
CIA: Citizen Contact Center Agent Assistant

Luı́s Miguel Santos Neto
luis.m.s.neto@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

January 2021

Abstract

The contact center for Portuguese public services brings together a unique dataset, which presents itself
as a very valuable study object in the field of Natural Language Processing (NLP): a collection of emails
exchanged between Portuguese citizens and the contact center, which are categorized on various subjects,
organized in a hierarchy. Data extracted from a real-world context presents serious challenges, namely in
terms of the data quality, the class balance, the structure of classes, and the class relationship. For the
purpose of developing a hierarchical email classification system, we present a study on data quantity and
data quality impact on classification performance, by performing experiences on different datasets sizes and
applying strategies of manual and automatic noise cleaning and data normalization strategies. Furthermore,
we propose several new approaches to class imbalance, label noise, and class overlap, in the context of this
problem, taking advantage of the hierarchical class structure and class semantic relations to re-organize data
and re-structure classes. Finally, an extensive set of Machine Learning and Deep Learning classification
techniques are studied in conjunction with different strategies of data representation, features extraction and
selection and the aforementioned reorganization of the hierarchical structure of classes. The best performing
system combines an XGBoost classifier and TF-IDF in a level-based hierarchical approach. Furthermore
we demonstrate an increase in performance proportional to the quality of the data and the structure of the
classes.
Keywords: Hierarchical Classification, Data Noise, Class Imbalance, Text Classification, Category Hierarchy
Re-structure, Machine Learning.

1. Introduction

Since it was introduced to the world, email has be-
come increasingly vital to our daily life. It has be-
come a key tool for interpersonal communication and
with loads and loads of incoming messages (some
important, some junk), handling emails has become
a tedious task. Such overload popped the need for
email automation, which is being mentioned in the
last two decades as an essential target for Machine
Learning (ML), Data Mining (DM) and Natural Lan-
guage Processing (NLP) disciplines [23, 2, 22, 13].

NLP is a field study of Artificial Intelligence (AI)
that deals with the interaction between computers
and humans using natural language. Most NLP
techniques rely on ML to derive meaning from hu-
man languages, but it is nowadays one of the most
rapidly growing fields of study and most of the break-
throughs in NLP in recent years are supported by the
use of Deep Learning (DL).

The contact center of the Portuguese public ser-
vices is a central channel of communication and in-
teraction between the citizens or enterprises and
the public services. About 1/5 of the communica-
tion throughput (an average of 500 daily incoming

emails)1 is based on emails and this amount is pre-
dicted only to increase. Despite being subject to a
well-defined process of triage, prioritization, catego-
rization and answer (described in fig. 1) the amount
of emails that are received every day is too big, result
in email overload and the process is not only repet-
itive, but contains repetitive tasks within its steps
(‘Read Emails’).

Figure 1: Contact Center Email Processing Workflow

In the ‘Triage’ step, the email is assigned to an
agent (an agent that is expert in the subject of the
email, the agent that dealt with the previous replies
if it is not the first email, or the agent with fewer
emails assigned). The ‘Categorization’ step clas-

1Data from the fourth quarter of 2019

1

sifies emails into predefined classes, organized
in a hierarchy structure with the goal of assisting
the ‘Answer’ step. In the ‘Answer’ step, a template
email reply is selected from a set of reply template
options, edited if needed, and sent. The set of tem-
plates is related to the category assigned: the further
the specification of the category, the more special-
ized and enclosed the template set.

The goal of this work is to reduce human effort in
the process represented in figure 1 by developing an
automatic email classification system able to classify
incoming emails, as represented in fig. 2.

Figure 2: Desired Contact Center Email Processing Workflow

Several contributions from this thesis may be
named, but there is one that stands out: Automatic
classification over classes organized in a hierarchical
structure is still very understudied when compared
to the common ”flat” classification approaches. This
work proposes strategies that take advantage of the
hierarchical nature of classes by manipulating their
relations to counter the well known problem of class
imbalance and at the same time counter other issues
such as class overlap and label noise.

Moreover, further contributions of this work may
be summarized as follow:

• data quality: a study over the challenges of col-
lecting raw data, forming a dataset, data clean-
ing and the impact of data noise in the automatic
classification process performance;

• feature engineering: a report over the relation
between feature extraction and selection tech-
niques, classifiers and performance;

• a review of the application of several ML and DL
strategies over a dataset with a particular irregu-
lar hierarchy of classes;

2. Background
The process of mapping a data instance with one
or more classes from a predefined set of classes is
called supervised learning. Classes may have no
relationship (flat classes), have a ranking/ordering
relationship (ordinal classes) or even be organized
in a hierarchical structure/relationship (hierarchical
classes). The class relationship/structure has a high
influence on the approaches that may be employed
during the classification process [17]. Furthermore,
not only the structure of the classes affect the classi-
fication process, but also class issues such as class
imbalance, class overlap and label noise have a
huge impact.

Figure 3 summarizes the relationship between
these issues, which are described in the following
sections.

Figure 3: Class Issues Relations

2.1. Hierarchical Class Structure
Typically in large-scale data environments, there are
huge amounts of data that are organized in compli-
cated structures such as hierarchies. A hierarchy
employs a parent-child relationship among classes,
meaning that a data instance belonging to a class
also belongs to its ancestor class.

A hierarchical tree is defined as a pair (C,≺)
where C is the set of all classes and ≺ is the re-
lationship “is-a”, in this case, the “subclass-of” rela-
tionship. This “subclass-of” relationship has the fol-
lowing properties:

1. Asymmetry: if m ≺ j, then j ⊀ m for every
m, j /∈ C

2. Anti-reflexivity: m ⊀ m for every m ∈ C

3. Transitivity: if m ≺ j and j ≺ n, then m ≺ n for
every m, j, n ∈ C

In a tree structure, the top node (has no parent
node) is called the root node, the nodes with no child
are called leaf nodes, and the nodes with parent and
child nodes are called inter-level nodes. Two or more
nodes with the same parent node are called a sibling
node.

Text classification problems may be categorized
accordingly to fig. 4.

Figure 4: Text Classification Taxonomy

A hierarchical classification problem may deal
with a flat or hierarchical classification approach
where:

2

• A flat classification approach disregards class
relations. This means the hierarchy is ignored
and the classification approach predicts only
the leaf nodes;

• The hierarchical classification approach may
be further classified as local or global, where
the local approach builds a classifier per level,
per node or per parent-node and the global
approach learns a global single model for all
classes.

2.2. Class Imbalance
The most common issue, class imbalance, is the
situation where classes are not equally distributed
among the data instances. In an imbalanced
dataset, a class mapped to a high proportion of the
data instances is called a majority class and a class
mapped to a low proportion of the data instances is
called a minority class. In these circumstances, the
majority classes tend to bias the classifiers towards
themselves, resulting in a poor classification of the
minority classes. Furthermore, a multi-class sce-
nario where there is one majority class and multiple
minority classes is called a multi-minority problem,
where the opposite is called a multi-majority prob-
lem.

To solve problems associated with class imbal-
ance, various techniques have been proposed over
the last three decades [7, 1, 5] These techniques
may be organized in a four type taxonomy:
The internal or algorithm-level approaches mod-

ify the usual learning methods/algorithms to take
the minority classes into account and not bias to-
wards the majority classes.

External or data-level approaches include prepro-
cessing of data in order to re-balance the distri-
bution of classes and reduce the impact of the
imbalanced classes on the classification perfor-
mance.

Cost-sensitive strategies combine both internal
and external approaches by assigning different
costs to every class based on the distribution of
data instances and by applying modified learning
algorithms to these classes.

Ensemble-based approaches combine any of the
previous strategies, namely external, with an
ensemble-based algorithm.

2.3. Label Noise
Label Noise has been identified as one of the most
problematic types of noise in the process of text
classification [15, 6] and is a problem rooted at the
dataset foundation. Generally, a dataset is a collec-
tion of data instances that were labelled, directly or
indirectly by a human (it may have been labelled by a
machine engineered by a human), considered to be
a data domain expert. However, humans make mis-
takes and machines may malfunction. These situa-
tions may be the source of data mislabeling, which

damages the relationship between the classes and
the features [6].

The main consequence of label noise is that it de-
teriorates the relation between the features and the
true classes that is crucial for the classification pro-
cess, resulting in a decrease of the prediction per-
formances. Consequently, the complexity of inferred
models, as well as the number of required training
instances, may increase [6]. In some domains, sys-
tematic label noise may distort observed results in a
degree that may cause or intensify class imbalance
problems.

2.4. Class overlap
In multi-class problems, especially where there is a
large set of classes, the case where data instances
with very similar characteristics belong to different
classes is common. These instances are called
overlapping data instances because they are located
in the ”overlapping region” of the feature space. This
”overlapping region” is a region in the feature space
where learning algorithms struggle to define a class
boundary that results in the best performance and
where most mislabelled instances are usually lo-
cated [11, 26]. This problem is called class over-
lap and is mainly caused by two factors: label noise
(as mentioned in the previous section (2.3) and class
structure/schema issues [28]).

Solutions to class overlap problems are usually
based on the core idea of discarding, merging or
separating the data instances located in the overlap
region [26].

2.5. Category Hierarchy Structure Issues
“Designing a hierarchy is hard because it is not al-
ways possible to anticipate how a hierarchy will be
used by an application” [20]. A hierarchical class
structure normally represents human abstraction,
where the categories closer to the root are more
general and gradually become more specialized fol-
lowing the paths from the root to the leaves. These
structures are made to continuously accommodate
resources that are constantly coming and that may
change in pattern and in volume [28].

“The usefulness of a hierarchy heavily relies on
the effectiveness of the hierarchy in properly orga-
nizing the existing data, and more importantly ac-
commodating the newly available data into the hier-
archy” [27].

Hierarchies need to evolve, but they evolve at a
much slower pace than data, and during this pro-
cess, two major problems may arise[27, 28]:
Structure irrelevance: a hierarchy may character-

ize the topic distribution of its data at an initial
point, but as data evolves, there are no proper
categories in the hierarchy to accommodate new
data. As a result, some new data instances are
labelled in less significant categories, data be-
come less cohesive and some categories be-

3

come less discriminative for the current data dis-
tribution;

Semantics irrelevance: semantics change in time
and a category name that used to represent a col-
lection of data may become less adequate, with
the data it represents becoming more semanti-
cally related to another category.

These problems negatively affect classification
performance and sabotage the fundamental purpose
of the hierarchical structure. They call for “categori-
cal hierarchy maintenance” modifications in order to
adapt the category to the new data reality (new pat-
terns of data) and improve the classification perfor-
mance [27]. There are four basic cases where a hi-
erarchy needs modifications:

1. Two categories under the same parent share
too many common features to distinguish them
clearly (class overlap);

2. A category belongs to more than one parent
category;

3. Leaf categories become less cohesive with new
data;

4. Parent category can no longer represent its
child category.

Category hierarchy maintenance is not a trivial
task and despite there have been little works on
this subject, a variety of approaches have been sug-
gested: redesigning a class hierarchy based on con-
cept analysis [24], changing relationships between
categories [21, 27, 28] and editing the classes (re-
move/add classes) [28].

3. Related Work
Most research [13] is focused on email binary clas-
sification problems (Spam filtering and Phishing fil-
tering), leaving only some scarce email multi-class
classification articles of relevance. Since there are
not many published works regarding email single-
label multi-class classification systems, the search
was extended to similar problems such as IT help
desk automated systems, customer support ser-
vices systems and TC problems where data has sim-
ilar characteristics to our data.

3.1. Email Classification Systems
As early as 1996, W. Cohen notices a “great deal
of interest in systems that allow a technically naive
user to easily construct a personalized system for fil-
tering and classifying documents such as e-mail” [4].
He explores how text classifiers, namely a “key-
word spotting rule” and a “method based on TF-IDF
weighting” perform on small datasets of hundreds of
personal emails, over eleven categories, and real-
izes that both methods obtain significant generaliza-
tions from a small number of examples with “compa-
rable performance”.

Neural Networks (NN) were applied for the first
time (to the authors best knowledge) at email multi-
class classification in LINGER [3], “an NN-based

system for automatic e-mail classification” that used
an MLP (Multi-Layer Perceptron) trained with back-
propagation, to classify five personal email datasets.
The results showed that bigger proportions of emails
to classes resulted in better performance and that
for a single dataset, the choice of feature extraction
and feature selection methods could cause an im-
pact of 40.63% in performance. The feature extrac-
tion methods used were TF-IDF (Term Frequency In-
verse Document Frequency), TF (Term Frequency)
and TP (Term Presence), and the feature selection
methods were IG (Information Gain) and Variance.
Using the publicly available dataset of emails, En-
ron [8], Xia et al. [25] performed a classification ex-
perience (using ML methods) where SFS (Seman-
tic Feature Selection), a method based on Trun-
catedSVD for reducing the dimensionality of large
datasets and extracting the dominant features of the
data, not only was able to drastically reduce the num-
ber of features but also improve accuracy and effi-
ciency.

3.2. Email-similar Classification Systems
Contrarily to these studies, an automatic text clas-
sification system developed for IT incident tickets
classification [18], studied the application of several
techniques at the preprocessing phase, namely tok-
enization, stemming, elimination of stop-words, NER
(Named-Entity Recognition), and TF-IDF based doc-
ument representation, using SVM and KNN classi-
fiers, concluded that the choice of document repre-
sentation method, tokenizer, stemming or NER had
little to no influence over the accuracy score. This
experience classified incident tickets (which have a
structure similar to emails), using ML methods, over
a hierarchy of classes, with two levels (10 classes
in the first level and 94 in the second level). As ex-
pected, accuracy was much lower when performing
classification on the second level.

Similar to a contact center, the IT support help
desk handles emails/messages regarding a set of
subjects in a repetitive pattern. To automate this
process, a classification system to categorize re-
quests (emails) directed to the help desk was de-
veloped where emails are categorized with one cate-
gory from each of the three levels of categories, con-
taining 84, 8 and 77 unique categories [16].

The classifier model was built using 260.000
emails extracted from history. Each email was pre-
processed, using OCR to extract text contents from
the attachments, Microsoft LUIS to extract the intent,
keywords extraction, stop-words removal, punctua-
tion removal, tokenization and lemmatization. During
feature selection, “To”, “CC” and “From” are removed
and 180 custom features are created. Features from
title, body and OCR texts are extracted using TF-IDF
to represent 3-grams or using feature hashing. Then
features are filtered using Chi-square (Chi2) scoring.

The classification process involved Random For-

4

est, XGBoost (ensemble learning), LSTM, Bi-LSTM,
BERT and a hierarchical model built by some combi-
nations of feature extraction - feature selection - clas-
sifier. BERT was excluded due to its high compu-
tational cost. To perform hierarchical classification,
classes were divided into two groups: high accuracy
classes and low accuracy classes, where low accu-
racy classes are represented as a single class in the
former.

Despite the model with the best F-measure score
was the LSTM with 77,3% F1 score, the hierarchi-
cal ML model using two models (one for high ac-
curacy categories and other for low accuracy cate-
gories) combined with keyword static rules classifi-
cation applied on ‘body+title+OCR’ with custom data
engineered features with 76,5% F1 score was cho-
sen due to being much less computationally expen-
sive.

3.3. Hierarchical Text Classification Systems
In more broad text classification studies, some stud-
ies suggest the use of hierarchical deep learning
(HDL) approaches. Most notably, HDLTex [9] was
presented to perform local (top-down) hierarchical
classification. The HDLTex architecture was built
on top of three deep learning architectures (namely
Multi-Layer Perceptrons (MLP), Convolutional Neu-
ral Networks (CNN) and Recurrent Neural Networks
(RNN)) where for each level of the hierarchy, one of
the three DL architectures is chosen to compose the
HDLTex architecture. In other words, for each level it
trains each one of the three DL models. This means
that for an n-level hierarchy, HDLTex model is then
composed of n DL sub-models. The best HDLTex
model is chosen empirically, meaning that from an
n-level hierarchy, 3n HDLTex models are built in or-
der to choose the best one. The models use different
feature extraction approaches.

In contrast, the unified global hierarchical deep
learning (Global HDL) classifier [19] overcomes this
problem of the exponential grow in proportion to the
number of tree levels. This model is composed of
three parts: a Bi-LSTM encoder, an attention mod-
ule and an MLP (Multi-Layer Perceptron). The Bi-
LSTM extracts features of the documents in the form
of word embeddings (300-dimensional word embed-
dings) followed by an attention module that sup-
ports the generation of dynamic document represen-
tations across different levels of classification. At
each level there is a two layered MLP, which predicts
the category at that level.

Both approaches for hierarchical TC were tested
on the benchmark dataset WOS-46985, a document
collection of 46985 documents labelled under a hier-
archy of two levels. The first level has 7 categories
which contain {17, 16, 19, 9, 11, 53, 9} child cate-
gories (meaning that the second level has 134 cate-
gories in total). HDLTex submodels, two versions of
SVM, a stacking SVM and Naive Bayes were used

as baseline flat classifiers [9] as were also FastText,
Bi-LSTM with max/mean pooling and the Structured
Self-attentive classifier [19]. HDLText shows supe-
rior performance at each level individually (90,45%
and 84,66% vs 89,32% and 82,42%), but overall it
is surpassed by the Global HDL model (76,58% vs
77,46%).

4. Data Context
4.1. Domain Understanding
The contact center system allows an email to be
classified with an inter-level category or even not to
be classified at all and to be replied to in this condi-
tion since the goal of the contact center email man-
agement system is to answer emails, not to classify
emails. The classification step serves two purposes:

1. To organize emails over a taxonomy that has
semantic meaning.

2. To reduce the effort needed to find the right an-
swer to reply to the email.

A classified email allows it to be picked by a contact
center operator that is an expert in the category do-
main it has been classified with and answer it.

The main goal of the classification step is to in-
crease the efficiency by which an email is answered,
by reducing the possible answers it may have and by
allowing it to be easily picked by a domain expert. In
the category hierarchy tree, the top categories have
bigger importance than the lower categories, since
they have more impact in distinguishing the email do-
main and lower-level categories end up having more
of a ”stage of email subject” or description role.

Figure 5: Hierarchy level importance/distinguishing power

Furthermore, data in these emails is of sensitive
nature and had to be anonymized before it was de-
livered.

4.2. Data Exploration
All data collected and delivered for this experience
was in raw format, organized in JSON files, each one
representing a chain of emails exchanged between
contact center agents and citizens, called ”ticket” in
the context of the contact center.

The process of interpreting and transforming the
raw data in the JSON into a CSV dataset was hin-
dered by two aspects:
Documentation: There was not a document ex-

plaining the organization of the data in the JSON
file. This problem disabled the possibility of an

5

automatic approach to analyze the data and re-
quired a manual and careful analysis of the data
to distinguish the meaningful data from the use-
less data.

Anonymization: The anonymization strategies that
were applied were mainly based on suppression
of sensitive data which rendered data less read-
able and understandable.

The dataset built from extracting data from the
JSON files retrieved at the data acquisition process
is called ‘raw dataset’ and named with the suffix
‘ raw ’. During the data understanding phase, the
raw dataset is pre-processed, using data cleaning
and normalization strategies to remove noise, stan-
dardize values and increase the percentage of use-
ful, meaningful data. The dataset obtained at the end
of this phase looses the suffix ‘ raw ’ and will be sub-
ject to data/feature representation strategies in the
data preparation phase, that will prepare the dataset
for the modeling phase.

During the execution of this project, there were
three data acquisition actions. These actions hap-
pened, in the scope of the CRISP-DM methodol-
ogy, after a cycle was executed and in the evaluation
phase was decided that more data (or better data)
was needed to achieve better results. Table 4.2 sum-
marizes some basic insights of each dataset.

Iteration Dataset
Name

Instances
count

Class
count

Vocabulary
Size

Data
Cleaning

Iter. 1 Av1 raw 11898 102 27578

Iter. 1 Av1 11898 102 27491 NC

Iter. 2 Av2 /
Av2 raw 38266 127 73529 NC

Iter. 3 Av3 raw 49564 138 103694 NC

Iter. 3 Av3 49564 138 65408 NC/DN

(NC = Noise Cleaning; DN = Data Normalization)

Table 1: Datasets Info

The anonymization process was softened at each
iteration. At iteration 1 it removed all punctuation, re-
placed all named names with a placeholder and re-
moved all numbers. At iteration 2 it stopped remov-
ing punctuation and at iteration 3 it started to replace
all numbers with a placeholder instead of removing
them.

Not only the anonymization process but also the
data cleaning process evolved from iteration to iter-
ation: at iteration 1 there was a manual process of
noise identification and cleaning, at iteration 2 the
manual process was replaced by an automatic pro-
cess of noise identification and cleaning (performed
before anonymization) and at iteration 3 a data nor-
malization process was added to improve the mean-
ing of relevant data. The result of these actions is
reflected in table 4.2 and in figures 6 and 7.

Figure 6: Evolution of the Average Frequency of Characters (1),
Words (2) and Sentences (3) per Email by Dataset

The data noise identified through all data may be
categorized by three sources of noise:
The business process (systematic noise)

Almost every email is plagued with a huge
proportion of noise, mainly in the format of
markup language which may be a product of the
data storage or data extraction procedure.

The anonymization process (systematic noise)
The anonymization strategies applied (which
were decided by the contact center) were mainly
based on suppression of sensitive data and im-
pacted both noise and meaningful data, making
it harder to distinguish between data and noise
(even for a human).

Human writing (natural noise) Each chain of
emails (‘Ticket’) is written by a different citizen,
which means that the vocabulary is far from
being standardized, that emails have been writ-
ten by both persons with education and without
education, old and young, and will show many
misspellings, wrong words, ill-formed sentences,
synonyms, different sentence structures for the
same idea, etc.

Figure 7: Evolution of Average Identified POS Tags per Email
from the First to the Last Used Datasets

At iteration 3, strategies to clean/normalize data
were usually centered around the application of reg-
ular expressions that parse all data and when they
match a given pattern a transformation is applied.
Regular expressions are simple to write, however, a

6

lot of attention has to be paid to their results because
there is a large amount of data and the patterns that
may be found within it are not entirely known. To en-
sure a successful application of regular expressions,
their results were analyzed carefully almost as a data
exploration task. This situation resulted in the dis-
covery of new normalization opportunities. Figure 7
shows the evolution of the meaning extracted from
each email, from the first dataset to the last.

4.2.1 Data Description

The dataset extracted from the raw data has the fol-
lowing attributes:

1. Class is a string representing the category of
the email. The string may have slashes “/”
which separate the hierarchical levels. Exam-
ple: Class value “Info Cidadão/IRN/Informações
Gerais” means that level 1 class is “Info
Cidadão”, level 2 class is “IRN” and level 3
“Informações Gerais”.

2. Text is a string representing the email body con-
tent. It is unstructured data and the main source
of features.

3. Subject is a string representing the email sub-
ject.

4. Ticket is a string identifying a chain of emails.
For a given ticket value the value of the subject
is constant

5. Reply Nr is an integer representing the position
of the email in the ordered chain of emails.

Prior to the data exploration tasks, it was already
known from the business understanding phase that
the email classes were organized in a hierarchical
structure. Figure 8 is an excerpt from the class struc-
ture. Inter-level nodes with classes assigned (repre-
sented with the orange circle) are problematic, be-
cause as they have child-nodes and, semantically,
they represent a generalization of their child-node
classes, their features are shared by all their child-
node classes, making it very hard to discriminate be-
tween data instances assigned with child or parent
classes when performing classification.

At the last iteration of development, dataset Av3
class structure is organized as follows:

1. Level 1: has only one class (the root node). It
has no meaning, for the classification task, to
represent a class level with only one class, but
we represent it anyway because its meaning is
attached to business rules and because a tree
representation must have a root.

2. Level 2: has 25 classes of which 8 are leaf
nodes.

3. Level 3: has 42 classes of which 26 are leaf
nodes.

4. Level 4: has 86 classes, all leaf nodes.
For business reasons or due to manual classifica-

tion issues, not all the data extracted was classified

Figure 8: Excerpt of the class taxonomy including the frequency
of files at each class (red = leaf node classes; orange = inter-level
classes with emails assigned)

to the leaf node class. This issue and the solutions
applied are explained in section 5.1.

Figure 9: Histogram of Emails per Class (the value of the bar is
the number of classes with a frequency of emails contained in the
interval at the base)

The target classes for the classification process
should only be the leaf node classes, which means
that in a flat classification perspective we should
have 120 classes.

The class taxonomy (fig. 8) reveals some semantic
and structural problems and the class email distribu-
tion (fig. 9) portrays a serious case of class imbal-
ance (with 26 classes with only 1 to 5 emails which
represents a huge fraction of the classes that ex-
ist and that presents a big challenge to classifica-
tion). The structural problems are based on the ir-
regular structure of the tree, where leaf-nodes are
located at different levels, and some branches are
very wide while others are thin. Furthermore, the

7

fact that some inter-level node classes have emails
assigned represents an error to the single-label clas-
sification approaches we propose, since due to the
transitivity property of the hierarchy tree (see sec-
tion 2.5) a child class inherits all the characteristics
of its parents.

5. Development

5.1. Class Structure Inspection and Re-structuring
Our dataset, as may be observed in section 4 has
a significant class imbalance problem. The top 3
classes have more than 4000 emails each, while
there is 49 classes with less than 10 emails. If our
dataset was perfectly balanced with data instances
equally distributed between all classes, it would have
49564/138 ≈ 359 emails in each category. The reality
is that there are only 24 (17,4%) classes with more
than 359 emails and 114 (82,6%) classes with less
than 359 emails.

Traditionally, the most common class imbalanced
strategies used are data-level, namely resampling
methods. Our dataset has a multiminority problem.
Adopting the mean (359 emails per class) as the
target, an oversampling strategy involves replicat-
ing or synthesizing data instances of 114 classes,
where each class would be composed for an av-
erage of 23% real data and 77% of synthesized
data. On the other side, undersampling the major-
ity classes means undersampling 24 classes and re-
moving an average of 79% of class instances for
each of those classes. Furthermore, oversampling
carries the risk of over-generalization and class over-
lap, while undersampling risks removing valuable in-
formation from each class.

Having this in mind and taking advantage of the hi-
erarchical structure of the classes, we propose and
developed methods that take advantage of the hier-
archical nature of classes to counter class imbalance
and other issues described earlier in sections 2.2,
2.4, 2.3 and 2.5. The most notable methods devel-
oped are described as follow :

1. Hierarchical Cut (hcL): Reduce all classes to
level L of the hierarchy. All classes that are at a
higher level than L are aggregated at L level.

2. Balanced Hierarchical Cut (bhcL Mmax):
Reduce all classes to level L of the hierarchy.
All classes that are at a higher level than L are
aggregated at L level. It aims to take an equal
contribution of instances from all child classes.

3. No Middle (inter-level) Class instances
(nmc): Removes classes that are not leaf
nodes of the tree but have data instances as-
signed with them. The aim is to learn to classify
emails to the leaf-node classes, so our models
cannot learn from these.

4. No Only Childs (noc): Aggregates classes of
leaf nodes that don’t have siblings in the upper
class (parent-node). It aims to reduce the depth

of the tree at some branches and thus its com-
plexity.

5. Aggregate sibling classes in parent cate-
gory (aggLx): Aggregates all siblings leaf-
node classes at parent level if they agree to a
certain heuristic Lx (x identified the heuristic to
be used and L is a value given for the heuristic
calculation). The heuristics aim to merge over-
lapping classes or to reduce class imbalance by
merging siblings with a multi-minority problem.

6. Merge classes (mi): Aggregates classes that
are siblings at their level, under one new
class that represents all their documents and is
named by the concatenation of their names.

7. Remove classes with less than n instances
o more than N instances;

8. Undersample;
9. Manual selection of classes to be removed

or merged.
These approaches were not used single-handedly,

but in conjunction with one another. For example,
if we would apply the strategies of Balanced Hi-
erarchical Cut at level 3 with maximum of 500 in-
stances (bhc3 M500), followed by No Middle Classes
(nmc) and Remove classes with less than 100 in-
stances (m100) to Av3, we would produce an off-
spring dataset called Av3 bhc3 M500 nmc m100.

5.2. Text Classification
The Portuguese language is highly inflectional, so
the recognition of morphological variation and con-
ceptual proximity of the words is a crucial task.
The most common approaches to lexical normaliza-
tion, stemming and lemmatization, were both ap-
plied to our data and their performance was com-
pared in a multitude of tests combining different fea-
ture extraction methods, feature selection methods
and classifiers. The stemming algorithms applied
were Porter [14] and RSLP [12] and the lemma-
tization was done using spaCy ’s lemmatizer (Por-
tuguese large model “pt core news lg”2)

During the feature extraction and feature selection
steps, the features extracted from the text were done
using most commonly TF-IDF, but also TF and TP
(Term Presence). Chi2, MI (Mutual Information) and
TruncatedSVD were the most used features selec-
tion methods. The quality of features extracted from
text may not be enough for the ML models to achieve
satisfactory results. Feature engineering, namely the
use of metadata and creation of custom features is a
common approach to create features with high infor-
mation gain in order to improve the performance of
ML algorithms. The most relevant custom features
that were created and used were the ‘previous email
category’ (class of the previous email in the chain of
emails), ‘reply nr’ (the ordinal number of the email
in the chain of emails), ‘categories keywords’ (key-

2https://spacy.io/models/ptpt core news lg

8

words that are part of the class names) and ‘text
statistics’.

When working with Deep Learning models, word
embedding models were used, both pre-trained
models and locally trained models. When train-
ing models locally, we experimented with dimension
sizes of 100 and 300 and window sizes of 3 and 5.

During the modeling phase, an extensive list of
classifiers was tested. All of them are listed in ta-
ble 2.

Classifier Hyper-parameters

Multinomial Naı̈ve Bayes (default)

Decision Tree Classifier (default)

K-Nearest Neighbors
(KNN)

k = 3 by default and all odd k
values between 3 and 55 on

some tests

Support Vector Classifier
(SVC) - One vs Rest

(OvR)

(default)

SVC - One vs One (OvO) (default)

Stochastic Gradient
Descent (SGD) - OvR

(default)

SGD - OvO (default)

Random Forest Classifier (default)

GradientBoosting (default)

AdaBoost (default)

XGBoost Classifier Custom implementation using
XGBoost booster and

hyper-parameters optimized
using Random Search and
experimentally. Best model

chosen using early stopping.

HDLTex MLP (Multi Layer
Perceptron)

Best model chosen using early
stopping

HDLTex CNN
(Convolutional Neural

Network)

5 levels of complexity, best
model chosen using early

stopping

HDLTex RNN (Recurrent
Neural Network using

GRU)

Best model chosen using early
stopping

RMDL [10] (default)

LSTM (Long Short Term
Memory

Obtained Experimentally

BERT Obtained Experimentally

Table 2: Classifiers Used

6. Evaluation
During evaluation each of the major datasets (Av1,
Av2 and Av3) was submitted to class re-structure
approaches, producing several offspring datasets.
Each offspring dataset was submitted to several text
preprocessing steps such as n-gram-representation,
stemming, lemmatization, meta-features and hybrid
combinations of these. Furthermore, each pre-
processed dataset was submitted to some of sev-
eral feature extraction and feature selection meth-

ods. Then, each dataset with each data instance
represented by its pre-processed selected features
was classified by multiple classifiers.

All these combinations produced a multitude of
evaluation results in the order of the tens of thou-
sands, from which (due to this document limitations)
the next subsections present only a small excerpt
that translate the most important insights.

6.1. Flat Classification
Flat classification ignores the class relationships and
performs prediction considering all leaf nodes as in-
dependents classes. Figure 10 shows that the re-
sults increase from dataset to dataset, which means
that increasing data quantity and data quality bene-
fits performance.

Figure 10: Evaluation results (macro-F1-measure) of datasets
Av1 (blue), Av2 (red) and Av3 (green)

Figure 11 shows that class re-structure techniques
described in section 5.1 improve macro-F1 perfor-
mance mainly by reducing the number of classes
with a very low amount of samples by removing them
and by aggregating them and creating classes with
more significance.

6.2. Local Classification Per Level Approach
The local classification per level approach consists
of training one multi-class classifier for each level of
the class hierarchy.

We use the strategies of Hierarchical Cut and Bal-
anced Hierarchical Cut, presented in section 5.1 to
obtain class level-based datasets to train each clas-
sification model for each level. Figure 12 shows that
just by aggregating balanced “cut” classes, using
Balanced Hierarchical Cut increases macro-F1 mea-
sure, probably because the newly generated dataset
classes have less class imbalance.

6.3. Local Classification Per Parent Node-based Ap-
proach

Classically, a local classification per parent node ap-
proach is a top-down approach where we train a
model to classify each parent-node child-nodes. To

9

Offspring datasets
- Re-balance

Total
Classes

Total Emails

A Av1 105 (100%) 11894 (100%)

B Av1 noc 98 (93,3%) 11894 (100%)

C Av1 noc ag100a nmc 40 (38,1%) 9179 (77,2%)

D Av1 noc ag100a nmc
mi100 m100

13 (12,4%) 8570 (72,1%)

E Av1 noc ag100a nmc
mi100 m100 u100

13 (12,4%) 1690 (14,2%)

Figure 11: Evaluation results of AV1 offsprings

Offspring datasets
- Re-balance

Total
Classes

Total
Emails

HC2-A1 Av3 hc2 49564 25

HC2-A2

HC2-B1 Av3 bhc2 M500 6259 24

HC2-B2

HC2-C1 Av3 bhc2 M500 6073 15

HC2-C2 mi100 m100
Figure 12: Evaluation results (macro-F1-measure) of hierarchi-
cally cut Av3 at level 2

further explore the hierarchy relations and the se-
mantic relations of classes, we developed artificial
nodes/classes (represented by squares in fig. 13)
to separate sibling classes to different classification

models.

Figure 13: Class Structure Re-organization for Classification

Class Nr. of Child
Classes

Nr. of
Emails

Info Cidadão (root) 2 47156

AMA 2 30498

Others 23 16658

AMA/Autenticação.Gov-CC 5 25911

AMA/Others 12 4587
Table 3: Class Structure Re-organization for Classification - Class
Info

These new structure with artificial nodes (dis-
played in fig.13 and described in table 3) was de-
fined taking in consideration the semantic relations
of classes, class-email frequency distribution and the
structure of the hierarchy. The structure was found
empirically, with the support of clustering techniques
and semantic analysis and built with the help of the
re-structuring methods presented in section 5.1.

Model Classifier L. ma-
F1

L.
Acc

O.
Acc

AMA vs Others XGBoost 0.725 0.761 0.761

AMA/Autenticação
.Gov-CC vs
AMA/Others

SGD (OvO -
OvR) / XG-
Boost (tied)

0.912 0.913 0.695

AMA/Autenticação
.Gov-CC

OvR - SGD 0.81 0.872 0.606

AMA/Others XGBoost 0.788 0.866 0.602

Others XGBoost 0.579 0.631 0.458

L. Acc = Local/Level Accuracy; O. Acc = Overall Accuracy

L. ma-F1 = Local/Level macro-F1
Table 4: Classification Performance for Parent Node-based Ap-
proach

Local Accuracy represents the accuracy of the lo-
cal model, while overall accuracy represents the ac-
curacy of the composed model, to classify an email
from the root to a given level. Local performance is
much improved, compared to the hierarchical mod-
els presented in section 6.2, and while overall ac-
curacy is reduced, it is superior to the accuracy ob-
tained with other models.

7. Discussion
Flat classification does not seem the most adequate
for this kind of problem. It puts aside the hierar-

10

chy relations which are important to structure data
and even when applied with class re-structure tech-
niques, that sacrifice lots of data and classes to ob-
tain better results, performance is still limited.

Local Classification approaches are more promis-
ing. With per level approaches, classifying data only
to hierarchically cut classes at level 2 presents the
best obtainable results and assigns the most impor-
tant classes to data. Further classifying data to level
3 or 4 results in more errors than correctly predicted
classes and does not seem feasible to the improve-
ment of the email classification process at the con-
tact center. Per parent node-based approaches ob-
tain the best results although they are more complex
since they rely on a complex multi-model classifica-
tion strategy.

Several algorithms, from traditional ML, to com-
plex DL algorithms and state of the art approaches
such as BERT, very different in their mechanics, ob-
tained very similar high-scores (in the range of 54%-
59% macro-F1). This evidence suggests that perfor-
mance is hitting a wall, which we consider to be the
lack of data quality and the presence of label noise.

This situation hinders our decision on the several
approaches and algorithms to be used to build our fi-
nal proposal for the email classification system. But,
having to make a decision at this point, our proposed
email classification system is based on a XGBoost
model trained on the Av3 bhc2 M500 mi100 m100
dataset (described in HC2-C1 of Figure 12), using
TF-IDF features. XGBoost achieved the best perfor-
mance with almost all the hierarchical approaches
and most offspring datasets.

8. Conclusions
The main objective, declared in section 1, was: to
develop an email system able to classify emails of
the domain of the Contact Center of the Portuguese
Public Services. We have developed a project that
evolved a lot from the initial experiences where our
best performance was at 30% (macro F1-measure)
to the final experiences were our performance was
near 60% (macro F1-measure). The proposed email
classification system uses the robust and efficient al-
gorithm, XGBoost, and achieves a macro-F1 score
of 57%.

Data noise plays a major role in this work. There
are few related works in literature based on real-
world data. Literature about noisy data describes ar-
tificially created noise, not native noise. This project
started as a hierarchical classification problem and
it was during the development of a solution to that
problem that we realized that was not the biggest
challenge. At the beginning of iteration 1, we were
solving a hierarchical classification problem. At the
beginning of iteration 2, we knew that the main prob-
lem was not to perform hierarchical classification, but
to perform classification with noisy data. By the be-
ginning of iteration 3, after a multitude of strategies

regarding noisy data have been applied, we started
to suspect another problem even harder to solve: la-
bel noise. Label noise corrupts the learning process
and greatly impacts the performance of the classifi-
cation process.

The improvements obtained from the data clean-
ing and normalization, and the extensive range of al-
gorithms used for classification and their respective
performance (where different algorithms achieved
similar performance) validate the fact that data noise
and label noise are the primary problems that neg-
atively impact the learning and classification pro-
cesses.

A hierarchy may be very useful for classification,
but if it is not properly designed and properly main-
tained it may pose challenges to automatic classifi-
cation such as class imbalance, class overlap and
label noise. This work proposed new approaches to
these challenges, that focus on exploration of class
relations and semantic meaning and their consec-
utive re-structure. The results achieved show that
these approaches are successful.

Our contributions revolve around reporting the use
of strategies regarding data cleaning, data normal-
ization, feature extraction, feature selection, dimen-
sionality reduction, feature engineering, text classifi-
cation using ML, text classification using DL state of
the art approaches (BERT), and their performance,
to an evolving problem of text classification, that
started as a hierarchical classification problem and
revealed itself more complex at each step. But the
main contribution of this work is the proposal of new
class re-balance strategies, that instead of under-
sampling or oversampling data, explore the structure
and semantics of a hierarchy of classes and reorga-
nize it in order to optimize classification performance
and keep hierarchy semantic meaning.

To the best of our knowledge, there are no works
in literature about hierarchical classification of real-
world data with systematic and natural noise on ir-
regular and problematic hierarchies such as the one
that grounds this work.

Future work lays on the continuation of the devel-
opment process and the overcoming of the limita-
tions aforementioned, which may be summarized as:

• Further improvement of data quality.
• Oversampling techniques and other unexplored

class imbalance strategies that were not priori-
tized during the development of this work.

• Class imbalance techniques specialized on hi-
erarchy text classification is an open field with
little to no contributions.

• The use of unsupervised learning strategies to
study the class relation and distribution.

References
[1] H. Ali, M. Salleh, R. Saedudin, K. Hussain, and

M. Mushtaq. Imbalance class problems in data
mining: A review. Indonesian Journal of Electri-

11

cal Engineering and Computer Science, 14, 03
2019.

[2] J. D. Brutlag and C. Meek. Challenges of the
email domain for text classification. In ICML,
volume 2000, pages 103–110, 2000.

[3] J. Clark, I. Koprinska, and J. Poon. A neural
network based approach to automated e-mail
classification. pages 702 – 705, 11 2003.

[4] W. W. Cohen. Learning rules that classify e-
mail. In Proceedings of the 1996 AAAI Spring
Symposium on Machine Learning and Informa-
tion Access, 1996.

[5] V. M. S. Esteves. Techniques to deal with imbal-
anced data in multi-class problems: A review of
existing methods. 2020.

[6] B. Frénay and M. Verleysen. Classification in
the presence of label noise: a survey. IEEE
transactions on neural networks and learning
systems, 25(5):845–869, 2013.

[7] N. Japkowicz. The class imbalance problem:
Significance and strategies. In Proc. of the Int’l
Conf. on Artificial Intelligence, volume 56. Cite-
seer, 2000.

[8] B. Klimt and Y. Yang. The enron corpus: A new
dataset for email classification research. vol-
ume 3201, pages 217–226, 09 2004.

[9] K. Kowsari, D. E. Brown, M. Heidarysafa, K. Ja-
fari Meimandi, M. S. Gerber, and L. E. Barnes.
Hdltex: Hierarchical deep learning for text clas-
sification. In 2017 16th IEEE International Con-
ference on Machine Learning and Applications
(ICMLA), pages 364–371, Dec 2017.

[10] K. Kowsari, M. Heidarysafa, D. E. Brown, K. J.
Meimandi, and L. E. Barnes. Rmdl. Proceed-
ings of the 2nd International Conference on In-
formation System and Data Mining - ICISDM
’18, 2018.

[11] S. Lavanya, D. S. Palaniswami, and S. Sudha.
Efficient methods to solve class imbalance and
class overlap. 2014.

[12] V. Moreira and C. Huyck. A stemming algo-
rithmm for the portuguese language. pages
186– 193, 12 2001.

[13] G. Mujtaba, L. Shuib, R. G. Raj, N. Majeed, and
M. A. Al-Garadi. Email classification research
trends: Review and open issues. IEEE Access,
5:9044–9064, 2017.

[14] M. Porter. An algorithm for suffix stripping. Pro-
gram, 14:130–137, 1980.

[15] P. J. Roberts, J. Howroyd, R. Mitchell, and
V. Ruiz. Identifying problematic classes in text
classification. In 2010 IEEE 9th International
Conference on Cyberntic Intelligent Systems,
pages 1–6, 2010.

[16] K. Shanmugalingam, N. Chandrasekara,
C. Hindle, G. Fernando, and C. Gunaward-
hana. Corporate it-support help-desk process
hybrid-automation solution with machine
learning approach. In 2019 Digital Image Com-
puting: Techniques and Applications (DICTA),
pages 1–7, 2019.

[17] C. N. Silla, Jr. and A. A. Freitas. A survey of
hierarchical classification across different appli-
cation domains. Data Min. Knowl. Discov., 22(1-
2):31–72, Jan. 2011.

[18] S. Silva, R. Ribeiro, and R. Pereira. Less is
more in incident categorization. 07 2018.

[19] K. Sinha, Y. Dong, J. C. K. Cheung, and
D. Ruths. A hierarchical neural attention-based
text classifier. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 817–823, Brussels,
Belgium, Oct.-Nov. 2018. Association for Com-
putational Linguistics.

[20] G. Snelting and F. Tip. Reengineering class hi-
erarchies using concept analysis. In Proceed-
ings of the 6th ACM SIGSOFT International
Symposium on Foundations of Software Engi-
neering, SIGSOFT ’98/FSE-6, page 99–110,
New York, NY, USA, 1998. Association for Com-
puting Machinery.

[21] L. Tang, J. Zhang, and H. Liu. Acclimatizing tax-
onomic semantics for hierarchical content clas-
sification. volume 2006, pages 384–393, 01
2006.

[22] I. The Radicati Group. Email statistics report,
2015-2019. Technical report, Mar. 2015.

[23] S. Whittaker and C. Sidner. Email overload:
exploring personal information management of
email. Culture of the Internet, pages 277–295,
1997.

[24] R. Wille. Restructuring lattice theory: An ap-
proach based on hierarchies of concepts. In
I. Rival, editor, Ordered Sets, pages 445–470,
Dordrecht, 1982. Springer Netherlands.

[25] Y. Xia, J. Wang, F. Zheng, and Y. Liu. A bina-
rization approach to email categorization using
binary decision tree. In 2007 International Con-
ference on Machine Learning and Cybernetics,
volume 6, pages 3459–3464, 2007.

12

[26] H. Xiong, J. Wu, and L. Liu. Classification with
classoverlapping: A systematic study. pages
303–309. Atlantis Press, 2010/12.

[27] Q. Yuan, G. Cong, A. Sun, C.-Y. Lin, and
N. Thalmann. Category hierarchy maintenance:
A data-driven approach. 08 2012.

[28] H. Zhuge and L. He. Automatic maintenance
of category hierarchy. Future Generation Com-
puter Systems, 67:1 – 12, 2017.

13

