruction unit.

The functioning of the CTUs is divided into three phases:
(i) the creation of a complete contingency table for (K−1)th-
order (necessary to the reconstruction of the missing contin-
gency table entries); (ii) the generation of the third of the
contingency table that depends on G0 of the SNP that is
streamed from the memory; (iii) the generation of the third
of the contingency table that depends on G1 of the same SNP.
The second and third stages are executed alternately.

1) First Phase: The first phase of the execution of a CTU
is the creation of a complete contingency table for (K−1)th-
order, whose entries are referred to as ”n(K−1)”. This process
is initiated while the (K − 1)th SNP is being streamed from
memory and stored in the first stage of the unit’s pipeline. As
the complete contingency table is to be generated, a NOR port
is used to generate G2 of the stored SNPs.

In the second and third pipeline stages, all the 3(K−1)

possible combinations between the (K-1) stored SNPs are
processed (by performing an AND between G0, G1, and G2
of the stored SNPs) and the subsequent PopCount. The results
of this stage correspond to partial entries of the (K − 1)th-
order contingency table. As such, in the fourth and fifth

stages, the values are accumulated until all the patients that
compose the SNP have been streamed from the memory, while
the accumulated values are stored in the ”POP count (K-1)”
registers. Therefore, at the end of the first phase, these 3(K−1)

registers will store an entire (K−1)th-order contingency table.
2) Second Phase: The second phase of execution of a CTU

is initiated when the last SNP of the combination starts to be
received through the ”Data IN” port. In the second pipeline
stage, the first set of the G0 vector of the SNP is processed
against the first set of the G0, G1 and G2 vectors of the stored
SNPs. This generates 3(K−1) vectors that are PopCounted in
the third stage. As the results of the PopCount correspond to
partial entries, the values are stored in the ”Tab REG (K-1),
0” set of registers (in the fifth stage), and accumulated with
the next set of values corresponding to the G0 of the streamed
SNP. However, as the second word that the unit receives refers
to the first set of the G1 vector of the streamed SNP, the
accumulation is only done every two clock cycles.

At the end of the execution phase, the ”Tab REG (K-1),
0” set of registers hold the third of a contingency table that is
dependent on the G0 vector of the last SNP of the combination
”n(K−1),0”.

3) Third Phase: As partial G0 and G1 vectors of a SNP
are streamed one after the other, the second and third phases
are executed alternately. The third execution stage of a CTU
is similar to the second. However, the values produced in
this stage are the contingency table entries dependent on the
G1 vector of the last SNP of the combination ”n(K−1),1”.
The partial values produced in this stage are stored in the
”Tab REG (K-1), 1” set of registers. To alternate between
both execution phases one of the registers in the fifth pipeline
stage is deactivated and the following multiplexer is controlled
accordingly.

Since G2 from the SNPs that are streamed from the
communication interface is never generated, the entries of
the contingency table that depend on that vector (represented
by n[(K−1),2]), are not generated in the CTUs. To calculate

Fig. 2. Generic CTU datapath

the missing values, the contingency table of the (K − 1)th

combination (generated in the CTUs first phase of execution),
is used in accordance with the Equations 10 and 9

n(K−1) = n[(K−1),0] + n[(K−1),1] + n[(K−1),2], (9)

n[(K−1),2] = n(K−1) − (n[(K−1),0] + n[(K−1),1]), (10)

where n(K−1) represents the entries of the contingency table
for the (K−1)th-order combination, and n[(K−1),0], n[(K−1),1]

and n[(K−1),2] are entries of the contingency table for the Kth

order combination, resulting in an AND between n(K−1) and
vectors G0, G1 and G2 of the next SNP, respectively. As such
the equality expressed in Equation 9 is always valid.

Equations 9 and 10 can be more easily understood by taking
in account an example for a third-order contingency table. An
entry of a second-order contingency table, such as ”10”, when
combined with another SNP results in three entries of a third-
order contingency table, ”100”, ”101” and ”102”, depending
on the vectors G0, G1 and G2 of that SNP, respectively. As the
number of patients is the same for all SNPs, the number in the
entry ”10” of the second-order contingency table, is equal to
the sum of the entries ”100”, ”101”, ”102” of the third-order
table, this relation is defined by Equation 9. As the vector G2
of the last SNP is neither streamed nor generated in the CTU,
the reconstruction units implement Equation 10.

Each reconstruction unit accepts six vales per clock cycle
(three for cases and three for controls), one from each port
of the CTUs. As such, the amount of reconstruction units
needed for each group of CTUs is equal to the number of
values sent by each port per clock cycle, as they have to
processed in parallel. As the number of patients increase, each
reconstruction unit will be shared among more CTUs, which
increases the efficiency of the architecture.

The partial tables that are created in the accelerator’s CTUs,
are sent to the reconstruction units, where their missing values
are calculated. This section details the process of sending the
partial contingency tables to the reconstruction units, which
is done differently depending on the number of patients in
the targeted dataset. This happens because the values that are
generated in each CTU must be sent to the reconstruction units
before the next values are generated. The number of clock
cycles between the generation of two complete sets of values
in the CTUs depends on the number of patients. As such, for
more patients, there are more available clock cycles for the
transfer and reconstruction of the partial tables, which creates
an opportunity for sharing the reconstruction units.

C. Mutual Information Calculation

As N and H(Y) (see Equation 5) are constant, to sort the
combinations by their MI values, only N [H(X)−H(X,Y)]
(given by Equation 6) needs to be calculated. Each MI unit
(depicted in Figure 3), calculates a partial MI value for a
contingency table. Instead of calculating the value of (n∗logn)
(as it would occupy a lot of the available resources), the results
are obtained using a look-up table implemented with dual-port
BRAMs. To save resources, and as only 3 (n∗logn) operations
are done in each MI unit, one of the dual-port BRAMs is
shared between two MI units.

The MI units accept a pair of values per clock cycle (a case
and a control). Consequently, 3 MI units are implemented for
every reconstruction unit. As each unit produces a partial MI
value, the values created are added and accumulated until all
partial MI values have been summed. The X best MI values,
along with the identifiers of the combination, are stored in each
save value unit (each using X comparators) and are then sent
to the host computer, guaranteeing that within the X times
the number of save value units values sent to the host, the
best X values are present. The host is responsible for sorting

TABLE III
K = 2 COMPARISON FOR 500 000 SNPS AND 5000 PATIENTS

Device Time
Comb/sec

x1012
Power
(W)

Energy
(kJ)

EDP
(J*s) x106

RIVYERA [18] 4m 2.61 780 180.00 43.20

Zynq-7000 [Proposed] 4m 16s 2.44 9.14 2.34 0.60
Zynq-U+ [Proposed] 3m 10s 3.29 11.25 2.12 0.40

Fig. 3. Mutual information unit overview

TABLE IV
PROPOSED K = 2 ARCHITECTURE RESULTS FOR 5000 PATIENTS

#SNPs 50k 100k 200k 500k

Time 3s 10s 41s 4m 16s

Energy (J) 25.8 86.0 352.5 2021.1

the received values, store the best X values and complete the
calculation of the MI value as in Equation 5, by dividing them
by the number of patients and subtracting H(Y).

D. Second-Order Optimizations

Although the desired general architecture enables the cre-
ation of FPGA-based accelerators for any order of com-
binations, by taking advantage of the smaller contingency
tables that are created for second-order interactions, some
optimizations that are specific for this case can be made.
These optimizations do not apply to the general method due to
the added complexity in the reconstruction of the contingency
tables, as a new reconstruction unit would have to be created
for each order of interactions, invalidating the scalability of
the design with the order of interactions.

When applying the specific optimizations for second-order
interactions, the G2 of any SNP in never generated. As
such, the 10 (out of 18) entries of the contingency tables
that depend on those vectors are not generated, reducing the
resource utilization of each CTU, as each only produces 8
values, instead of the 12 that would be produced by using
the general method. However, this implies the utilization of
a more complex reconstruction unit, following Equations 11
and 12.

n(0,2) = n(0,X) − (n(0,0) + n(0,1))

n(1,2) = n(1,X) − (n(1,0) + n(1,1))

n(2,0) = n(X,0) − (n(0,0) + n(1,0))

n(2,1) = n(X,1) − (n(0,1) + n(1,1))

n(2,2) = n(2,X) − (n(2,0) + n(2,1))

(11)

n(2,X) = N − (n(0,X) + n(1,X)) (12)

Where n(0,X), n(1,X) and n(2,X) are the number of ones
in the G0, G1, and G2 of the first SNP of the combination,
respectively (n(X,0) and n(X,1) follow the same notation
for the second SNP of the combination). Those values are
generated for all SNPs in the count last unit at the beginning
of the systolic array and propagated trough the array along
with the SNP data.

As the contingency tables for second-order interactions are
smaller, only two ports are used to send the values to the
reconstruction units (one for cases and one for controls), and
only one value per clock cycle is sent through them. As such,
eight clock cycles are needed to send the 16 values (4 contin-
gency table entries plus n(0,X), n(1,X), n(X,0) and n(X,1), for
both cases and controls). However, as the reconstruction unit
takes nine clock cycles to output the entire contingency table
(2 values per clock cycle), one stall is added, which means that
each CTU takes nine clock cycles to send their values to the
reconstruction unit. Consequently, the number of words per
SNP can not be less than nine, which (as the used bandwidth
is 64 bits) translates to a minimum of 257 patients. Therefore
if the number of patients is less than 257, dummy patients
that do not influence the result are added until the condition is
met. Despite impairing the performance of the architecture for
a dataset with less than 257 patients, this solution increases
the number of CTUs that can be implemented for a number
of patients larger than that threshold.

Contrarily to the general architecture, when implementing
the specific optimizations for second-order interactions, at
most, only one reconstruction unit is implemented for each
contingency table. That reconstruction unit can be shared
among several CTUs depending on the number of patients in
the dataset. In the best case scenario, only one reconstruction
unit could be implemented for the entire systolic array.

The MI units used in this case are the same as in the general
architecture. However, as the reconstruction units only output
two values per clock cycle, only one MI unit is needed for
each reconstruction unit.

TABLE V
K = 3 TIMING AND PERFORMANCE RESULTS FOR 20 000 SNPS AND 5000 PATIENTS

Device Time
Comb/sec

x1012
Power
(W)

Energy
(kJ)

EDP
(J*s) x106

Virtex-7 [19] 4h 33min 0.41 - - -

Zynq-7000 [Proposed] 2h 20m 0.80 14.28 119.95 1007.58
Zynq-U+ [Proposed] 1h 53m 0.98 15.71 106.52 722.21
Virtex-7 [Proposed] 1h 29m 1.24 - - -

TABLE VI
PROPOSED K = 3 ARCHITECTURE RESULTS FOR 5000 PATIENTS

#SNPs 5k 10k 15k 20k

Time 2m 18m 59m 2h20m

Energy (kJ) 1.93 15.13 50.75 119.86

IV. EXPERIMENTAL RESULTS

This section presents a thorough evaluation of the proposed
accelerator for second, third and fourth-order epistasis de-
tection implementations. The presented results comprise the
execution time, the number of combinations tested per second
(comb/sec), as well as the power and energy consumption
and the Energy-Delay Product (EDP). The obtained results are
compared to the state-of-the-art FPGA-based implementations
[18], [19] mentioned in Section II-B.

The utilized boards for the implementation of the proposed
accelerator are a ZYNQ7 Mini-ITX (Zynq-7000) featuring
a Zynq-700 SoC (running the accelerator at 250MHz) and
a ZYNQ-Ultrascale+ ZCU102 (Zynq-U+) featuring a more
modern Zynq-Ultrascale+ SoC (running the accelerator at
322MHz) that provides higher energy efficiency due to the
smaller transistor technology in the FPGA fabric (16nm vs
28mn). All the implementations were made using Xilinx
Vivado 2017.2 design suite, and the power consumption values
presented were estimated by the Vivado power estimator tool.
The state-of-the-art designs are implemented in a RIVYERA
S6-LX150 [18] (RIVYERA) and in a Virtex-7 690T [19], for
second and third-order interactions, respectively.

In Tables III and V, presented in the following sections,
the comparable state-of-the-art implementation results, are
displayed in the first line of the tables in italic.

A. Second-order Epistasis Detection

The results regarding execution time and energy consump-
tion of the proposed second-order accelerator implemented in
a Zynq-7000 targeting 5000 patients are presented in Table IV
(the design draws 8.6W of power).

Table III displays results regarding the performance and
energy consumption of performing second-order epistasis de-
tection in a dataset with 500 000 SNPs and 5000 patients,
for both the sate-of-the-art implementation (first line of the
table), and the proposed accelerator. The execution times

and the Comb/sec of both implementations are similar (a
speedup of 1.26× is obtained when comparing the state-
of-the-art implementation [18] with the proposed accelerator
implemented in the Zynq-U+).

However, despite producing similar execution times, since
the proposed accelerator is implemented in a single FPGA,
its power consumption is much lower. Therefore, the total
energy consumption of the proposed accelerator is 77× and
81× less than the state-of-the-art FPGA-based accelerator
[18], when implemented in the Zynq-7000 and in the Zynq-
U+, respectively. This demonstrated the much higher energy
efficiency of the proposed architecture, which can be measured
by the EDP value also presented on the table.

B. Third-order Epistasis Detection

The results regarding execution time and energy consump-
tion of the proposed third-order accelerator implemented in
a Zynq-7000 targeting 5000 patients (using 14.2W of power)
are presented in Table VI.

The timing and Comb/sec results of the execution of third-
order epistasis detection on a dataset containing 5000 patients
and 20 000 SNPs for the proposed and the state-of-the-
art architecture are represented in Table V. As the state-
of-the art architecture is implemented in a Virtex-7 FPGA,
for better performance comparison, the proposed accelerator
was also implemented in the same FPGA. This resulted in
an accelerator that is more than 3× faster than the state-
of-the art. No conclusion can be drawn in regards to the
power consumption or energy efficiency with the sate-of-the
art implementation, as that information is not available in [19].
Power and energy consumption results in the Virtex-7 690T
FPGA are also not depicted in Table V, as the FPGA-based
accelerator was implemented, not the entire system.

C. Fourth-order Epistasis Detection

Using the proposed general architecture for fourth-order
interactions results on the first FPGA-based accelerator for
exhaustive search fourth-order epistasis detection. As such,
there is no other implementation to compare the obtained
results against. Table VIII shows the estimated execution time
and energy consumption of an architecture targeting 4000
patients (which has a power consumption of 13.7W) for
different number of SNPs in the Zynq-7000 board.

The same architecture was also implemented in the Zynq-
U+ board and in a Virtex-7 FPGA. Table VII present the results

TABLE VII
K = 4 RESULTS FOR 2000 SNPS AND 4000 PATIENTS

Device Time
Comb/sec

x1012
Power
(W)

Energy
(kJ)

EDP
(J*s) x106

Zynq 7000 [Proposed] 2h 38m 0.28 13.72 130.07 1233.06
Zynq-U+ [Proposed] 2h 8m 0.35 14.83 114.12 876.44

TABLE VIII
PROPOSED K = 4 ARCHITECTURE RESULTS FOR 4000 PATIENTS

#SNPs 800 1200 1600 2000

Time 4m 21m 1h6m 2h38m

Energy (kJ) 3.54 17.45 54.08 130.56

of those implementations fora dataset with 2000 SNPs. Using
a Zynq-Ultrascale+ SoC to implement the accelerator it is
possible to perform exhaustive fourth-order epistasis detection
in about two hours.

D. Discussion

According to the results obtained, by following the proposed
method, specialized architecture to detect epistasis targeting
any order of interactions and adaptable to any number of
patients can be easily created. The complete proposed system
can be implemented in any board featuring a Zynq SoC.
However, the generated logic designs can be implemented in
any FPGA. The generated architectures when implemented in
larger FPGAs, can be implemented with more CTUs, which
in turn, as corroborated by the implementations on the Virtex-
7 690T, provides higher performance, the architectures are,
therefore, scalable with the amount of FPGA resources avail-
able. The architectures can also run at different clock speeds,
as verified by the implementations on the Zynq-7000 and the
Zynq-Ultrascale+ SoCs, where the design run at 250MHz and
322MHz, respectively.

V. CONCLUSIONS

The increase in the computation complexity to perform
high-order epistasis detection based on exhaustive search
methods motivates the use of DSAs that can take advantage
of the existent data parallelism, such as GPUs and FPGAs.
However, the existent FPGA-based accelerators for epistasis
detection, despite providing good results when comparing to
CPU implementations, lack the flexibility to be used with
any number of patients and the scalability to be adapted
to higher-order epistasis, being limited to second, and third-
order interactions. The proposed architecture addresses the
limitations of the existent implementations by providing a
general architecture that can be used to deploy FPGA-based
accelerators for any order of interactions and targeting any
dataset. The increased performance and energy efficiency
obtained when using the proposed second and third-order

accelerators allow for the implementation of the first FPGA-
based accelerator for fourth-order epistasis detection.

The proposed architecture was implemented for second,
third, and fourth order interactions, targeting numbers of
patients ranging from 64 to 8000 in the ZYNQ7-Mini ITX
and Zynq-Ultrascale+ ZCU102 boards and in a Virtex-7 690T
FPGA. When comparing the considered implementations of
the proposed architecture with state-of-the art-FPGA imple-
mentations for second and third-order epistasis detection, it
is clear that the proposed architectures provide 3× faster
execution times, for third-order epistasis detection when using
similar hardware, and significantly lower energy consumption,
when comparing against the state-of-the-art implementation
targeting second-order interactions. Despite producing better
performing architectures than the state-of-the-art, the main
advantage of the method proposed in this thesis is the added
flexibility that it provides by allowing for an easy generation of
highly efficient architectures targeting any order of interactions
and any dataset.

REFERENCES

[1] T. A. Manolio, “Genomewide Association Studies and Assessment of
the Risk of Disease,” New England Journal of Medicine, vol. 363, no. 2,
pp. 166–176, 2010.

[2] J. L. Haines, M. A. Hauser, S. Schmidt, W. K. Scott, L. M.
Olson, P. Gallins, K. L. Spencer, S. Y. Kwan, M. Noureddine,
J. R. Gilbert, N. Schnetz-Boutaud, A. Agarwal, E. A. Postel, and
M. A. Pericak-Vance, “Complement Factor H Variant Increases
the Risk of Age-Related Macular Degeneration,” Science, vol. 308,
no. 5720, pp. 419 LP – 421, apr 2005. [Online]. Available:
http://science.sciencemag.org/content/308/5720/419.abstract

[3] J. L. Vassy, M.-F. Hivert, B. Porneala, M. Dauriz, J. C. Florez,
J. Dupuis, D. S. Siscovick, M. Fornage, L. J. Rasmussen-
Torvik, C. Bouchard, and J. B. Meigs, “Polygenic Type 2
Diabetes Prediction at the Limit of Common Variant Detection,”
Diabetes, vol. 63, pp. 2172–2182, 2014. [Online]. Available:
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-
1663/-/DC1.

[4] J. H. Moore, F. W. Asselbergs, and S. M. Williams, “Bioinformatics
challenges for genome-wide association studies,” BIOINFORMATICS
REVIEW, vol. 26, no. 4, pp. 445–455, 2010. [Online]. Available:
https://academic.oup.com/bioinformatics/article/26/4/445/244836

[5] W. H. Wei, G. Hemani, and C. S. Haley, “Detecting epistasis in human
complex traits,” Nature Reviews Genetics, vol. 15, no. 11, pp. 722–733,
2014. [Online]. Available: http://dx.doi.org/10.1038/nrg3747

[6] J. C. Turton, J. Bullock, C. Medway, H. Shi, K. Brown, O. Belbin,
N. Kalsheker, M. M. Carrasquillo, D. W. Dickson, N. R. Graff-
Radford, R. C. Petersen, S. G. Younkin, K. Morgan, and F. Panza,
“Investigating Statistical Epistasis in Complex Disorders,” Journal of
Alzheimer’s Disease, vol. 25, pp. 635–644, 2011. [Online]. Available:
http://www.broadinstitute.org/mpg/snap/ldsearch.php

[7] T. D. Howard, G. H. Koppelman, A. Xu, S. L. Zheng, D. S. Postma,
D. A. Meyers, and E. R. Bleecker, “Gene-gene interaction in asthma:
Il4ra and il13 in a dutch population with asthma,” American Journal of
Human Genetics, vol. 70, no. 1, pp. 230–236, 2002.

[8] C. Niel, C. Sinoquet, C. Dina, and G. Rocheleau, “A survey about
methods dedicated to epistasis detection,” Frontiers in Genetics, vol. 6,
no. SEP, 2015.

[9] T. F. Mackay and J. H. Moore, “Why epistasis is important for tackling
complex human disease genetics,” p. 125, jun 2014. [Online]. Available:
http://genomemedicine.biomedcentral.com/articles/10.1186/gm561

[10] J. Piriyapongsa, C. Ngamphiw, A. Intarapanich, S. Kulawonganunchai,
A. Assawamakin, C. Bootchai, P. J. Shaw, and S. Tongsima, “iLOCi:
a SNP interaction prioritization technique for detecting epistasis in
genome-wide association studies.” BMC genomics, vol. 13 Suppl 7, no.
Suppl 7, 2012.

[11] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU Computing,” Proceedings of the IEEE, vol. 96, no. 5,
pp. 879–899, may 2008.

[12] R. Nobre, A. Ilic, S. Santander-Jimenez, and L. Sousa, “Exploring the
Binary Precision Capabilities of Tensor Cores for Epistasis Detection,”
Proceedings - 2020 IEEE 34th International Parallel and Distributed
Processing Symposium, IPDPS 2020, pp. 338–347, 2020.

[13] J. González-Domı́nguez and B. Schmidt, “GPU-accelerated exhaustive
search for third-order epistatic interactions in case-control studies,”
Journal of Computational Science, vol. 8, pp. 93–100, 2015. [Online].
Available: http://dx.doi.org/10.1016/j.jocs.2015.04.001

[14] L. Wienbrandt, “Bioinformatics applications on the FPGA-based high-
performance computer RIVYERA,” in High-Performance Computing
Using FPGAs. New York, NY: Springer New York, 2013, vol.
9781461417, pp. 81–103.

[15] A. Surendar, “FPGA based parallel computation techniques for bioin-
formatics applications,” International Journal of Research in Pharma-
ceutical Sciences, vol. 8, no. 2, pp. 124–128, 2017.

[16] S. A., A. M., and S. P. P., “A parallel reconfigurable platform for efficient
sequence alignment,” African Journal of Biotechnology, vol. 13, no. 33,
pp. 3344–3351, 2014.

[17] N. Neves, N. Sebastião, A. Patricio, D. Matos, P. Tomás, P. Flores,
and N. Roma, “BioBlaze: Multi-core SIMD ASIP for DNA sequence
alignment,” in 2013 IEEE 24th International Conference on Application-
Specific Systems, Architectures and Processors, 2013, pp. 241–244.

[18] L. Wienbrandt, J. C. Kässens, J. González-Domı́nguez, B. Schmidt,
D. Ellinghaus, and M. Schimmler, “FPGA-based acceleration of detect-
ing statistical epistasis in GWAS,” Procedia Computer Science, vol. 29,
pp. 220–230, 2014.

[19] J. C. Kässens, L. Wienbrandt, J. González-Domı́nguez, B. Schmidt,
and M. Schimmler, “High-speed exhaustive 3-locus interaction
epistasis analysis on FPGAs,” Journal of Computational
Science, vol. 9, pp. 131–136, jul 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S187775031500068X

[20] S. M. Trimberger, “Three Ages of FPGAs: A Retrospective on the First
Thirty Years of FPGA Technology: This Paper Reflects on How Moore’s
Law Has Driven the Design of FPGAs Through Three Epochs: The Age
of Invention, the Age of Expansion, and the Age of Accumulation,” IEEE
Solid-State Circuits Magazine, vol. 10, no. 2, pp. 16–29, mar 2018.

[21] K. Ozaki, Y. Ohnishi, A. Iida, A. Sekine, R. Yamada, T. Tsunoda,
H. Sato, H. Sato, M. Hori, Y. Nakamura, and T. Tanaka, “Functional
SNPs in the lymphotoxin-α gene that are associated with susceptibility
to myocardial infarction,” Nature Genetics, vol. 32, no. 4, pp. 650–654,
2002. [Online]. Available: https://doi.org/10.1038/ng1047

[22] R. J. Klein, C. Zeiss, E. Y. Chew, J. Y. Tsai, R. S. Sackler,
C. Haynes, A. K. Henning, J. P. SanGiovanni, S. M. Mane,
S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable,
and J. Hoh, “Complement factor H polymorphism in age-related
macular degeneration,” Science, vol. 308, no. 5720, pp. 385–389, apr
2005. [Online]. Available: /pmc/articles/PMC1512523/?report=abstract
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1512523/

[23] H. J. Cordell, “Epistasis: what it means, what it doesn’t mean, and
statistical methods to detect it in humans,” Human Molecular Genetics,
vol. 11, no. 20, pp. 2463–2468, 2002.

[24] R. J. Tallarida and R. B. Murray, “Chi-Square Test BT - Manual of
Pharmacologic Calculations: With Computer Programs,” R. J. Tallarida
and R. B. Murray, Eds. New York, NY: Springer New York, 1987,
pp. 140–142. [Online]. Available: https://doi.org/10.1007/978-1-4612-
4974-0 43

[25] B. Goudey, D. Rawlinson, Q. Wang, F. Shi, H. Ferra, R. M. Campbell,
L. Stern, M. T. Inouye, C. S. Ong, and A. Kowalczyk, “GWIS–model-
free, fast and exhaustive search for epistatic interactions in case-control
GWAS.” BMC genomics, vol. 14 Suppl 3, no. Suppl 3, pp. 1–18, 2013.

[26] X. Wan, C. Yang, Q. Yang, H. Xue, X. Fan, N. L. Tang, and
W. Yu, “BOOST: A fast approach to detecting gene-gene interactions in
genome-wide case-control studies,” pp. 325–340, 2010.

[27] P. G. Ferrario and I. R. Kö, “Transferring entropy to the realm of GxG
interactions.” [Online]. Available: https://academic.oup.com/bib/article-
abstract/19/1/136/2566836

[28] T. Hu, Y. Chen, J. W. Kiralis, R. L. Collins, C. Wejse, G. Sirugo, S. M.
Williams, and J. H. Moore, “An information-gain approach to detecting
three-way epistatic interactions in genetic association studies,” Journal
of the American Medical Informatics Association, vol. 20, no. 4, pp.
630–636, 2013.

[29] X. Li, “A fast and exhaustive method for heterogeneity and epistasis
analysis based on multi-objective optimization,” Bioinformatics, vol. 33,
no. 18, pp. 2829–2836, 2017.

