
Artificial Intelligence for the Analysis of Structures in Civil Engineering

Nuno Pinhão
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Abstract

The analysis and design of structures rely on nu-
merical models that are computationally very ex-
pensive in the general nonlinear case. In recent
years machine learning has been used to approxi-
mate functions in many domains, so there is a pos-
sibility to use it to approximate the structure re-
sponses of new designs of structures in civil engi-
neering. In this work, we explore data driven ap-
proaches to calculate the responses of new designs
of beam structures. We consider linear and nonlin-
ear beam models, investigate different neural net-
works architectures, calculate relevant structure re-
sponses and behaviours, and validate it in relation
to precise numerical simulations. Our results show
that neural networks can approximate the behaviour
of realistic beam structures to predict the moments,
tensions, and maximum load, all this 1000x faster
than the corresponding numerical simulation. This
work can be used as a tool to quickly help an engi-
neer to validate several variants of preliminary de-
signs of new structures before committing to a long
precise numerical simulation.

1 Introduction
Machine Learning has proven to be efficient and effective in
approximating very complex problems such as function re-
gression, pattern recognition or time series prediction [Lopez
et al., 2008] and when enough data is available, Neural Net-
works are extremely useful at complex nonlinear problems
[Chaudhary et al., 2007]. Compared with more traditional
machine learning techniques, Neural Networks do not require
as much effort in feature selection and input processing since
they learn through their own errors.

In civil engineering, specially in structure design, very
complex and computationally expensive simulations are nec-
essary to optimize the structure parameters to achieve a good
efficiency in terms of safety, constraint satisfaction, and re-
duced cost. Only recently have authors considered the idea of
complementing the slow and precise numerical simulations
with approximate and fast learned solutions[Salehi and Bur-
gueno, 2018]. This combination has the potential to allow an

engineer to pre-validate hundreds of designs in a matter of
minutes instead of days.

1.1 Motivation
The analysis and design of civil engineering structures span
a wide range of complex phenomena, corresponding to non-
linear behaviours. Those behaviours are evaluated through
sophisticated numerical models, which require some compu-
tational effort. Hence, in a preliminary design of a struc-
ture simplified methods are applied (some times hand calcula-
tions), which have a limited accuracy. However, when dealing
with non-linear materials or forms on the structure, complex
non-linear equations need to be solved. Conventional meth-
ods of solving these equations such as FEM (Finite Element
Method), can be very time consuming and require a lot of
computational effort.

This work aims at finding out whether neural networks can
be an effective alternative for approximate the structure re-
sponses to guide the preliminary design and study of new
structures. With a precise and accurate prediction of the struc-
ture responses and behaviours, we could estimate the safety of
a structure scenario without having to calculate the complex
non linear equations, therefore improving significantly the
computational time and effort when laying out a new struc-
ture design.

In particular, for this work, we will study different types
of beam designs. Beams are one of the main building block
of all the structures, being present in bridges and high-rise
buildings. We study beams under different types of loads and
find ways to model this analysis problem as a regression prob-
lem. We then need to create a dataset of relevant structure re-
sponses, such as bending moments, displacements, rotations
and curvatures from those beams structures to then train neu-
ral networks. After having a learned model, we need to study
how that learned neural networks can be used to extract in-
formation such as bending moments, rotation, and maximum
load.

1.2 Contributions:
Our contributions are:

• study of neural networks to approximate

• use of neural networks predict maximum load



2 Related Work
2.1 Neural Networks
Biology inspiration
Artificial Neural Networks are inspired by the way the human
brain works. A human brain can process enormous amounts
of information using the data obtained by the human senses
(touch, sight, hearing, smell and taste). This data is pro-
cessed through neurons, which pass electrical signals through
them. The human brain can learn simply because synapses
can adapt, by changing its number of vesicles or the num-
ber of receptor molecules, synapses change their effects and
adapt their own weights. This can make the human brain
learn to perform every kind of activity such as recognizing
objects, understand language, movements of the body. Much
like Human neural networks, artificial neural networks also
learn their functions by adapting weights.

Definition and Structure
An Artificial Neural Network is composed by at least three
layers: the input layer which is the information represented
in nodes that we give to our model; the output layer that is
the computed output the network predicted giving the input;
and the hidden layer, which can be more than one, the more
hidden layers a network has the deeper the network is.

Each Layer is made of a certain number of nodes or neu-
rons, these neurons represent values and transmit their values
as signals to the neurons in the next layer that they are con-
nected to. Neurons use an Activation Function to compute
their own value using the values that were signalled to them
from previous neurons, their own weight, and bias values.
The connection between the Neurons can also vary, in most
cases a NN (Neural Network) is densely connected, mean-
ing every neuron is connected to every neuron in the adjacent
layer.

Figure 1: Neural Network Structure

Neural Networks Architecture
A Neural Network’s architecture represents its number of hid-
den layers (depth), number of nodes or neurons in each layer
(width), the connections between nodes and layers and the ac-
tivation functions used in the layers to determine connection
weights [Fausett, 2008].

Choosing the optimal number of hidden layers and nodes
is one of the most difficult tasks when building a NN, because

too few can lead to high training error but too many can also
lead to high generalization errors [Lee et al., 2018].

Training
The process of training a Neural Network has 2 phases:

• The feedforward phase, where neurons using their
weights and bias and an Activation Function compute
and transmit the values to the layers ahead until the out-
put layer computes some final value.

• Then there is the backpropagation phase where the neu-
rons will update their values of weight and bias based on
the error of the output in relation to the true value, this
error is calculated by a function called the loss function,
these two phases repeat until the error is low enough,
each repetition is called an epoch.

Popular loss functions used in Neural Networks are mean
squared error, mean absolute error or mean squared logarith-
mic error, the best option may vary between each problem to
solve.

Activation Functions and Optimizers
Activation Functions are used in feedforward to, giving the
weights and bias of each neuron, compute the respective out-
put signals [Lee et al., 2018]. Across many possible Activa-
tion Functions, ReLu has proven to be the most widely used
with most success [Nwankpa et al., 2018]. In [Lee et al.,
2018] ReLu was shown outperforming Sigmoid, Tanh and
Softplus activation functions, achieving a lower mean square
loss in a 1000 epoch training.

Other parameters we can change are loss functions to eval-
uate our network and optimizers for Back-propagation when
training our Neural Network. In [Lee et al., 2018] com-
parisons between optimizers SGD, AdaGrad, Adadelta, RM-
SProp and Adam were made, theoretically Adam should be
the best overall choice and it obtained the best performance
in training, however, conclusions were that the most efficient
method depends on problems and conditions.

Convolutional Neural Networks
Neural Networks are also very popular in image recognition
problems, with CNN (Convolutional Neural Networks) pre-
vailing in this topic. CNN were inspired by biological pro-
cesses, their connectivity patterns between neurons resembles
the organization of the animal visual cortex and making use
of its pooling process and sparsely connected neurons, CNN
are remarkably used for image processing in Computer Sci-
ence. Among all NN architectures CNN have established as
the most popular in civil engineering over the last years, since
CNN are capable of capturing the 2D topologies, because
of a pooling process and sparsely connected neurons[Salehi
and Burgueno, 2018]. Recent studies have also showed that
CNNs can perform better in both speed and accuracy com-
pared to conventional Artificial Intelligence methods and can
extract and learn optimal features from raw data [Salehi and
Burgueno, 2018].

2.2 Artificial Intelligence in Civil Engineering
The analysis and design of structures rely on the numerical
models, which are derived in order to accurately represent



the real behaviour of a structure. Essentially, for the analy-
sis of stresses and deformations of a structure, models based
on the finite element method are widely and successfully
adopted in structural engineering. However, in an attempt to
improve some computational time efficiency, recently there
has been a growing interest in applying Artificial Intelligence
in Civil Engineering projects [Salehi and Burgueno, 2018].
Mainly with the use of machine learning methods, including
deep neural networks, for complementing the model-based
approaches, e.g. finite-element simulations, that are the state-
of-the-art in civil engineering.

Today one of the biggest areas of application of AI in Civil
Engineering is in aiding SHM (Structure Health Monitoring)
and for the past two decades, significant progress in devel-
oping SHM models for different kinds of structures has been
made [Salehi and Burgueno, 2018].The capabilities and the
recent developments of artificial intelligence algorithms has
made possible to analyse significant amounts of data mea-
sured ”in-situ” from the real behaviour of structures. De-
pending on the structure relevance, it is common to have
the structures monitored (e.g., reading accelerations, defor-
mations) and thus access to a valuable data representing the
real behaviour of structures. The use of such data allow
to have a better insight on the structural behaviour and to
tune the corresponding modelling. AI is an excellent auxil-
iary tool providing an efficient and faster way to deal with
the structural health monitoring of structures, identifying pat-
terns, contributing to select the most appropriate parameters
to read and the corresponding location, making possible then,
to act with regard to the safety of the structure as fast as pos-
sible. On the other hand, by being capable of analysing the
significant amount of data from the structure monitoring, it
allows to build a reliable digital twin of the structure.

Neural Networks at Predicting Structure Behaviour
Another line of research that has been much less explored is
to use AI to improve the calculation time of design parame-
ters. Neural Networks can be a good tool for this computa-
tions [Chaudhary et al., 2007] [Kaczmarek and Szymańska,
2016]. Today, FEM are commonly used to calculate struc-
ture behaviours, however when dealing with nonlinear exam-
ples, FEM needs to solve non-linear PDE (Partial Differen-
tial Equations) and that can lead to solving systems of non-
linear equations, which is highly computationally expensive
[Al-Aradi et al., 2018]. Since FEM approach is to discretize
the whole computational domain in small regions, compute
some form of solution and then gather all regions to put the
whole global solution together, non-linearity can be too ex-
pensive and hard to calculate and whenever we decide to
change something in the initial conditions and design param-
eters all the calculations must restart from the beginning[Pe-
dro et al., 2019]. Using AI, it could be possible to calculate
directly the structure behaviour values or integrate AI mod-
els in the FEM to speed up the more computationally expen-
sive steps, either way the goal would be to make calculations
quicker and save both human and machine time and effort
when designing a new structure, making also possible to try
more alternative designs to find the best possible one.

For the design of civil engineering structures, the cor-

responding structural behaviour of its structural elements
(beams, slabs columns) and the structural system as whole
has to be evaluated. This corresponds to determine the dis-
tribution of integral forces and stresses, displacements, defor-
mations and accelerations. All this data will allow to evalu-
ate the performance of the structure under service conditions
and to evaluate the safety to ultimate limit states (i.,e collapse
of the structure) In a non-linear scenario, determining such
responses of beams and other structural elements can be a
computational challenge, particularly due to geometrical an
physical non-linear behaviours. As for example implement-
ing the reinforced concrete elements deflections are hard to
compute because of the non-linear stress-strain relationship
of and steel [Kaczmarek and Szymańska, 2016]. Neural Net-
works can be a valuable tool to compute these calculations.
Neural Networks capabilities at prediction, approximation,
grouping, interpolation have always been an aid at solving en-
gineering problems like non-destructive testing results analy-
sis, construction processes planning or geotechnical problems
[Kaczmarek and Szymańska, 2016].

3 Analysis of Beam Structures
In this section we provide a quick overview of beam struc-
tures to understand the difficulties and uses.

First we start with simple linear scenarios, focusing on the
neural network development. This linear cases could already
prove the potential of neural networks at modeling structure
responses. Only after proving that initial idea, we escalate
into more complex and non linear scenarios. These scenarios
could show improvement in computational time and effort of
the NN model compared to conventional FEM based proce-
dure.

Inside our beam scenarios, there are 2 main parameters that
can vary, as seen in Fig. 2. First, the size of the beams, not
only in the actual length in meters of each beam but also if
it is a single span beam or a multiple span continuous beam.
Second, the type of load on the beam, not only in its magni-
tude but also in its type, being concentrated in one or more
points or evenly distributed across one beam.

Figure 2: 1-Span Beam Diagram (Concentrated Load)

We then needed some form of representation to translate
this information into a form capable of being read by Neural
Networks. What we did was to discretize the whole beam
model into X positions, where we could have a load or not,
and simply place a value of 1 if there is a load, or a value of
0 if there is not any load. Figure 2 show this interpretation as



well as the first scenario we chose for the first test, that was a
1-span beam with one concentrated load.

3.1 Structure Behaviours and Responses
We also need to know which behaviours and results we want
to predict.

For the design of a beam structure, it is required to evaluate
several parameters characterising the structural response due
to the applied load. A wrong evaluation of those parameters
can lead to designing a structure that is unsafe and that could
have catastrophic consequences. As our goal is to create a
model that approximate the real values of these parameters in
the preliminary phase, it is important that we can accurately
evaluate the most important and significant behaviours and
structure responses. Factors such as the Bending Moment,
that corresponds to an internal force associated with the beam
flexure introduced by the loading. Or Rotation and Section
Curvature, that show how much the structure displaces from
its undeformed shape after subjected to the load. These re-
sponses evaluate the safety of a beam design.

Non linearity
An important parameter to know when designing beam struc-
ture is the maximum force it can withstand safely without
causing damage to its structure, which is commonly known
as the beam load capacity. But nonlinear behaviour can be
challenging to predict with Neural Networks. To understand
why, we take the example of the material we’ve later chosen
for the tests, which is admitted to be elasto-plastic. This non-
linear material on our structure will have 3 different phases
during the stress test that we want to predict. The first one
is when the beam has an elastic behaviour behaviour, as load
increases, some point in the beam will reach its bending yield
moment and eventually will become fully yielded, this will
form the first plastic hinge and we enter the second phase that
is the plastic behaviour, meaning additional load will be re-
distributed to other parts of the structure as the hinge rotates.
Eventually other hinges will be formed as the whole process
repeats, until there are enough hinges to make the structure
collapse (mechanism), the final third phase is after the struc-
ture collapsed, we will still have to predict this phase with
NN to find out the beam load capacity.

One way to know the values of force that cause a plastic
hinge is calculating results for increasing load in a scenario,
and then combining the bending moment with the rotation in
a plot. Because after plastic hinges occur, the plastic hinges
allow free rotations to distribute the load along the beam, con-
sequently the rotation levels increase even without increasing
the load. This means we can identify the force necessary
to create the plastic hinges by plotting the bending moment
and rotations together and observe when the bending moment
stops increasing but the plastic hinge allows free rotations so
the rotation levels keeps increasing.

Yield Moment and Maximum Force Supported in
ABAQUS
To show how we can plot the Bending Moment with the Rota-
tion values to calculate the force to cause a plastic hinge, we
present an example with data we obtained from ABAQUS.
So, for the same beam design, we did twenty simulations,

each with a different value of load, loads changed from 30kN
to 600kN, increasing 30kN in each simulation. Knowing the
plastic hinges would form in position 2 and 6, we extracted
the values of bending moment and rotation for those positions
in each one of the 20 simulations and plotted them together.

Figure 3: Moment vs Rotation at position 2 meters

Figure 4: Moment vs Rotation at position 6 meters (support)

Figures 3 and 4 show these graphs, where each point is rep-
resented with the value of load that originated it. It is simple
to observe that at a certain point the slope of these graphs be-
comes null which is due to the fact of the bending moment
stopped increasing but the rotation kept increasing. We can
understand that this means the load has reached the maximum
load before a plastic hinge occurs. Since the value of load that
originated this point is 1609kN for the position 2 graph but for
the position 6 graph it is 1795kN, it means that the first plas-
tic hinges occurs in position 2 when load is 1609kN and we
enter a elastoplastic regime, only when the load is 1795kN
the second plastic hinge occurs in position 6 and that would
cause the structure to collapse. It would be interesting to try
to predict this with Neural Networks.



Using Section Curvature to identify plastic hinges
positions

To this end, it would be needed to determine the positions
where the plastic hinges will occur, only then we can predict
the Bending Moment vs Rotation graphs on those positions
and find the magnitude of the forces that cause the plastic
hinges. One can find this out by looking at the section cur-
vature values after the analysis of a beam. Just like Rotation,
Section Curvature also represents how much a node rotates.
After plastic hinges occur and as load increases, the plastic
hinges will rotate to distribute the load along the beam. Ob-
serving the nodes where these values are the highest, we can
assume that those are the nodes where the plastic hinges oc-
curred.

Figure 5: Section Curvature along the beam

Figure 5 is the result of twenty ABAQUS simulations of
the same scenario with increasing loads. We can see that as
the load input increases, the curvature value spikes in position
2 and 6, this is because in this scenario, the plastic hinges
occurred in the positions 2 and 6.

This is the method we will use to know the positions of the
plastic hinges on the beam, and after that, plot the bending
moment vs rotation in those positions to find out what are the
minimum loads to cause the plastic hinges and consequently
find the maximum load supported by the beam.

Most conventional methods of calculating structure re-
sponses are based on FEM. FEM is numerical procedure
to determine approximate solutions of differential equations,
FEM approach is to subdivide the domain in smaller parts
called the finite elements and calculate solutions for those
smaller parts before putting everything together. However,
structure characteristics such as the material properties or the
shape of the structure can involve non linearity. This can
make FEM a procedure much harder to solve that even the
most advanced software can take an immense amount of time
to complete a simulation.

In this dissertation, we focused on beam scenarios, looking
to significantly improve the time and effort of laying out a
new beam design, by using a neural network model that can
calculate an approximate solution almost instantly.

4 Approximating the Behavior of Beam
Structures with Neural Networks

Having defined the beams representations and learning how
to obtain the metrics we needed, now we could settle the beam
scenarios and simulate all examples of beams to create the
datasets. Then, create the neural networks and train them
with the datasets, so we can finally use the neural networks to
predict new designs and evaluate the results.

We considered 4 scenarios in total, linear single span
beams, linear 2-span beams, non-linear 2-span beams and
non-linear 3-span beams.

4.1 Linear 1-Span Beams
We used the Linear examples as an initial proof that NNs
can predict beam structural responses, and only predicted the
Bending Moments and Deflections.

For the 1-span beams we discretized the whole beam in 11
positions equidistant from each other, the position of the load
could be on any of the 11 positions of the beam except the
extremity, so it could vary through 9 possible positions.

We choose the 1-span beam as our first scenario exactly
because it is simple and linear, to create the dataset neces-
sary for these beams we could simply use python to solve the
polynomial equations, this helped save a lot of time in the
data gathering phase. We calculated 3 different datasets for
this 1-span beam scenario, one with a concentrated load de-
flection, another with concentrated load bending moment and
then with a uniform load deflection.

The equations calculated to create the data necessary to
train the different neural networks were the following:
Concentrated Load Deflection

y(x) =
Pbx

6EI
(L2 − x2 − b2)

Where P is the Force of the Load, E is the Young’s mod-
ulus and I is the area moment of inertia, which are all con-
stant along the beam and multiplied by the whole formula, so
we can ignore them for now because we can simply multiply
them after the NN prediction. L is the size of the Beam, b
represents the distant between the position of the load and the
end of the beam and x represents the position where we are
calculating the deflection.

The data-set included the dimension of L that varied from
1 to 101, the position of the load P that could be on any of the
9 possible positions and the resulting Deflection value in each
one of the 11 positions. The data-set had 10 000 samples.
Concentrated Load Bending Moment

y(x) =
Pbx

L

This was the formula used to calculate the Beding Moment
for the 1-span beam.
Uniform Load Deflection

y(x) =
Px

24EI
(L3 − 2Lx2 + x3)

And finally this was the formula used to calculate the Deflec-
tion data for the Uniform Load 1-span beam. The variables



and dataset size are the same as before. This time, since the
position of the load was constant, the dataset only included
the dimensions of L, varying between 1 and 101 as well, and
the values of Deflection in each position.

4.2 Linear 2-Span Beams
Still in the linear examples we decided to test a 2-span Beam
with a concentrated load as seen in Figure 6. For this beam
we only created a dataset with the values of deflection. The
dataset for this scenario was composed with the size of each
span (varying between 1 and 10), the position of the load,
the force created by the load (varying between 1 and 100)
and the resulting deflection values in each positions of the
whole composite beam. This time and henceforth the data
was obtained with the use of ABAQUS.

Figure 6: Linear 2-span Beam Diagram

4.3 Non Linear 2-Span Beams
For the non linear scenarios, we changed the material of our
beams to an elastoplastic material that introduces non linear-
ity in the behaviour and therefore in the calculations. Here is
where we will see the potential of neural networks computa-
tional time and efficiency, since the first linear examples are
also very quickly computed with traditional methods using
FEM, but non linear ones can take a long time to calculate.

Figure 7: Scenario for the Non-Linear 2-Span Beams

The scenario for our first nonlinear tests is the one rep-
resented in Figure 7. We chose a 2-span beam where each
span has 6 meters, so 12 meters in total. The material cho-
sen is elastoplastic to introduce nonlinear behaviour and the
beam is pinned on the edges. Each span has three concen-
trated loads, two on the first span and one on the second span.
The first concentrated load has a force of Q while the second
and third have βQ and αQ, respectively. For simplicity we
discretized the beam in thirteen positions, one for each meter
of the beam. So, six positions for each span, with position
0 and 12 being the pinned edges and position 6 the middle
support.

Various examples were then computed for this scenario
where we varied the position and magnitude of the loads. Ex-
cluding the support positions, the first two loads could take
any position on the first span and the third load could take
any position on the second span. The magnitude of the loads
varied from 10kN to 3000kN. β and α could take the values
0.5, 1 or 2. We simulated in ABAQUS, 70.000 random exam-
ples inside the domain of the scenario. We extracted values of
Section Curvature, Bending Moment and Rotation at the end
of simulation. In our datasets, we had information about the
positions of the loads, their magnitudes and the values of Sec-
tion Curvature, Bending Moment and Rotation in each one of
the thirteen nodes of the beam.

Non Linear 3-Span Beams

Figure 8: Scenario for the Non-Linear 3-Span Beams

We then escalated into a 3-span scenario, this would be
the hardest scenario we would try to predict with NN. Rep-
resented in Figure 8, our beams were composed by 3 spans
that could vary in size from 1 to 10 meters, the material was
elastoplastic and the edge supports were pinned. One of the
spans had a uniform load while the other two had a concen-
trated load in the middle, the span that had the uniform load
could be in the middle or on the edges, the uniform load had
a magnitude of Q while the the other two had magnitudes of
α Q and β Q respectively. To simplify and to able our NN
to predict all the possible examples, we discretized the whole
beam in 31 positions, 11 for each span, sharing the edges with
the next one.

To create the dataset we simulated around 70.000 random
examples. In each example we varied which span had the
uniform load (middle or edge), the size of each span, (from
1 to 10 meters), the magnitude of the load Q(from 10kN to
3700kN) and β and α that could take the values 0.5, 1 or
2. Structure responses such as Rotations, Section Curvatures
and Bending Moments, as well as input information such as
the load types, magnitude and positions and the beam sizes
were then extracted to build the datasets to train the neural
networks.

4.4 Neural Network Models
Having created all the datasets for all the scenarios developed,
all that is left is to create the neural networks, train them with
the datasets for each scenario and evaluate the predictions.

Simple MLP Network
The first NN created was a simple NN, represented in Fig-
ure 8. This NN was only used for the linear examples, it
takes as input 12 nodes, 11 representing the 11 positions of
the beam with values either 0 or 1 depending on the existence
of a load and another node to represent the size of the beam.



This Network has 3 hidden layers with 64, 32 and 24 neurons
respectively. As for the output layer, 11 nodes are computed
representing the values of deflection or bending moment in
each of the 11 positions of the beam.

Figure 9: First simple NN tested for Linear examples

Complex MLP/CNN Network
We then decided to test a different NN architecture, because
in all our scenarios we had n equally distant points to rep-
resent our beam, so a valid argument could be made to use
CNN for its uniformly distributed weights and transition in-
variance on the nodes. This network is a more complex NN
(represented in Figure 9, for the 2-span non linear scenario),
it only takes as the input layer the nodes that represent the
positions of the beam (this number varied depending on the
scenario), then goes through Hidden Convolution Layers be-
fore we concatenate the rest of the information like the size of
the beams or magnitudes of loads, depending on the scenario.
The next layers are normal densely connected, before giving
the output with the value of of the structure response in each
one of the positions. All these layers had ReLu as the activa-
tion function, that was proven to be the one with the fastest
convergence. Also, the loss function with best convergence
was Mean Squared Error, and the best optimizer was Adam
because of the adaptive learning rate.

This architecture was used for all the linear and nonlinear
scenarios and it was the one that obtained the best results.

Single Output MLP Network
Nevertheless, we still tried another architecture. represented
in Figure 10, the different approach here is that we would
only give one input of position and obtain the output result for
that given position, instead of predicting the whole beam like
before. The hidden layers on this network were five and all
normal densely connected they all also had ReLu as activation
function.

Prediction Methodology
To predict the plastic hinges locations and the maximum load
supported, we trained 2 Neural Networks with the same ar-
chitecture, one with the Section Curvature dataset and the
other with the Bending Moment dataset. When receiving a
new beam design, our model uses the Section Curvature NN
model to predict the positions where the plastic hinges will
occur, to find it it simply simulates with a very high value

Figure 10: Complex MLP/CNN Network developed

Figure 11: Single Output Neural Network Architecture

of load in the input and the model predicts where the struc-
ture would break, therefore that is where the plastic hinges
occurred. After knowing the plastic hinges positions, it will
use the Bending Moment model to predict the yield moment
and the forces necessary to make the structure collapse on the
plastic hinges. For that, it must predict the bending moment
vs rotation graphs, so it calls the NN model multiple times to
predict the same beam scenario but with incremented loads
and plot the bending moment until the slope of the graph turns
null, the load that originated that point is the maximum value
of load.

5 Results and Evaluation
We compared the network architectures developed in the sev-
eral scenarios considered in this work, we then show some
predictions on the most relevant structure responses and eval-



uate our method of finding the maximum load supported by
the beam.

5.1 Linear Single Span Beam
In this scenario, results were successful with the one concen-
trated load and with the uniform load. The complex NN with
the convolutional layers (Figure 10) performed better, achiev-
ing the lowest error rate faster. In figure 12 we can see an ex-
ample of a Deflection prediction in this scenario that is quite
accurate.

Figure 12: Predicting Deflection of Concentrated Load on 1-Span
Beam

5.2 Linear 2-Span Beams
This Scenario was the most complex of the linear ones.
Again, the complex NN with the convolutional layers
(Fig.10) performed better, achieving the minimum error rate
in less iterations. The reason behind this increased perfor-
mance is probably exactly those convolution layers that con-
verge better than normal dense layers when we give the nodes
in a form representing the structure of our beam and therefore,
the training is improved significantly.

Figure 13: Predicting Deflection of Concentrated Load on 2-Span
Beam

A prediction with this NN can be observed in figure 13.
Even though all these tests demonstrated were simple and
solving these linear scenarios with traditional methods also
takes a very short amount of time,it still proves that Neural
Networks are effective and capable of predicting very accu-
rately structure responses of beams.

5.3 Nonlinear 2-Span Beams
In this scenario we tested the complex CNN/MLP Network
(figure 10) and the single output MLP Network (figure 11)
and compared the results. We can observe comparisons of
predictions in figures 14 and 15. We can observe that the
CNN/MLP architecture still performed slightly better in these
non linear beam designs.

Figure 14: Comparison between the two NN architectures in pre-
dicting a Section Curvature example

Figure 15: Comparison between the two NN architectures in pre-
dicting a Bending Moment example

5.4 Nonlinear 3-Span Beams
Finally in the last scenario with the 3-span beams, we only
tested the CNN/MLP Network, that obtained some convinc-
ing results even in this complex scenario with many variables
to generalize. Examples of structure responses predictions in
this scenario are seen in figures 16, 17 and 18.

Being able to predict section curvatures, bending moments
and rotations in the non linear scenarios meant we could then
try to predict the plastic hinges positions and the loads neces-
sary to form them.



Figure 16: NN prediction of Rotation of 3-Span Beam, Sizes: 2m,
6m, 1m

Figure 17: NN prediction of Bending Moment of 3-Span Beam,
Sizes: 6m, 3m, 4m

Figure 18: NN prediction of Section Curvature of 3-Span Beam,
Sizes: 7m, 6m, 3m

5.5 Maximum Load Supported Predictions
To exemplify our method of finding out the maximum load
supported by a beam we take an example of the 2-span beam
scenario with α = β = 1. It starts by plotting the section cur-
vature graph when giving a value of load high enough to ob-
serve the plastic hinges points, as we can see in Figure 19 it
would be positions 2 and 6 since those are the points where
the section curvature value spikes.

Figure 19: NN prediction of Section Curvature 2-Span Beam with
α = β = 1

Then we calculate the rotation and bending moment graphs
for the same scenario, multiple times with incremented loads.
We simulated the same beam with values of load from 25kN
to 1975kN, increasing 50kN in each subsequent simulation,
we did not go denser here, say 1kN in each simulation, for
the sake of the clarity of the plot to be showed in this doc-
ument. Then we can finally take the values of bending mo-
ment and rotation on the plastic hinges identifies before and
plot them together to create the graph in blue in figure. We
identify the maximum possible load one the point where the
absolute value of bending moment lowers and stop the sim-
ulation there. The graph in orange in the same figure is the
original beam computed by ABAQUS and we can observe
our prediction is close. The real value was 1564kN and our
model predicted 1625kN. Keeping in mind that in our final
model our incrementations are denser, we increment load by
just 1kN in each step, instead of 25kN like in this example we
can get even more accurate predictions.

Our program simulates around three thousand different in-
cremented loads for a given scenario, then computes and out-
puts the result in around four and a half seconds. The follow-
ing table shows some scenarios executions times comparisons
between ABAQUS FEM based simulation and our NN model
predictions.

6 Conclusions
Planning and building a civil engineering structure is a seri-
ous and complex project, designing a safe architecture for the
structure is of course an essential part to avoid risks. Nowa-
days, conventional methods to verify the safety of a complex
and non linear structure can be very time expensive. Neural



Figure 20: Comparison between real and Final Model prediction of
Moment vs Rotation of 2-Span Beam with α = β = 1

Table 1: Beam Scenarios execution times
Scenario Simulations ABAQUS NN

Linear 2-Span Beam 1 27s 0.001s
Linear 2-Span Beam 20 541s 0.002s

Non Linear 2-Span Beam 1 27s 0.001s
Non Linear 2-Span Beam 20 541s 0.005s
Non Linear 3-Span Beam 1 28s 0.001s
Non Linear 3-Span Beam 20 565s 0.005s

Network approaches can help to reduce this computational
time.

With this work we proved the potential of neural network
models by predicting approximations of solutions for beam
structures designs in 30 000 less time than with a traditional
method.

6.1 Future Work
One thing to improve in our models is the capacity to gen-
eralize more different and diverse beam designs. Obtaining
new training data to incorporate different designs, and then
test the prediction results on them, would be the first step to
improvement. Likely, would also be necessary to modify the
NN architecture, since now the beam architecture has to be
represented in a less constant way.

Another interesting goal for the project initiated here
would be to incorporate it inside the FEM model. Our model
can offer a fast approximation of structure responses for an
easier and faster modeling at a preliminary design phase.
However, it could also be possible to incorporate our model
with the FEM to replace the more complex and computational
expensive functions with the NN.

Not so much an improvement to our model, but more of
an alternative with higher potential to solve the same prob-
lem. It could be possible to use the neural network models to
learn and predict the partial differential equations solutions
that have to be solved for FEM in non linear models that are
computational expensive and significantly increase the time

efficiency.
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