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Abstract

Despite the recent advent of open-source hardware, the available open-source caches have low

configurability, limited lack of support for single-cycle pipelined memory accesses, and use non-standard

hardware interfaces and Hardware Description Languages. In this work IOb-Cache, a high-performance

configurable open-source Verilog cache is proposed and developed.

The cache is designed modular and composed of 3 modules. The Cache-Memory module contains

the memories and the cache’s main controller. The Front-End and Back-End modules isolate the cache

design from the processor and memory interfaces, respectively, which enables fast adoption of new

processors or memory controllers. Currently, the Front-End module supports the native interface and the

Back-End module supports the native and the standard Advanced eXtensible Interface (AXI) interfaces.

The cache can be configured to define the number of ways (k) in set-associative designs (k = 1

selects a direct-mapped design), the number of lines and words per line, the replacement policy, etc.

The write-policy is currently fixed to Write-Through Not Allocate policy with an internal buffer, limiting the

write accesses to word-sized data. The back-end can be configured to read bursts of multiple words per

transfer to take advantage of the available memory bandwidth.

To the best of our knowledge, IOb-Cache is currently the only configurable Verilog cache that sup-

ports pipelined Central Processing Unit (CPU) interfaces, and the popular AXI memory bus interface.

IOb-Cache is integrated into the IOb-SoC Github repository, which has 16 stars and is being used in 38

projects (forks).

Keywords: Open-source, Cache, Highly Configurable, Pipeline, AXI, Native.
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Resumo

Apesar do recente advento do hardware de código aberto, as caches disponiveı́s em código aberto

têm baixa configurabilidade, falta de suporte para ciclo único acessos de memória em pipeline e usam

interfaces e Linguagens de Descrição de Hardware não-padrão. Neste trabalho IOb-Cache, uma cache

configurável de alto desempenho em Verilog de código aberto é proposta e desenvolvida.

A cache tem design modular e é composto por 3 módulos. O módulo Cache-Memory contém as

memórias e o controlador principal. Os módulos Front-End e Back-End isolam o design do cache

do processador e da memória interfaces, respectivamente, o que permite a adoção rápida para novos

processadores ou controladores de memória. Atualmente o módulo Front-End suporta a interface nativa

e o módulo Back-end oferece suporte às interfaces nativa e AXI.

A cache pode ser configurado para definir o número de vias (k) no conjunto projetos associativos

(k = 1 seleciona um projeto mapeado direto), o número de linhas e palavras por linha, a polı́tica de

substituição, etc. A polı́tica de escrita é atualmente a polı́tica Write-Through Not Allocate com um buffer

interno, limitando ao tamanho da palavra durante acessos de escrita. O back-end pode ser configurado

para ler de várias palavras por transferência para aproveitar a memória disponı́vel largura de banda.

Tanto quanto é do nosso conhecimento, IOb-Cache é a única cache Verilog configurável que suporta

interfaces de CPU em pipeline e a popular interface de barramento de memória AXI4. IOb-Cache está

integrado no repositório IOb-SoC Github, que tem 16 estrelas, e está sendo usado em 38 projetos

(bifurcações).

Palavras-chave: Código aberto, cache, altamente configurável, pipeline, AXI Nativa.
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Chapter 1

Introduction

1.1 Motivation

As open-source processors such as the RISC-V architecture become adopted by the industry and

compete with commercial solutions such as ARM, the community rushes towards creating the ecosys-

tem for these CPUs to thrive on. These include not only different CPU architectures with different

performance, size, and power consumption, but also efficient memory systems, peripherals, and inter-

faces of all sorts. The software part is even more important as, without compelling user applications and

programming tools, no sustainable business can be built with open-source CPUs.

One such key component is a truly configurable cache module, able to support multiple architectural

trade-offs. After analysis of the available open-source caches, one finds limitations of the interfaces

(no support for de facto standards such as AXI [1]), lack of support for single-cycle pipelined memory

accesses, and use of exotic and non-standard Hardware Description Language (HDL), limiting the use

of simulation and synthesis tools.

Hence, the need to develop a high-performance configurable cache using a standard bus interface

and a standard HDL such as Verilog [2] became evident for IObundle, a company started in 2018 with the

aim of developing domain-specific RISC-V Intellectual Property (IP) systems for low power embedded

devices. The candidate carried out this work both in the scope of his master’s dissertation and as a

trainee at IObundle.

1.2 Objectives

The development of a high-performance configurable open-source cache in Verilog with the popular

Advanced eXtensible Interface 4th generation (AXI4) interface [1] in the back-end, and with better fea-

tures than the existing ones is the main objective of this dissertation. To attain this objective the following

sub-objectives are pursued:

• Support pipeline architectures. The cache must fulfill 1 request per clock cycle while keeping

stalls to a bare minimum. This requires a well designed datapath to correctly implement the cache
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operation while guaranteeing that loads and store instructions execute in one cycle. A new request

and the response to the previous request must be superimposed, given the 1-cycle latency of the

RAM modules that constitute the cache memories.

• Modular design. The cache must be composed of 3 modules: front-end; cache core and back-

end. This makes it easy to replace the front-end and back-end interfaces, while keeping the core

functionality intact, if needed.

• The back-end must implement the Native and AXI interfaces. The flexibility of the back-end inter-

face is indispensable as it can be connected to higher level caches using the Native interface or to

3rd party memory controllers which are likely to be using an AXI interface.

• The back-end must be configured with a different data-width from that of the front-end (asymmetric

memory) in order to take advantage of the available memory bandwidth. Many memory controllers

allow wide data buses from designs that need to work at a lower frequency while using a much

higher frequency to communicate with the external memory.

1.3 Author’s work

The author fully developed all aspects of IOb-Cache [3], with the guidance of his thesis supervisor

and advice from his industry colleagues from IObundle Lda. So this work was developed both as an IST

student and IObundle intern.

This project was started at the same time as the IObundle’s IOb-SoC RISC-V platform [4], in March

2019, and has been a key component of the system which was used by quite a few other dissertations

and has now various users worldwide. IOb-SoC kept evolving, so the cache also evolved with it, offering

new features to fulfill needs or simply keeping up to date with the the system, which constitutes advanced

training for a master student.

As IOb-SoC became the focus of multiple projects, multiple RISC-V processors have been adopted

by IObundle. The author helped with developing wrappers for these new processors, to make sure that

they seamlessly interfaced with IOb-Cache. After the adoption of the multi-issue superscalar SSRV

processor [5] by IObundle, the cache evolved to support a pipelined architecture with single-cycle loads

and stores, making it the most advanced open-source cache system we are aware of.

1.4 Thesis Outline

This dissertation has four additional chapters. Each is briefly described below:

• Chapter 2: This chapter describes the landscape of open-source caches, their advantages and

limitations. It also explains the basic concepts of a processor cache for self-sufficiency reasons.

An overview of the different types of memory mappings, policies, and configurations are described.
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• Chapter 3: This chapter describes the developed cache. Each of its modules is individually and

thoroughly described.

• Chapter 4: This chapter gives a short description of IOb-SoC, the system where the cache has

been integrated, as well, some available configurations for implementing multi-level cache systems.

• Chapter 5: This chapter presents the results of tests applied to the developed cache: performance

measurements in simulation and Field-Programmable Gate Array (FPGA) emulation, and synthe-

sis results for FPGA. The resources consumed by the cache are analyzed, for different types of

configuration. IOb-Cache is also compared to other open-source caches.

• Chapter 6: This chapter contains the project’s achievements and conclusions, as well as perspec-

tives for future work.

3
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Chapter 2

Background

In this chapter the existing state-of-the-art on open-source cache systems is sketched and the theory

of cache systems is briefly introduced. Being the the central problem that this thesis solves the difficulty

in finding a comprehensive cache design to accompany the growing trend of open-source hardware,

the author set off to investigate the existing ones, which are described in the first of the two sections

of this chapter. The second section provides an overview of cache systems, describing structure and

implementation policies.

2.1 Open-Source Caches

In search of HDL open-source cache designs, the most relevant ones are found on the Github plat-

form. The caches on Github are chosen based on their popularity (stars and forks): airin711’s Verilog-

caches [6]; prasadp4009’s 2-way-Set-Associative-Cache-Controller [7]; and PoC.cache, which is part of

the Pile-of-Cores (PoC)-Library [8], one of the most popular HDL libraries.

The airin711’s Verilog-caches repository houses 3 different set-associative caches: 4-way with Least-

Recently-Used (LRU) replacement policy; 8-way with Pseudo-Least-Recently-Used (PLRU) and a run-

time configurable 2-to-8-way with PLRU replacement policy. All caches have 4 words per line and only

allow configuring the number of lines.

The prasadp4009’s Verilog cache repository is a 2-way set-associative cache that uses the LRU

replacement policy. Unlike the airin771’s caches, it allows configuration of the number of cache lines

and words per line, as well as the width of both address and data.

Both caches the airin711’s and prasadp4009’s caches use write-back write-allocate policy, native

memory interface and are unable to either invalidate or flush a cache line. The biggest difference be-

tween the two is the fact that airin711’s caches require the data memory to be 128-bit wide so that the

entire line or memory block can be accessed in a single word transfer. The prasadp4009’s cache re-

quires the data memory width to be word-sized, using a counter to receive the memory block or transfer

the cache line.

5



Unfortunately, there is a big issue, which makes these two caches poor choices with more advanced

architectures: they need at least 2 clock cycles to process requests, even if the data is already in the

cache. These caches implement a Finite State Machine (FSM) that controls all their functions, including

the communication with the processor and to the main memory. They only allow requests when their

FSM is in the initial state, and have special states for the read and write accesses because of the RAM’s

1 cycle read latency upon a cache hit. In the read or write access, if a hit occurs, they acknowledge the

request and go back to the initial state. This causes the undesirable 1 clock-cycle latency.

The third cache that was investigated, PoC.cache [8], does allow 1 read-access per clock cycle, which

is a big improvement over the others. It is also highly configurable, with various synthesis parameters that

characterize the cache dimensions, even allowing 3 types of mapping: direct, set-associative, and full-

associative. It uses the LRU replacement policy, an effective but costly policy, especially when compared

to others that are cheaper but closely effective. Despite only having a native memory interface, it has

access to adapters for other commonly used memories, especially SDRAMs.

The disadvantages of PoC.cache are described in this paragraph. PoC.cache uses a control FSM,

which during a read-access, only changes state on a miss. This requires the hit to be checked in the

same cycle a request is made. The tag and valid memories are therefore implemented with distributed

RAM and registers, respectively. In the presence of a hit, PoC.cache acknowledges the request, but the

data is only available in the next clock cycle. In the following clock cycle, when the data is available,

it can receive a new request. This allows the cache to operate with the 1 read per clock cycle. Write

accesses on the other hand require a change of state in the FSM, resulting in a minimum of 1 write per 2

clock cycles. The cache uses a write-through write-not-allocate policy but does not have a write-through

buffer. Instead, it accesses the main memory directly. This means each write-access is dependent on

the write-access time of the memory interface controller, which is a big issue given that the write-through

policy is expected to generate significant traffic.

Despite being highly configurable, its main memory interface is limited to the size of the cache line.

The cache expects to load a line in a single transfer, meaning the memory’s data-width needs to be

line-sized. This is not a negative point since it maximizes the main memory’s bandwidth, but may limit

the memory options. One severe limitation is when implementing a multi-level cache, as the higher-level

cache needs to have a word-size of the lower-level’s line width. The lack of a write-through buffer is

also a big limitation since this cache needs to stall during a write-access while the higher-level cache is

fulfilling another request.

PoC.cache is written in VHSIC Hardware Description Language (VHDL), unlike the other caches

that are written in Verilog. Depending on the synthesis and simulation tools, one language can be

advantageous over the other but they are semantically equivalent. Most open-source tools only allow

one HDL, generally Verilog, so the entire project needs to use the same language.

Compared to the presently developed IOb-Cache system, PoC.cache also lacks (1) a front-end mod-

ule to avoid the need to implement an FSM for processor-cache communication; (2) a configurable

back-end module that controls the communication with the main memory, freeing the main-controller of
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unnecessary delays; (3) a universally adapted memory interface like AXI. All these lacking features, plus

the fact it written in VHDL, have motivated IObundle to develop a new open-source cache in Verilog.

2.2 Cache: Basic Overview

With the development of integrated systems, there is a necessity for larger memories and speed.

While processors keep getting faster, the increase of capacity in memories results is progressive slower

accesses[9, p. 634]. This causes a bottleneck effect[10, p. 4], as the processor performance is depen-

dent on the speed of the memory accesses.

A cache is a smaller memory (compared to the main memory), installed close to the processor

with faster access time. Instead of accessing the main memory, the processor accesses the cache

most of the time, drastically decreasing the average access time. Usually, the large main memory is

implemented with Dynamic Random-Access Memory (DRAM) technology, which is cheaper per byte

stored but slower- On the other hand, caches are implemented with Static Random-Access Memory

(SRAM) technology, which is more expensive but considerably faster to access.

The cache works under two principles of locality: Temporal Locality and Spatial Locality [9, p.633].

Temporal Locality describes that if a specific memory address is accessed, it is likely it will be accessed

again. Spatial Locality states that after a specific memory address is accessed, it is likely that an address

close to it will be accessed.

A cache’s main structure is composed of lines and words. A cache line represents a memory block

from the main memory, which is a sequential data block from a specific location. Each line is composed

of words, instructions, or data requested by the processor, which is limited by the size of its registers (a

32-bit processor has 32-bit words). The cache line storing a recently accessed memory block capitalizes

on both spatial and temporal localities.

When the cache is accessed, the requested data can be stored in it or not. This access is called a

hit or miss access, respectively. There are 3 types of misses: Compulsory, Capacity, and Conflict [10,

p. 9].

A compulsory miss happens when a cache-line is accessed for the first time, since the cache was

empty or invalidated.

A capacity miss occurs because the cache is smaller than the main memory and is not big enough

to store all the necessary data. After filling, the next access will result in a capacity miss, as the data in

some line must be discarded to load the requested data from the main memory.

A conflict miss happens when two memory blocks are mapped to the same line, causing the most

recently accessed to replace the older one. The replaced line can be required later eventually causing

another conflict miss.

A fourth miss type exists for multiprocessing systems: the coherency miss. This miss happens when

the main memory block is updated by an external source. If that block is stored in the cache(s), it needs

to be invalidated. When requested, the newly updated block is fetched.
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Instead of having a fixed main memory access time, a cached system has the following average

memory access time[10, p. 6]:

average access time = hit ratio × average cache access time+

+ miss ratio × (average cache access time + average main memory access time) . (2.1)

The hit-ratio is the percentage of cache-hits of all accesses, while the miss-ratio the percentage of

cache-misses of all accesses. Of course they are complementary: miss-ratio = 1 - hit-ratio.

2.2.1 Mapping

Mapping represents the cache’s internal organization. There are 3 used mappings: direct-mapped,

set-associative, and fully associative.

Direct-mapped represents the basic organization of a cache. The address is divided into tag, index,

and offset. The index addresses the cache lines, while the offset addresses their respective words.

Because of the smaller capacity, not all address bits are used to address the cache and are used for

validation. These bits are called the Tag and are used to verify if the data present in the cache has the

same address as the requested data.

Besides the data memory, two additional memories are used, the Tag memory and Valid memory.

The Tag memory stores the tag of that respective block, while the Valid memory indicates that that

position contains valid data for the main memory. Initially, all positions are invalid until they are filled with

valid content. One may want to invalidate a certain memory position if a third entity alters the contents

of that memory position, which happens in multi-processor systems. The requested address’ tag is then

compared with the Tag memory output. If they match then a cache hit happens; otherwise, a cache

miss occurs. In case of a miss, the accessed line needs to be replaced with the block that contains the

requested data.

The set-associative mapping is based on the direct-mapped but uses multiple ways to access data

blocks in the same set. Each way is in theory an individual direct-mapped cache. This means the

same cache-line stores as many tags as the number of ways. This reduces conflict-misses. During a

line-replacement, it uses a replacement policy to select the way to be replaced.

The fully associative mapping is different in that does not need an index to address a line since it

uses a single set. During access, every line is verified for a tag match. This means all lines will have

their tag compared and validated. This totally removes conflict-misses. Since all tags are required to be

compared, cascaded comparators need to produce a hit, resulting in an expensive hardware structure

seldom used in practice. Like the set-associative mapping, it uses a replacement policy to select the line

to be replaced.

The most common replacement policy is the LRU, which keeps track of how recently each way has

been accessed, replacing the least recent one. Some effective but less costly (requiring less information)
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replacement policies can be used, such as the Pseudo-LRU policies. Of these, the most common are

the Most-Recently-Used (MRU)-based and tree-based Pseudo-LRU policies.

The MRU-based PLRU keeps track of the accessed ways. When all of them have been accessed, all

but the most recent way are reset to non-accessed. The lowest indexed non-accessed way is the one

elected to be replaced.

The tree-based PLRU uses a binary tree to keep track of the less recently used way. Starting from

the root node, each node points to the next level node, creating a path towards a leaf that represents

the least recently accessed way. The nodes’ pointers are updated (or not) when access happens, which

may change or not the path to point to a more recently used way. Each node uses 1 bit to point to two

halves of a subset of ways, which may need to be toggled upon an update.

2.2.2 Write-Policy

During reads, if the data is not available in the cache, it is fetched from the main memory. Writes on

the other hand have 2 different policies called Write-Through and Write-Back.

With the Write-Through policy, the data is written to both the cache and the main memory. This policy

is normally associated with the Write-Not-Allocate co-policy, meaning that, if the data is not available in

the cache, it is simply not stored.

With the Write-Back policy, the main-memory is only written any data when the cache-line is replaced

(or removed). This policy normally associated with the Write-Allocate co-policy, meaning that if the

address to write is not present in the cache, the respective memory block is first fetched from the main

memory to the cache before writing the new data onto it.

Since the write-through updates the memory for every write-access, it generates significant traffic to

the main memory [10, p. 5], which is the main disadvantage of this method.

2.2.3 Cache-types

To improve performance, it is not enough simply to increase the cache size. A higher-level orga-

nization of the cache can achieve this goal without adding more on-chip memory. This organization

can either exploit the type of accessed data, instructions or data, or expand the memory hierarchy with

multiple levels of cache blocks.

Dividing caches into instruction or data caches enables parallel access to instruction and data words

and parallel exploitation of the localities that exist in instruction and date address sequences. This

greatly reduces unnecessary conflict-misses.

In a multi-level cache system, the idea is to reduce the miss penalty, that is, the cost in time of a

cache miss. Accessing the external memory upon a cache miss represents the highest penalty. Placing

a second cache in between the first-level cache and the main memory attenuates the miss penalty, as

the time cost of accessing the second cache should be much lower than that of accessing the main

memory. Normally the size of the cache increases with the level. A typical configuration used in this

work is to use two level-1 (L1) caches for instructions and data and a larger level-2 cache of unified

9



instructions and data. Different replacement and write-policies can be used on different levels, which

can be optimized to greatly improve performance.
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Chapter 3

IOb-Cache

IOb-Cache [3] is a configurable open-source pipelined-memory cache, designed in synthesizable

Verilog HDL [2], for System-on-a-chip (SoC) implementation.

IOb-Cache is a very configurable IP core: it offers 2 different interfaces for the back-end memory,

Native and AXI (4th generation), whose can be different from that of the front end (asymmetric imple-

mentation); it can be implemented as Directly mapped or K-Way Set-Associative; there are multiples line

replacement policies to choose from, depending on the performance-resources needs. It uses a fixed

write-through not-allocate policy,

Performance-wise, it allows 1 request/clock-cycle (pipelined). Each of the following chapters will

describe its respective modules, behavior, and implementation.

3.1 IOb-Cache: top-level

The top-level integrates all the IOb-Cache modules and is represented in the Fig. 3.1.

The Front-End connects the cache to a Master (processor). The ports always use the Native Inter-

face, using a valid-ready protocol.

The Back-End connects the cache (master) to the main-memory (slave). Its interface depends on

the choice of the top-level module: Native (iob cache) or AXI (iob cache axi).

Cache-Memory is shown in between Front-End and Back-End and contains all the cache’s memories

and its main-controller.

Cache-Control is an optional module for an L1 cache that allows performing tasks such as invalidating

a data cache, requesting its Write-Through Buffer’s status, or analyzing its hit/miss performance. If

the ”CTRL IO” macro is set, interfaces for invalidating the cache or observe the Write-Through-Buffer’s

status are implemented without the Cache-Control module, which is useful for cascading higher-level

caches.

The many synthesis parameters that are available for IOb-Cache are shown in Table 3.1.

From the configurable parameters, a few derived parameters of interest are computed. They are

explained in Table 3.2
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Table 3.1: IOb-cache’s configurable parameters.

Parameter Description

FE ADDR W Front-End Address Width: defines how many bytes are accessible in the main
memory (2FE ADDR W bytes).

FE DATA W Front-End Data Width: defines the cache word-size. Needs to be multiple of 8
(byte). Independent of the Back-end’s data bus width (BE DATA W).

N WAYS Number of (Cache) Ways: Direct Mapped(1); Set-Associative Mapped (>1).
Needs to be power of 2.

LINE OFF W Line Offset Width or Index Width: Defines the number of cache lines.
2LINE OFF W lines.

WORD OFF W Word Offset Width: Number of Words per cache line. 2WORD OFF W

words/line.

REP POLICY Replacement Policy: LRU (0); PLRUm (1); PLRUt (2). Requires N WAYS >1.

WTBUF DEPTH W Write-Through-Buffer Depth Width: Number of positions in write-through
buffer’s FIFO, 2WTBUF DEPTH W.

BE ADDR W Back-End Address Width: defines the width of the back-end address port,
additional bits aren’t accessible (access depends on FE ADDR W).

BE DATA W Back-End Data Width: Back-End’s memory word-size. Needs to be multiple
of FE DATA W. This can be used to increase bandwidth.

CTRL CACHE Implementation of Cache-Control: performance measurement, write-through
buffer status and cache invalidate.

CTRL CNT Implements counters for performance measurement (requires
CTRL CACHE(1)).

AXI ID AXI-Identifier: Sets the value for the ”axi **id” signals for AXI back-end con-
nections.

AXI ID W Defines the Width of AXI-Identifier. ”AXI ID’s” value needs to be in this range.

Table 3.2: IOb-cache’s derived parameters.

Parameter Description

FE NBYTES Front-End Number of Bytes: The number of bytes in FE DATA W.
FE NBYTES = FE DATA W

8

FE BYTE W Front-End Byte Offset Width. FE BYTE W = log2(FE NBYTES)

NWAY W Width of Number of Ways. NWAY W = log2(N WAYS)

BE NBYTES Back-End Number of Bytes: The number of bytes in BE DATA W.
BE NBYTES = BE DATA W

8

BE BYTE W Back-End Byte Offset Width. BE BYTE W = log2(BE NBYTES)

LINE2MEM W Line-to-Memory Word-Size Ratio Width: the width of the ratio between
the size of the cache-line and the back-end’s word. LINE2ME W =
log2(WORD OFF W∗FE DATA W

BE DATA W )
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Figure 3.1: IOb-Cache top-level module diagram.
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3.2 Front-End

The Front-End module interfaces the processor (master) and cache (slave). In the current design,

it splits the processor bus to access the cache memory itself or the Cache-Control module (if present).

It also registers some bus signals needed by the cache memory. Its interface is presented in Table 3.3

and Figure 3.2 details the internal structure.

Table 3.3: Front-End ports

Parameter Width (bit) Direction Description

valid 1 input Validates the request.

addr FE ADDR W
+(CTRL CACHE)

input Address signal, defines the requested location.
When the Cache-Control is implemented , its width
will increase by 1, the MSB used to access it.

wdata FE DATA W input Write-data, data to be stored in cache (if available
(hit)) and in main memory (write-through).

wstrb FE NBYTES input Write-Strobe, validates each respective byte of
write-data. Signal is 0 (all bits) during read-
accesses.

rdata FE DATA W output Read-Data, the requested data from either Cache-
Memory or Cache-Control (only if implemented).

ready 1 output The acknowledge signal that validates the conclu-
sion of the request.

Cache-Memory

data valid 1 output Validates the Cache-Memory’s access.

data valid reg 1 output Registered ’data valid’ signal.

data addr FE ADDR W
-FE BYTE W

output Main-memory address.

data addr reg FE ADDR W
-FE BYTE W

output Registered ’data addr’.

data wdata reg FE DATA W output Write-Data registered signal.

data wstrb reg FE NBYTES output Write-Strobe registered signal.

data rdata FE DATA W input Cache-Memory’s read-data.

data ready 1 input Cache-Memory’s ready signal. Validates the con-
clusion of the access.

Cache-Control (optional)

ctrl valid 1 output Validates the Cache-Control access. Only if Cache-
Control is implemented.

ctrl addr CTRL ADDR W output Selects the Cache-Control’s task.

ctrl rdata FE DATA W input Cache-Control’s requested read data (counters or
buffer status).

ctrl ready 1 input Validates the conclusion of the Cache-Control’s re-
quested task.
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The cache requires that during a request (valid), the master’s inputs are maintained until the cache

signals its conclusion by asserting the ready signal. During the assertion of the ready, a new access can

be requested.

The signals required for memory writing and the ready’s combinational path are registered. This way,

the necessary input data is still available while ready is asserted.

The cache always returns entire words since it is word-aligned. This means the access is word-

addressable, so the byte-offset of the CPU address signal (last FE BYTE W bits) is not connected to the

cache.

In a system with a different CPU interface, only this module requires modification to allow compati-

bility.

valid

addr

wdata

wstrb

rdata

ready

data_wdata_reg

data_valid

data_valid_reg

data_addr

data_addr_reg

data_wstrb_reg

data_rdata

data_ready

Reg

ctrl_valid

ctrl_addr

ctrl_rdata

ctrl_ready

MUX

OR

Front-End

Figure 3.2: Front-End module diagram.

If the optional Cache-Control is implemented, this module also works as a memory-map decoder to

select which unit is being accessed, the memory or the control unit.

This mapping is done using the Most Significant Bit (MSB) of the port ”addr”. When high (1), the

Cache-Control module is accessed. This also required some additional logic to select which read data

is sent to the master. This logic is a word-sized multiplexer (read-data) and an OR-gate (valid).
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3.3 Cache-Memory

Cache-Memory is a module that contains the cache’s main controller and memories. The available

memories are the Tag memory, the Valid memory, the Data memory, the write-through Buffer, and, if

applicable, the Replacement-Policy memory.

Its main controller accesses specific back-end modules using a handshake valid-ready approach.

The ready-signal is always asserted excepts after valid is asserted, where it becomes 0 until the re-

quest’s conclusion.

Depending on the choice of parameters, Table 3.1, the cache’s implementation will either be direct-

mapped or set-associative based on the number of ways given by N WAYS.
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Figure 3.3: Cache-Memory module diagram.
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Table 3.4 describes the Cache-Memory’s ports. For simplicity, the Front-End signals’ prefix, ”data ”

was removed.

Table 3.5 contains the additional ports used if the module Cache-Control is implemented.

Before the Cache-Memory’s behavior and design description is presented, the implementation of

each memory will be explained.

Figure 3.4 shows the Tag and Valid memories’ implementation, while Figure 3.5 the shows the Data

memory.
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Figure 3.4: Tag and Valid-Memories.

The Tag memory is inferred using RAM. There is one Tag memory per cache way. Each of these has

Tag-sized width, and depth equal to the total number of cache lines.

The Valid memory is composed of an array of 1-bit registers (register-file), one for each way. Each

array’s length equals the number of cache lines. This choice of implementation was a simple design

choice to set its contents to 0 during either a system reset or a cache-invalidate.

The Tag memory has a 1 clock-cycle read latency (Random-Access Memory (RAM)), therefore the

valid memory’s output signal needs to be delayed, either by applying a 1-bit output stage-register or

using the registered address “data addr reg”. The latter was chosen because it requires less logic and

has no impact on timing. Both Tag and Valid memories’ outputs connect to comparators for producing

hit/miss results required for memory accesses.

The Data memory is implemented by one RAM for each way and (word) offset. Each RAM has a

width FE DATA W (cache word-size) and a depth of 2LINE OFF W (number of cache lines). Since the

write-strobe signal selects which bytes are stored, each RAM requires a write enable for each byte.
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Figure 3.5: Data-Memory.

Some synthesis tools can only infer single-enable RAMs [11, 12], therefore a RAM will be inferred for

each byte.

The Write-Though Buffer is implemented using a synchronous FIFO [13]. It requires the data to be

available on its output a clock-cycle after being read.

To address the words in the cache’s memories, the input address signals are segmented as de-

scribed in Figure 3.6.

offset [WORD_OFF_W]addr

Front-end word-address

index [LINE_OFF_W]tag [TAG_W]

FE_ADDR_W-1 FE_BYTE_W

Figure 3.6: Address signal segmentation.

The address (data addr) is only used for the initial addressing (indexing) of the main memories: Valid,

Tag, and Data. On the next clock cycle, the registered address (data addr reg) will be checked to see if

a ”hit” occurred and identifying the word within the cache line.

The hit check uses the signal ”way hit”. Each of its bits indicates a hit in the respective way. The hit

is the result of a tag match.

If any bit of the ”data wstrb reg” signal is enabled, it is a write-request, otherwise it is a read-request.

During a read-request, if a hit is produced, the respective word is already available in the Data-

Memory’s output, so the request can be acknowledged.

The Data memory allows input Data from both the Front and the Back-End. This selection is done

using the signal ”replace”, which indicates if the replacement on a cache line is in action. While “replace”

is not asserted, all accesses are from the Front-End. During a read-miss, the signal “replace” is asserted,

which will start the Back-End Read-Channel controller, responsible for line replacement.
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Both Tag and Valid memories are updated when the “replace valid” signal is high, forcing a hit in

the selected way. This allows the replacement process to act similarly to a regular write hit access,

reducing the necessary logic. The replacement can only start if there are not currently write transfers to

the main-memory.

The signals ”write valid” and ”write ready” constitute a handshaking pair for Cache-Memory to write

to the Back-End Write-Channel. The former indicates the Write-Through Buffer is not empty, validating

the transfer. The latter indicates that the Back-End Write-Channel is idle and thus enables reading the

Write-Through Buffer.

The requirement that the replacement only starts after the write transfer is to avoid coherency issues,

i.e. storing outdated data in the cache-line.

Write requests do not depend on the data being available in the cache, since it follows the write-not-

allocate policy. Instead, it depends on the available space in the Write-Through Buffer, which stores the

address, write-data, and write-strobe array.

During a write-hit, to avoid stalling, the Data memory uses the registered input signals to store the

data, so the cache can receive a new request.

If a read follows a write-access, Read-After-Write (RAW) hazards can become an issue. The re-

quested word may not be available at the memory output, since it was written just the cycle before. This

word will only be available in the following clock-cycle, therefore the cache needs to stall.

Stalling on every read-request that follows a write-hit access can become costly performance-wise.

Hence, to avoid this cost a simple technique has been employed: the cache stalls only if one wants

to read from the same way and (word) offset that has been written before. This results in RAW only

signaling when the same Data memory’s (byte-wide) RAMs are being accessed.

All the above conditions are implemented in the main controller circuit. The signals data ready and

hit are given combinatorially by Equation 3.1.

data ready = (write access AND !buffer full) OR (read access AND hit AND !RAW)

hit = OR(way hit) AND !replace
(3.1)

A stall occurs if ”data ready” is 0 after the request, otherwise the request is acknowledged.

Because a new request can be issued in the same cycle as the previous is acknowledged, the

registered request signals are used for the tag comparison, memory-writing and word-selection.

Since the line replacement controller uses the way hit signal, the hit signal is 1 only when signal

replace is de-asserted, as this signal already has a delay to compensate for the Data memory’s RAM 1

clock cycle read-latency.
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Table 3.4: Cache-Memory ports.

Parameter Width (bit) Direction Description

Front-End ports

data valid 1 input Valid signal, requests the access to Cache-Memory.

data valid reg 1 input Registered valid signal, required for memory writes.

data addr FE ADDR W
-FE BYTE W

input Address signal of the word. Indexes the cache lines.

data addr reg FE ADDR W
-FE BYTE W

input Registered address signal. Required for memory
writes, tag comparison, and Data-Memory’s word-
selection.

data wdata reg FE DATA W input Registered write-data signal. Required for Data-
Memory and Write-Through Buffer.

data wstrb reg FE NBYTES input Registered write-strobe signal. Write-data’s byte-
enable.

data rdata FE DATA W output Read-data signal. Requested Data-Memory’s word.

data ready 1 output Ready signal. Acknowledges the conclusion of the
request. Read-data is available (read-access).

Back-End: Write-Channel ports

write valid 1 input Initiates write request to main memory. Write-
Through Buffer’s empty signal.

write addr FE ADDR W
-FE BYTE W

output Address of the write request, stored in Write-
Through Buffer.

write wdata FE DATA W output Write-data, stored in Write-Through Buffer.

write wstrb FE NBYTES output Write-strobe (byte-enables), stored in Write-
Through Buffer.

write ready 1 output Reads Write-Through Buffer, data is available in its
output next clock cycle.

Back-End: Read-Channel ports

replace valid 1 output Requests replacement of the cache line. Asserted
during a read-miss.

replace addr FE ADDR W
-FE BYTE W

-LINE2MEM W

output Memory block’s base address to replacement a
cache line.

replace 1 input Signals that a line replacement is in progress.

read valid 1 input Validates the memory block’s word. Only during line
replacement.

read addr LINE2MEM W input Addresses the current position in the cache line.

read data BE DATA W input Main memory’s read-data, to be stored in the se-
lected cache line, during the replacement.
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Table 3.5: Cache-Memory ports: Cache-Control

Parameter Width (bit) Direction Description

invalidate 1 input Invalidates entire cache, reseting Valid-Memory,
and if applicable, the replacement-policy’s memory.

wtbuf empty 1 output Write-through buffer’s empty signal, asserts when
empty.

wtbuf full 1 output Write-through buffer’s full signal, asserts when full.

write hit 1 output Write-hit, asserts when a write-request is available
in the cache (hit).

write miss 1 output Write-miss, asserts when a write-request is not
available in the cache (miss).

read hit 1 output Read-hit, asserts when the requested data is avail-
able in the cache (hit).

read miss 1 output Read-miss, asserts when the requested data is
available in the cache (hit).
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3.4 Replacement Policy

The line replacement policy in a k-way set-associative cache is implemented by the module shown in

Figure 3.7. Different available replacement policies can be selected using the ”REP POLICY” synthesis

parameter. The module has three main components: the Policy Info Memory (PIM), the Policy Info

Updater (PIU) datapath, and the Way Select Decoder (WSD). Table 3.6 explains the ports of the module.

The PIM stores information pertaining to the implemented policy. Note that replacement policies are

dynamic and use data from the past, so memory is needed. The PIM has as many positions as the

number of cache sets, addressed by the index part of the main memory address. The width of the PIM

depends on the chosen policy. The PIM is implemented using a register-file so that during a system

reset or cache invalidation, it can be set to default initial values.

When a cache hit is detected, the information stored in the PIM is updated based on the information

previously stored for the respective set and the newly selected way. This function is performed by the

PIU. When a cache miss is detected the information for the respective cache set is read from the PIM

and analyzed by the WSD in order to choose the way where the cache line will be replaced.

Policy

Info

Memory

reset

way_hit

addr

write_en

Policy
Info

Updater

din

addr

wen

rst

dout Way
Select

Decoder

way_select

Replacement-Policy

Figure 3.7: Replacement Policy module diagram.

The currently implemented policies are the Least-Recently-Used (LRU) and the Pseudo-Least-Recently-

Used (tree and MRU-based). These are explained in the next subsections.
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Table 3.6: Replacement policy ports.

Parameter Width (bit) Direction Description

write en 1 input Enable signal to update the memory. Cache-
Memory’s data ready signal.

addr LINE OFF W input Address of the respective cache line.

way hit N WAYS input The signal that indicates in which way occurred a
hit, one-hot format. Used in the encoder.

reset 1 input Resets the replacement policy memory’s data.
Used during a reset of the system or a cache in-
validate.

way select N WAYS output The selected way decoded from the current replace-
ment’s key. Used to select a way during a line-
replacement. In one-hot format.

way select bin log2(N WAYS) output The same as way select but in the binary format.
Uses a one-hot-to-binary encoder.
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3.4.1 Least-Recently-Used

The Least-Recently-Used policy (LRU) needs to store, for each set, a word that has N WAYS fields

of log2(N WAYS) bits each. Each field, named ”mru[i]”, represents how recently the way has been used

by storing a number between 0 (least recently used) and N WAYS-1 (most recently used), thus requiring

log2(N WAYS) bits. In total it requires N WAYSlog2(N WAYS) bits per cache set.

for each mru
 
[i]

way_hit [i]

mru[i] > mru[hit] ?

mru[i] = mru[i] -1mru[i] = mru[i] mru[i] = N-1

1 (Yes)

1 (Yes)0 (No)

0 (No)

Figure 3.8: LRU Encoder datapath flowchart.

The way each mru[i] is updated is represented in Figure 3.8. Summarizing, when a way is accessed

either by being hit or replaced, it becomes the most recently used and is assigned. The other ways

with higher mru values than the accessed way get decremented. The ones with lower mru values are

unchanged. The selected way for replacement is the one with the lowest ”mru” index. This can be

achieved by NORing each index, as implemented in Equation 3.2.

way select [i] = !OR(mru[i]) . (3.2)

3.4.2 Pseudo-Least-Recently-Used: MRU-based

The Pseudo-Least-Recently-Used: Most-Recently-Used based (PLRUm) is simpler than the LRU re-

placement and needs to store, for each set, a word that has N WAYS bits only. Each bit mru[i] represents

how recently the way has been used, storing a 0 (least recently used) or 1 (most recently used), thus

requiring log2(N WAYS) bits.

The way each mru[i] is updated is represented in Figure 3.9. Summarizing, when a way is accessed

either by being hit or replaced, the respective bit is assigned 1 meaning it has been recently used. When

all ways have been recently used, the most recently assigned remains asserted and the others are reset.

This is done by simply ORing the way hit signal and the stored bits, or storing the way hit signal if all

have been recently used. To select a way for replacement, the not recently used way (mru[i]=0) with the

lowest index is selected. This can be implemented by the following logic equation, Equation 3.3.
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mru = mru OR way_hit

all bits “1” ?

mru = mru mru = way_hit

1 (Yes)0 (No)

Figure 3.9: PLRUm Updater datapath flowchart.

way select [i] = !mru[i] AND (AND(mru[i-1:0]) (3.3)

3.4.3 Pseudo-Least-Recently-Used: binary tree-based

The Pseudo-Least-Recently-Used: (binary) tree-based (PLRUt) needs to store, for each set, a binary

tree with log2(N WAYS) levels and N WAYS leaves, each representing a cache way. Each level divides

the space to find the way in two, creating a path from the root node to the chosen way, when traversed by

the WSD. Each node is represented by a bit b[i] where 0 selects the lower half and 1 selects the upper

half of the space. For a 8-way example, the binary tree is represented in Figure 3.10.

b[0]

b[1]

b[4]b[3] b[6]b[5]

b[2]

7 6 5 4 3 2 1 0way select

1 0

0

0000 0

01 1

1 1 1 1

111 110 101110 100 011 010 001 000

level 0

level 1

level 2 

Figure 3.10: PLRU binary tree.

In order to update each node b[i], the first step is to get the slice way hit[i] from the vector way hit,

relevant for computing b[i]. Figure 3.11 shows how to compute way hit[i] for the first 3 notes, b[2:0]. After

computing slice way hit[i], the algorithm shown in Figure 3.12 is followed. The process is straightforward.
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If the slice is not hit (all its bits are 0), then b[i] remains unchanged. Otherwise, b[i] is set to 0 if the hit

happens in the upper part of the slice and to 1 if the hit happens in the lower part.

way_hit_upper [0]

N_WAYS/2 -1N_WAYS - 1      N_WAYS/2 

way_hit_lower [0]

0

N_WAYS/2 -1N_WAYS - 1  N_WAYS/2 

way_hit_upper [1] way_hit_lower [1] way_hit_upper [2] way_hit_lower [2]

0

way_hit [0]

way_hit

way_hit [1] way_hit [2]

way_hit

...

Figure 3.11: Computing way hit slices.

get way_hit [i]

way_hit_lower [i]

b [i] = 1

1 (Yes)

1 (Yes)

0 (No)

b [i] = b [i]b [i] = 0

0 (No)

way_hit_upper [i]

Figure 3.12: PLRU way updater.

To select the way for doing the replacement, the binary tree needs to be decoded. This can be done

by iterating from the tree levels, from root to leaves, using the b[i] values to point to the next node until

the leaf is reached. As explained before the leaf index is the chosen way.
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3.5 Back-End

The Back-End module is the interface between the cache and the main memory. There are currently

2 available main memory interfaces: Native and AXI. The native interface follows a pipelined valid-ready

protocol and is shown in Figure 3.13. The AXI interface implements the AXI4 protocol [1, 14] and can

be seen in Figure 3.14.

write_valid

write_addr

write_wdata

write_wstrb

write_ready

replace_valid

replace_addr

replace

read_valid

read_addr

read_rdata

mem_valid_write 

mem_addr_write

mem_wdata

mem_wstrb

mem_rdata

mem_ready

Write-Channel Native

Read-Channel Native

mem_valid_read 

mem_addr_read

mem_ready

mem_valid_write 

mem_valid_read 

mem_addr_read

mem_addr_write

mem_valid

mem_addr

mem_wdata

mem_wstrb

mem_rdata

mem_ready

MUX

OR

Back-End (Native)

Figure 3.13: Back-End Native module diagram.

Although the AXI interface has independent write and read buses, the native interface only has a

single bus available. In the native interface, the difference between a write and read access depends

on the write-strobe signal (mem wstrb) being active or not. This requires additional logic to select which

controller accesses the main memory. The AXI interface transfers can be configured using the relevant

synthesis parameters given in Table 3.1. There is no risk of conflict between the read and write channels:

reading for line replacement can only occur after all pending writes are done.

The Back-End module has two controllers, the Write-Channel controller and the Read-Channel con-

troller. The Write-Channel controller reads data from the Write-Through Buffer and writes data to the

main memory while the buffer is not empty. The Read-Channel controller fetches lines from the main

memory and writes them to the cache during a cache line replacement.

3.5.1 Write-Channel Controller

The Write-Channel controller ports for both the native and AXI4 interfaces are described in Table 3.7.
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Table 3.7: Write-Channel ports.

Parameter Width (bit) Direction Description

Cache Side Native Interface

write valid 1 output Valid data in write-through buffer (not empty).

write addr FE ADDR W
-FE BYTE W

input Word-address of the write data. Buffer’s ouput.

write wdata FE DATA W input Write-Data. Buffer’s output

write wstrb input Write-strobe. Buffer’s output

write ready input Ready, read write through buffer.

Memory Side Native Interface

mem valid 1 output Validates the write transfer to the main-memory.

mem addr BE ADDR W output Address of the write transfer.

mem wdata BE DATA W output Write-Data. Data transfered to memory.

mem wstrb BE NBYTES output Validates mem wdata’s Bytes.

mem ready 1 input Memory’s ready, acknowledges the transfer.

Memory Side AXI Interface

axi awvalid 1 output Validates Write-Address.

axi awaddr BE ADDR W output Write-Address, Byte addressable and word aligned.

axi awready 1 input Acknowledges the address request.

axi wvalid 1 output Validates the data transfer.

axi wdata BE DATA W output Write-Data.

axi wstrb BE NBYTES output Validates Write-Data’s Bytes.

axi wready 1 input Memory’s acknowledges the transfer.

axi bvalid 1 input Write response valid, validates axi bresp.

axi bresp 2 input Write response result, if the transfer was successful
(”00” - OKAY) [1, p. A3-54].

axi bready 1 output Write response ready signal, awaits for the re-
sponse result (handshake).

axi awlen 8 output Burst’s length, 0 (single) [1, 14, p. A3-48,51]).

axi awsize 3 output Bytes per beat, log2(BE NBYTES) [1, p. A3-49]

axi awburst 2 output Burst type, any option (single transfer) [1, p. A3-49]).

axi awid AXI ID W output AXI identification tag [1, p. A5-81].

axi awlock 1 output Atomic access. Normal access 0b [1, p. A7-100].

axi awcache 4 output Type of memory. Default 0011b [1, p. A4-68].

axi awprot 3 output All accesses are normal, 000b [1, 14, p. A4-75].

axi awqo 4 output QoS identifier, unused, 0000b [1, p. A8-102].
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write_addr

write_wdata

write_wstrb
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Figure 3.14: Back-End AXI module diagram.
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The native interface’s controller follows the control flow displayed in Figure 3.15. The controller stays

in the initial state while waiting for the write-through buffer to have data. The write-through buffer uses

a FIFO, and the FIFO starts the controller when it is not empty. When that happens, signal write valid

asserts, and the FIFO gets read.

S
0
: waits for write-thought buffer

-------------------------------------------------
write_ready = write_valid

S
1
: transfers data to back-end memory

-----------------------------------------------------
mem_valid = 1
write_ready = mem_ready & write_valid

write_valid = 0
(buffer empty)

write_valid = 1
(buffer not empty)

mem_ready = 0
(waiting for memory)

mem_ready = 1
&

write_valid = 1 
(transfer done, buffer not empty)

mem_ready = 1
&

write_valid = 0 
(transfer done, buffer empty)

reset

Figure 3.15: Back-End Write-channel Native Control-flow.

In the following clock cycle, the required data is available in FIFO’s output and the transfer can occur.

After each transfer, the FIFO is checked, and if it is not empty, it is read again so the data can be

transferred in the following clock cycle. This keeps happening until there are no more available data in

the Write Through Buffer, and the controller goes back to its initial state.

The write-through buffer can only be read after each transfer is completed (mem ready received).

Currently, there is no way to pipeline these transfers, which are limited to 1 word per every 2 clock

cycles. While the controller is in the initial state, the memory’s write-strobe signal is 0 to not disturb the

Read-Channel controller.

The AXI-Interface (Figure 3.16) has similar behavior but follows the AXI4 protocol. The address

valid-read handshake needs to happen before any data can be transferred. After the data is transferred,

it is checked to see if it was successful through the response channel (B channel): if axi bresp does

not have the OKAY value (an AXI code), then the transfer was unsuccessful and the data is transferred

again.

If the Back-End’s data width (BE DATA W) is larger than the front-end’s (FE DATA W), the data buses

require alignment. The address signal becomes word-aligned, discarding the back-end’s byte offset bits.

These discarded bits are used to align both the write data and strobe (Figure 3.17).
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S
0
: waits for write-thought buffer

-------------------------------------------------
write_ready = write_valid

S
1
: AXI write-address handshake

------------------------------------------------------
axi_awvalid = 1

write_valid = 0
(buffer empty)

write_valid = 1
(buffer not empty)

axi_awready = 1
(address handshake)

reset

S
2
: AXI Data transfer

------------------------------------------------------
axi_wvalid = 1

S3: AXI write response verification
-----------------------------------------------------
axi_bready = 1
write_ready = transf. OKAY* & write_valid 

axi_wready = 0
(waiting for data transfer)

axi_bvalid = 0
(waiting for response handshake)

not OKAY*
or

OKAY* 
& 

write_valid = 1 
 (buffer not empty)

* - OKAY is axi_bresp = 00, received when axi_bvalid = 1 

OKAY* 
& 

write_valid = 0 
 (buffer empty)

axi_wready = 1
(data transfered)

axi_awready = 0
(waiting address handshake)

Figure 3.16: Back-End Write-channel AXI Control-flow.

Write Data and Strobe alignment

Back-end word address

FE_ADDR_W - 1 FE_ADDR_W - 2 FE_ADDR_W - 3Front-end word addressaddr

wstrb

Back-End write-strobe

wdatawdatawdata

Back-End write-data

sel

...

wdata

wdata

FE_BYTE_WBE_BYTE_WFE_ADDR_W

Figure 3.17: Back-End Write-channel alignment.

This results in Narrow transfers [1, p. A3-49], allowing the smaller words to be transferred to a larger

bus. The Write-Channel data width is, therefore, limited to the cache’s front-end word size. For example,

in a 32-bit system, connected to a 256-bit wide memory, each transfer will be limited to 32-bit anyway.
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3.5.2 Read-Channel Controller

The Read-Channel controller ports for both the native and AXI4 interfaces are described in Table 3.8.

Table 3.8: Read-Channel ports.

Parameter Width (bit) Direction Description

Cache Side Native Interface

replace valid 1 input Requests a line replacement

replace addr FE ADDR W
-LINE2MEM W

-BE BYTE W

output Memory block’s base address.

replace 1 output Replacement in action.

read valid 1 output Validates the Back-End Memory’s transfered data.

read addr LINE2MEM W output Addresses the placement in the cache line.

read data input Back-End Memory’s transfered data.

Memory Side Native Interface

mem valid 1 output Validates the read address.

mem addr BE ADDR W output Read address of the memory block’s words.

mem rdata BE DATA W input Read data, used to update the cache line.

mem ready 1 input Ready signal, validates the received read data.

Memory Side AXI Interface

axi arvalid 1 output Validates Read Address.

axi araddr BE ADDR W output AXI’s Read Address, memory block’s initial address.

axi arready 1 input Acknowledges address request.

axi rvalid 1 input Validates the read data sent by the memory.

axi rdata BE DATA W output Read data.

axi rready 1 output Cache acknowledges the transfer, asserted during
line replacement.

axi rresp 2 input Read response signal. Verifies if transfer was legal
(”00” - OKAY). [1, p. A3-54]

axi arlen 8 output Burst’s length, depends on LINE2MEM W [1, 14,
p. A3-48].

axi arsize 3 output Bytes per beat, log2(BE NBYTES) [1, p. A3-49].

axi arburst 2 output Burst type, incremental (01b) [1, p. A3-49].

axi arid AXI ID W output AXI identification tag [1, p. A5-81].

axi arlock 1 output Atomic access. Normal access 0b [1, p. A7-100].

axi arcache 4 output Identifies the type of memory. Default 0011b [1,
p. A4-68].

axi arprot 3 output Permission for illegal transfers, unused. All ac-
cesses are normal, 000b [1, 14, p. A4-75].

axi arqos 4 output QoS identifier, unused, 0000b [1, p. A8-102].
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S
0
: waits for line-replacement ack. 

-------------------------------------------------
replace = 0

replace_valid = 0
(no replacement requested)

replace_valid = 1
(replacement requested)

reset

S
1
: Data transfer/Load cache-line

------------------------------------------------------
mem_valid = 1
word_counter += mem_ready
replace = 1

S
2
: Read latency compensation

-----------------------------------------------------
replace = 1

mem_ready = 0
or

mem_ready = 1
&

word_counter != 1...11
(waiting for data or complete replacement)

mem_ready = 1
&

word_counter = 1...11
(entire line replaced)

Figure 3.18: Back-End Read-channel Native Control-flow.

The native interface’s controller follows the control flow displayed in Figure 3.18. The controller

stays in the initial state S0 while waiting for the request of a line replacement. When signal “replace”

is asserted, the controller goes to state S1 requests a word block from the memory and writes it to the

cache line at 1 word per cycle after it arrives at the back-end. It requests the base address of the main

memory’s memory block and uses a word counter to count the received words. After the last word is

received the controller goes to state S2 for a single cycle to compensate for the Data memory RAM’s

read latency. Afterward, it goes back to its state S0, de-asserting signal ”replace”.

If the back-end’s data width (BE DATA W) is multiple the front-end’s (FE DATA W), the number of

words counted is proportionally shorter. If the back-end’s data width is the same size as the entire

cache line, the burst length is 1 and therefore the word counter is not used.

The AXI interface controller (Figure 3.19) has a similar behavior but uses AXI4 burst transfers. The

AXI burst parameters are derived for synthesis, using the front-end and back-end data widths, and the

cache line’s offset width. Instead of using a word counter, the signal axi rlast is used to know when

the line has been fully replaced. During the burst, each beat (transfer) increments signal read addr

automatically.

Unlike the Write-Channel controller, the response signal, ”axi rresp”, is sent during each beat (trans-

fer) of the burst. This requires the use of a register which sets in the case at least one of the beats was

unsuccessful. After the transfers, the verification of this register can be done at the same time as the

read latency compensation.
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S
0
: waits for replacement request 

-------------------------------------------------
replace = 0

S
1
: AXI read address handshake

------------------------------------------------------
axi_arvalid = 1
replace = 1

replace_valid = 0
(no replacement requested)

replace_valid = 1
(replacement requested)

axi_arready = 1
(address handshake)

reset

S
2
: AXI Data transfer/Load cache line

------------------------------------------------------
axi_rready = 1
replace = 1

S
3
: Data verification and read latency

compensation
-----------------------------------------------------
replace = 1

axi_rvalid = 0
or

axi_rvalid = 1
&

axi_rlast = 0

(waiting for data and line replacement)

At least 1 data-transfer 
(during S

2
)

 wasn't successful

Successful 
transfers

axi_rvalid = 1 
&

axi_rlast = 1
(entire line replaced)

axi_arready = 0
(waiting address handshake)

Figure 3.19: Back-End Read-channel AXI Control-flow.
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3.6 Cache-Control

The Cache-Control module can optionally be implemented using the synthesis parameter ”CTRL CACHE”.

It is used to measure the cache performance, analyze the state of its write-through buffer, or invalidate

its contents. Additionally, the parameter ”CTRL CNT” implements counters for cache hits and misses,

for both read and write accesses. The Cache-Control ports are described in Table 3.9.

Table 3.9: Cache-Control ports.

Parameter Width (bit) Direction Description

reset 1 input Sets counters to ”0” (if implemented).

valid 1 input Valid signal, validates the requested access.

addr CTRL ADDR W input Base address of the requested task.

rdata FE DATA W output Read-data, returns the task’s result (buffer status or
counters).

ready 1 output Ready, acknowledges the request (always 1 clock-
cycle after).

invalidate 1 output Cache-invalidate. Invalidates Cache-Memory.

wtbuf empty 1 input Write-through buffer’s empty signal.

wtbuf full 1 input Write-through buffer’s full signal.

write hit 1 input Write-hit, increments respective counter (if imple-
mented).

write miss 1 input Write-miss, increments respective counter (if imple-
mented).

read hit 1 input Read-hit, increments respective counter (if imple-
mented).

read miss 1 input Read-miss, increments respective counter (if imple-
mented).

The Cache-Control functions are controlled by memory-mapped registers [9, p. 627]. The addresses

of the software accessible can be found in the cache’s Verilog and C header files. In the current imple-

mentation, the registers are accessed from the cache’s front-end, as 32-bit integers when using the C

driver.

The ports write hit, write miss, read hit, and read miss work as enables that cause the respective

counters to increment. One exception is during a read-miss when the cache forces a write-hit in order

to replace the cache line, and the write-hit counter is decremented. To reduce the number of registers,

accessing the total number of hits (or misses) is in fact accessing the output of an adder that adds read

and write hits (or misses). The counters can be reset by hardware (global system reset) or by software.
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Chapter 4

System

This chapter contains a brief introduction to the system where IOb-Cache was implemented, and

presents a multi-level cache implementation with multiple instances of IOb-Cache.

4.1 IOb-SoC

IOb-Cache has been integrated in IOb-SoC [4], an open-source synthesizable system developed by

IObundle in Verilog. Its design can be seen in Figure 4.1.
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UART

RISC-V
CPU

wrapper

external Memory

soft-reset

Boot ROM

RAM

internal Memories

instr bus

data bus

IOb-SoC

AXI

*
additional peripherials

AXI4 bus

UART Rx
UART Tx

Figure 4.1: IOb-SoC module diagram.

The system is designed to allow the integration of multiple user peripherals, accessed through

memory-mapping. Each individual peripheral device is given a specific address range to be accessed.

The main peripherals required for a functional bare-metal system will be briefly described.

The interconnect is implemented with ”split” [15] units, which is the module responsible for connecting

the processor (master) to the remaining peripherals (slaves). The connection is established through
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memory-mapping, where the MSB or the MSB-1 bit of the address selects all peripherals, depending on

whether a secondary memory is not present or present in the system, respectively.

This system is controlled by a RISC-V processor. A CPU wrapper converts the CPU interface sig-

nals to the Native interface used internally throughout the system for interconnecting the different mod-

ules. The wrapper has the necessary combinational and sequential logic for implementing this interface.

Currently, a simple 2-stage machine (PicoRV32 [16, 17]), or a more complex super-scalar multi-issue

processor (SSRV [5, 18]) are supported.

For communications between the system and the host, a UART module (IOb-UART [19]) is inte-

grated. It uses the Universal Asynchronous Receiver / Transmitter protocol (UART) for transmitting and

receiving serial data.

An SRAM memory and a Boot Read-Only Memory (ROM) memory are integrated into a module

called Internal Memory, which also contains a soft reset mechanism for transitioning from the bootloader

to the main program and vice-versa.

The Boot ROM memory contains a program that runs the boot sequence and runs when the system

is reset. This program loads the firmware into the main memory while receiving it from the host using

the UART. After the firmware is loaded, the system is soft-reset, which causes the memory map to be

restructured. After soft reset the system restarts but, instead of running the bootloader program, it starts

fetching instructions from the main memory where the firmware had been previously loaded, specifically

at address 0. When the soft reset register is accessed it toggles a control register which is used to alter

the system’s memory-map. After running the firmware, this register is retoggled and a new soft reset is

issued, causing the system to reboot and run the bootloader again to load the firmware, which thus can

be changed without recompiling the hardware.

External Memory module allows access to an external and larger DRAM memory (DDR3 or DDR4),

and is where the IOb-Cache modules are placed. External Memory module connects the system to an

external DDR memory soft controller provided by the FPGA vendor and using the AXI4 interface. This

explains why AXI4 interfaces have been implemented for the cache back-end.

The IOb-SoC system has been implemented in an XCKU040-1FBVA676 FPGA [20], which is part of

the Xilinx’s Ultrascale FPGA family. A diagram of the FPGA system and board is shown in Figure 4.2.

IOb-SoC

clk
AXI4

Intercon. 

sync

1-to-1

1/x clk ratio

AXI

UART

sys_clk

uart_rx 

uart_tx
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slave master

clk

AXI

PHY
IOB

DDR4

SDRAM

1 GB

ddr_ui_clk

FPGA (PL)

Kyntex Ultrascale Board

USB-UART

Figure 4.2: IOb-SoC FPGA implementation module diagram.
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This board features a 250MHz system clock oscillator and a 1 GB DDR4 Synchronous Dynamic

Random-Access Memory (SDRAM) memory module. The memory controller Physical Interface (PHY)

is implemented using Xilinx’s Memory Interface Generator (MIG) software which generates memory

controller IP cores [21] from user parameters. The controller is implemented with the widely adopted

AXI4 interface which connects to the cache’s back-end.

The memory controller clock has 1/4 of the frequency at which the memory PHY operates. The

range of available frequencies for the DDR4 is between 625 and 933 MHz. This limits the range of clock

frequencies for the memory controller and system if connected using the same clock, to be between

156.25 and 233.25 MHZ. In the current design, the controller is running at 200 MHz, which means the

DDR4 runs at 800 MHz.

The DDR4 module has a bandwidth of x32@1600Mbps, so it would be able to exchange 32-bit

words with the system at a frequency of 1600 MHz, but this frequency is too high for an FPGA to

achieve. Because the controller is only running at 200 MHz, the AXI4 data bus width must be increased

proportionally to the desired memory bandwidth. With a width of 256 bits, the full memory bandwidth

can be put to use. The external memory and cache back-end bus widths need to be configured for 256

bits for this to happen.

The system may not be set to operate at the controller’s frequency range, so connecting it to the

controller requires an asynchronous 1-to-1 AXI-Interconnect IP is also supplied by Xilinx. However, the

Xilinx asynchronous interconnect IP introduces a high latency, so it is best to choose an integer clock

ratio and use the synchronous version.

4.2 IOb-Cache: Multi-Level configuration

IOb-Cache modules can be connected to each other to form multi-level cache systems. A two-level

cache system, composed of an L1-Instruction cache, an L1-Data cache, both connected to a larger

L2-cache is represented in Figure 4.3. The two L1 caches access different types of data, one accesses

instructions, and the other accesses data. The L2 cache merges the accesses of the instruction and

data caches and thus may contain both instructions and data.

The back-end of the L1 instruction and data caches use the Native Interface and are connected to

a 2-to-1 interconnect called ”merge” [15]. The merge unit connects several masters to a slave interface

using a fixed and sequential priority encoder. A master remains connected to a slave until the request

is acknowledged. The back-end of the merge block is connected to the front-end of the L2 cache which

also uses the Native interface. The L2 back-end uses the AXI4 interface and is connected to the memory

controller.

The Cache-Control optional module can only be implemented in the L1-Data cache since it is the only

cache directly accessed by the processor, and the instruction L1 cache does not need one. To access

the L2-cache, either for a cache invalidation or checking of the status of the write-through buffer, the

CTRL IO pins are used instead. The CRL IO interface supports multi-cache systems, so accessing the

Cache-Control module for status verification, shows the status of the downstream connected caches.
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Figure 4.3: External Memory: two-level cache system implementation.

This is necessary during the IOb-SoC booting procedure, to check if the entire firmware has already

been written to the main memory before restarting the system to run it.
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Chapter 5

Results

This chapter presents results on IOb-Cache’s performance and FPGA implementation. A comparison

between IOb-Cache and other open-source caches is also presented.

5.1 Performance

The Dhrystone [22] benchmark is a useful tool for measuring the performance of processors, using

the Dhrystones/s score. The frequency-independent Dhrystone score is called Dhrystone Mega Instruc-

tions per Second (MIPS)/MHz or simply DMIPS. Here the Dhrystone benchmark is used to indirectly

evaluate the cache as the performance of the system translates the performance of the cache if the

processor remains the same. To do that, the Clocks-per-Instruction (CPI) measurement is taken while

running the benchmark, as it provides a more direct indication of the cache performance compared to

the DMIPS figure.

To efficiently test the cache, a pipelined processor is required, with a performance close to 1 CPI

when using an ideal RAM memory. This way it is possible to analyze the average delay of the cache

during memory accesses, Equation 2.1.

The Dhrystone benchmark has one shortcoming for testing the various policies, it is a small program

that can be fitted entirely inside an instruction cache of common size. This shortcoming becomes an ad-

vantage for testing the pipeline operation, since it after full it behaves like a RAM, in a system connected

to a larger SDRAM. Being a RAM, the correct pipeline operation happens with consecutive loads and

stores which should take 1 cycle per instruction. A correct cache design allows for 1-cycle loads and

stores whereas a poorer design will need 2 cycles for load/store instructions.

The tests are run in IOb-SoC [4] (Section 4.1), using the SSRV [5, 18] multi-issue superscalar RISC-

V processor. Despite being multi-issue, the processor was limited to 1 instruction per clock cycle in

the tests, which is a simple setup but allows testing the cache. Connected to the IOb-SoC’s internal

memory (RAM only and no cache), it achieved CPI=1.02, running for 40445 clock cycles. The cache is

implemented following the structure represented in Section 4.2: an L1-Instruction and L1-Data caches

connected to an L2-Unified cache. In the subsections below simulation and FPGA results are presented.
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5.1.1 Simulation

The simulation results are displayed in Table 5.1, with the cache is connected to an AXI4 RAM.

The minimum possible size for 2-level configuration is 48 Bytes, 16 Bytes for each of the 3 caches.

This is the worst possible scenario performance-wise. If the L1s do not have the requested word, neither

does the L2. The large delay in between instructions is caused by the high miss rate, causing accesses

to the main memory, as well as traffic congestion between the L1s and L2 accesses.

Using 2 KB caches, one can see there is no performance difference between the replacement poli-

cies in a 2-way set-associative cache. The way selected is the one that was not the most recently

used in all cases. It also shows the difference in performance between the set-associative and directly

mapped cache. Using a set-associative in the L2-Unified cache represents the largest improvement in

performance (up to 0.315 CPI). If the three caches only use direct mapping, the performance drops by

25.8%.

Using 4 KB caches highlights the differences in performance of the different replacement policies.

The PLRUm policy displays the highest performance in all three caches, while the LRU policy gives the

worst performance. The reduced size of the L1-Instruction (1 KB), and the firmware’s instruction loops

constitutes an environment where replacing the least recently used is not effective, due to low time

locality. The PLRU policies lack memory compared to the LRU and are worse at identifying the most

recently used line. However, this ends up not being a handicap as there is no time locality to exploit. The

L2-Unified is more likely to see a performance improvement with PLRU policies [10, 23]. This results

from the fact L2 is accessing different memory blocks (instructions and data) with inherently low time

locality.

Using 16 KB and 32 KB caches, the size is large enough to fit the program. There is no change in

performance between the different replacement policies. Despite the program being 25 KB in size and

the L1-Instruction caches 4 KB and 8 KB, respectively, the program is not required to fit entirely in these

memories. As the program is executed, the only misses that occur are the initial compulsory misses,

followed by capacity misses that replace the previous non-looping instructions. As the caches are big

enough to store all recently looping code, conflict misses becoming inexistent.

In all the previous examples, the choice of the size for the L1 data cache has little significance since

the Dhrystone benchmark is an instruction-intensive program.
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Table 5.1: Simulation Dhrystone SSRV (IOb-SoC) 32-bit. 100 runs using gcc -O1 optimization. Param-
eters: number of ways (repl. policy), lines, words per line.

L1-Instr L1-Data L2-Unified clock cycles CPI

48 B - Minimum size

1, 2, 2 1, 2, 2 1, 2, 2 319580 8.066

2 KB

2 (LRU), 8, 8 2 (LRU), 8, 8 4 (PLRUm), 8, 8 162147 4.092

2 (PLRUm), 8, 8 2 (PLRUm), 8, 8 4 (PLRUm), 8, 8 162147 4.092

2 (PLRUt), 8, 8 2 (PLRUt), 8, 8 4 (PLRUm), 8, 8 162147 4.092

1, 16, 8 1, 16, 8 4 (PLRUm), 8, 8 174620 4.407

1, 16, 8 1, 16, 8 1, 16, 16 204016 5.149

4 KB

4 (LRU), 8, 8 4 (LRU), 8, 8 8 (LRU), 8, 8 95331 2.406

4 (LRU), 8, 8 4 (LRU), 8, 8 8 (PLRUm), 8, 8 87031 2.196

4 (LRU), 8, 8 4 (LRU), 8, 8 8 (PLRUt), 8, 8 90417 2.282

4 (PLRUm), 8, 8 4 (LRU), 8, 8 8 (PLRUm), 8, 8 79310 2.001

4 (PLRUt), 8, 8 4 (LRU), 8, 8 8 (PLRUm), 8, 8 84854 2.141

4 (PLRUm), 8, 8 4 (PLRUm), 8, 8 8 (PLRUm), 8, 8 79310 2.001

4 (PLRUm), 8, 8 4 (PLRUt), 8, 8 8 (PLRUm), 8, 8 79310 2.001

1, 64, 4 1, 64, 4 1, 64, 8 107668 2.717

8 KB

2, 16, 16 2, 16, 16 4 (LRU), 16, 16 50758 1.281

2, 16, 16 2, 16, 16 4 (PLRUm), 16, 16 50751 1.281

2, 16, 16 2, 16, 16 4 (PLRUt), 16, 16 50758 1.281

1, 32, 16 1, 32, 16 1, 64, 16 77306 1.951

1, 64, 8 1, 64, 8 1,128, 8 71543 1.805

16 KB

4, 16, 16 4, 16, 16 8, 16, 16 41837 1.055

4, 32, 8 4, 32, 8 8, 32, 8 41762 1.055

2, 64, 8 2, 64, 8 4, 64, 8 41886 1.057

1, 64,16 1, 64, 16 1, 128, 16 56848 1.434

1, 128, 8 1, 128, 8 1, 128, 16 54986 1.387

32 KB

8, 16, 16 8, 16, 16 16, 16, 16 41837 1.055

2, 128, 8 2, 128, 8 4, 128, 8 41762 1.054

1, 256, 8 1, 256, 8 1, 256, 16 41811 1.055

2, 64, 16 2, 64, 16 4, 64, 16 41837 1.055
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5.1.2 FPGA

The FPGA system is implemented in the ultrascale FPGA, as described in Section 4.1. It uses a 50

MHz clock, 1/4 of the Memory Interface’s frequency, so it requires the implementation of the synchronous

AXI-Interconnect with a 1:4 clock ratio. The results are presented in Table 5.2.

Table 5.2: FPGA emulation of Dhrystone SSRV (IOb-SoC) 32-bit at 50 MHz. 100 runs using gcc -O1
optimization. Parameters: number of ways (rep. policy), lines, words per line.

L1-Instr L1-Data L2-Unified clock cycles CPI

48 B - Minimum size

1, 2, 2 1, 2, 2 1, 2, 2 513926 12.971

2 KB

2 (PLRUt), 8, 8 2 (PLRUt), 8, 8 4 (PLRUm), 8, 8 185163 4.673

8 KB

2 (PLRUt), 16, 16 2 (PLRUt), 16, 16 4 (PLRUm), 16, 16 51298 1.294

32 KB

2 (PLRUt), 64, 16 2 (PLRUt), 64, 16 4 (PLRUm), 64, 16 42397 1.070

In simulation, the main memory is modeled using an AXI4 RAM description. In the FPGA the

main memory is implemented with a DDR4 external module, with a longer access time. The increased

SDRAM’s access time compared to simulation results in an increase of 60.8% (4.905 CPI) for the 48-

Byte cache. Since it is the smallest cache, its average access time is closest to the SDRAM’s. With the

2 KB cache, the access time only increases 14.2% (0.581 CPI). With 8 KB the cache is large enough to

fit most of the program, and the FPGA times compared to simulation are only 1.01% higher (0.013 CPI).

5.2 Synthesis

In this section, the cache’s synthesis results are analyzed. First the resource utilization for each

individual module is checked, followed by the resources consumed by the entire cache.

The synthesis tool used is Xilinx’s Vivado Design Suite 2017 [24], with the FPGA part ”xcku040-

fbva676-1-c” (AES KU040 Ultrascale). The resources in analyses are: Look-Up Table (LUT); Look-Up-

Table Random-Access-Memory (LUTRAM); Flip-Flop (FF); and Block Random-Access-Memory (BRAM).

For the Block-RAM resources, there are 2 variants: RAMB18, RAMB36 [25, p. 7].

Despite being able to change the cache’s word size with the parameter FE DATA W, it was left to

32-bit, since the cache was only tested in 32-bit systems.

The cache submodules are synthesized using a 100 MHz clock for the resources presented in the

next subsections. The entire cache is synthesized at 100 and 250 MHz clock frequency and respective

resources presented.
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5.2.1 Front-End

The Front-End has two possible configurations, with or without the Cache-Control’s implementation.

The results are represented in Table 5.3. The number of registers to store the input signals: 32 bits for

write-data, 28 bits for the address (word-addressable) and 1 for valid signal is the same with or without

the Cache-Control module. With the Cache-Control module, the area is essentially consumed by the

multiplexers implemented to select the read-data.

Table 5.3: Front-End resources.
CTRL CACHE LUT FF

0 1 67

1 19 67

5.2.2 Back-End

For Back-End module, both the Read-Channel and Write-Channel modules are analyzed individually.

The Back-End is synthesized for data widths of 32 and 256 bits. Table 5.4 shows the Write-Channel’s

resources for both Native and AXI interfaces. The 256-bit back-end adds multiplexers to place the 32-

bit words and 4-bit write-strobe in the back-end’s bus. The AXI bus type adds negligible resources

compared to the Native type.

Table 5.4: Back-End: Write-Channel’s resources.
FE DATA W BE DATA W LUT FF

Native-Interface

32 32 4 1

32 256 35 1

AXI-Interface

32 32 6 2

32 256 40 2

Table 5.4 represents Read-Channel’s resources for both Native and AXI interfaces. The amount of

logic required depends strongly on the width ratio between the main memory word and the cache line.

The Back-End Native-Interface requires an additional 15 LUTs to select which controller accesses the

main memory since both share the same bus.

5.2.3 Resources: Cache-Control

Cache-Control has 2 available implementations, with counters or without them. In a bare Cache-

Control implementation, the 3 LUTs and 3 FFs are the memory-mapped registers, used to select the

functions: invalidate, write-through buffer empty and full. If implemented, each counter requires a 32-

bit register. The large increase in LUTs results from the arithmetic adders. Each counter requires
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Table 5.5: Back-End Read-Channel’s resources.
FE DATA W BE DATA W Cache line Width LUT FF

Native-Interface

32 32 64 4 3

32 32 128 5 4

32 32 256 7 5

32 64 64 4 2

32 64 128 4 3

32 64 256 5 4

32 256 256 4 2

32 256 512 4 3

32 256 1024 5 4

AXI-Interface

32 32 64 7 4

32 32 128 8 5

32 32 256 9 6

32 256 256 5 2

32 256 512 7 4

32 256 1024 8 5

incrementers, and 2 additional adders are required for the number of cache-hits and cache-misses. With

the counters, 7 Cache-Control functions are available, requiring additional memory-mapped registers.

The functions are: retrieving the number of cache hits / misses / read-hits / read-misses / write-hits /

write-misses, and resetting the counters.

Table 5.6: Cache-Control resources.
CTRL CACHE CTRL CNT LUT FF

1 0 3 3

1 1 266 163

5.2.4 Replacement Policy

The Replacement Policy module is analyzed before the Cache-Memory module since the former is

implemented in the latter. The results of the analysis are available in Table 5.7.

The test is divided into 2 sections: single cache line and multiple cache lines. It is not possible to

synthesize the entire cache with a single cache line, so this is only valid for the analysis of this module.

The single cache line results show how many LUTs are required to implement the Policy Info Updater

and Way Select Decoder. The number of FFs represents the number of bits the Policy Info Memory

module needs to store for each set.

45



Table 5.7: Replacement Policy resources.

R.Policy Ways Lines LUT FF

Single cache line

LRU 2 1 3 2

PLRUm 2 1 3 2

PLRUt 2 1 3 1

LRU 4 1 20 8

PLRUm 4 1 8 4

PLRUt 4 1 6 3

LRU 8 1 81 24

PLRUm 8 1 22 8

PLRUt 8 1 13 7

Multiple cache lines

LRU 2 16 26 32

PLRUm 2 16 26 32

PLRUt 2 16 28 16

LRU 4 16 70 128

PLRUm 4 16 42 64

PLRUt 4 16 33 48

LRU 8 16 196 384

PLRUm 8 16 77 128

PLRUt 8 16 56 112

LRU 2 128 222 256

PLRUm 2 128 222 256

PLRUt 2 128 212 128

LRU 4 128 445 1024

PLRUm 4 128 297 512

PLRUt 4 128 259 384

LRU 8 128 1076 3072

PLRUm 8 128 452 1024

PLRUt 8 128 403 896

The multiple cache lines results show the current actual amount of resources required to implement

each replacement policy. The current implementation of the Policy Info Module (PIM) is register-based,

so it requires additional logic (LUTs) to address each set. The number of LUTs is proportional to the

total number of bits in the PIM.

Since the LRU requires N WAYS × log2(N WAYS) bits per set, initially its size grows fast with the

number of ways. In an 8-way set-associative cache with 128 lines, the LRU requires more than twice the
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amount of LUTs and at least thrice the amount of FFs compared with the PLRU policies. In a 2-way set-

associative cache, the replacement policies had the same performance but the PLRUt’s PIM requires

half the number of FFs compared to the other two.

5.2.5 Cache-Memory

Cache-Memory is the module that contains the majority of the cache’s resources. It contains all

the RAM memories and, if configured, the Replacement Policy module too. The synthesis results are

available in Table 5.8.

As mentioned in Section 3.3, Data-Memory infers a RAMB18 blocks for each byte in the cache

line. Since the RAMB18 block is 18-bit wide, roughly half of it is wasted. This issue can be solved by

describing a RAM with multiple byte-enables as in the Vivado Synthesis Guide [25] but unfortunately the

description is not portable for other FPGAs such as Intel’s.

In the configurations with 128 lines or lower, the cache is implemented with LUTRAMs plus output

registers. With 128 lines or more, RAMB18 is used. RAMB36 blocks are never inferred because these

have a 36-bit width. The Write-Through Buffer, which is 64-bit wide, is implemented with LUTRAMs plus

output registers if its depth is 32 or lower, or is implemented with RAMB36 if the depth is higher than 32.

Note that RAMB36 blocks can be configured for 64-bit width and RAMB18 blocks can not.

In general, looking at the results in Table 5.8, the memory resources increase with both the width

and depth of the cache memory, although they increase by steps that have to do with the capacity

of the FPGA RAMB18 and RAMB36 memory resources. Increasing the number of ways, increases

everything, memory, and logic. The logic increases significantly to combine multiple ways and implement

the Replacement Policy module.

5.2.6 IOb-Cache

In this section, the entire cache module is analyzed. Table 5.9 displays the synthesis and timing

results of IOb-Cache using the Native interface for 2 different clock frequencies: 100 and 250 MHz. The

results for IOb-Cache with AXI Back-End are similar and differ only in 15 LUTs and 2 FFs.

The implementation differs for the 2 clock frequencies. The used memory is enough for BRAMs to be

inferred for both the Tag and Data memories. For 100 MHz, the critical-path is from Tag memory output

to a Data memory write enable signal. This path is caused by the signal way hit, which results from the

tag comparison and respective validation, and needs to be connected to write enable bits on write-hit

access. However, for 250 MHz the synthesis tool deliberately decides to implement the Tag-Memory

with LUTRAMs, with a stage register at the output, to be able to meet the timing constraint.
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Table 5.8: Cache-Memory resources.

Ways R.Policy Lines Words/line LUT LUTRAM FF RAMB36 RAMB18

1 KB

1 16 16 496 534 599 1 0

1 64 4 292 128 239 1 1

1 128 2 300 0 174 1 9

2 KB

1 32 16 548 533 614 1 0

1 128 4 341 0 175 1 17

2 PLRUt 16 16 950 1068 1167 1 0

4 KB

1 32 32 995 1044 1126 1 0

1 128 8 405 0 176 1 33

2 PLRUt 128 4 819 0 433 1 34

8 KB

1 128 16 551 0 177 1 65

2 LRU 128 8 1037 0 562 1 66

2 PLRUm 128 8 1037 0 562 1 66

2 PLRUt 128 8 1003 0 434 1 66

16 KB

1 128 32 957 0 178 1 129

1 512 8 933 0 560 1 33

4 LRU 128 8 2055 0 1590 1 132

4 PLRUm 128 8 1913 0 1078 1 132

4 PLRUt 128 8 1877 0 950 1 132

4 PLRUt 64 16 2282 0 1845 1 68

32 KB

1 128 64 1760 0 179 1 257

1 1024 8 1616 0 1072 1 33

8 LRU 128 8 3935 0 4158 1 264

8 PLRUm 128 8 3341 0 2110 1 264

8 PLRUt 128 8 3293 0 1982 1 264

48



Table 5.9: IOb-Cache (Native) resource and timing analysis.

Ways R.Policy Lines Words/line LUT LUTRAM FF RAMB36 RAMB18 WNS

100 MHz (10 ns)

4 KB

1 128 8 431 0 249 1 33 4.047

4 PLRUm 16 16 1727 1068 2407 1 0 3.212

1 128 8 413 0 251 1 33

8 KB

2 PLRUt 128 8 1025 0 509 1 66 2.977

16 KB

4 PLRUm 128 8 1940 0 1154 1 132 2.158

32 KB

4 PLRUm 256 8 2961 0 2187 1 132 1.199

1 1024 8 1638 0 1145 1 33 4.003

250 MHz (4 ns)

4 KB

1 128 8 510 40 269 1 32 0.398

4 PLRUm 16 16 1730 1068 2407 1 0 0.024

8 KB

2 PLRUt 128 8 1084 80 549 1 64 0.228

16 KB

4 PLRUm 128 8 1974 160 1234 1 128 0.103

32 KB

1 1024 8 1714 272 1162 1 32 0.523

4 PLRUm 256 8 2981 304 2289 1 128 -0.120
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5.3 Open-Source Caches

In this chapter, the IOb-Cache is compared with the configurable PoC.cache design included in the

PoC-Library [8] library of open-source cores. PoC.cache is the most competitive open-source cache

one was able to find, so the other caches mentioned in Chapter 2 are not evaluated here as clearly they

cannot compete with IOb-Cache or PoC.cache. The comparison between the two caches is available in

Table 5.10 below.

In addition to the information in Table 5.10, the following remarks are needed. The data-width of

the back-end of PoC.cache is fixed to the cache line’s size, and therefore not configurable to be smaller

such as in IOb-Cache. The PoC.cache tag and valid memories are implemented with distributed LU-

TRAM and registers, respectively, to combinatorially check for a hit and achieve 1 read per clock cycle.

Lastly, despite using the Write-Though policy, PoC.cache does not have a buffer and accesses the main

memory for write transfers, which is comparatively slower.

Based on the information in Table 5.10, the following conclusions can be drawn. There are 2 points

where PoC.cache is better than IOb-cache: (1) the implementation of the cache invalidate function and

(2) the implementation of a fully associative cache. PoC.cache is able to invalidate individual lines

whereas IOb-Cache can only invalidate the entire cache. PoC.cache can be configured as a fully-

associative (single set) cache and IOb-Cache needs at least 2 sets. However, besides its theoretical

interest fully-associative caches are seldom used in practice.

In the remaining features, IOb-Cache is better than PoC.cache: configurable back-end size with AXI4

interface as an option; write-through buffer and independent controller for fast, most of the time 1-cycle

writing (PoC.cache only supports 1-cycle reads); more replacement policies to choose from; a modular

design that allows changing both front and back-ends without affecting the cache’s core functionality.

Both PoC.cache and IOb-cache have the same issue of implementing the Tag-Memory and Policy

Info Module using registers, and thus consuming more silicon area than necessary. However, because

IOb-Cache is designed to work with the 1-cycle read latency of RAM, it can easily be upgraded to replace

these memories with RAMs while PoC.cache needs more drastic design changes.
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Table 5.10: Comparison between PoC.cache and IOb-Cache.

PoC.cache IOb-Cache

HDL VHDL Verilog

Configurability

num. of ways Yes Yes

num. of lines Yes Yes

num. of words/line Yes Yes

back mem.’s width Yes Yes

Mapping

Direct Yes Yes

Set-Associative Yes Yes

Full-Associative Yes No

Policies

Write write-through not alloc. write-through not alloc.

W.Through Buffer No Yes

Replacement LRU LRU, PLRUm, PLRUt

Back-End Connectivity

Native Yes Yes

AXI No AXI4

Implementation

Main-control FSM Data-path

Data-Memory BRAM BRAM

Tag-Memory LUTRAM BRAM

Valid-Memory Register Register

Rep-Pol. Mem Register Register

Invalidate Yes Yes

Inval. source input port input port + aux.module

Performance (best case scenario)

clk/read (hit) 1 1

clk/write 2 1

Ready assertion same cycle as valid req. cycle after valid req.

Read-Data availability cycle after ready same cycle as ready

New Valid req. cycle after ready same cycle as ready
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Chapter 6

Conclusions

In this thesis IOb-Cache, a high-performance configurable open-source cache is developed. IOb-

Cache is being used in dozens of projects. It is currently integrated into the IOb-SoC Github repository,

which has 16 stars and is being used in 38 projects (forks). In the Github cloud community, it is currently

the only Verilog cache found by its search tool, with this level of configurability, that supports pipelined

CPU architectures, and the popular AXI4 bus interface.

The cache is composed of 3 modules: Front-End, Cache-Memory, and Back-End. The Front-End

interfaces the processor with the cache. The Cache-Memory contains the memories and the cache’s

main controller. The main controller is implemented by a streamlined datapath that evaluates every

necessary condition for read and write accesses. The Back-End implements Native and AXI interfaces,

allowing flexibility in connecting to 3rd party memory controllers (likely using an AXI interface), and other

cache levels (likely using the Native interface). The The native interface follows a pipelined valid-ready

protocol, while the AXI4 interface is a full master bus implementation. Each interface has a specific

controller for write and read accesses. The Back-End’s Write-Channel module is responsible for the

write accesses: it reads data from the write-through buffer and writes them to the main memory. The

Back-End’s Read-Channel module fetches lines from the main memory and writes them to the cache

during a cache line replacement. An optional module called Cache-Control can be selected. This module

implements cache performance meters, and analyses write-through buffer states and cache invalidates.

These functions are controlled by the CPU using memory-mapped registers. When the Cache-Control

module is present, the Front-End module acts as a splitter between accesses to Cache-Memory or the

Cache-Control modules, also through memory-mapping.

In the remainder of this chapter the main achievements of this work and the main directions for future

work are outlined.

6.1 Achievements

In this work, several important achievements deserve to be highlighted. The the following list high-

lights them.
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• The cache supports pipelined memory loads and stores, honoring 1 request per clock cycle. The

available configurations revolve around the cache’s dimensions, replacement policies, and back-

end memory interface data-width. Given the 1-cycle latency present in RAMs, a request can be

served while processing the next, which results in a throughput of 1 request per clock-cycle and

latency of 2 clock cycles for hit addresses.

• The cache has a modular design that allows keeping its core functionality independent from its

interfaces intact, implemented by the Front-End and Back-End modules.

• The cache is able to pass high frequency (250 MHz) timing requirements for a Xilinx Ultrascale

FPGA, in a large number of configurations, including the 32 KB direct-mapped or the 8KB 4-way

set-associative configurations.

• If large enough, the results show that its performance is close to that of having a fast on-chip RAM

connected to the CPU. Using the multi-issue superscalar SSRV CPU, which has CPI=1.02 when

connected to a RAM, the cache achieved CPI=1.07.

6.2 Future Work

IOb-Cache can still be further improved beyond the development time allocated to it. The main

improvements are listed below in decreasing priority:

• Increase resource efficiency by reducing the amount of logic and memory used. Both the Valid-

Memory and PIM modules would be more efficiently implemented with RAM; the Valid Memory

could be merged with the Tag-Memory adding only 1 bit to its width. This would eliminate many

registers and logic but the ability to invalidate the cache in a single cycle would be lost, as each line

would have to be accessed for invalidation using a hardware or software scheme. Implementing

the back-end controllers with logic datapaths instead of FSMs is not expected to further reduce the

resources used but it would definitely improve the code’s readability.

• Implementation of the Write-Back Write-Allocate policy. Currently, only the write-Through policy is

supported, which limits the write-bus capacity to the cache’s word width and uses more bandwidth

of the memory controller, blocking other devices they may need to access the external memory.

Using the write-back policy it is possible to optimize this bandwidth and the general performance

for some applications. Ideally, these two policies should be configurable.

• Improve the Cache-Control module. The current Cache-Control module is very crude, especially

the invalidate function. It should be possible to invalidate a single selected cache line, which would

require an address decoder. Alternatively, merging the Valid memory with the Tag memory as

proposed before solves this problem. Moreover, if the write-back policy is implemented, it will need

a line flush function, which is automatically guaranteed by the ability to individually select lines for

invalidation.
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• Cache Coherency. The current cache is weak for multi-processor systems since it lacks a co-

herency controller. A dedicated module and interface to implement a cache coherency algorithm

would significantly expand the usability of IOb-Cache.
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