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Abstract

Computer-Aided Diagnosis (CADx) systems are essential when diagnosing patients with can-
cer. Medical Imaging Multimodality Breast Cancer Diagnosis User Interface (MIMBCD-UI) is
a Computer-aided Detection (CADe) system that allows to open, view and manipulate medical
images in order to diagnose patients with breast cancer. In this work, we aim to improve this
system, thus allowing a faster medical image manipulation, by creating automated processes. With
Human-Computer Interaction (HCI) techniques, such as Focus Groups, Affinity Diagrams, Interviews,
Questionnaires and Scales, we developed functionalities based on the specialists’ opinions. The three
functionalities created were focused on reducing steps in the medical image manipulation, without
reducing its quality and while making the analysis effortless and faster. It was proven that these
functionalities enabled us to improve the usability, by increasing its value from 86.935 to 91.(1); the
workload, by decreasing its value from 29.1(4) to 15.037; and the time of a diagnosis process by reducing
the number of clicks by half, when compared with the previous iteration. All the purposed goals in
our Design Goals and Research Questions were achieved and proven with the results obtained from the
tests. With a full base system, the upcoming developments will start by refine our functionalities or
the creation of the functionalities that are desired. The ultimate goal is to have this system merging
with iterations that are being developed at this instant, Artificial Intelligence (AI) and eXplainable
Artificial Intelligence (XAI), which will allow the system to become a complete CADx that could be
applied in real scenarios and help to save lives.
Keywords: Breast Cancer, Human-Computer Interaction, Computer-Aided Diagnosis, User Interface,
Design Thinking.

1. Introduction

Breast cancer is one of the most common cancers,
especially in women affecting around 21%, and is
the fifth with a higher mortality overall. However,
if the lesion is detected in early stages, depend-
ing on the country health system where the patient
is treated, the survival rate can increase [3, 22].
In Portugal, the disease surveillance is done reg-
ularly, every two years, after the age of 50 years
old [19], using Mammography (MG) and/or Ultra-
sound (US), and the diagnosis is done following the
Breast Imaging-Reporting and Data System (BI-
RADS) [4] classification.

Medical Imaging Multimodality Breast Cancer
Diagnosis User Interface (MIMBCD-UI) [8]
project aims to develop a system to help physicians
with the breast cancer diagnosis. Our work is the
ninth iteration of this project and has the objective
of improving the base system, by developing new
functionalities not yet available in many hospitals
systems and refining those existent. With this iter-

ation and with the junction of other iterations, the
Artificial Intelligence (AI) [9] and the eXplainable
AI (XAI) [21], we will be able to have a Computer-
Aided Diagnosis (CADx), a program that enables
a better lesion understanding, and where the AI is
able to do a pre-diagnosis or give a second opinion
after the physicians’ analysis. With the explainabil-
ity, we intent to give the user an understanding of
the AI’s response on the second opinion.

This work will focus on the development of the ca-
pabilities, by using a Human-Computer Interaction
(HCI) approach, where several HCI techniques
will be used to identify and resolve problems in the
several stages of the design process that we chose.

2. Background

The breast cancer area domain is very complex,
with several clinical terms that could affect the out-
come of the lesion classification, and that need to
be explained along with other definitions that will
be used in this document.
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2.1. Lesions

There are two types of lesions that can occur in a
breast, Masses [2] and Calcifications [1]. These
are very different both in the process of being find
and classified, although it is used the same BI-
RADS [4] classification for the diagnosis.

A Mass is a 3D lesion that can be seen from two
different projections, and described by three cate-
gories: Shape; Margins; Density [2, 4]. Depending
on its characteristics, it can lead to a malignant or
benign mass.

Calcifications are small calcium deposits that
calcify on the Terminal Ductal Lobular Unit
(TDLU) [1, 4], Figure 1, in the Terminal Duct or
in the Acini [1, 4]. The position and the amount of
calcifications can lead to a malignant lesion, Figure
2.

Figure 1: The basic functional unit in the breast,
also called the TDLU, where the “leafs” are the
Acini and the “branch” is the Terminal Duct [1].

Figure 2: Calcifications, are small calcium deposits
founded in the Terminal Duct and the Acini.[1]

2.2. Definitions

All images in the medical imaging field are called
Modalities, which represent all types of medical im-
ages that can be taken when using medical imag-
ing devices, such as MG. This work can accept all
these types of images and even allow all to be ma-
nipulated through it.

As it was previously mentioned, this work was
done using HCI techniques. HCI is a multidisci-
plinary field of study, focused on the creation and
design of computer technology, with a special atten-
tion to the users’ needs and their interactions with
a computer [5]. This field of study has developed
techniques allowing the identification and construc-

tion of a full test, and also explaining or grading, if
the system meets the users’ needs [5].

3. Related Work

With this work, we explored systems that have a
similar domain of application or a very strong HCI
approach, that could help us guide our path or take
ideas that could be important to explore.

Hatscher, B. et al. developed a prototype that
translates touchless hand gestures into functions of
a special-purpose software for MRI-guided inter-
ventions [14]. From this work we took the idea of
having a similar path of research but with more
defined and separated steps in the Design Pro-
cess. The scales used in this work were also in-
spired by them, both the System Usability Scale
(SUS)[6, 11] and NASA Task Load Index (NASA-
TLX) [10, 13, 23] scales.

Li, L. et al. developed an interactive online
patient decision aid, called ANSWER-2, that re-
duces patient decision conflict and improves their
medication-related knowledge and self-management
capacity [18]. Regarding this work, we did not use
their scales, but several Design Methods, such
as Interviews, to ensure that our work meets the
expectations of its users.

Stuijfzand, B. et al. aimed to measure the cog-
nitive load of medical students, when interpreting
volumetric images such as Computed Tomography
(CT) or Magnetic Resonance Imaging (MRI), by
applying HCI techniques and an eye tracking sys-
tem [24]. With this work, we understood that using
Metrics to analyze our data would be important,
such as Number of Errors and Time. Unfortu-
nately, it was not possible to use the eye tracker
technology to understand what is being viewed by
the physician given the restrictions that happened
due to the pandemic (COVID-19).

4. Objectives

We divided the objectives that we have for this work
into Design Goals and Research Questions.

4.1. Design Goals

Design Goals are specific objectives in terms of
design that we want our system to achieve. Over-
all, we chose three design goals: the systems’ Us-
ability, where we want to see if our system is easy
to use; Efficiency, in the realization of the actions
necessary to complete a task; and Produtivity,
where less workload a user has, the more produc-
tive they can be.

4.2. Research Questions

On the other hand, the Research Questions are
developed to understand some parts of the system,
but can, in some ways, be related to the Design
Goals. These are our research questions:
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[RQ.1] When and who will use the features?

[H1.1] The functionalities were rejected;

[H1.2] The functionalities were used, only
in cases of doubt;

[H1.3] The functionalities were used, but
only by inexperienced physicians;

[H1.4] The functionalities were used by all
physicians.

[RQ.2] What is the impact of the features, in
the clinic workflow?

[H2.1] The usability of the system in-
creased;

[H2.2] The workload impact was affected
in a positive way;

[H2.3] Diagnostic time per patient was re-
duced.

[RQ.3] What is the best method to represent
the lesion evolution?

[H3.1] Old annotations on top of the more
recent image, using a time bar;

[H3.2] With a time bar in the left view-
port, and a more recent image in the right
viewport;

[H3.3] With a time bar in the right view-
port, and a more recent image in the left
viewport;

[H3.4] A time bar in each viewport;

[H3.5] The lesion evolution functionality
was rejected.

5. Evaluation
In HCI it is common to have a process of iden-
tification, creation, testing and analysis of a prob-
lem, which is called a Design Process. We wanted
that our design process could allow us to re-think
and re-design the ideas created to resolve the prob-
lems found, without a large cost to the researchers.
With these requirements, we chose the Design
Thinking [7] process, that is divided into 5 design
stages [20]: Defining the Problem; Needfind-
ing and Benchmarking; Bodystorm; Proto-
type; Test.

Only one of our three features made it through
the whole design process, given that the others were
already considered future work in previous interac-
tions of the project [8] or expressed as a desired
between informal interviews.

The Recorded View, was identified by us, in
Defining the Problem [7] stage, when analyz-
ing the videos from previous works. Here, we no-
ticed that in each image loaded, if changes were
already made, the values would be erased, which

would force the physician to repeat them in order
to obtain the same state.

After discovering this problem, we had several
meetings, in the Needfinding and Benchmark-
ing [7] stage, between researchers to determine
what would be the best method to implement in
this functionalities.

In the third stage, Bodystorm, all features were
treated as equal in the design process. Several Fo-
cus Groups were done during this period, where
domain and features were discuss between physi-
cians and researchers. It was used a technique
called Affinity Diagrams, that consists in cre-
ating several notes with ideas to solve the prob-
lems found/discussed. With these techniques we
had a first understanding on how to proceed with
the functionalities. At the end of this stage, we
gave to each physician that agreed to participate
in the test, a questionnaire that asked about the
system currently used in hospitals and functionali-
ties desired to be developed. With the information
gathered from these stages, we started to develop
the three functionalities: Recorded View; Co-
ordinated View and Temporal View. During
the Prototype stage, other several small system
improvements were done to clean some bugs or to
improve the information given to the physician.

With the functionalities developed we started the
Test stage, where ten tests were performed, one
for each user, and where four studies were avail-
able to be tested. In each test, the user was asked
to make several actions in the system, which corre-
sponded to simple actions or to the functionalities.
This was done using a technique called Talk-aloud,
where the user says what he/she is doing/thinking
at the moment. During the test, several metrics
were recorded and, at the end, a questionnaire and
two scales were given, SUS [11, 6] and NASA-TLX
[10, 13, 23]. The final procedure at this stage, is
collecting the information obtained and understand
if our objective were reached.

6. Implementation

Three functionalities, chosen by the users as the
most necessary in a medical imaging manipulation
system, were developed:

Recorded View functionality aims to keep the
system state while images are swapped, manipu-
lated and analyzed. This is done by recording each
image state when any manipulation is made, Figure
3.

Coordinated View functionality opens images
that are normally viewed side by side in order to
see breast asymmetry and, at the same time, allow
the manipulation of one image to be reproduced on
the others, Figure 4.

Finally, Temporal View allows to compare the
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Figure 3: The Recorded View functionality ef-
fect. The images in the line Before represent how
the system worked, whereas the ones in the line Af-
ter, represent how the process is now conducted.

Figure 4: Coordinated View final result with four
images that were open automatically at their loca-
tions after choosing the 2 x 2 viewport and with one
contrast manipulation, all others made the same
change.

images side by side, like the Coordinated View,
regarding the same modality, projection and later-
ality from different time periods, and with a time
bar for fast swap between images, Figure 5.

7. Results

This work is an evolution from the previous iter-
ation [8], therefore, it is expected the comparison
between our results and the ones from that itera-
tion. However, since the tests were different, we
were not able to compare exactly the two iterations,
but rather the usability, workload and some metrics.

One of the first values that were recorded from
the tests, were the metrics, more specifically the
Time, Count use of a tool and Errors.

7.1. Metrics

Regarding the Time metric, this was discarded
given that there were different conditions per user
during the tests. While some users were direct,
when performing the task and responding to the

Figure 5: Temporal View Comparison effect,
the high-fidelity prototype, after understanding the
need that exists when analyzing the evolution of the
breast. Here, we have the oldest image on the left,
with no lesion, and on the right, the same breast
architecture that enable us to spot quickly the new
lesion

questionnaires, others stayed for longer periods of
time giving feedback about the system or the opera-
tions that are necessary to be done when analyzing
an exam.

In each test, the number of clicks necessary to
produce a full action with and without our function-
alities were counted, Count use of a tool metric.
This metric allowed us to understand that each in-
teraction takes up to two seconds to be executed
and also to record the operation made in system by
the user, generating a report of the test.

In all functionalities, there was an improvement
from the previous iteration. The Recorded View
enabled the storing of the system state, allowing
the user to re-visit old images and analyze them,
the way they were left, hence saving all the clicks
necessary to reproduce the previous state. Regard-
ing the Coordinated view, that is used to view
asymmetry, it would be necessary 4 clicks and a
search without our functionality whereas, with our
them, it is only necessary 1 click or one search plus
1 click. For the Temporal View, that allows the
comparison of two images from different time pe-
riods, without the functionalities, it would take 2
clicks, 2 drags and 2 searches and when changing
to the other image, 1 more drag and 1 more search,
whereas with our functionalities, it would take 1
click, 1 search and 1 drag and for changing the im-
age, just 1 click in the time bar for another time
period or drag a new projection. With these results
it was possible to reduce several actions, allowing a
final time reduction per patient.

The Errors metric can be characterized as one
of two types, Non-Critical and Critical. In our
tests we had 3 critical errors, from those, 1 made
us change some aspects of the test (e.g., changing
the browser), the others, though critical, allowed
us to continue the test with some of the features.
The Non-Critical errors are more important for
us, since they gave us the ability to understand if
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the perfect path was made for an action or if the
user encountered any bug in the functionalities. In
this regard, we had an average of 1.9 non-critical
errors in the entire system for each physician, a
good result given that we had several functional-
ities tested during this process. Surprisingly, the
most bug functionality was Zoom, a functionality
out of our focus, that occurred with 6 physicians,
but with a total 8 non-critical errors.

7.2. Scales
In our work, two scales were used, one to measure
the usability of the system, the System Usability
Scale (SUS) [6, 11] and the other to measure the
workload of the system, the NASA Task Load Index
(NASA-TLX)[10, 13, 23].

From the data collected in this test and the data
from previous iterations, we started by clean both of
any outlier present. This process required the use of
the Tukey Fences[15] test that used the Interquar-
tile range to identify that every data point outside
the range will be considered an outlier, equations 1,
2, 3, 4, 5.

Q1 = First Quartile; Q3 = Third Quartile, (1)

IQR = Q3 −Q1, (2)

Below Outlier < Q1 − 1.5 × IQR, (3)

Above Outlier > Q3 + 1.5 × IQR, (4)

[ Below Outlier ; Above Outlier ] (5)

Where:
First Quartile (Q1) = the middle value between

the smallest value and the median of the data set;
Third Quartile (Q3) = the middle value between

the median and the highest value of the data set;
Interquartile Range (IQR) = measure of vari-

ability based on dividing a data set into quartiles;
Below Outlier = minimum value accepted in a

data set;
Above Outlier = maximum value accepted in a

data set;

7.2.1 System Usability Scale

System Usability Scale (SUS) [6, 11] is character-
ized by having ten statements, five positives and five
negatives, using a likert-scale of five points, from
strongly disagrees to strongly agrees.

In our work, it was found an outlier with the score
of 67.5 out of 100, and no outliers were found in the
previous iteration [8]. By removing this data point,
we are left with the following results:

Our work, Iteration 9 Iteration 4:
Median = 92.5; Median = 87.5;
Mean = 91.(1); Mean = 86.935;
σ= 7.648. σ= 9.811.

As it is possible to see in the Figure 6, our data,
orange columns, is more condensed in the higher
value ranges. The outlier is represented in this
graph by an orange column with a red border. The
previous iteration, columns in blue, are scattered
through the ranges. With this SUS [6, 11] char-
acterization, both results are considered Excellent
given that both have Mean above the 80.3, how-
ever, our data had better results overall.

7.2.2 NASA Task Load Index

NASA Task Load Index (NASA-TLX) [10, 13, 23]
was design to measure the workload, with six ques-
tions, five regarding several difficulties that could
be experienced and one question about the perfor-
mance the participants think they had. All ques-
tions are responded by choosing a mark, which rep-
resent a five step interval from 0 to 100, in a total
of twenty steps. On contrary to the SUS[6, 11], the
lower the result the better in the end of the analysis.

Once again, the outlier test was performed and
were found in both iterations. In our work the out-
lier had a score value of 46 out of 100, whilst in the
previous iteration [8], the outlier had a score value
of 84.(3) out of 100. By removing these outliers
data points, the final results are the following:

Our work, Iteration 9 Iteration 4:
Median = 11; Median = 21.5;
Mean = 15.037; Mean = 29.1(4);
σ= 13.186. σ= 19.035.

Once again, this work results are an improvement
over the last iteration [8], Figure 7, where our data
is once again the orange columns and the blue
columns are the data from the previous iteration
[8]. In both cases, the outliers will have a red bor-
der around their columns. The data samples in
our work are again more condensed around the Low
[0; 9] and Medium [10; 29] categories. On the other
hand, the previous iteration [8], has the data scat-
tered in the different ranges, with the majority of
their data in the Medium and Somewhat High cat-
egories.

7.2.3 Advanced Statistics

Our data, from both SUS [6, 11] and NASA-
TLX [10, 13, 23] scales are non-normal distribu-
tions, so we performed a test that is specific to this
type of data. We chose the Kruskal Wallis [16]
test, that has the objective of understanding if our
groups have equal median values or not. This test
has two hypothesis, H0 that refers if the population
medians are equal and the H1 the opposite. If H0
is rejected, it is necessary to make a Post-Hoc test,
where we chose the Dunn’s[12] test that measures
how similar or different they are.

5



Figure 6: Comparison between fourth iteration[8] and this work. In this graph we can see both data points
using the same scale, in the vertical axis, the total number of users that obtain a score in that score range.
In the horizontal axis, the SUS[6, 11] score ranges with five score distance. The previous iteration[8] is
represented by blue columns and this work score is represented by orange columns. Important to notice
the columns with a red border are the data points that were considered an outlier. Both graphs are
not-normal distributions and demonstrate the satisfactory result present in both iterations.

Kruskal Wallis [16] test had the following re-
sults for each scale and UTA:

chi− square = 16.919;

SUS UTA9 - H=1.407;

SUS UTA4 - H=3.213;

NASA-TLX UTA9 - H=3.652;

NASA-TLX UTA4 - H=0.659;

The Kruskal Wallis [16] test says that if the
H is higher than the chi− square, it means that
the median value is equal. In our case this is the
opposite, we can not prove that hypothesis, so the
H1 is accepted and we need to do a Post-Hoc test
to be able to understand how similar or different
they are.

Dunn’s [12] test, concludes that our groups and
the groups from the previous iteration [8] are com-
pletely different in the majority of the scales, except
in two occasions, in the NASA-TLX [10, 13, 23]
in our work, where the Intern and the Senior
group are more similar, with a value of 0.056; and
in SUS [6, 11] from the previous iteration [8], where
the same groups are similar with a value of 0.096.
If the value was equal to zero, it would mean that
the groups were similar.

With these tests, we can conclude that, although
our groups are not similar in general, they can
have very similar opinions in some situations and,
therefore, it is important to keep the tests with all
groups.

7.3. Questionnaires

In our tests, we used one questionnaire prior to the
test, Interaction tools questionnaire, to under-
stand what exists in current hospital systems and
what are the functionalities desired; and one ques-
tionnaire after the test, Interaction tools Post-
Task questionnaire, where we asked the user to
classify our system using a 5 step likert-scale from
dislike, value 1, to like, value 5, and an open com-
ment box for each functionalities, so the users could
give us feedback about their experience.

7.3.1 Interaction Tools

The first questionnaire was focused on understand-
ing the state of current hospital systems, from which
we concluded that the majority of the systems have
the same original tools. In the desired function-
alities, we had five hypothesis, being two of them
present in the same Coordinated View function-
ality; one of the others was discarded in the Focus
Group, given that it aimed to resolve the same
problem that the Temporal View; and the MRI
3D Space Awareness that was also discarded for
lack of time to its development, however, 8 out of 10
users would want to have it. The Recorded View
was not present at the questionnaire given that it
was chosen exclusively in the Focus Groups.

7.3.2 Interaction Tools Post-Tasks

The after test questionnaire was focused on obtain-
ing a feedback from the functionalities made, espe-
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Figure 7: Results of the application of the NASA-TLX [10, 13, 23] scale in our work and the previous
iteration [8].In the vertical axis, it is shown the total number of users that obtained a score in each score
range, and the horizontal axis represents the score ranges by 5 score steps. In this graph we can observe
that we have again a non-normal distribution with two outliers, columns with a red border.

cially from those users who did not gave any feed-
back during the test. In this questionnaire all physi-
cians voted 4 or 5, from 1 to 5 in a likert-scale from
dislike to like, and 70% of those responses were 5.

8. Discussion

With the data gathered during the Design Pro-
cess, we were able to respond to the objectives
purposed in the beginning of the this work. Those
goals were defined as Design Goals e Research
Questions.

8.1. Design Goals

As previously mentioned, three Design Goals were
chosen that would be answered by the results ob-
tained. Those three goals are the following: Us-
ability; Efficiency; and Productivity. For the
first goal, the SUS [6, 11] was used, where we aimed
to obtain a value above 86.9, that would mean an
improvement from the fourth iteration[8]. Since our
results showed a total score of 91.(1), it means that
our system is in the Excellent category and above
our target.

The Efficiency goal was explored with two ap-
proaches, first reducing the times by using a Time
and Count Use of a tool metric, and second, the
total number of non-critical errors which had to
be less than 6 for each physician. For the first ap-
proach, we aimed to reduce the time of interactions,
where any type of improvement would be sufficient
to reached it. We demonstrate that with our new
functionalities this was possible, since the number

of clicks necessary are reduced to half of what ex-
isted, consequently, reducing the overall diagnosis
time. Regarding the second approach, our mean
value is equal to 1.9 in non-critical errors, a bet-
ter result that was proposed as a goal. With these
two approaches proven, we can conclude that an-
other goal was met.

Lastly, the Productivity goal was explored with
two approaches as well, being one the Time and
Count Use of a tool metrics, and the second the
data from the NASA-TLX [10, 13, 23] to evaluate
the workload of the system. For this goal the set
a score lower than 29.1(4), the fourth iteration[8]
score. The data collected from our tests, where
we achieved a score of 14.593, indicated a Medium
workload, proving, once again, our goal.

8.2. Research Questions

Here we explore how we evaluated the research
questions mentioned in the beginning of this docu-
ment, basing our conclusions on the data gathered
during the Design Process.

The first research question, RQ.1, “When and
who will use the functionalities”, will be answered
with the results obtained in the questionnaires, In-
teraction Tools and Interaction Tools Pos-
Tasks, and based on the comments given by the
participants. With these questionnaires we under-
stood which functionalities the users wanted to see
implemented in the system and what was their opin-
ion after the test. The results from the post-task
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questionnaire showed us that our functionalities
were well received, since all of them registered a 4 or
5 classification (in a scale form 1 to 5). However, it
is still impossible to determine if our functionalities
would indeed be used, if they were available. We
can prove that with this information, our scale re-
sults and with the opinions given by the physicians,
it is probable that the hypothesis H1.1 would be re-
jected. Hypothesis H1.2 is also discarded because
all functionalities developed can be used in any sit-
uation, since they are not specific to any type of
difficulty. We can also conclude that, regardless of
the level of the physicians’ expertise, the functional-
ities could be used, discarding the hypothesis H1.3.
Finally, the hypothesis H1.4 is the one accepted for
this research question, since all the functionalities
were, as previously said, well received.

The hypothesis from the second research ques-
tion, RQ.2, “What is the impact of the function-
alities, in the clinic workflow?”, can be validated
with the responses given in both scales and metrics,
Time and Count use of a tool. Regarding the
hypothesis H2.1, the results from the SUS [6, 11]
showed a condensed data in the higher ranges, cate-
gories Good and Excellent, proving that the usabil-
ity has increased from the previous work[8] thus
accepting this hypothesis. The hypothesis H2.2,
was meant to understand how the workload was af-
fected with the introduction of the new functionali-
ties. The NASA-TLX [10, 13, 23] showed that we
obtained better results than in previous UTAs[8],
with the majority of the data points in the first five
ranges, Low or Medium workload, which represents
a good evolution. With these results we proved
the reduction of the workload present in the sys-
tem, also accepting this hypothesis. The hypothesis
H2.3, focused on the time of a task by reducing the
clicks necessary to make an action which is demon-
strated by the automation that the functionalities
provide, proving that the reduction of some steps
can reduce the total time.

The third and last research question, RQ.3,
“What is the best method to represent the lesion
evolution?”, explores the best representation for the
Temporal View feature. We presented in the
MCs project [17] a low-fidelity prototype, where we
took a screenshot of the system and added annota-
tions on top of the lesion with a timeline that could
change the annotation in order to compare the le-
sion, however, this low-fidelity prototype showed us
that this was not the right way to proceed. In the
Focus Groups and interviews, physicians told us
that they prefer to see the images side by side from
different dates. With this type of configuration,
even breast asymmetry over-time could be seen, re-
jecting hypothesis H3.1. The time bar hypothesis,
H3.2, H3.3 and H3.4, are opposite to each other,

so accepting one will reject the others. Physicians
gave their opinions while doing the test, and some
of them were the following quotes:

“I would prefer to have the most re-
cent image in the left side, I have
this in my daily system ”.
Intern Physician

“It is essential to have the most re-
cent at the right side”.
Senior Physician

“It is not common to compare two
past images of breasts but could be a
necessity to have that possibility.”.
Senior Physician

We can see, with these quotes, that physicians
have different ways to approach the problem, how-
ever, in the end, all of them agreed that having the
possibility of two time bars, one in each side, could
resolve the problem. Thus, the hypothesis H3.2
and H3.3 were rejected and the hypothesis H3.4
was accepted. Also, hypothesis H3.5, is rejected
by the acceptance of the H1.4.

9. Conclusions
This thesis purpose was to create a set of function-
alities aiming to help physicians in the diagnosis
process, by allowing them to do the same basic op-
erations with a more automated system, making it
faster and effortless. These improvements, had the
users’ needs as the center of our focus, by using
HCI techniques to understand what would be the
best path in the users’ perspective. This work will
be the base for future developments, along with an
AI [9] and XAI [21] systems, that will give and
explain results from the medical image analysis.

In this work we were able to improve all areas that
we aimed for, making a system with better usability,
workload and reducing the time necessary to com-
plete a task. For this it was essential to use HCI
techniques such as interviews, Focus Groups,
Affinity Diagrams, questionnaires and scales,
focused on the users’ opinions of the functionalities
necessary to complete a diagnosis.

Future ideas were also documented, some are
small developments in the interface to make it
simpler, others are functionalities that could help
understand lesion characteristics and position in
the body. Although one of the next develop-
ments would be merging the several iterations at
work [8, 21] into a complete CADx system to be
able to be used in real scenarios to help save lives.
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