
CIA: Citizen Contact Center Agent Assistant

Luı́s Miguel Santos Neto

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. André Ferreira Ferrão Couto e Vasconcelos
Prof. Ricardo Daniel Santos Faro Marques Ribeiro

Examination Committee

Chairperson: Prof. Francisco João Duarte Cordeiro Correia dos Santos
Supervisor: Prof. André Ferreira Ferrão Couto e Vasconcelos
Member of the Committee: Prof. Nuno João Neves Mamede

January 2021

Acknowledgments

This thesis is not just a final step toward academic graduation. It is proof that anything worth obtaining

requires not only hard work but strength of will and support from the people that believe in us. Thus I

most sincerely want to express my gratitude to everyone that supported me during not only this thesis

but also the entire academic process which this milestone concludes. A special mention needs to be

made to:

Prof. André Vasconcelos, who invested me in this project and readily put his attention and dedication

at my disposal to guide me through all the obstacles that I came across. From the start, his availability

and advice were more than I could ever expect.

Prof. Ricardo Ribeiro, was the pillar of this journey. His availability to meet with me, to review and

guide my work, to constructively criticize my decisions and his attention to every detail was relentless.

Without him, I could not produce the work that I here present.

Daniel Andrade and Filipe Ganança from the contact center side, which were always ready to help

me with my challenges and who provided me with valuable insights.

My girlfriend for being at my side in the good times and in the hard times, always believing in my

success and always pushing me to do my best. She was always present to lift me up, to talk, to advise,

and to balance work and joy.

And finally the most important people in my life: my family, which supported me during my entire aca-

demic path and without whom I would not be able to accomplish everything I did. My mother, especially,

who is always looking out for me, always available to do everything beyond her reach to provide me with

everything I could possibly need, always caring, and always at my side, I dedicate this work to her.

Lisboa, January 29, 2021
Luı́s Neto

ii

Iacta alea est!
(The die has been cast!)

Julius Caesar

iv

Abstract

The contact center for Portuguese public services brings together a unique dataset, which presents

itself as a very valuable study object in the field of Natural Language Processing (NLP): a collection of

emails exchanged between Portuguese citizens and the contact center, which are categorized on various

subjects, organized in a hierarchy. Data extracted from a real-world context presents serious challenges,

namely in terms of the data quality, the class balance, the structure of classes, and the class relationship.

For the purpose of developing a hierarchical email classification system, we present a study on data

quantity and data quality impact on classification performance, by performing experiences on different

datasets sizes and applying strategies of manual and automatic noise cleaning and data normalization

strategies. Furthermore, we propose several new approaches to class imbalance, label noise, and class

overlap, in the context of this problem, taking advantage of the hierarchical class structure and class

semantic relations to re-organize data and re-structure classes. Finally, an extensive set of Machine

Learning and Deep Learning classification techniques are studied in conjunction with different strategies

of data representation, features extraction and selection and the aforementioned reorganization of the

hierarchical structure of classes. The best performing system combines an XGBoost classifier and TF-

IDF in a level-based hierarchical approach. Furthermore we demonstrate an increase in performance

proportional to the quality of the data and the structure of the classes.

Keywords

Hierarchical Classification; Data Noise; Class Imbalance; Text Classification; Category Hierarchy Re-

structure; Machine Learning

v

Resumo

O centro de contactos dos serviços públicos portugueses reúne um conjunto de dados único, que se

apresenta como um objeto de estudo muito valioso na área do Processamento de Linguagem Natu-

ral (PNL): uma coleção de emails trocados entre cidadãos portugueses e o centro de contactos, os

quais são categorizados em vários assuntos, organizados numa hierarquia. Os dados extraı́dos de

um contexto do mundo real apresentam sérios desafios, nomeadamente em termos da qualidade dos

dados, o equilı́brio das classes, a estrutura das classes e a relação das classes. Com o objetivo de

desenvolver um sistema de classificação hierárquica de e-mails, apresentamos um estudo sobre o

impacto da quantidade de dados e da qualidade dos dados no desempenho da classificação, real-

izando experiências em diferentes tamanhos de conjuntos de dados e aplicando estratégias manuais

e automáticas de limpeza de ruı́do e de normalização de dados. Além disso, propomos várias novas

abordagens para o desequilı́brio de classes, ruı́do de anotações e sobreposição de classes, no contexto

deste problema, aproveitando a estrutura hierárquica de classes e as relações semânticas de classe

para reorganizar os dados e reestruturar as classes. Finalmente, um extenso conjunto de algoritmos

de Aprendizagem Automática e Aprendizagem Profunda são estudados em conjunto com diferentes

estratégias de representação de dados, extração e seleção de features e a reorganização da estru-

tura hierárquica de classes. O sistema com melhor desempenho combina os algoritmos XGBoost e

TF-IDF numa abordagem hierárquica baseada em nı́vel. Além disso, demonstramos um aumento de

desempenho proporcional à qualidade dos dados e à estrutura das classes.

Palavras Chave

Classificação Hierárquica; Ruı́do de Dados; Desequilı́brio de Classes; Classificação de Texto; Re-

estruturação de Hierarquias de Classificação; Aprendizagem Automática

vii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Context . 2

1.3 Objectives . 4

1.4 Methodology . 4

1.5 Contributions . 6

1.6 Document Outline . 7

2 Background and Fundamental Concepts 9

2.1 Data Processing . 10

2.2 Dataset Classes . 11

2.2.1 Hierarchical Class Structure . 12

2.2.2 Class Imbalance . 12

2.2.3 Label Noise . 13

2.2.4 Class Overlap . 14

2.2.5 Class Hierarchy Structure Issues . 15

2.2.6 Summary . 17

2.3 Text Categorization . 18

2.3.1 Class Relations . 19

2.3.2 Classification Techniques . 19

2.4 Information Retrieval . 20

2.4.1 Pre-processing . 20

2.4.2 Type of Representation . 21

2.4.3 Dimensionality Reduction . 21

3 Related Work 23

3.1 Motivation . 24

3.2 Email Classification Systems . 24

3.3 Similar Text Classification Problems . 27

ix

3.3.1 Traditional Classification Strategies . 27

3.3.2 Hierarchical Classification Strategies . 29

3.3.3 Other Classification Strategies . 30

3.4 Summary . 31

4 Data 33

4.1 Domain Understanding . 34

4.2 Data Exploration and Cleaning (Data Understanding) . 35

4.2.1 Data Acquisition and Exploration . 35

4.2.2 Data Noise . 36

4.2.3 Data Description . 40

4.2.4 Data Cleaning . 41

4.2.5 Class Taxonomy . 43

4.3 Summary . 46

5 Features and Models 47

5.1 Design Overview . 48

5.2 Class Structure Inspection and Re-structuring . 49

5.2.1 Class Structure Redesign . 52

5.2.2 Hierarchical Classification . 52

5.2.3 Class Re-balance . 53

5.2.4 Partial Class Set Classification and Manual Selection 54

5.3 Text Pre-processing . 54

5.4 Metadata and Custom Features . 54

5.5 Feature Extraction . 55

5.6 Feature Selection . 56

5.7 Word Embeddings . 56

5.8 Classification . 56

5.9 Development Overview . 59

6 Evaluation 61

6.1 Evaluation Metrics . 62

6.2 Flat Classification . 63

6.3 Local Classification Per Level Approach . 65

6.4 Local Classification Per Parent Node-based Approach . 66

6.5 Feature-level . 68

6.6 Classifier-level . 70

6.7 Discussion . 71

x

6.7.1 Flat Classification . 71

6.7.2 Local Classification Per Level Approach . 72

6.7.3 Local Classification Per Parent Node-based Approach 73

6.7.4 Features and Classifier . 73

6.7.5 Overview and Summary . 73

7 Conclusion 77

7.1 Contributions . 79

7.2 Future Work . 79

A Email Overload 89

A.1 Email Overload . 89

A.1.1 Email Management and Processing Research . 90

A.1.2 Triage and Prioritization . 91

A.1.3 Email Categorization . 91

A.1.4 Emails as Data . 92

A.2 Email Triage Background . 92

B Data Description 95

B.1 Raw Data . 95

B.2 Common Offspring Datasets . 97

C Algorithms 99

C.1 Text Representation . 99

C.2 Feature Extraction Algorithms . 100

C.3 Feature Selection Algorithms . 101

C.4 Machine Learning Algorithms . 101

C.5 Deep Learning Algorithms . 102

xi

xii

List of Figures

1 Introduction 1

1.1 Contact Center Email Processing Workflow . 3

1.2 CRISP-DM Process Flow Diagram . 5

2 Background and Fundamental Concepts 9

2.1 Class Issues Relationship . 17

2.2 Text Classification Approaches Overview . 18

3 Related Work 23

4 Data 33

4.1 Hierarchical tree level importance / class distinguishing power 34

4.2 Av1 raw (First dataset of first data collection) - Email Sample (blue: subject; green: body

content; orange: email that is being replied) . 37

4.3 Evolution of Average Identified POS Tags per Email (using spaCy ´pt core news lg’ model) 40

4.4 Evolution of the Frequency of Characters, Words and Sentences in Emails by Dataset . . 41

4.5 Av3 (final dataset of third data collection/iteration) - Email Sample (blue: subject; green:

body content; orange: email that is being replied) . 43

4.6 Hierarchical Class Structure - Tree Diagram Representation (Av3 dataset) 44

4.7 Class - email count distribution (red line represents the median statistic of the class email

count distribution) . 45

4.8 Excerpt of the class taxonomy including the files frequency at each class (red are ex-

pected target classes and orange are incorrect target classes) 46

5 Features and Models 47

xiii

5.1 Workflow Design . 48

5.2 Proposed Automatic Email Classification System Integrated in the Contact Center Email

Processing Workflow . 49

5.3 CRoss Industry Standard Process for Data Mining (CRISP-DM) cycle deconstructed and

main actions per phase . 60

6 Evaluation 61

6.1 Evaluation results (macro-F1-measure and accuracy) of datasets Av1 (blue), Av2 (red)

and Av3 (green), using eXtreme Gradient Boost (XGBoost) and Term Frequency - Inverse

Document Frequency (TF-IDF) . 63

6.2 Evaluation results of Av1 offsprings . 64

6.3 Evaluation results (macro-F1-measure and accuracy) of hierarchically cutted datasets . . 65

6.4 Class Structure Re-organization for Classification . 67

6.5 Performance of Feature Selection Methods for Av2 bhc2 M500 mi100 m100 - (TF-IDF) . 69

6.6 Classifiers Performance for Av3 bhc2 M500 mi100 m100 - (Machine Learning (ML) mod-

els trained with TF-IDF and best feature selection method. Deep Learning (DL) models

show the best experimental result) . 70

6.7 Proposed Email Classification System (model training process on top and prediction pro-

cess on bottom) . 75

7 Conclusion 77

A Email Overload 89

B Data Description 95

C Algorithms 99

xiv

List of Tables

1 Introduction 1

2 Background and Fundamental Concepts 9

3 Related Work 23

3.1 [Shanmugalingam et al., 2019]’s Email Classification Models Performance 27

3.2 Comparative Study on Reuters-21578 [Yang and Liu, 1999] 28

3.3 Classification results of hierarchical approaches and traditional approaches on WOS-

46985 [Sinha et al., 2018,Kowsari et al., 2017] . 30

3.4 Related Works Summary . 32

4 Data 33

4.1 Datasets Info . 36

4.2 Examples of anonymization performed on the data (green - correct; red - unwanted/incor-

rect/uncompleted . 38

4.3 Email sample at iterations 1, 2 and 3 after anonymization and noise removal (blue: sub-

ject; green: body content; orange: email that is being replied) 39

4.4 Noise Removal and Normalization Approaches . 42

5 Features and Models 47

5.1 Strategies for Exploring and Re-structuring the Class Structure (numbers represents the

amount of emails assigned to the class). 51

5.2 Classifiers Used . 58

6 Evaluation 61

xv

6.1 “Hierarchically cut” offspring datasets statistics . 65

6.2 Classification Performance for Parent Node-based Approach 68

6.3 Features Performance for OvO - SVC on Av3 bhc2 M500 mi100 m100 70

7 Conclusion 77

A Email Overload 89

A.1 Results regarding triage strategies [Sarrafzadeh et al., 2019b,Neustaedter et al., 2005a] 93

B Data Description 95

B.1 Common Offspring Datasets Statistics . 97

C Algorithms 99

Listings

B.1 Inferred schema from json files . 96

xvi

Acronyms

TF-IDF Term Frequency - Inverse Document Frequency

NLP Natural Language Processing

DL Deep Learning

ML Machine Learning

DM Data Mining

AI Artificial Intelligence

RPA Robotic Process Automation

CRISP-DM CRoss Industry Standard Process for Data Mining

BDA Big Data Analytics

NL Natural Language

TC Text Classification

SVM Support Vector Machine

KNN K-Nearest Neighbors

MNB Multinomial Naive Bayes

CNN Convolutional Neural Network

RNN Recurrent Neural Network

NB Naı̈ve Bayes

MLP Multi-Layer Perceptron

IR Information Retrieval

BOW Bag of Words

WE Word Embedding

XGBoost eXtreme Gradient Boost

LSTM Long Short Term Memory unit

xvii

Bi-LSTM Bidirectional Long Short Term Memory unit

BERT Bidirectional Encoder Representations from Transformers

OOV Out Of Vocabulary

NLTK Natural Language ToolKit

TruncatedSVD Truncated Singular Value Decomposition

VSM Vector Space Model

TF Term-Frequency

SFS Semantic Feature Selection

DT Decision Tree

IG Information Gain

NN Neural Networks

LLSF Linear Least-squares Fit

NCAR Noise Completely at Random

NAR Noise at Random

NNAR Noise Not at Random

IDF Inverse Document Frequency

LDA Latent Dirichlet Allocation

NER Named Entity Recognition

OCR Optical Character Recognition

MSVM-KNN Multi-class Support Vector Machine (SVM)-K-Nearest Neighbors (KNN)

ALC Automatic Literature Categorization

HDLTex Hierarchical Deep Learning Text Classifier

DNN Deep Neural Networks

Bi-LSTM Bidirectional Long Short Term Memory

WOS Web of Science

HDL Hierarchical Deep Learning

LR Logistic Regression

BoW Bag of Words

RF Random Forest

xviii

JSON JavaScript Object Notation

CSV Comma-Separated Values

MI Mutual Information

RMDL Random Model Deep Learning

MNB Multinomial Naı̈ve Bayes

SVC Support Vector Classifier

SGD Stochastic Gradient Descent

OvO One vs One

OvR One vs Rest (One vs All)

POS Part-of-Speech

ACM Assossiation for Computing Machinery

SIGKDD Special Interest Group on Knowledge Discovery and Data

DAG Directed Acyclic Graph

xix

xx

1
Introduction

The first rule of any technology used in a business is that automation applied to an efficient opera-

tion will magnify the efficiency

– Bill Gates

Contents
1.1 Motivation . 2
1.2 Context . 2
1.3 Objectives . 4
1.4 Methodology . 4
1.5 Contributions . 6
1.6 Document Outline . 7

1

1.1 Motivation

Since it was introduced to the world, email has become increasingly vital to our daily life. It is not only

an essential tool for personal communication, but also for personal management of information, events,

tasks and activities.

As a result, email has become a key tool for interpersonal communication at the workplace, and

therefore for many people a majority of their workday is spent within email. Team organization, project

management, information exchange, decision making and client support are only a few of a company’s

daily processes where email is crucial. With loads and loads of incoming messages (some important,

some junk), handling emails has become a tedious task. Such overload popped the need for email

automation, which is being mentioned in the last two decades as an essential target for Machine Learn-

ing (ML), Data Mining (DM) and Natural Language Processing (NLP) disciplines [Whittaker and Sidner,

1997,Brutlag and Meek, 2000,The Radicati Group, 2015,Mujtaba et al., 2017]. Recent studies [Mujtaba

et al., 2017, Park et al., 2019] find that current email automation opportunities fall under seven macro

categories: Triage and Prioritization, Inbox Management, Email Categorization, Email Sending Automa-

tion, Email Modes, Inbox Presentation, and Mass Aggregation and Processing of Emails. Most of these

categories describe tasks and processes in which automation solutions rely on the subject field of NLP.

NLP is a field study of Artificial Intelligence (AI) that deals with the interaction between computers

and humans using the natural language. The ultimate goal is to ultimately make sense of the human

languages in a manner that is valuable, by reading, understanding, writing, etc. Most NLP techniques

rely on ML to derive meaning from human languages. It is nowadays one of the most rapidly grow-

ing fields of study and most of the breakthroughs in NLP in recent years are supported by the use of

Deep Learning (DL). The popularity, fast-paced development and current rate of breakthroughs in the

domain of NLP create the perfect environment to venture on the development of solutions to answer the

aforementioned opportunities in email automation.

1.2 Context

The contact center of the Portuguese public services is a central channel of communication and inter-

action between the citizens or enterprises and the Portuguese public services12. The communication

channel between the citizen and the contact center is operated over the exchange of emails and phone

calls. Despite phone calls being the main channel, emails make about 1/5 of the throughput (an average

of 500 daily incoming emails)3 and this amount is predicted only to increase. Despite being subject to

1https://www.ama.gov.pt/web/agencia-para-a-modernizacao-administrativa/inicio
2https://eportugal.gov.pt/
3Data from the fourth quarter of 2019

2

a well defined process of triage, prioritization, categorization and answer, the amount of emails that are

received everyday is too big and results in email overload. Naturally, of the aforementioned categories

of email automation opportunities, Triage and Prioritization, and Email Categorization are the ones that

characterise this scenario.

Figure 1.1: Contact Center Email Processing Workflow

Figure 1.1 represents the flow of tasks regarding emails management and processing at the contact

center. For being simple, well-defined and, above all, repetitive, this process is an ideal candidate for

Robotic Process Automation (RPA). The idea behind RPA is to take the repetitive workload and automate

it using RPA bots so that the employees could focus on more value adding tasks and decision making to

the organization. The RPA bot would also help to reduce the human errors and make processes more

efficient, which results in cost saving and productivity increase [Van der Aalst et al., 2018].

To automate the process of triage, prioritization and categorization of email, a system must be de-

veloped that for each email received automatically outputs a priority and category label: an email clas-

sification system. Despite the popularity of the NLP field, the persistent problem of email overload

and the fast-paced development of new tools and applications that rely on NLP to answer a diversity

of challenges and problems, not only there is just a small set of solutions regarding email classifica-

tion (compared to other types of text classification domains), but each problem needs a solution to be

developed and adapted considering the domain of the problem.

The challenges that arise from the development of an email classification system are numerous

and intricate. This thesis focuses on identifying these challenges, studying the possible approaches to

each one of them, developing the corresponding solutions and ultimately creating a successful email

classification system adapted to the domain of the Contact Center of the Portuguese Public Services.

3

1.3 Objectives

The main objective of this thesis is to develop a system to classify emails. Under the scenario pre-

sented in the previous section, the objective will be, more specifically, to develop an email classification

system able to classify emails on the domain of the Contact Center of the Portuguese Public Services,

and by doing so, to reduce the human effort on the tasks of emails triage, prioritization and classification

or even to completely replace it.

To build a classification system, classifiers need to be trained, and to train a classifier, data is needed.

This creates the challenges to:

1. Collect data from the business context and compile it into a dataset;

2. Explore the data compiled to identify the problems it may have and characterise it;

3. Develop solutions to deal with data problems;

4. Review the approaches to feature selection and feature extraction;

5. Survey the state of the art regarding classification strategies;

6. Develop approaches to automatically classify data;

7. Compare the results obtained by the chosen approaches;

8. Choose and refine the best approaches to obtain the best performance.

Additionally, given the nature of the domain of the problem, there are several specifications that need

to be highlighted, namely the fact that it is a scenario in the real world with real data that presents

challenges scarcely studied in literature which deals mostly with artificial and carefully curated datasets.

The fact that the data is written in Portuguese (which is far from the standard of the text classification

systems literature) adds to the difficulty of the objectives.

1.4 Methodology

The methodology chosen to support this work was CRoss Industry Standard Process for Data Mining

(CRISP-DM). The CRISP-DM is a widely used and popular methodology for analytics, data mining and

data science projects [Piatetsky, 2014]. It is, in general, a set of guidelines to help plan, organize and

execute a project, which fits the demands of this email classification system project.

Figure 1.2 provides an overview of the life cycle of a data science project. The outer circle symbolizes

the cyclic nature of the process and the arrows inside the sequence, which allow to step back on some

sequences of the process, mean the six phases are more agile than rigid.

The six high-level phases of CRISP-DM describe the flow of project:

1. Business Understanding: This initial phase focuses on understanding the project goals and

requirements from a business perspective to give a context to the objectives. The main tasks are:

4

Figure 1.2: CRISP-DM Process Flow Diagram

• Understand the business background and determine the business objectives and success

criteria;

• Assess the situation (resources available, requirements, constraints, risks, contingencies,

terminology, costs and benefits);

• Draw a project plan, define project goals and project success criteria.

2. Data Understanding: This phase is all about building a data set. The main tasks are:

• Collect, explore and describe data;

• Verify data quality.

3. Data Preparation: The data preparation phase involves all the activities needed to prepare the

data for the modeling phase. The main tasks are:

• Clean, format and select data

• Derive data attributes

4. Modeling: There is a close connection between Modeling and Data Preparation because the

quality of the output of this phase is closely intertwined with the output of the Data Preparation

phase. It is what is traditionally referred as Data Mining (DM) [Azevedo and Santos, 2008]. In this

phase various models are considered being the main tasks to:

• Select and build a model;

• Assess model and tune parameters to optimal values;

• Generate test designs.

5. Evaluation: As the name suggests, in this phase there is an overall analysis of the process that

resulted from the decisions taken in previous phases. The tasks at hand may be summed up to:

5

• Compare the data mining results with the business success criteria;

• Review the process that was executed;

• Determine the next possible actions.

6. Deployment: The deployment phase may be as simple as a presentation of the results or complex

such as the deployment of an email classification system. It usually involves:

• Developing a deployment plan;

• Producing a final report;

• Reviewing/documenting the project/experience.

1.5 Contributions

Several contributions from this thesis may be named, but there is one that stands out: Automatic clas-

sification over classes organized in a hierarchical structure is still very understudied when compared to

the common ”flat” classification approaches. This work proposes strategies that take advantage of the

hierarchical nature of classes by manipulating their relations to counter the well known problem of class

imbalance and at the same time counter other issues such as class overlap and label noise.

Additionally, since the text data used in this project has the particularity of having been written by

an extremely large and diversified number of sources and annotated by a group of professionals, the

reports over data quality and the measures taken to increase it stand as an important contribution.

These and other contributions may be summarized as:

• in data collection and preprocessing:

– An analysis on the challenges in transforming raw data into a dataset;

– A comprehensive overview over the quality of data and how its aspects influence the per-

formance of the tasks to be executed.

• in feature extraction/selection:

– An overview of the most popular features extraction and selection methods;

– A comparative review over the application of such methods;

– A report on how feature engineering affects classification performance.

• in text classification:

– An analysis on the application of several text classification approaches over the dataset;

– A review over the results obtained by the strategies adopted, regarding feature extraction

and selection and class structure redesign approaches.

6

1.6 Document Outline

The work that follows is structured in six chapters. Chapter 2 contextualizes the work in the email

overload/automation scenario and introduces the fundamental concepts that will be used throughout this

document. Chapter 3 analyses works in three scopes: works in similar contexts or with similar goals,

works with similar data and works that use similar strategies, in comparison to the one being presented

in this thesis. Chapter 4 characterizes data in its context and by its quality and presents the evolution of

the solutions developed in order to refine it. Chapter 5 starts with a graphic description of the workflow

involved in the training of our data classification system and introduces all the algorithms that were used

during the development, namely the algorithms that counter the major problems of our data. It introduces

the evaluation metrics used to measure our solution’s performance and concludes with an overview of

the development process in order to substantiate the decisions made during development. Chapter 6

illustrates the different solutions developed in search of the optimal performance, comparing the effects

on data and with the variations of performance. It is completed by showing the performance behaviour

with different algorithms at several steps of the classification system. The last chapter (Chapter 7)

finalizes this thesis by reviewing the work described in comparison with the propositions initially declared,

checks the contributions made, the limitations endured and concludes by outlining the future work in the

development of this project and in the scope of the research fields that are the ground of this thesis.

7

8

2
Background and Fundamental

Concepts

Automation is good, so long as you know exactly where to put the machine.

– Eliyahu M. Goldratt

Contents
2.1 Data Processing . 10
2.2 Dataset Classes . 11
2.3 Text Categorization . 18
2.4 Information Retrieval . 20

9

2.1 Data Processing

The first two steps of our methodology are Business Understanding and Data Understanding. Figure 1.2

shows two arrows connecting these steps in both directions because they are closely related and work

in an exclusive cycle. One of the tasks in the business understanding phase is to understand how data

flows and what it means in the context of the business processes and in data understanding to collect it,

explore it and describe it. There are several aspects to consider when managing data and in this work

there are three that play a crucial role for different reasons: information sensitivity is important when

collecting/assessing data, data type is important when handling/manipulating data and data quality is

important for the performance of the processes that are applied to or operate with data.

“Information sensitivity is the control of access to information or knowledge that might result in loss

of an advantage or level of security if disclosed to others”1. Data sensitivity concerns information that

should be protected from unauthorized access or disclosure due to its sensitive nature. This might

include personal information, such as social security numbers, id card numbers, telephone numbers,

birthdays and names, business information, such as salaries, business proprietary information, etc.

Before being disclosed to a third-party (for engineering experiments such as the one that grounds this

work for example), sensitive data usually goes through a data anonymization process where specific

data is altered by the application of some data anonymization techniques, in a way where the sensitive

information is not disclosed. The most common data anonymization techniques are the following:

1. Data masking: hiding data with altered values. For example replacing a value with ‘*’.

2. Pseudonymization: replaces private identifiers with fake identifiers or pseudonyms. For example

replacing a girls name with just ‘Maria’.

3. Generalization: deliberately removes some of the data to make it less identifiable. For example

removing all social security numbers from a dataset.

4. Data swapping/Shuffling/Permutation: rearrange values. For example, mixing the order of words

in a text.

5. Data perturbation: adds random noise to data: For example multiplying all numbers by ‘5’.

6. Synthetic data: produces fake information that has no connection to real events.

The type of data influences the course of data-related experiments, such as this work, and in that

matter it is important to distinguish between three types:

1. Structured data: Generalization or aggregation of items described by elementary attributes de-

fined within a domain (range of possible values). Relational tables and statistical data are exam-

ples of common structured data.

2. Unstructured data: Generic sequence of symbols, typically in the form of natural language. Free

1https://en.wikipedia.org/wiki/Information sensitivity

10

text such as news article or an email are the most common example.

3. Semi-structured data: Data that have a structure which has some degree of flexibility, such as

JSON, XML or other markup language that has fields describing data, but data may be repre-

sented in multiple ways in multiple fields.

Data quality is defined as the wellness and appropriateness of data for use, to meet the requirements

of some process or to meet user needs [Alizamini et al., 2010, Salih et al., 2019]. Literature usually

mentions data quality in the context of Big Data Analytics (BDA). There is no global consensus on the

definition of BDA but we will go with the definition used in [Favaretto et al., 2019]: ”ability to extract

information from data using various techniques, such as artificial intelligence, mathematics, statistics

and other techniques to support the decision making process”.

Normally, the most studied characteristic that impacts data quality, that is, its fitness for use or to

meet the requirements of a process such as automatic classification, is data noise [Labadie and Prince,

2008]. Data noise is, in text data, the presence of terms that are out of the vocabulary of the domain,

of spelling errors, of random punctuation or non-standardized terms. Data noise may be classified as

natural (when it is the product of human mistakes) or systematic (when it results from a process). It is

dealt within a process called data cleaning.

Data cleaning is the process of identifying and removing errors and inconsistencies from data in

order to improve data quality. It comprises tasks such as checking if data contains misspellings, foreign

or wrong words, sequences of punctuation marks, unanticipated abbreviations, ill-formed sentences,

missing values, etc, and removing them. All these elements may be the source of low data quality which

negatively impacts learning algorithms, especially those relying on NLP techniques such as syntactic

and semantic analysis [Labadie and Prince, 2008].

2.2 Dataset Classes

In a structured dataset, data instances are assigned with one (leading to a single-label classification

problem) or more classes (leading to a multi-label classification problem) from a set of classes which

may contain two (leading to a binary classification problem) or more classes (leading to a multi-class

classification problem). The subject of this work is a single-label multi-class classification problem.

Classes may have no relationship (flat classes), have a ranking/ordering relationship (ordinal classes)

or even be organized in a hierarchical structure (hierarchical classes). The classes relationship/struc-

ture has high influence on the approaches that may be employed during the classification process [Silla

and Freitas, 2011]. Furthermore, not only the structure of the classes influences the classification pro-

cess, but also class issues such as class imbalance, class overlap and label noise have huge impact.

11

2.2.1 Hierarchical Class Structure

In a classification problem, classes may be organized in one of three types of structure: flat structure,

ordinal structure or hierarchical (tree) structure.

Typically in large-scale data environments, there are huge amounts of data which are organized

in complicated structures such as hierarchies. A hierarchy employs a parent-child relationship among

classes, meaning that a data instance belonging to a class also belongs to its ancestor class.

A hierarchical tree is defined as a pair (C,≺) where C is the set of all classes and ≺ is the relation-

ship “is-a”, in this case, the “subclass-of” relationship. This “subclass-of” relationship has the following

properties:

1. Asymetry: if m ≺ j, then j ⊀ m for every m, j ∈ C

2. Anti-reflexivity: m ⊀ m for every m ∈ C

3. Transitivity: if m ≺ j and j ≺ n, then m ≺ n for every m, j, n ∈ C

In a tree structure, the top node (has no parent node) is called root node, the nodes with no child are

called leaf nodes, and the nodes with parent and child nodes are called inter-level nodes. Two or more

nodes with the same parent node are called a sibling node.

The set of child classes of class m is defined by the parameter Cm and the number of documents of

the child classes is defined as |Cm|. The parent category of class m is defined by the parameter pm and

the set of sibling categories of class m is defined by parameter Sm. h is the height of the tree structure.

2.2.2 Class Imbalance

The most common issue, class imbalance, is the situation where classes are not equally distributed

among the data instances. In an imbalanced dataset, a class mapped to a high proportion of the data

instances is called a majority class and a class mapped to a low proportion of the data instances is

called a minority class. In this circumstances, the majority classes tend to bias the classifiers towards

themselves, resulting in a poor classification of the minority classes. Furthermore, a multi-class scenario

where there is one majority class and multiple minority classes is called a multi-minority problem, where

the opposite is called a multi-majority problem.

To solve problems associated with class imbalance, various techniques have been proposed over

the last three decades [Japkowicz, 2000, Ali et al., 2019, Esteves, 2020], however, there is still a lack of

systematic and organized taxonomy. [Batista et al., 2004] studies the application of eight methods for

balancing training data without implying a taxonomy of approaches, [Japkowicz, 2000] and [Haixiang

et al., 2017] distinguish two kinds of methods, the former distinguishes “re-sampling” and “learning

by recognition”, and the latter “preprocessing strategies” and “cost-sensitive learning”. [Arafat et al.,

2019] and [Ali et al., 2019] distinguish three types of strategies: algorithm-level approaches, data-level

12

approaches and cost-sensitive approaches. [Cruz et al., 2019] and [Galar et al., 2011] go further and

distinguish a fourth strategy type: ensemble-based approaches. These four type of strategies are the

following:

1. The internal or algorithm-level approaches modify the usual learning methods/algorithms to

take the minority classes into account and not bias towards the majority classes.

2. External or data-level approaches include preprocessing of data in order to re-balance the dis-

tribution of classes and reduce the impact of the imbalanced classes on the classification perfor-

mance.

3. Cost-sensitive strategies combine both internal and external approaches by assigning different

costs to every class based on the distribution of data instances and by applying modified learning

algorithms to these classes.

4. Ensemble-based approaches combine any of the previous strategies, namely external, with an

ensemble-based algorithm.

2.2.3 Label Noise

Label Noise is a problem rooted at the dataset foundation. Generally, a dataset is a collection of data

instances that were labelled, directly or indirectly by a human (it may have been labelled by a machine

engineered by a human), considered to be a data domain expert. However humans make mistakes and

machines may malfunction. These situations may be the source of data mislabeling, which damages

the relation between the classes and the features [Frénay and Verleysen, 2013].

Label noise has been identified as one of the most problematic types of noise in the process of text

classification [Roberts et al., 2010,Frénay and Verleysen, 2013]. Text classification consists in predicting

the class of a text, using a model inferred from training data. Each data instance is associated with an

observed/recorded label which corresponds to the true class of the data instance, but there may be

a mismatch between the observed/recorded label and the true class of the data instance [Frénay and

Kabán, 2014,Atkinson and Metsis, 2020]. A wrong association between the features of the data instance

and the class are created by polluted labels from this mismatch process called label noise [Zhu and Wu,

2004]. The source of this type of noise, usually, lies in the hands of a domain expert who performs or

checks data and may be caused by a design fault of the class structure, for example the definition of

ambiguous classes, poor decisions, data entry errors, poor data quality, insufficient information, wrong

observations, complex patterns, communication problems or data encoding [Roberts et al., 2010,Frénay

and Verleysen, 2013,Frénay and Kabán, 2014,Müller and Markert, 2019,Atkinson and Metsis, 2020].

[Frénay and Kabán, 2014] propose a taxonomy inspired by the works of [Schafer and Graham, 2002]

where they define three types of label noise:

• Noise Completely at Random (NCAR) occurs independently of the true class and of the values

13

of the instance features (a wrong observation or data entry error for example).

• Noise at Random (NAR) where the probability of the mislabelling depends on the true class (for

example, confusing two classes that are very similar);

• Noise Not at Random (NNAR) is the more general case, where the mislabelling depends on both

the feature values and the true class (for example, having an object with some features typical of

two similar classes and assigning the wrong one).

The main consequence of label noise is that it deteriorates the relation between the features and

the true classes that is crucial for the classification process, resulting in a decrease of the prediction

performance. Consequently, the complexity of inferred models as well as the number of required training

instances may increase [Frénay and Verleysen, 2013]. In some domains, a systematic label noise may

distort observed results in a degree which may cause or intensify class imbalance problems.

[Müller and Markert, 2019] organize existing strategies to deal with label noise in three groups. The

first suggests designing robust algorithms that can cope with label noise, such as the ones presented

by [Bootkrajang, 2016] and [Li et al., 2017]. The second and third rely on identifying mislabeled instances

and removing or re-labelling them, respectively. These strategies usually rely on a two level approach

to identify mislabeled data: in a very straightforward definition, a classifier is trained on data in order

to identify mislabelled instances which are then presented to a human checker, as possible mislabelled

instances. [Frénay and Verleysen, 2013] mention that bagging algorithms are more robust to label noise

than boosting algorithms (such as AdaBoost); that the node splitting criterion of decision trees can

improve label noise robustness; and, conclude that robust methods rely on outfitting avoidance to handle

label noise.

Although the consequences of label noise (such as difficulty to identify relevant features, increased

complexity of learning models, misrepresentation of class proportions and general decrease in classi-

fication performance,) are important and diverse, works focused on label noise are few, compared to

feature noise. Most works use either synthetic datasets or real-world datasets added with synthetic

noise [Müller and Markert, 2019, Atkinson and Metsis, 2020], datasets not widely known benchmarks

and there are no standard approaches to deal with label noise [Frénay and Kabán, 2014].

2.2.4 Class Overlap

Since most literature revolves around binary classification problems, where the two classes are generally

antipodes, few works address class overlap. However, in multi-class problems, specially where there is

a large set of classes, the case where data instances with very similar characteristics belong to different

classes is common. These instances are called overlapping data instances because they are located in

the “overlapping region” of the feature space. This “overlapping region” is a region in the feature space

where learning algorithms struggle to define a class boundary that results in the best performance and

14

where most mislabelled instances are usually located [Lavanya et al., 2014, Xiong et al., 2010]. This

problem is called class overlap and is mainly caused by two factors: label noise (as mentioned in the

previous section) and class structure/schema issues [Zhuge and He, 2017].

Solutions to class overlap problem are usually based on the core idea of discarding, merging or

separating the data instances located in the overlap region [Xiong et al., 2010]. Discarding implies losing

data (the data instances in the overlap region), merging implies altering the class structure/schema

(merging two classes into one, or creating a new class for the overlap region) and separating implies

complex learning strategies that perform well in the overlap region.

2.2.5 Class Hierarchy Structure Issues

“Designing a hierarchy is hard because it is not always possible to anticipate how a hierarchy will be

used by an application” [Snelting and Tip, 1998]. A hierarchical class structure normally represents a

human abstraction, where the categories closer to the root are more general and gradually become

more specialized following the paths from the root to the leaves. These structures are made to con-

tinuously accommodate resources that are constantly coming and that may change in pattern and in

volume [Zhuge and He, 2017].

“The usefulness of a hierarchy heavily relies on the effectiveness of the hierarchy in properly orga-

nizing the existing data, and more importantly accommodating the newly available data into the hierar-

chy” [Yuan et al., 2012]. Research articles focus mainly on hierarchical classification under a predefined

hierarchy. Hierarchies represent a view over the organization/distribution of data, but data evolves and

changes in time, making a predefined hierarchy no longer able to correctly categorize new data. Hier-

archies need to evolve, but they evolve at a much slower pace than data, and during this process two

major problems may arise [Yuan et al., 2012,Zhuge and He, 2017]:

Structure irrelevance: a hierarchy may characterise the topic distribution of its data at an initial

point, but as data evolves, there are no proper categories in the hierarchy to accommodate new

data. As a result, some new data instances are labelled in less significant categories, data become

less cohesive and some categories become less discriminative with respect to the current data dis-

tribution;

Semantics irrelevance: semantics change in time and a category name which used to represent a

collection of data may become less adequate, with the data it represents becoming more semantically

related with another category.

These problems negatively affect classification performance and sabotage the fundamental purpose

of the hierarchical structure. They call for “categorical hierarchy maintenance” modifications in order to

adapt the category to the new data reality (new patterns of data) and improve the classification perfor-

mance [Yuan et al., 2012]. There are four basic cases where a hierarchy needs modifications:

15

1. Two categories under the same parent share too many common features to distinguish them

clearly (class overlap);

2. A category belongs to more than one parent category;

3. Leaf categories become less cohesive with new data;

4. Parent category can no longer represent its child category.

Category hierarchy maintenance is not a trivial task and despite there have been little work on this

subject, a variety of approaches have been suggested. Snelting and Tip, 1998 propose a manual ap-

proach to redesign a class hierarchy based on concept analysis [Wille, 1982] and conclude that the

technique is capable of finding design anomalies such as class redundancies (which can be moved onto

an upper class) and situations where a class may be split, thus able to restructure a hierarchy tree.

[Tang et al., 2006] propose a maintenance approach based on three operations (Promote, Merge

and Demote) that changed relations between categories. Promote moves a category to the upper level,

Demote moves a category to a lower level under one of its siblings, and Merge merges two siblings, by

creating a ‘super category’ that abstracts both and puts them as child categories of this ‘super category’.

These approaches change only the relations of categories and not the categories directly.

[Yuan et al., 2012] propose an approach to modify a category with reference to an auxiliary hierar-

chy (a hierarchy covering the same topics (the same domain)) using three non-trivial operations (Sprout,

Merge and Assign). Hidden topics may be discovered by comparing the semantics of both hierarchies.

The Sprout operation relies on the following steps: for each category C, the data instances are pro-

jected on the auxiliary hierarchy, Ha. A set of categories from the auxiliary hierarchy Ha will contain a

reasonable proportion of C ’s data instances which are said to represent C ’s hidden topics and can be

‘sprouted’ from C into child categories. The Merge operation aims to merge similar sibling categories,

specially the ‘sprouted’ categories. The Assign operation assigns children categories from the auxiliary

categories used to sprout a given category C as children categories of C.

[Zhuge and He, 2017] propose a maintenance approach that follows a two-phase (global and local)

hierarchy adjustments. The global phase uses hierarchical clustering to generate a cluster tree that

reflects the similarity between categories, to detect inappropriately located categories. The local phase

detects topical changes by Latent Dirichlet Allocation (LDA) topic model and then adjusts the hierarchy

with three local operations: Merge, Pull-Up and Split. Merge and Pull-Up are similar to [Tang et al.,

2006]’s Merge and Promote operations, respectively. Split is the operation of creating two or more child

categories from a given category, according to a Category Cohesion metric defined by [Tang et al.,

2006].

[Tang et al., 2006] test their approach on three different datasets with semantic-based hierarchies,

using a Multinomial Naı̈ve Bayes classifier. They conclude that a semantically sound taxonomy may

not necessarily lead to the best classification performance and that the taxonomy may be evolved and

16

adapted to changes in data and lead to better classification performance. [Yuan et al., 2012] use their ap-

proach on three real-world hierarchies and Naı̈ve Bayes and Support Vector Machine (SVM) classifiers,

and obtain improvements in macro F1-measure score ranging between 30% and 60%. Furthermore,

they performed a ‘user study’ to check if the modified hierarchies are topically cohesive and had a se-

mantically meaningful structure and obtained positive results. [Zhuge and He, 2017] used hierarchical

variants of benchmark datasets 20-Newsgroups, Reuters-21578, and DMOZ2 dataset. Using SVM, they

also obtained much better F-measure and accuracy scores on the modified hierarchies while improving

structural balance and semantics.

2.2.6 Summary

Class structure issues, namely hierarchy structure problems, arise from poor design, from the evolution

of data which it accommodates and from hierarchy maintenance, that is, the changes applied in the

hierarchy to couple with the changes in data.

Figure 2.1: Class Issues Relationship

Poor hierarchy design influences class balance, because, among other issues, classes may be

thought only for their semantic meaning and not distribute data correctly, leading to class imbalance.

Furthermore, the evolution of data which it accommodates and the hierarchy maintenance, that is, the

changes applied in the hierarchy to couple with the changes in data, that follows may increase the

chance of NAR and NNAR label noise. Hierarchies are by nature more prone to class overlap because

as the level depth increases, the boundary between classes decreases. The fact that hierarchy main-

tenance (for example the creation of new classes) only happens after the changes in data means that

similar data will be present in more than one class, leading to class overlap. Class overlap can be

easily related to NAR label noise, because of the class similarity issue. These concepts, described in

sections 2.2.2, 2.2.4, 2.2.3 and 2.2.5, and their relation may be summarized by Figure 2.1.

2www.dmoz.org

17

2.3 Text Categorization

Text Categorization is one of the applications of Text Mining (the process responsible for identifying

and extracting useful information from unstructured text) [Vijayarani et al., 2015] and is the process that

deals with the assignment of predefined categories, topics, or labels to Natural Language (NL) texts or

documents [Sebastiani, 2002].

The input of a Text Classification (TC) system is a set of documents (emails in the present work

context) which represents the data to be classified. Traditionally, before the Classification step (which

is the most important step in a TC system), there is the Document Representation step, during which a

Feature Extraction process takes place, where documents unstructured data is cleaned and converted

in a structured feature space. Then, since documents may contain a lot of features, a Feature Selection

step may take place to reduce the dimensionality of the data and reduce the time and memory complexity

of the classification step.

Fig. 2.2 show TC approaches divided in two types of classification: binary and multi-class. In the

binary case there are only two categories of which one must be assigned to the document. This is

the case of Spam Classification, which has been widely studied. In the multi-class case there is a set

of categories and two possible cases: when a number of categories from 0 to C must be assigned to

each document, it is called multi-label, and when only exactly one must be assigned it is called single-

label [Sebastiani, 2002].

Figure 2.2: Text Classification Approaches Overview

Most Email Classification research falls under binary classification of emails, namely for spam detec-

tion, while multi-class classification is usually referred as ”email foldering” or ”multi-folder categorization”.

In the research results reported by Mujtaba et al., 2017 there is approximately 1 research article for

email multi-class classification for every 7-8 research articles about email binary classification.

18

2.3.1 Class Relations

This work focus on multi-class single-label classification of emails. Furthermore, the set of classes

used for email categorization show a hierarchical structure.

The single-label hierarchical classification problem may be defined as a 2-tuple (Υ,Φ) [Silla and

Freitas, 2011], where

• Υ defines the type of structure that represents the hierarchical classes and their relationships. It

may be T (Tree) or Directed Acyclic Graph (DAG);

• Φ defines the label depth of the data instance. The instance may be labeled only with leaf node,

FD (Full Depth), or with otherwise, PD (Partial Depth).

A hierarchical classification problem may deal with a flat or hierarchical classification approach

where:

• A flat classification approach disregards the classes relations. This means the hierarchy is ignored

and the classification approach predicts only the leaf nodes;

• The hierarchical classification approach may be further classified as Local or Global, where a

local approach builds a classifier per level, per node or per parent-node and a global classifier

learns a global single model for all classes.

An ordinal classification problem may deal with a flat or ordinal classification approach [Gutiérrez

et al., 2016] where:

• A flat classification approach disregards the classes ordinal relations;

• The ordinal classification exploits the order information, by making use of ordinal regression ap-

proaches.

2.3.2 Classification Techniques

Email Categorization can be ultimately reduced to a process of Text Classification (for details see sec-

tion A.1.3).

The most crucial step of a text classification pipeline is the classification step, where a classifier

learns to link data instances with class labels. Choosing the best learning classifier is the subject of

most studies regarding text classification.

Following Kowsari et al., 2019 survey on text classification algorithms the most popular methods

for text classification may be grouped as traditional methods, ensemble methods and deep learning

methods.

The most common traditional methods are Naı̈ve Bayes (NB) classifiers, Decision Trees (DTs),

rule-based classifiers, SVM classifiers, K-Nearest Neighbors (KNN) classifiers and related hybrid ap-

proaches. The most popular ensemble approaches are the decision tree-based method Random Forest

19

and the boosting-based algorithms AdaBoost and eXtreme Gradient Boost (XGBoost). Common deep

learning methods such as Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs) and other complex strategies capable of modelling complex data

have also been adopted for text classification.

The NB classifier is based on Bayes theorem and has been widely adopted for document classifica-

tion. Rule-based classifiers determine the class by applying rules that relate data patterns to classes.

SVM is a binary method that consists on mapping input vectors into a high dimensional space and

outputting the creation of a hyper-plane that separates data. KNN algorithm uses a distance measure,

typically Euclidean distance to identify the k nearest neighbors of a test document among all documents

in the training set, and scores the category candidates based on the class of k neighbors. Decision

Trees are designed with the use of a hierarchical decomposition of the underlying data space with the

use of different text features.

These algorithms are further explained and described in appendix C.4.

2.4 Information Retrieval

Information Retrieval (IR) is the process where some approaches are employed in order to extract the

most meaningful and informative features of some source of (unstructured) data [Meadow et al., 2000]

in order to satisfy some need. In text classification, information retrieval is usually mentioned as the

processes of text pre-processing, dimensionality reduction, text representation, feature extraction and

feature selection.

2.4.1 Pre-processing

One of the first and most common steps of text pre-processing is the removal of stop-words. Stop-words

are frequent terms in a text which carry information of lesser importance. In the task of text classification,

removing stop-words is usually a positive step, considering that stop-words provide little to no unique

information and removing them increases the fraction of significant features and thus potentially allows

accuracy to be increased. Removing stop-words also reduces the size of the dataset thus decreasing

the time to train the model.

One of the crucial tasks used in IR, when applied to text, is the recognition of morphological variation

and conceptual proximity of the words, called lexical normalization or word normalization. Two differ-

ent normalization approaches are usually distinguished – stemming and lemmatization [Toman et al.,

2006]. Both techniques produce a normalized form. Lemmatization produces a normalized form by

replacing the suffix of a word with a different one or removing the suffix of a word completely to get the

20

basic word form (lemma). Stemming combines the different forms of a word into a common normalized

representation, called stem or radical.

When comparing both approaches, the results reported by the research community do not converge

on a conclusion. For example [Balakrishnan and Lloyd-Yemoh, 2014] conclude, in their experiments,

that lemmatization produced better precision compared to stemming but the difference of performance

was insignificant, [Wibowo Haryanto et al., 2018] in an experiment comparing the influence of word

normalization approaches in SVM text classification obtained better results using stemming than using

lemmatization and [Toman et al., 2006] conclude in their comparison experiment that the best approach

pre-processing approach is to omit word normalization.

2.4.2 Type of Representation

Information can be represented in multiple ways while keeping the same meaning. Text data is usually

represented as numbers, since machines work better with this type of data. But within text data repre-

sentation, there are different representations that fit different purposes. The best representations is the

one that better fits the classifier model.

Text representations differ in the information they carry and have different impacts on the model. The

most usual are one-hot encodings, Bag of Words (BOW) and Word Embedding (WE). They are further

described in appendix C.1.

These text representations approaches are based on vectors that represent words or texts, which

are modeled as elements of a vector space and their collection is said to be modelled as a Vector Space

Model (VSM).

Usually traditional ML models use BOW text representations while DL models use WE word repre-

sentations.

2.4.3 Dimensionality Reduction

Feature extraction is a process of dimensionality reduction popular in text categorization due to text

high dimensionality. Feature extraction acts by selecting, combining or transforming variables into fea-

tures, reducing the amount of data that must be processed, while still accurately describing the original

data set. It generally reduces the amount of redundant data and promotes the speed of learning and

generalization steps in the machine learning process.

Feature extraction is frequently reported in text classification processes, such as the one that grounds

this work, with Term Frequency - Inverse Document Frequency (TF-IDF) being the most popular feature

extraction algorithm. Some important feature extraction methods are further described in appendix C.2.

Feature selection is the process of automatically or manually selecting a subset of relevant features

21

(those which contribute most to the model performance). Like feature extraction, feature selection is

a dimensionality reduction approach designed to reduce the number of features, namely irrelevant or

partially relevant features that can decrease the model performance, and to improve the performance

by reducing the computational cost. Some of the most relevant feature selection algorithms are further

described in appendix C.3.

22

3
Related Work

Humans are very good at making algorithms work eventually.

– Usama Fayyad, co-founder of KDD conferences and Assossiation for Computing Machinery

(ACM) Special Interest Group on Knowledge Discovery and Data (SIGKDD)

Contents
3.1 Motivation . 24
3.2 Email Classification Systems . 24
3.3 Similar Text Classification Problems . 27
3.4 Summary . 31

23

3.1 Motivation

Searching for problems similar to the one we have at hands should always be the first step for finding

a solution. But, as previously mentioned, most email classification research is focused on binary clas-

sification problems (spam filtering and phishing filtering), leaving only some scarce email multi-class

classification articles of relevance. Email multi-class classification systems, using unsupervised clas-

sification methods were not considered since we want to classify emails against a predefined set of

categories and intent classification systems were also discarded because its problems/solutions have

crucial differences from the ones at stake in this work. Since, there are not many published works

regarding email single-label multi-class classification systems, the search was extended to similar prob-

lems such as IT help desk automated systems, customer support services systems and TC problems

where data has similar characteristics to our data.

It is not only the classification that plays a huge role in this work, but due to the nature of data and

the hierarchical structure of classes, there are issues regarding classes that have a big influence on

the development of this project, being the source of important decisions and the cause of the results

obtained.

3.2 Email Classification Systems

As early as 1996, W. Cohen notices a ”great deal of interest in systems that allow a technically naive user

to easily construct a personalized system for filtering and classifying documents such as e-mail” [Cohen,

1996]. He explores how text classifiers, namely a ”keyword spotting rule” and a ”method based on

TF-IDF weighting” perform on small datasets of hundreds of personal emails, over eleven categories,

and realizes that both methods obtain significant generalizations, from a small number of examples, and

comparable performance.

Neural Networks (NN) were applied by the first time (to the authors best knowledge) at email multi-

class classification in 2003. [Clark et al., 2003] presented LINGER, ”a NN-based system for automatic

e-mail classification”. LINGER used a MLP (MultiLayer Perceptron) trained with backpropagation, to

classify five personal email datasets, containing 545, 423, 888, 926 and 982 emails into 7, 6, 11, 19

and 6 folders, respectively. The results obtained are proportional to the ratio between emails and folder

with the best scores being (in terms of F1-measure) 79.44%, 43.10%, 76.81%, 39.92% and 83.18%,

respectively. This experience indicates that the larger the amount of data in relation to the amount

of the classes, the better the classification results. The experience also tested the influence of the

feature selection method, using Information Gain (IG) and Variance. Performance results with one of

the datasets showed a difference of 40.63% in terms of F1-measure, with the other datasets showing a

difference of approximately 4 to 26%, suggesting that the feature selection method employed is of great

24

relevance. The document representation methods used were BOW, TF-IDF, Term-Frequency (TF) and

binary count.

In a very similar experience, [Yu and hua Zhu, 2009] proposed a new classification model, a modified

MLP (to overcome the slow learning speed of the traditional MLP). This model was evaluated over four

datasets with the smallest containing 1099 emails and the largest containing 4139 emails, distributed

over eleven classes. One of the key factors of this experience is that the feature selection algorithm that

was used was a Semantic Feature Selection (SFS), based on Truncated Singular Value Decomposition

(TruncatedSVD) a method for reducing the dimensionality of large datasets and extracting the dominant

features of the data.

Using the publicly available dataset of emails Enron [Klimt and Yang, 2004], [Xia et al., 2007] per-

formed a comparative analysis on the performance between some-vs-rest round robin binarization

method, a binary decision tree and SVM multiclass. Emails were represented by ‘non stop-words’

weighted by TF-IDF. The experimental results, evaluated on F1-measure score, showed that the bi-

nary decision tree is more effective than SVM and some-vs-rest round robin method binarization in

email categorization and computationally less complex in training. The experience showed that SFS

not only was able to drastically reduce the number of features but also improve accuracy and efficiency

when compared to VSM.

Similar to Email Categorization, [Silva et al., 2018] in the IT incident management context, study the

application of an automatic text classification system for incident tickets categorization. They study the

application of several techniques at the preprocessing phase, namely tokenization, stemming, eliminat-

ing stop-words, named-entity recognition, and TF-IDF based document representation. The classifiers

that were used were SVM and KNN. The data used contained tickets written in English and classes

were distributed in a hierarchically, with the first level containing 10 categories and the second contain-

ing 94 categories in total. During the experiments, the datasets used had 2000 incidents per category.

The work concluded that a short description of an incident lead to better accuracy score, that the choice

of document representation method (TF-IDF, TF or Inverse Document Frequency (IDF)), the choice of

tokenizer, the choice of whether to use stemming or not, and the choice of using Named Entity Recog-

nition (NER) or not had little to no influence over the accuracy score. As expected, accuracy score was

lower in the second level of the hierarchy, compared to the first-level.

Similarly to a contact center, the IT support help desk handles emails/messages regarding a set

of subjects in a repetitive pattern. Aiming to automate this process, [Shanmugalingam et al., 2019]

proposed an approach focused on automating repetitive task (RPA), in which they present a classifica-

tion model to categorize requests (emails) directed to the help desk. Emails are categorized with one

category from each of the three levels of categories, containing 84, 8 and 77 unique categories.

All emails undergo a pre-process stage were signatures, greetings and URLs are removed, key body

25

content is extracted and analyzed using Microsoft LUIS [Williams et al., 2015] in order to distill the intent

and attachments are analyzed using Optical Character Recognition (OCR) to extract the text contents

from the attachments. If the intent of an email cannot be identified it is left for manual classification.

Static rules and keywords gathered using feature engineering are used to classify emails (with high

accuracy). Remaining emails are classified using an email classifiers based on machine learning.

The classifier model was built using a dataset of 260000 emails. Each email was preprocessed,

using the strategies mentioned in the previous paragraph plus stop-words removal, punctuation removal,

tokenization and lemmatization. During feature selection, ”To”, ”CC” and ”From” are removed and 180

custom features are created. Features from title, body and OCR texts are extracted using TF-IDF to

represent 3-grams or using feature hashing. Then features are filtered using Chi-square (X2) scoring.

Multi-class classification supervised algorithm were used as benchmarks (such as Random Forest

and XGBoost). A hierarchical model was used, where some combination of feature extraction - feature

selection - classifier was applied to some categories, deemed high accuracy categories, with the other

categories, named low accuracy categories, grouped as one category. The next model predicts the low

accuracy categories, using a given combination of feature extraction - feature selection - classifier that

performs well to predict them.

Deep learning approaches were also employed. Long Short Term Memory unit (LSTM), Bidirectional

Long Short Term Memory (Bi-LSTM) and Bidirectional Encoder Representations from Transformers

(BERT) were tested, but despite being the state of the art, BERT was excluded because the accu-

racy obtained was not as good as expected and it has a high computer resources cost. LSTM and

Bi-LSTM used GloVe embeddings.

In order to classify only high confident emails, thresholds for the categories were defined, based

on the overall F-measure. High accuracy categories were set with zero threshold while low accuracy

categories were set with a high threshold. If an email is classified with an accuracy lower than the

threshold it is directed for manual classification.

Evaluation metrics such as precision, recall and F-measure were used. Despite the model with the

best F-measure score was the LSTM with 77.3% F1 score, the hierarchical ML model using two models

(one for high accuracy categories and other for low accuracy categories) combined with keyword static

classification rules applied on ‘body+title+OCR’ with custom data engineered features with 76.5% F1

score was chosen due to being much less computationally expensive. With the deployment of this

system, the human effort reduced from 100% to 20%. All the results are displayed on Table 3.1

26

Input Features Classifier Accuracy

Title

Random Forest 48.6
XGBoost 48.6
LSTM 52.1
Bi-LSTM 52.3

Title + Body

Random Forest 62.9
XGBoost 63.8
LSTM 67.1
Bi-LSTM 68.4

Title + Body + OCR

Random Forest 67.9
XGBoost 69.1
LSTM 73.2
Bi-LSTM 74.6

Title + Body + OCR + Custom Engineered Features

Hierarchical ML 76.5
(‘high accuracy categories’ model) 83.2
(‘low accuracy categories’ model) 71.1
Bi-LSTM 77.3

Table 3.1: [Shanmugalingam et al., 2019]’s Email Classification Models Performance

3.3 Similar Text Classification Problems

3.3.1 Traditional Classification Strategies

As early as 1999, [Yang and Liu, 1999] reported a comparative study on five categorization methods:

Support Vector Machine (SVM), k-Nearest Neighbors (KNN), NN, Linear Least-squares Fit (LLSF) and

Naı̈ve Bayes (NB). The corpus used was the longstanding benchmark Reuters-215781, namely the

ApteMod version2 which was obtained by eliminating unlabelled documents and selecting the categories

which have at least one document in the training and test sets. 90 categories resulted in both a training

set of 7769 documents and a test set of 3019 documents. The experiment settings were empirically

selected. The feature selection technique used for each classifier was either Chi-square (X2) or IG,

according to which performed best. Each classifier feature set and settings are presented in the Table 3.2

with the results. By observing the results presented in Table 3.2, the conclusion is that SVM and KNN

significantly outperform the other classifiers, while NB significantly under-performs all classifiers.

Since this study was reported, there have been a lot of research articles about improvements for

traditional classifiers, hybrid approaches and new approaches.

The Neighbourhood Weighted KNN (NWKNN) [Tan, 2005] overcomes the problem of imbalanced

datasets by assigning more weight for neighbors from small classes and less weight for neighbors from

big classes.

One of the datasets used was a subset of the benchmark Reuters-21578, with 10324 documents

under 55 categories. During the experiments, the documents were represented using the vector space

1https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
2https://github.com/teropa/nlp/tree/master/resources/corpora/reuters

27

Method config. feat. size miR miP miF1 maF1 error
SVM linear model 10000 0.812 0.914 0.860 0.525 0.00365
KNN k = 45 2415 0.834 0.880 0.857 0.524 0.00385

LLSF
singular value
use for compu-
tation = 501

2415 0.851 0.849 0.850 0.501 0.00414

NN 54 units in the
middle layer 1000 0.784 0.879 0.829 0.038 0.00447

NB 2000 0.769 0.825 0.796 0.389 0.00544

Table 3.2: Comparative Study on Reuters-21578 [Yang and Liu, 1999]

model (VSM) and the weight of each word was computed using TF-IDF. Features were selected using

Information Gain and the dataset underwent three-fold cross validation.

The measures used were Recall, Precision and F1-measure. The results were evaluated for different

values of exponent and selected features. It is worthy to note that with exponent = 4, NWKNN beats

KNN by 5% under any number of features and achieves a F1-Measure of 68% and Precision and Recall

of 69% and 70% respectively.

Hybrid approaches usually join the strengths of one or more individual approaches while trying to

eliminate their drawbacks. While SVM can not identify document classes correctly when texts are po-

sitioned over the hyperplanes, KNN is limited when categorizing documents in overlapped category

borders. Multi-class SVM-KNN (MSVM-KNN) [Yuan et al., 2008] overcomes these shortcomings and

improves the performance of multi-class text classification by combining SVM and KNN, using SVM to

identify class borders and KNN to categorize documents among those borders.

In this experiment, documents were represented by the VSM. Since TF-IDF (the most common

approach for term weighting) does not consider a term discriminative power, [Yuan et al., 2008] proposed

a new method to compute term weights, called TF-IDFH:

Wtfidfh(t, d) =
Wtfidf (t, d)

H(t, d)
(3.1)

where Wtfidf (t, d) is the TF-IDF weight formula and H(t, d) is an information entropy formula given

by:

H(t, d) = −
|C|∑
k=1

dfik
dn(ti)

log
dfik
dn(ti)

(3.2)

To reduce dimensionality, a weight-based Best N feature selection was used, in which the top n terms

with the highest information gain are selected to represent the document.

The authors implemented an ”Automatic Literature Categorization system (Automatic Literature Cat-

egorization (ALC))” [Yuan et al., 2008] to perform text categorization. The process of TC is composed

28

of three stages, where in the first stage (Text Processing stage) ALC uses the vector space model to

represent the documents, in the second stage (Training stage) ALC constructs MSVM-KNN classifier

and in the third stage (Testing stage), the classifier classifies unlabeled documents.

Results were measured for the experiments on two datasets, 20-Newsgroups (19996 documents

distributed among 20 classes) and an ACM dataset of 9 categories each with 25 documents. The

measures used were Precision, Recall and F1-Measure. MSVM-KNN was compared with KNN and

SVM. The F1-Measure of KNN, SVM and MSVM-KNN was 82%, 86%, and 90%, respectively, on 20-

Newsgroup and 79%, 85%, and 89%, respectively, on the ACM dataset.

3.3.2 Hierarchical Classification Strategies

Hierarchical approaches, as mentioned earlier, may be grouped in two categories: local and global. As

deep learning has been displaying superior performance over traditional classification approaches, deep

learning models for text classification have been suggested. Hierarchical Deep Learning Text Classifier

(HDLTex) [Kowsari et al., 2017] was presented to perform local (top-down) hierarchical classification.

The HDLTex archictecture was built on top of three deep learning architectures, namely Multi-Layer

Perceptrons (MLPs), Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),

where for each level of the label tree, one of the three DL architectures is chosen to compose the HDLTex

architecture. In other words, for each level it trains each one of the three DL models. This means that

for a n-level label tree, HDLTex model is then composed of n DL sub-models. The best HDLTex model is

chosen empirically, meaning that from a n-level label tree, 3n HDLTex models are built in order to choose

the best one. The models use different feature extraction approaches. While CNN and RNN use text

vector space models (using 100 dimensions), Deep Neural Networks (DNN) uses TF-IDF with counts

for N-grams (which are sequences of N-words).

In contrast, the unified global hierarchical deep learning classifier [Sinha et al., 2018] overcomes this

problem of the exponential grow in proportion to the number of tree levels. This model is composed of

three parts: a Bi-LSTM encoder, an attention module and a MLP (Multi-Layer Perceptron). The Bi-LSTM

extracts features of the documents in the form of word embeddings (300-dimensional word embeddings)

followed by an attention module that supports the generation of dynamic document representations ac-

cross different levels of classification. At each level there is a two layered MLP, which predicts category

at that level.

Both approaches for hierarchical TC were tested on the benchmark dataset WOS-46985 so their

results can be compared (Table 3.3). Web of Science (WOS) is a document collection of 46985 docu-

ments labelled under a hierarchical two-level taxonomy. The first level has 7 categories which contain

{17, 16, 19, 9, 11, 53, 9} child categories (meaning that the second level has 134 categories in total).

HDLTex submodels, two versions of SVM, a stacking SVM and Naive Bayes were used as baseline flat

29

classifiers [Kowsari et al., 2017] as were also FastText-based classifier, Bi-LSTM with max/mean pooling

and the Structured Self-attentive classifier [Sinha et al., 2018].

Method Accuracy
l1 l2 Overall

HDLTex DNN [Kowsari et al., 2017] 66.95
HDLTex CNN [Kowsari et al., 2017] 70.46
HDLTex RNN [Kowsari et al., 2017] 72.12
Naı̈ve Bayes 46.20
SVM 70.22
Stacking SVM 71.81
FastText-based 61.30
Bi-LSTM + MLP + Maxpool 77.69
Bi-LSTM + MLP + Maxpool 73.08
Structured Self Attention 77.40
HDLTex [Kowsari et al., 2017] 90.45 84.66 76.58
Global HDL [Sinha et al., 2018] 89.32 82.42 77.46

Table 3.3: Classification results of hierarchical approaches and traditional approaches on WOS-46985 [Sinha et al.,
2018,Kowsari et al., 2017]

3.3.3 Other Classification Strategies

An Ontology is an explicit specification of a conceptualization and a formal way to define the semantics of

knowledge and data. Normally, an ontology is developed to specify a particular domain (e.g., genetics).

Such an ontology, often known as a domain ontology, formally specifies the concepts and relationships

in that domain. The encoded formal semantics in ontologies is primarily used for effectively sharing and

reusing of knowledge and data [Dou et al., 2015]. The formal definition of concepts and relationships in

ontologies can be used to guide classification tasks, since it can specify consistency relationships of the

classification task [Dou et al., 2015].

[Carvalho and Cohen, 2005] introduce the notion of email acts inspired by the Speech Act The-

ory [John, 1962, Searle and Searle, 1969]. These acts are described as ”noun-verb pairs that express

typical intentions in email communication – for instance, to request for information, to commit to perform

a task or to propose a meeting”. By matching these two concepts, ontology and email acts (in some

works only described as ”intents”) some recent works in the subject of email categorization have proved

better results regarding classification accuracy.

An email meeting intent classification ontology was built by [Cassier et al., 2019] from a set of 1150

annotated emails (with 458 containing at least a meeting intent and 692 without any meeting intent).

Each of the 18 intent concepts contains lexical units and frame elements (which are Annotation Proper-

ties in the ontology) that allow detecting a specific intent in an email.

Emails are pre-processed and ontology lexical units and frame elements are projected in the email.

30

A score is computed by assigning a weight to units marked as mandatory in the ontology to select the

three more likely intents. An annotation score is computed to each intent detected. Since the goal

of [Cassier et al., 2019]’s work is to suggest answers to an email, intents are detected for each sentence

of the email and an answer is generated according to each one.

Nevertheless, the effectiveness of intent classification in comparison to Machine Learning methods

was tested and compared, using the same corpus of 1150 annotated emails. The ontology-based

approach was compared with predictive models using Logistic Regression (LR), Decision Trees (DT),

Random Forest (RF) and Naı̈ve Bayes (NB) algorithms with a Bag of Words (BoW) approach scored with

TF-IDF. The ontology-based approach scored 0.71, 0.67 and 0.69 on Precision, Recall, F1-Measure,

respectively, while the best of the ML methods score 0.25, 0.23 and 0.24, respectively.

3.4 Summary

From the few works regarding Email Classification to the more general TC (Text Classification), the

works described in this chapter show strategies applied to classify small datasets of personal emails,

big datasets of corporate emails, incident tickets (which have a structure similar to emails), (bench-

mark) datasets of news articles and (benchmark) datasets of scientific articles, which have a structure

composed of introduction, development and conclusion and one ore more intents.

All these studies, despite their differences, converge on some points. Most of them use TF-IDF

for feature extraction and Chi-square (X2) for feature selection. Studies who mention preprocessing

mention stop-word removal, tokenization and stemming or lemmatization.

Either as the target classifiers or as benchmarks/baselines, ML algorithms are always part of the

classifiers presented in these studies (with exception of the ones presented in section 3.3.3). Deep

Learning algorithms are used with success in more recent studies, but despite their (usually) superior

performance, ML algorithms present competitive alternatives, due to close performance, to the simplicity

of their implementation and to the low computational cost. Table 3.4 shows a comparison between the

studies presented in sections 3.2 and 3.3.

However, there is a big number of limitations in these studies when compared to our work. The

only datasets that regard emails, with the exception of the one reported by [Shanmugalingam et al.,

2019], are small (contain around 1000 emails) and the emails are personal and have been classified to

a small set of classes. The benchmarks datasets (Reuters and WoS) are well studied and well refined

for classification purposes. Furthermore, the dataset reported by [Shanmugalingam et al., 2019] and

WoS are the only ones that have a hierarchy, namely a ”balanced” hierarchy with two and three levels

(respectively), where all the target classes are leaf-nodes at the same level and with categories that

have an objective semantic: each category represents a subject/domain.

31

Author Data Type Preprocessing Feat. Extrac-
tion

Feat. Selec-
tion

Classifiers

[Cohen,
1996]

Personal Emails Key-word selec-
tion

TF-IDF Select only
the first 100
words

Rule-based, Custom
classifier

[Yang and
Liu, 1999]

News articles
(Reuters-21578)

(Not mentioned) TF-IDF Chi2, IG SVM, LLSF, KNN,
NN, NB

[Clark
et al., 2003]

Personal Emails Tokenization,
Remove words
based on length
and frequency

BOW, TF-IDF,
TF, Term
Presence

IG, Variance MLP

[Tan, 2005] News articles
(Reuters-21578)

(Not mentioned) TF-IDF IG Neighbor Weighted
KNN

[Xia et al.,
2007]

Emails (Enron
dataset)

Stop-words Re-
moved

TF-IDF SFS
(based on
TruncatedSVD)

SVMs, DT

[Yuan et al.,
2008]

News articles
(Reuters-21578)

(Not mentioned) TF-IDF,
TF-IDF vari-
ant

(Not men-
tioned)

SVM, KNN and
MSVM-KNN (SVM
and KNN variant)

[Yu and hua
Zhu, 2009]

Personal emails (Not mentioned) (Not men-
tioned)

SFS
(based on
TruncatedSVD)

Custom MLP

[Kowsari
et al., 2017]

Scientific articles
(WoS)

Word Embed-
dings

TF-IDF (Not men-
tioned)

HDLTex (DNN + CNN
+ RNN)

[Sinha
et al., 2018]

Scientific articles
(WoS)

Word Embed-
dings

(Not men-
tioned)

(Not men-
tioned)

Global Hierarchi-
cal DL classifier
(Bi-LSTM + MLP)

[Silva et al.,
2018]

IT incident tickets Tokenization,
Stemming, Stop-
words rem.

TF-IDF, TF,
IDF, NER

(Not men-
tioned)

SVM, KNN

[Cassier
et al., 2019]

Personal Emails (Not mentioned) TF-IDF (Not men-
tioned)

LR, DT, NB, Random
Forest, Ontology-
based rules

[Shanmu-
galingam
et al., 2019]

Corporate emails Stop-words re-
moved, key-body
content selection,
OCR

TF-IDF Chi2 XGBoost, LSTM,
Bi-LSTM, BERT,
Random Forest, Cus-
tom rules, Custom
Hierarchical Model

Table 3.4: Related Works Summary

32

4
Data

If you torture data long enough, it will confess to anything.

– Ronald H. Coase, renowned British economist

Contents
4.1 Domain Understanding . 34
4.2 Data Exploration and Cleaning (Data Understanding) 35
4.3 Summary . 46

33

4.1 Domain Understanding

From the business (contact center) perspective, the objective of this work is to increase email man-

agement and processing efficiency by having an automatic email classification system that aids in the

classification of received emails.

In the context of the Contact Center, emails flow as represented in Fig. 1.1. Currently, emails are

processed by a group of seven agents. Emails are classified over a set of predefined classes organized

in a hierarchical structure. The objective of a classifier (human or artificial) is to classify each received

email with a leaf-node category from the hierarchy tree. Each leaf-node category corresponds to a set

of predefined answers (generally 1 to 4 answers). A non-leaf category represents all the answers of its

child categories. A predefined answer may be present in more than one leaf-node category. Generally,

top-level nodes share almost no answer while sibling leaf-node categories may share most of their

answers.

The contact center system allows an email to be classified with an inter-level category or even not

to be classified at all and to be replied in this condition, since the goal of the contact center email

management system is to answer emails, not to classify emails. The classification step serves two

purposes:

1. To organize emails over a taxonomy that has semantic meaning;

2. To reduce the effort needed to find the right answer to reply the email.

Classification and Reply are distinct steps, meaning that an email does not need to be replied right after

it has been classified. A classified email allows it to be picked by a contact center operator that is an

expert in the category domain it has been classified with and answer it.

In conclusion, the main goal of the classification step is to increase the efficiency by which an email

is answered, by reducing the possible answers it may have and by allowing it to be easily picked by

a domain expert. In the category hierarchy tree, the top categories have a bigger importance than

the lower categories, since they have more impact in distinguishing the email domain and lower level

categories end up having more of a ”stage of email subject” or description role (see Figure 4.1).

Figure 4.1: Hierarchical tree level importance / class distinguishing power

34

4.2 Data Exploration and Cleaning (Data Understanding)

4.2.1 Data Acquisition and Exploration

Since data handled in the contact center is of sensitive nature, collecting data for the development of

this work was all but straightforward. To collect data, a request had to be sent, data underwent an

anonymization process defined by the contact center and then it was delivered to us.

All data collected and delivered was in raw format, organized in JavaScript Object Notation (JSON)

files, each one representing a chain of emails exchanged between a Contact Center agent and a citizen,

called ”ticket” in the context of the Contact Center.

The process of interpreting the raw data in the JSON was hindered by two aspects:

1. Documentation: There was not a document explaining the organization of the data in the JSON

file. This problem disabled the possibility of an automatic approach to analyse the data and

required a manual and careful analysis of the data to distinguish the meaningful data from the

useless data.

2. Anonymization: The anonymization strategies that where applied where mainly based on sup-

pression of sensitive data which rendered data less readable and understandable.

Each ticket’s JSON was inferred to be organized as described in appendix B.1, where the “episodes”

compile a list of ticket actions. Each ticket episode refers to an action discriminated by “type”. The

subject of each email was stored in JSON property subject (it had the same value for all emails within

a chain of emails), email body contents were inferred to be in the “text part” or “html part” of episodes

with ‘type: INBOUND’ or ‘status: NEW ’ and the category assigned to each email was inferred to be in

the field “episode subject” of the first following episode with ‘status: FW WAIT ’ and ‘type: OUTBOUND’,

or just ‘status: CLOSED’. “To” and “From” features of each email where anonymized.

Despite the challenges, a dataset was built in a Comma-Separated Values (CSV) format with the

main attributes “Text”, “Subject” and “Class”, and metadata attributes “Reply Number” and “Ticket”. The

index of each entry was formed by the concatenation of the “Ticket” value and “Reply Number”. The ticket

identifies a chain of emails. The reply number identifies the position of the email in the ordered chain of

emails (“Ticket”). “Text” is the email content and was extracted from the “text part” and “html part” JSON

fields. “Subject” is the subject of the email and was extracted from the “subject” JSON field.

The dataset built from extracting data from the JSON files retrieved at the data acquisition process

is called raw dataset and named with the suffix ‘ raw ’. During the data understanding phase, the raw

dataset is pre-processed, using data cleaning and normalization strategies, in order to remove noise,

standardize values and increase the percentage of useful, meaningful data. The dataset obtained at the

end of this phase will be subject to data/feature representation strategies in the data preparation phase,

that will prepare the dataset for the modeling phase.

35

During the execution of this project and due to the intricacies of acquiring new data, there were three

data collection actions. These actions happened, in the scope of the CRISP-DM methodology, after a

cycle was executed and in the evaluation phase was decided that more data (or better data) was needed

in order to achieve better results.

The first collection of data had 11898 emails distributed over 102 categories. The second collection

of data added 26368 new emails and 25 categories not recorded before, resulting in 38266 documents

and 127 categories. The third collection of data added 11298 new emails and 11 categories not recorded

before, resulting in 49564 documents and 138 categories.

In order to simplify the management of the datasets that resulted from each iteration, they were

named Av1, Av2 and Av3 (first collection/iteration, second collection/iteration and third collection/iter-

ation, respectively). The datasets at the point before the data cleaning and normalization process are

named Av1 raw, Av2 raw and Av3 raw. Av2 raw and Av2 are the same because at that iteration, the

aim of this process was only to clean and not to normalize data and that cleaning process happened

before data acquisition. Dataset terminology is summarized in Table 4.1.

Iteration Dataset
Name

Instances
count

Class
count

Vocabulary
Size

Noise
Cleaning

Data
Normalization

Iteration 1 Av1 raw 11898 102 27578
Iteration 1 Av1 11898 102 27491 X
Iteration 2 Av2/Av2 raw 38266 127 73529 X
Iteration 3 Av3 raw 49564 138 103694 X
Iteration 3 Av3 49564 138 65408 X X

Table 4.1: Datasets Info

4.2.2 Data Noise

As mentioned in section 2.1 data noise is one of the biggest obstacles to text classification. The example

in Figure 4.2 shows that at first contact with the data we had more noise than data.

The data noise portrayed in this sample and through all data may be categorized by three sources of

noise:

The business process (systematic noise): Almost every email is plagued with a huge proportion

of noise, mainly in the format of markup language which may be a product of the data storage or data

extraction from the platform where they are managed and processed. Also, the fact that the email

carries the email it is answering to, is a source of noise, since this is unwanted data.

The anonymization process (systematic noise): The anonymization strategies applied (which were

decided by the contact center) were mainly based on suppression of sensitive data. The initial rules

applied (at first iteration) were to remove all punctuation, remove all numbers and replace each name

with a placeholder ‘[NOME]’. As Table 4.2 shows, this negatively impacted both noise and meaningful

36

falha no registo html xmlns o urn schemas microsoft com office office xmlns w urn schemas microsoft com office word xmlns m
http schemas microsoft com office omml xmlns http www org TR REC head meta http equiv Content Type content text html charset
Windows meta name Generator content Microsoft Word filtered medium style Font Definitions font face font family Cambria Math
panose font face font family Calibri panose Style Definitions p MsoNormal li MsoNormal div MsoNormal margin margin bottom font
size font family Calibri sans serif span DefaultFontHxMailStyle mso style name Default Font HxMail Style font family Calibri sans serif
color windowtext font weight normal font style normal text decoration none none MsoChpDefault mso style type export only page size
margin div page style head body lang PT link blue vlink div class p class MsoNormal span class DefaultFontHxMailStyle Boa noite
o p o p span p p class MsoNormal span class DefaultFontHxMailStyle Os dados span span style font size font family quot Arial quot
sans serif color black associados ao registo da Chave Movel Digital sao o p o p span p p class MsoNormal span style font size font
family quot Arial quot sans serif color black No cc o p o p span p p class MsoNormal span style font size font family quot Arial quot
sans serif color black No telefone o p o p span p p class MsoNormal span style font size font family quot Arial quot sans serif color
black Data [NOME] span span class DefaultFontHxMailStyle o p o p span p p class MsoNormal span class DefaultFontHxMailStyle o
p nbsp o p span p p class MsoNormal Atenciosamente o p o p p p class MsoNormal [NOME] [NOME] o p o p p p class MsoNormal
span class DefaultFontHxMailStyle o p nbsp o p span p div hr style display inline block width tabindex div id divRplyFwdMsg dir ltr
font face Calibri sans serif style font size color b De b Info Cidadao lt info portaldocidadao ama pt gt br b Enviado b Tuesday January
AM br b Para b davidalexandrepinto hotmail com lt davidalexandrepinto hotmail com gt br b Assunto b Ticket falha no registo font div
nbsp div div div div style text transform quote font family Arial font size p p p class x style text align justify line height span style font
size line height font family quot Arial quot quot sans serif quot font color Caro Sr [NOME] [NOME] br font span p p class x style
text align justify line height font color span style font size line height font family quot Arial quot quot sans serif quot No seguimento
da questao apresentada e para melhor analise da mesma solicitamos que nos envie a seguinte informacao span span style font
size line height font family quot Arial quot quot sans serif quot span font p p class x style margin left text align justify text indent line
height font color span style font size line height font family Symbol span style * span style font quot Times New [NOME] quot nbsp
nbsp nbsp nbsp nbsp nbsp nbsp nbsp span span span span style font size line height font family quot Arial quot quot sans serif quot
Numero de Cartao de Cidadao associado ao registo da Chave Movel Digital span font p p class x style margin left text align justify
text indent line height font color span style font size line height font family Symbol span style * span style font quot Times New [NOME]
quot nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp span span span span style font size line height font family quot Arial quot quot sans
serif quot Numero de telemovel associado ao registo da Chave Movel Digital span font p p class x style margin left text align
justify text indent line height span style font size line height font family Symbol span style font color * span style font quot Times New
[NOME] quot nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp span font span span span style font size line height font family quot Arial
quot quot sans serif quot font color Data de nascimento do titular da Chave Movel Digital font br span p p class x style margin left
text align justify text indent line height span style font size line height font family quot Arial quot quot sans serif quot span p p class
x MsoNormal style margin bottom color rgb font family Arial Helvetica sans serif font size small Com os melhores cumprimentos
p p class x MsoNormal style margin bottom color rgb font family Arial Helvetica sans serif font size small br p p class x MsoNormal
[NOME] [NOME] b span style font size font family Arial sans serif color rgb nbsp span b span style font size font family Arial sans
serif color rgb nbsp b nbsp nbsp b span span style color rgb font family Arial sans serif font size DIRECAO DE PLATAFORMAS E
COMPETENCIAS DIGITAIS nbsp nbsp CENTRO DE CONTACTO span p p class x MsoNormal span style font family Arial sans
serif font size font color info cidadao font span span style color rgb font family Arial sans serif font size span span style font family
Arial sans serif font size font color ama pt font span p p class x MsoNormal img src cid style width br p p class x MsoNormal span
style font size font family quot Arial quot quot sans serif quot color RUA DE SANTA MARTA nbsp nbsp LISBOA - PORTUGAL
nbsp nbsp b nbsp b span p p class x MsoNormal b span style font size font family Arial sans serif color rgb a href http www ama gov
pt span style color rgb www ama pt span a span b span style font size font family Arial sans serif color rgb nbsp nbsp span span
style font size font family Arial sans serif color rgb span span style font size font family Arial sans serif color rgb nbsp nbsp span b
span style font size font family Arial sans serif color rgb a href http www facebook com ama gov pt span style color rgb facebook
com ama gov pt span a span b p p img src cid style width nbsp nbsp img src cid style width nbsp nbsp img src cid style width p div
class x fscontact quoted p nbsp p p style font size [NOME] [NOME] p

Figure 4.2: Av1 raw (First dataset of first data collection) - Email Sample (blue: subject; green: body content;
orange: email that is being replied)

data, making meaningfull data harder to identify (even for a human) and data and noise harder to

distinguish.

Human writing (natural noise): Each chain of emails (‘Ticket’) is written by a different person,

which means that the vocabulary is far from being standardized, that emails have been written by

both persons with education and without education, old and new, and will show many misspellings,

37

Before Anonymization After Anonymization

style font family quot Times New Roman style font family quot Times New [NOME]

Morada Av Estados Unidos da América Morada Av Estados Unidos da [NOME]

Caro Sr Luı́s Neto Caro Sr [NOME] [NOME]

Caro Sr Fernando Haley Caro Sr [NOME] Haley

To fhaley sapo pt To fhaley sapo pt

Numero de Cartao de Cidadao 12345678 Numero de Cartao de Cidadao

Sent Wed Set Sent Wed [NOME]

Table 4.2: Examples of anonymization performed on the data (green - correct; red - unwanted/incorrect/uncom-
pleted

wrong words, ill formed sentences, synonyms, different sentence structures for the same idea, etc.

The problem of having unrequested information (the email that was being replied to) in the email

was largely ignored during the development of this work mainly because the harshness and importance

of the two other problems (anonymization errors and noise) overshadowed this problem and to find a

strategy to distinguish two emails in unstructured data such as this would be very laborious.

During the first iteration, noisy data was removed by manually identifying frequent blocks of markup

language and removing them. This strategy, although very tedious and time-consuming, was chosen for

three reasons:

1. This was the first contact with this undescribed and undocumented data, so a manual approach

was required in order to know the data.

2. Meaningful data was only a fragment of the email content and automatic approaches could in-

directly and undesirably reduce it. Noise expressions where carefully identified in order not to

include any possible meaningful information.

3. Anonymization introduced meaningful terms (such as ‘[NOME]’ in ‘style font quot Times New

[NOME]’) within markup language expressions and any (to the best of our knowledge) automatic

markup language noise removal strategy would at the very best case, leave these terms in the

text, further reducing text readability

From the second iteration on, (at our request) the anonymization process changed: data markup

language was cleaned using beautifulsoup1 python library, before the anonymization approaches, in

order to remove markup language noise. This strategy was much more effective and efficient than the

manual strategy, and although it removed almost all of the markup language noise, it could not remove

all of it. The anonymization strategies also changed, at our request, at each data collection iteration, in

order to to be less restrictive and increase data readability and meaningfulness. Table 4.3 summarizes

the results of the anonymization and noise removal strategies applied at each iteration.

1https://pypi.org/project/beautifulsoup4/

38

Av1 Av2/Av2 raw Av3 raw

Anonymization:

1. Remove punctuation

2. Replace names with placeholder
[NOME]

3. Remove all numbers

Noise cleaning: Manual identification and
removal of noise expressions

Anonymization:

1. Replace names with placeholder
[NOME]

2. Remove all numbers

Noise cleaning: BeautifulSoup python li-
brary

Anonymization:

1. Replace names with placeholder
[NOME]

2. Replace all numbers with a place-
holder [NUMEROX], where X is the
number of digits in the number.

Noise cleaning: BeautifulSoup python li-
brary

falha no registo DefaultFontHxMailStyle name
Default Font HxMail Style DefaultFontHxMailStyle
Boa noite DefaultFontHxMailStyle Os dados as-
sociados ao registo da Chave Movel Digital sao
No cc No telefone Data [NOME] DefaultFontHx-
MailStyle DefaultFontHxMailStyle Atenciosamente
DefaultFontHxMailStyle De Info Cidadao info por-
taldocidadao Enviado Tuesday January AM Para
davidalexandrepinto hotmail com davidalexandre-
pinto hotmail com Assunto Ticket falha no reg-
isto Caro Sr No seguimento da questao apre-
sentada e para melhor analise da mesma solicita-
mos que nos envie a seguinte informacao * Nu-
mero de Cartao de Cidadao associado ao reg-
isto da Chave Movel Digital * Numero de tele-
movel associado ao registo da Chave Movel Dig-
ital * Data de nascimento do titular da Chave
Movel Digital Com os melhores cumprimentos DI-
RECAO DE PLATAFORMAS E COMPETENCIAS
DIGITAIS CENTRO DE CONTACTO info cidadao
RUA DE SANTA MARTA LISBOA - PORTUGAL a
a p

falha no registo boa [NOME] , os dados asso-
ciados a o registo da chave movel digital sao :
no cc : no telefone : data [NOME] : atenciosa-
mente , [NOME] [NOME] de : info cidadao envi-
ado : tuesday , january am para : assunto : [ticket
falha no registo caro sr . [NOME] [NOME] , no
seguimento da questao apresentada , e para mel-
hor analise da mesma , solicitamos que nos en-
vie a seguinte informacao : * numero de cartao de
cidadao associado a o registo da chave movel dig-
ital ; * numero de telemovel associado a o registo
da chave movel digital ; * data de [NOME] do titular
da chave movel digital . com os melhores cumpri-
mentos , [NOME] [NOME] — direcao de platafor-
mas e competencias digitais — centro de contacto
[NOME] de santa [NOME] , — [NOME] - [NOME]
— + www.ama.pt/ — facebook.com/ama.gov.pt -
[NOME] [NOME] :

falha no registo boa [NOME] , os dados asso-
ciados a o registo da chave movel digital sao :
no cc : NUMERO8 NUMERO1 zz1 ; no telefone
: 916280131 ; data [NOME] : 16-02-1960 . aten-
ciosamente , [NOME] [NOME] de : info cidadao
enviado : tuesday , january 14 , NUMERO4
9:52:15 am para : assunto : [ticket gx4qn6]
falha no registo caro sr . [NOME] [NOME] , no
seguimento da questao apresentada , e para mel-
hor analise da mesma , solicitamos que nos en-
vie a seguinte informacao : * numero de cartao
de cidadao associado a o registo da chave movel
digital ; * numero de telemovel associado a o reg-
isto da chave movel digital ; * data de [NOME] do
titular da chave movel digital . com os melhores
cumprimentos , [NOME] [NOME] — direcao de
plataformas e competencias digitais — centro de
contacto [NOME] de santa [NOME] , NUMERO2
— 1150-294 [NOME] - [NOME] — + NUMERO3
NUMERO3 NUMERO3 NUMERO3 www.ama.pt/
— facebook.com/ama.gov.pt 14-01-2020 01:19:10
- [NOME] [NOME] :

Table 4.3: Email sample at iterations 1, 2 and 3 after anonymization and noise removal (blue: subject; green: body
content; orange: email that is being replied)

One of the advantages of the manual noise removal strategy was that by close inspection of data,

special cases of normalization such as ‘Boa [NOME]’ to ‘Boa Noite’ (observed at the Table 4.3) could be

identified and corrected.

The goal of the anonymization strategy at third iteration was to augment the meaningful information

of the data by applying a softer strategy instead of strictly removing all the number’s digits. As the third

example of Table 4.3 shows, this new strategy was not successfully applied and brought the following

issues:

1. Anonymization false positives: Some sensitive data was left known.

2. Lack of normalization: Only the numbers that where surrounded by space characters where trans-

formed.

3. It increased not only the amount of meaningful data, but also the amount of meaningless data

In order to further remove noise and normalize data, an extensive set of operations, mainly based on

regular expressions where applied at the third iteration first dataset. Types of noise and normalization

issues identified, the respective solution and examples are described in Table 4.4 The application of

these operations resulted in the final dataset of the third iteration, represented in Table 4.5.

39

4.2.3 Data Description

The dataset extracted from the raw data has the following attributes:

Class is a string representing the category of the email. The string may have slashes ”/” which sep-

arate the hierarchical levels. Example: Class value ”Info Cidadão/IRN/Informações Gerais” means

that level 1 class is ”Info Cidadão”, level 2 class is ”IRN”, and level 3 ”Informações Gerais”.

Text is a string representing the email body content. It is unstructured data and the main source of

features.

Subject is a string representing the email subject.

Ticket is a string identifying a chain of emails. For a given ticket value the value of the subject is

constant.

Reply Nr is an integer representing the position of the email in the ordered chain of emails.

The spaCy [Honnibal and Montani, 2017] python library was used during the data preparation phase

with the purpose of performing lemmatization and to extract other useful features such as verbs and

nouns. Loaded with a Portuguese language large model ‘pt core news lg’, a part-of-speech analysis

was performed to get a description of data and to visualize the evolution of data between iterations and

different stages of data cleaning and normalization.

Figure 4.3: Evolution of Average Identified POS Tags per Email (using spaCy ´pt core news lg’ model)

40

Figure 4.4: Evolution of the Frequency of Characters, Words and Sentences in Emails by Dataset

Figure 4.3 shows the results, where a significant improvement of the meaning of data can be per-

ceived. Figure 4.4 shows three box plot graphs where the effects of data cleaning are also visible. The

first two graphs show most noticeable the difference in the amount of data between the dataset with-

out any cleaning (Av1 raw) and the others. The mean measure in each boxplot, represented by the

black dotted line, shows a value approximately four times higher in Av1 raw than in the other datasets,

suggesting that 75% of the original data was systematic noise. There is a slight increase in Av3 raw

character and word frequency which is explained by the softening of the anonymization rules at the third

iteration, which did not remove numbers. In the third graph, we notice that we could not identify sen-

tences at iteration one, because all the punctuation was removed. It also shows that the noise cleaning

and data normalization strategies applied (presented at Section 4.2.4) allowed a better representation

of data (most noticeable, the solution applied to the problem of “Words/numbers concatenated by punc-

tuation” (see Table 4.4).

4.2.4 Data Cleaning

The first data quality problem identified was noise. Probably due to the framework where emails were

managed or because of the extraction process, the email content was mixed with markup language.

Furthermore, since each chain of emails is written by a different person the vocabularies are not stan-

dardized. There are synonyms, misspellings, random punctuation and different sentence structures to

express the same idea/meaning.

Due to this scenario, strategies to clean and normalize data were defined, comprehending the fol-

lowing steps:

1. Explore data;

2. Define data cleaning and normalization objectives;

41

Noise/ Normal-
ization Problem Solution Example (red = original,

green = normalized)

Citizen card num-
ber suffix

1. Identified citizen card number suffix patterns;
2. Replace every match with the placeholder ‘[CCSUF]’, using regular expres-
sions.

‘NUMERO8 NUMERO1
zy7tlm’ ‘NUMERO8 [CC-
SUF] tlm’

Misspelings
1. Parse all data using spaCy’s model “pt core news lg” to identify OOVs.
2. Identify the most frequent misspellings from the OOVs and replace them in
all data instances with the correct form.

‘pasaporte’, ‘passporte’,
‘pasaport’, ‘passaport’,
‘passaportee’,
‘passaporte’

Sequences of
placeholder
‘[NOME]’

Using regular expressions, reduce all sequences of ‘[NOME]’ to just one
‘[NOME]’.

‘cumprimentos, [NOME]
[NOME] [NOME]’,
‘cumprimentos, [NOME]’

Sequences of
placeholder
’NUMEROx’

Using regular expressions, reduce all sequences of ‘NUMEROx’ to just one
‘NUMEROy’, where for a sequence ‘NUMEROx1 NUMEROx2 NUMEROx3

NUMEROx3’ we have y = x1 + x2 + x3 + x4

‘tlm: NUMERO2 NU-
MERO4 NUMERO3’,
‘tlm: NUMERO9’

Time and Date Identify the patterns of time and date and replace them by ‘[HORA]’ and
‘[DATA]’, respectively, using regular expressions.

‘02/01/2020 16:04:56 (utc
)’, ‘NUMERO1 dec NU-
MERO4 23:24:09 +0000’
‘[DATA] [HORA]’

Sequences of
punctuation

Using regular expressions, reduce all sequences of punctuation to one occur-
rence.

‘justo???’
‘justo?’

IP addresses and
websites Using regular expressions, remove all IP addresses and websites.

‘from [194.38.147.41]’
‘from []’

Special charac-
ters

Using regular expressions, remove all characters that are not numbers, letters,
normal punctuation (‘.’, ‘!’, ‘?’, ‘,’, ‘-’, ‘+’) or part of the placeholders (‘[’, ‘]’).

‘$’, ‘#’, ‘[]’

Words con-
catenated with
numbers

Using regular expressions, all words that had a sequence of numbers followed
by a sequence of letters were split by a space character and the numbers were
replaced by the appropriate placeholder.

‘tlm915321456’
‘tlm NUMERO9’

Words/numbers
concatenated by
punctuation

Using regular expressions, all words or numbers concatenated by punctuation
were split with a space character between the punctuation and each sub-word.
In case one sub-word is a number, it was replaced by the appropriate place-
holder.

‘cartão.amanhã’,
‘cc.18326979’
‘cartão . amanhã’, ‘cc . NU-
MERO9’

Concatenated
words

1. Parse all data using spaCy’s model “pt core news lg” to identify OOVs.
2. When a OOV is identified, all possible divisions of that word are tested in
order to find a division where both words were recognized by the vocabulary.
3. If successful, the original word and the resulting pair are stored in a python
dictionary, with the original word as a key and the resulting pair as a value.
4. After a manual analysis of the dictionary to verify the results, all keys iden-
tified were replaced in the data instances by the resulting pair separated by a
space.

‘cumprimentosluis’, ‘titu-
larnif’
‘cumprimentos [NOME]’,
‘titular nif’

Hash words and
html content

1. Most frequent html related and hash words are manually identified from the
OOVs added to a stop-word list.
2. Remove everything between two brackets (‘{’, ‘}’)
3. Remove all words with a length superior to 25 characters, since there are
only a few words in Portuguese longer than 25 characters (this was done after
dealing with the concatenations of words)
4. Remove words with given patterns: two or more sequences of numbers and
letters or words with special characters (‘$’, ‘’, ‘+’, ‘%’, ‘’)

‘ table.sample { border-
width ... , 240) ;}’
‘table.sample’

Table 4.4: Noise Removal and Normalization Approaches

42

3. Implement a strategy to clean/normalize the data;

4. Analyze the results.

Strategies to clean/normalize data are usually centered around the application of regular expressions

that parse all data and when it matches a given pattern a transformation is applied. Regular expressions

are simple to write. In order to ensure a successful application of regular expressions, their results were

analysed carefully almost as a data exploration task. The analysis of the results led to the discovery of

new normalization opportunities.

To find more noise examples we used spaCy2 python library. The large model ‘pt core news lg’3,

contatining a vocabulary of 642875 unique words, trained on UD Portuguese Bosque4, WikiNER5, OS-

CAR (Common Crawl)6 and Wikipedia7, was used to parse all emails and list all the Out Of Vocabu-

larys (OOVs) (Out Of Vocabulary words) and their frequencies. The output of this strategy was a python

dictionary with all the words that were not recognized by the spaCy model vocabulary as keys and their

frequency as value, ordered by value.

From this python dictionary, we were able to study the most frequent OOVs and design several

strategies to deal with them, which are described in Table 4.4. Figure 4.5 shows the result of the

normalization strategies applied on the Av3 raw example portrayed in Table 4.3.

Av3

falha no registo boa [NOME] , os dados associados a o registo da chave movel digital sao no cc NUMERO8 [CCSUF] no telefone
NUMERO9 data [NOME] [DATA] . atenciosamente , [NOME] de info cidadao enviado tuesday , january NUMERO2 , NUMERO4
NUMERO1 [HORA] am para assunto [ticket gx4qn6] falha no registo caro sr . [NOME] , no seguimento da questao apresentada
, e para melhor analise da mesma , solicitamos que nos envie a seguinte informacao numero de cartao de cidadao associado a o
registo da chave movel digital numero de telemovel associado a o registo da chave movel digital data de [NOME] do titular da chave
movel digital . com os melhores cumprimentos , [NOME] direcao de plataformas e competencias digitais centro de contacto [NOME]
de santa [NOME] , NUMERO2 NUMERO4 NUMERO3 [NOME] NUMERO9 [DATA] [HORA] [NOME]

Figure 4.5: Av3 (final dataset of third data collection/iteration) - Email Sample (blue: subject; green: body content;
orange: email that is being replied)

4.2.5 Class Taxonomy

Prior to the data exploration tasks, it was already known from the business understanding phase that

the email classes were organized in a hierarchical structure. The structure is represented in Figure 4.6.

From Figure 4.6 we can make the following observations:

2https://spacy.io/
3https://spacy.io/models/ptpt core news lg
4https://github.com/UniversalDependencies/UD Portuguese-Bosque
5https://figshare.com/articles/Learning multilingual named entity recognition from Wikipedia/5462500
6https://oscar-corpus.com/
7https://dumps.wikimedia.org/

43

Figure 4.6: Hierarchical Class Structure - Tree Diagram Representation (Av3 dataset)

44

1. Level 1: has only one class (the root node). It has no meaning, for the classification task, to

represent a class level with only one class, but we represent it anyway because its meaning is

attached to business rules and because a tree representation must have a root.

2. Level 2: has 25 classes of which 8 are leaf nodes.

3. Level 3: has 42 classes of which 26 are leaf nodes.

4. Level 4: has 86 classes, all leaf nodes.

The target classes for the classification process should only be the leaf node classes, which means

that in a flat classification perspective we have 120 classes. There are two problems that can be inferred

from this. The first data collection had 102, meaning that at least 18 classes were missing. The second

and third data collections had 127 categories and 138 categories, meaning that they had at least 7

and 18 classes, respectively, that were not leaf nodes. Due to the temporal property of the data, our

collected data may not have enough samples to portray all the classes available in the business process.

Additionally, for business reasons or due to manual classification issues, not all the data collected was

classified to leaf node classes. This issue and the solutions applied are explained in section 5.2.

Figure 4.7: Class - email count distribution (red line represents the median statistic of the class email count distri-
bution)

The second data quality problem identified was class imbalance. This problem remained unaltered

over the three iterations. Figure 4.7 illustrate the class email count distribution at the third iteration.

Figure 4.8 is an excerpt from the class structure represented in Figure 4.6 which portrays the entire

tree. Inter-level nodes with classes assigned (represented with the orange circle) are problematic, be-

cause as they have child-nodes, and, semantically, they represent a generalization of their child-node

classes, their features are shared by all their child-nodes classes, making it very hard to discriminate

between child and parent classes when performing classification.

45

Figure 4.8: Excerpt of the class taxonomy including the files frequency at each class (red are expected target
classes and orange are incorrect target classes)

4.3 Summary

The process of data exploration and cleaning concentrates most of the effort dedicated to this project.

From understanding the business process to understanding extremely noisy data, the conclusion is that

our data is all but trivial. Data cleaning is a continuous process that started when the first raw data was

received and still has much work to be done after Av3.

From iteration to iteration, data quantity and data quality was continuously improved. The amount

of data increased almost 5 times from the first iteration to the last and an average email in the last

(third) iteration has approximately 75% less data than an email at the Av1 raw dataset (first iteration)

that was considered noise. The successive evolution in the normalization process and cleaning and

normalization actions, enabled the identification of more sentences per email and the identification of

more Part-of-Speech (POS) tags per email.

The class taxonomy reveals some semantic and structural problems and the class email distribution

portrays a serious case of class imbalance. The structural problems are based on the irregular structure

of the tree, where leaf-nodes are located at different levels, and some branches are very wide while other

are thin. Furthermore, the fact that some inter-level node classes have emails assigned represents an

error to the single-label classification approaches we propose, since due to the transitivity property of

the hierarchy tree (see section 2.2.5) a child class inherits all the characteristics of its parents.

46

5
Features and Models

There is no algorithm for creativity.

– Andy Hargreaves, renowned professor and scholar

Contents
5.1 Design Overview . 48
5.2 Class Structure Inspection and Re-structuring . 49
5.3 Text Pre-processing . 54
5.4 Metadata and Custom Features . 54
5.5 Feature Extraction . 55
5.6 Feature Selection . 56
5.7 Word Embeddings . 56
5.8 Classification . 56
5.9 Development Overview . 59

47

5.1 Design Overview

During the development of this work, a broad range of algorithms, techniques and approaches were

explored in order to find an optimal solution to model an email classification system. Figure 5.1 illus-

trates in a superficial manner the classification system workflows that were experimented. Due to the

extensive number of the algorithms, techniques and approaches used, they are shortly described in this

chapter, but the results and the most important insights obtained from them are carefully analyzed in the

Figure 5.1: Workflow Design

48

Evaluation chapter (Chapter 6). Independently of the approaches experimented, all the prototypes that

were developed aimed to integrate the business process as described in Figure 5.2.

Figure 5.2: Proposed Automatic Email Classification System Integrated in the Contact Center Email Processing
Workflow

5.2 Class Structure Inspection and Re-structuring

Our dataset, as may be observed in section 4.2.5, has a significant class imbalance problem. The top

3 classes have more than 4000 emails each, while there is 49 classes with less than 10 emails. If our

dataset was perfectly balanced with data instances equally distributed between all classes, it would have

49564 / 138 ≈ 359 emails in each category. The reality is that there are only 24 (17,4%) classes with

more than 359 emails and 114 (82,6%) classes with less than 359 emails.

Traditionally, the most common class imbalance strategies used are data-level, namely resampling

methods. Our dataset has a multiminority problem. Adopting the mean (359 emails per class) as

the target, an oversampling strategy involves replicating or synthesizing data instances of 114 classes,

where each class would be composed for an average of 23% real data and 77% of synthesized data.

On the other side, undersampling the majority classes means undersampling 24 classes and removing

an average of 79% of data instances, for each of those classes. Furthermore, oversampling carries the

risk of overgeneralization and class overlap, while undersampling risks removing valuable information

from each class.

Having this in mind and taking advantage of the hierarchical structure of the classes, the following

methods were developed to scrutinize, dissect, and analyse the class set:

1. Hierarchical Cut (Figure 5.1, CERS1);

2. Balanced Hierarchical Cut (Figure 5.1, CERS2);

3. No Middle (inter-level) Class instances (Figure 5.1, CERS3);

49

Strategy Name Rationale Terminology

CERS1 Hierarchical Cut Reduce all classes to level L of the hierarchy. All classes that are at
a higher level than L are aggregated at L level. hcL

CERS2 Balanced
Hierarchical Cut

Reduce all classes to level L of the hierarchy. All classes that are at
a higher level than L are aggregated at L level. It aims to take an

equal contribution of instances from all child classes.
bhcL Mmax

CERS3
No Middle
(inter-level)

Class instances

Removes classes that are not leaf nodes of the tree but have data
instances assigned with them. The aim is to learn to classify emails

to the leaf-node classes, so our models cannot learn from these. nmc

Continues on next page

50

Strategy Name Rationale Terminology

CERS4 No Only Child
classes

Aggregates classes of leaf nodes that don’t have siblings in the
upper class (parent-node). It aims to reduce the depth of the tree at

some branches and thus its complexity.
noc

CERS5 Aggregate
sibling classes

Aggregates all siblings leaf-node classes at parent level if they
agree to a certain heuristic Lx (x identified the heuristic to be used
and L is a value given for the heuristic calculation). The heuristics
aim to merge overlapping classes or to reduce class imbalance by

merging siblings with a multi-minority problem.

aggLx

CERS6
Merge and
Integrate
classes

Aggregates classes that are siblings at their level, under one new
class that represents all their documents and is named by the

concatenation of their names.
mi

Table 5.1: Strategies for Exploring and Re-structuring the Class Structure (numbers represents the amount of
emails assigned to the class).

51

4. No Only Child (Figure 5.1, CERS4);

5. Aggregate sibling classes in parent category (Figure 5.1, CERS5);

6. Merge classes (Figure 5.1, CERS6);

7. Remove classes with less than n instances or more than N instances;

8. Undersample;

9. Manual selection of classes to be removed or merged.

These approaches were not used single-handedly but in conjunction. The most common

combinations are described in appendix B.2, in Table (B.2), where several relations between the

combinations of strategies with data distribution and class frequency statistics may be analyzed. These

combinations are built to meet specific goals, namely to perform hierarchical classification, to reduce

class imbalance, class overlap, the impact of label noise, but ultimately to increase classification perfor-

mance.

5.2.1 Class Structure Redesign

The complexity of our data class structure is shown in Figure 4.6. It does not show each class data

instances count, but despite we represented our tree, regarding classification, as a virtual tree (where

only the leaf nodes are the classification target classes) [Silla and Freitas, 2011], our data included some

instances labelled with inter-level classes (13.3% of data instances labeled within 26 inter-level classes).

We regarded inter-level classes as a major cause for low classification performance, so the No Middle

Class (CERS3 of Table 5.1) instances strategy comes to solve this problem by removing these classes

from the target classes set and their data instances. Note that if we do a hierarchical cut in level two for

example, these inter-level classes may become a leaf-node class in which case their data instances will

be aggregated in leaf-node classes and not removed.

Figure 4.6 also shows some nodes that have only one child node. Having only one child node does

not present a classification challenge when going from a node to the next level node, but it adds to the

class structure complexity. In order to reduce complexity, No Only Child classes strategy (CERS4 of

Table 5.1) aggregates only child node class instances in the parent class and removes the only child

node class from the classification class target set.

5.2.2 Hierarchical Classification

In order to perform hierarchical classification in a hierarchy level-based approach, hierarchical cut strate-

gies extract the classes at a given level. For example, to learn to classify our Av3 dataset to the leaf-node

using a top-down hierarchical approach, with level-based classifiers, we “divide” the datasets in three

offspring datasets by applying a Hierarchical Cut (CERS1 of Table 5.1) or Balanced Hierarchical Cut

52

(CERS2 of Table 5.1) strategy on Av3: Av3 bhc2, Av3 bhc3, Av3 bhc4 (in case of balanced hierarchical

cut). Then we train multiple models for each of these datasets and select the model with the best per-

formance for each offspring dataset. The hierarchical classification model for Av3 is the composition of

Av3 bhc2, Av3 bhc3, Av3 bhc4 models.

5.2.3 Class Re-balance

Both in hierarchical classification and in flat classification, our datasets present a huge class imbalance

problem. Since we have a multi-minority problem, we decided not to use oversampling strategies in

order to maintain data fidelity, otherwise, we would have a dataset where the majority of data was syn-

thesized. Undersample strategies present the downfall of removing a huge fraction of our data. Never-

theless, undersample strategies were adopted in some cases such as the classification of certain class

levels (‘hierarchically cut’ datasets) mainly due to the the fact that other ‘class imbalanced concerned’

strategies did not achieved the desired performance.

Some classes are extremely ill represented. Figure 4.7 shows that there are 61 classes with 25 or

less data instances. 25 data instances are 0.05% of data, which is almost meaningless, and there are 9

classes with only 1 data instance (0.002% of data), which cannot be used in the classification process,

since we cannot divide these classes instances in training and test sets.

To deal with these extreme situations our strategies fall into two ways of thinking:

1. Delete class with an extremely low percentage of data instances. A class with 25 data instances

represents only 0.05% of data, which is almost insignificant but may have a negative influence

over the classification decision of the other 99.95% of data and originate a considerable impact

on the performance results. So removing these classes and their data instances from the data

submitted to the learning process may led to better classification models. We employed a strategy

to remove classes with less than a minimum of instances N (‘Remove classes with less than N

instances’).

2. Merge class with an extremely low percentage of data instances. This project intends to have

an application in the real-world, so we do not want to loose any data, as it may be important in

the real-world processes where it fits into. The alternative is to group the low percentage data

instances in one or more classes in order for them to be more representative of the data. We

employed two main strategies to merge classes:

• The Merge classes strategy (CERS6 of Table 5.1) merges sibling classes if they agree to an

heuristic (the heuristic most applied takes into consideration the sibling class proportions

and a given value).

• The Aggregate sibling classes (CERS5 of Table 5.1) in parent node category aggregates

all siblings of a class in the parent-node class.

53

5.2.4 Partial Class Set Classification and Manual Selection

Hierarchical Classification may be performed by branch, where models are trained for selected branches

instead of for each level. Strategies to manually selecting a class and its children or to exclude certain

classes from the model (‘Remove classes with more than N instances’) were developed to support

the training of models to specific subsets of the dataset. Furthermore, strategies to merge only selected

classes were developed, which have multiple applications, from merging carefully selected sibling nodes

to merging all the nodes in a certain level in two new nodes, creating an artificial level of aggregated

nodes.

5.3 Text Pre-processing

The Portuguese language is a highly inflectional language, so the recognition of morphological varia-

tion and conceptual proximity of the words is a crucial task. The most common approaches to lexical

normalization, stemming and lemmatization, were both applied to our data and their performance was

compared in a multitude of tests combining different feature extraction methods, feature selection meth-

ods and classifiers.

The stemming algorithms applied were Porter [Porter, 1980] and RSLP [Moreira and Huyck, 2001],

implementations from the NLTK1 library, and the lemmatization was done using spaCy ’s lemmatizer

(Portuguese large model “pt core news lg”2). These stemming algorithms were chosen due to their

popularity and the performance results with the Portuguese language reported at [Flores and Moreira,

2016].

During this stage, tokenization usually preceded stemming or lemmatization algorithms, where texts

were transformed into lists of tokens, and stop-word removal was also applied, where a set of predefined

stop-words for the Portuguese language, from NLTK python library, was used.

5.4 Metadata and Custom Features

Text classification usually gets its features from text. However, the quality of features extracted from text

may not be enough for the ML models to achieve satisfactory results.

Feature engineering, namely the use of metadata and the creation of custom features are common

approaches to have features with high information gain in order to improve the performance of ML

algorithms.

We used four approaches to create custom features:

1https://www.nltk.org/
2https://spacy.io/models/ptpt core news lg

54

1. Reply number:

Reply number was a custom feature created at the data understanding phase (at the task of

building a dataset from raw data). It represents the position of the email at the ordered chain of

emails;

2. Text statistics:

For each text, we extracted the sentence count, word count, unique words count, character count,

average character per word, average words per sentence, verb count, unique verb count, verb

percentage (in relation to word count), root verb count, unique root verb count and unique root

verb percentage (in relation to word count). We also extracted statistics from named entities and

POS tags, but the observed results from the NER and POS tagging processes were not good

enough and so we decided to drop them;

3. Previous email category:

The subject of an email chain is usually constant and the category attributed to an email is usually

related with the subject of the email. Naturally, it is deductible that the previous class is a relevant

feature, so for each email where “Reply number” > 0, the name of the previous category was

extracted;

4. Categories keywords:

Emails are classified with categories which name represents the nature/subject of the email.

There is a big probability that the email contains in its body the same keywords that describe

the categories. For each level of the category hierarchy structure, the keywords that make the

name of each category were identified. For each email, these keywords are counted using a

fuzzy match algorithm 3 (to account for misspellings and noise) that matches any word that has

more than 80% similarity score (using Levenshtein distance).

5.5 Feature Extraction

Introduced in section 2.4 and described in appendix C.2, there are numerous feature extraction al-

gorithms. However, from the research that was done and presented, TF-IDF tends to get the best

performance (chapter 3).

In our work, the feature extraction method that was more frequently used during the development of

our email classification system was TF-IDF4. However, other feature extraction methods were applied,

such as TF5, which converts a collection of text documents to a vector of term (token) counts. Using

this algorithm we also converted our collection of emails to Term Presence (1 if the word as at least one

3https://pypi.org/project/fuzzywuzzy/
4https://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.TfidfVectorizer.html
5https://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.CountVectorizer.html

55

occurrence and 0 otherwise).

A brief example of the impact of the feature extraction techniques is shown in Table 6.3 (in the next

chapter).

5.6 Feature Selection

From the work related to email/text multiclass classification, we see a tendency to the feature selection

algorithms of Chi-squared and Mutual Information (MI) / Information Gain (IG)6. Following the per-

formances reported in multiple works (described in chapter 3), we decided to experiment with them.

Furthermore, in search of better performance, we experimented with TruncatedSVD7, a dimensionality

reduction algorithm that performs singular value decomposition and is presented in apendix C.3. Com-

parative results are shown in Figure 6.5 (in the next chapter).

5.7 Word Embeddings

DL algorithms, usually get the best performances when combined with word embedding features, men-

tioned in section 2.4 and appendix C.1. During the development of this work, several DL algorithms were

experimented, where both locally trained word embedding models and pre-trained models were used.

When training our own word embedding models, during the second and third iteration of the CRISP-DM

methodology, we used combinations of dimension sizes (100 and 300) with window sizes (3 and 5). To

train these models we used python the library gensim8.

5.8 Classification

The objective of this work is to classify emails into categories. The classifiers will be trained to create

models aiming to get the best performance. With the purpose of achieving the best performance, several

algorithms were implemented, from simple algorithms such as the traditional Machine Learning (ML)

techniques to the more complex Deep Learning (DL) models. Table 5.2 shows the algorithms used.

A huge fraction of the algorithms employed used the scikit-learn library implementation. These al-

gorithms are briefly presented in appendix C.4. Most of these algorithms used the default parameter

settings. With K-Nearest Neighbors (KNN) we used k=3 most of the time but hyperparameter optimiza-

tion tests using the grid search method showed that 3 was not the best value of k, that the best values of

6According to the references in the web page (https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.mutual info classif.html)
of the MI algorithm we used , MI and IG are the same thing

7https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
8https://radimrehurek.com/gensim/

56

k are located between 20 and 50 and that the best performing k value changes with the pre-processing

steps taken, namely the class re-structure strategies and the feature extraction and feature selection

methods.

Gradient Boosting and AdaBoost obtained good performance scores, but were always behind XGBoost.

Because of this and because they are very computationally expensive they were only used with Av2,

were they were first introduced.

XGBoost (eXtreme Gradient Boosting) obtained top performance scores. Because of this it was

the target of hyperparameter tuning techniques in order to increase its performance even more. Since

XGBoost is very computationally expensive and in order to optimize its hyper-parameters we decided

not to use XGBClassifier (Scikit-Learn Wrapper interface for XGBoost) and instead build a custom clas-

sifier from XGBoost Booster object. Our data was represented in our project with an object (Dataset)

that followed the Natural Language ToolKit (NLTK) datasets interface for ease of use and that we coded

aiming for adaptability to multivariate feature engineering methods and for portability to diverse classifi-

cation approaches, but not aiming for efficiency (data was represented in a DataFrame attribute of the

object). In order to increase efficiency our custom XGBoost object converted our data to the XGBoost

native data format, DMatrix. The training was performed using XGBoost.train() method with early stop-

ping (target: maximize macro-F1-measure, patience: 100 epochs). The parameters used were found

either by the use of hyperparameter optimization methods (RandomSearchCV9), as was the case of the

learning rate (0.01) and max depth of a tree (6), selected for computational efficiency (GPU predictor

and ‘gpu hist’ tree method) or found empirically. The training process returns a boosted random forest

model from the best epoch. The custom built XGBoost was found to have a better performance by a

margin of 5-7% points over accuracy and macro-F1-measure than the predefined scikit-learn XGBoost

wrapper.

The HDLTex (Hierarchical Deep Learning) classifiers (DNN, CNN and RNN) are described by [Kowsari

et al., 2017]. The implementation of HDLTex is available at github10. We studied the HDLTex implemen-

tation, which was adapted to a simpler classification problem: text classification of WOS datasets, which

are text classification benchmark datasets with a class structure organized in two levels, where the first

level represents a major subject and the second level represents minor subjects and contains all the

leaf-nodes. We extracted the code used to build the three classifiers described by [Kowsari et al., 2017]

and adapted it to our project. HDLTex CNN suffered some considerable changes in its adaptation: it

uses the same layers, but their complexity was reduced because of data constraints.

RMDL is and “a new ensemble, deep learning approach for classification” by [Kowsari et al., 2018,

Heidarysafa et al., 2018], available at github11, which solves the problem of finding the best deep learn-

9https://scikit-learn.org/stable/modules/generated/sklearn.model selection.RandomizedSearchCV.html
10https://github.com/kk7nc/HDLTex
11https://github.com/kk7nc/RMDL

57

Classifier Implementation Hyper-parameters

Multinomial Naı̈ve Bayes (MNB) Scikit-learna (default)

Decision Tree Classifier (DT) Scikit-learnb (default)

K-Nearest Neighbors (KNN) Scikit-learnc k = 3 by default and all odd k values
between 3 and 55 on some experiments

Support Vector Classifier (SVC)
One vs Rest (One vs All) (OvR)

Scikit-learnd (default)

Support Vector Classifier (SVC
One vs One (OvO))

Scikit-learne (default)

Stochastic Gradient
Descent (SGD) One vs Rest (OvR)

Scikit-learnf (default)

Stochastic Gradient Descent
(SGD) One vs One (OvO)

Scikit-learng (default)

Random Forest Classifier Scikit-learnh (default)

GradientBoosting Scikit-learni (default)

AdaBoost Scikit-learnj (default)

XGBoost Classifierk Custom using
XGBoost booster

Optimized with Random Search, best
model chosen using early stopping

HDLTex DNN (Multi Layer
Perceptron)

HDL githubl Best model chosen using early stopping

HDLTex CNN (Convolutional
Neural Network)

HDL githubm 5 levels of complexity, best model
chosen using early stopping

HDLTex RNN (Recurrent Neural
Network using GRU)

HDL githubn Best model chosen using early stopping

Random Model Deep
Learning (RMDL)

RMDL githubo Experimental

LSTM Tensorflow Experimental

BERT pyTorch Experimental

Table 5.2: Classifiers Used

ahttps://scikit-learn.org/stable/modules/generated/sklearn.naive bayes.MultinomialNB.html
bhttps://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
chttps://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html
dhttps://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
ehttps://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
fhttps://scikit-learn.org/stable/modules/generated/sklearn.linear model.SGDClassifier.html
ghttps://scikit-learn.org/stable/modules/generated/sklearn.linear model.SGDClassifier.html
hhttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
ihttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
jhttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

khttps://xgboost.readthedocs.io/en/latest/index.html
lhttps://github.com/kk7nc/HDLTex

mhttps://github.com/kk7nc/HDLTex
nhttps://github.com/kk7nc/HDLTex
ohttps://github.com/kk7nc/RMDL

ing structure. It randomly searches the best hyperparameters for three different DL architectures: MLP,

RNN, CNN. This algorithm was scarcely used when compared to the others, since it is very computa-

tionally expensive.

BERT (Bidirectional Encoder Representations from Transformers) was proposed in [Devlin et al.,

58

2018]. BERT is based on a multi-layer bidirectional Transformer [Vaswani et al., 2017] and uses a

Masked Language Model to predict words which are randomly masked or replaced. BERT is the first

fine-tuning-based representation model that achieves state-ofthe- art results for a range of NLP tasks.

“BERT-base model contains an encoder with 12 Transformer blocks, 12 self-attention heads, and the

hidden size of 768. BERT takes an input of a sequence of no more than 512 tokens and outputs

the representation of the sequence. The sequence has one or two segments that the first token of the

sequence is always [CLS] which contains the special classification embedding and another special token

[SEP] is used for separating segments. For text classification tasks, BERT takes the final hidden state

h of the first token [CLS] as the representation of the whole sequence. A simple softmax classifier is

added to the top of BERT to predict the probability of label c: p(cjh) = softmax(Wh) where W is the

task-specific parameter matrix” [Chi et al., 2019].

Our BERT classifier is built on top of “NeuralMind BERT-base Portuguese Cased” model12 by [Souza

et al., 2020]. The optimizer used is AdamW [Kingma and Ba, 2017]. All hyper-parameters were defined

experimentally.

5.9 Development Overview

All the approaches presented in this chapter were not planned or developed at once, in the beginning

of the project, but the product of our development methodology, where at each iteration needs were

identified and further algorithms were planned to the following iteration, in order to answer the limitations

or lack of performance identified. Figure 5.3 shows a succinct overview of the development, where the

major decisions and actions (but not all) taken at each iteration/phase are presented.

Altogether, these experiments produced a large number of results, resulting in an extensive report

on the use of preprocessing, feature extraction, feature selection, dimensionality reduction, word em-

bedding and ML and DL models to solve the challenges proposed by noisy data organized in a complex

hierarchical structure of classes.

12https://huggingface.co/neuralmind/bert-base-portuguese-cased

59

Figure 5.3: CRISP-DM cycle deconstructed and main actions per phase

60

6
Evaluation

If things are not failing, you are not innovating enough.

– Elon Musk

Contents
6.1 Evaluation Metrics . 62
6.2 Flat Classification . 63
6.3 Local Classification Per Level Approach . 65
6.4 Local Classification Per Parent Node-based Approach 66
6.5 Feature-level . 68
6.6 Classifier-level . 70
6.7 Discussion . 71

61

Following the CRISP-DM methodology and development reported in previous chapters, we had three

evaluation phases, to evaluate the major datasets Av1, Av2 and Av3. Each of these major datasets was

submitted to class re-structure approaches, producing several offspring datasets. Each offspring dataset

was submitted to several text preprocessing steps such as n-gram-representation, stemming, lemma-

tization, meta-features and hybrid combinations of these. Furthermore, each pre-processed dataset

was submitted to some of several feature extraction and feature selection methods. Then, each dataset

with each data instance represented by its pre-processed selected features was classified by multiple

classifiers.

All the possible combinations of different actions at each step produced a multitude of evaluation

results. To be able to present the most relevant results, we will present the best results per type of

classification strategy (flat classification, local classification per level and local classification per parent

node) followed by the relevant insights from the use of our different strategies regarding feature extrac-

tion/selection and classifier methods.

6.1 Evaluation Metrics

Let TP , FP , TN , FN denote true positives, false positives, true negatives and false negatives. The

most primary metrics to evaluate the quality of a classification model are Accuracy and Error rate (equa-

tion 6.1).

Accuracy =
(TP + TN)

N
, Error rate =

(FP + FN)

N
(6.1)

where N is the total number of data instances. Obviously we have ErrorRate = 1-Accuracy.

Precision, Recall and F-measure (also called F1-Score) are also primary metrics typically used to

measure performance for imbalanced datasets. Equation 6.2 defines precision, recall and F1-measure

(which is the harmonic mean of the precision and recall) for binary classification.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1-measure =

2 · Precision · Recall
Precision + Recall

(6.2)

For multi-class classification, precision, recall and F1-measure can be calculated for each individual

class and averaged to get an overall performance value. The average of class-wise F-measures is given

by macro-F1, while a F-measure obtained by the overall precision and recall is called micro-F1 (see

Equation 6.3).

62

macro-F1 =
1

Y
.
∑
y∈Y

F1 (y), micro-F1 =
2 · Precisionmicro · Recallmicro

Precisionmicro + Recallmicro
,

(6.3)

where micro-Precision =

∑
y∈Y TPy∑

y∈Y TPy +
∑

y∈Y FPy
, micro-Recall =

∑
y∈Y TPy∑

y∈Y TPy +
∑

y∈Y FNy

,where Y is the set of classes.

The identity of overall micro-Precision and micro-Recall causes their identity with micro-F1, meaning

micro-F1 = micro-Recall = micro-Precision. This measure is identical to overall accuracy.

In hierarchical classification, multi-model classification models usually use more complex perfor-

mance measures. There are no standard measures for complex models [Silla and Freitas, 2011]. In

multi-model classification models, we call the local models performance the ‘Local’ performance (eg.

Local Accuracy) and the composite model performance the ‘Overall’ performance (eg. Overall Accu-

racy). ‘Local’ performances are given by the metrics aforementioned. ‘Overall’ performance is given

by:

Overall Performance =

n∏
i

Local Performancei (6.4)

, where n is the number of models.

6.2 Flat Classification

Figure 6.1: Evaluation results (macro-F1-measure and accuracy) of datasets Av1 (blue), Av2 (red) and Av3 (green),
using XGBoost and TF-IDF

63

Flat classification ignores the class relationships and performs prediction considering all leaf nodes

as independent classes. Figure 6.1 shows that the results increase from dataset to dataset, which

means that increasing data amount and data quality benefits performance.

There are a number of factors that influence accuracy. It usually presents high results in the im-

balanced datasets because the classifier is biased towards the majority class. From Av1 to Av3 the

proportion of data in the majority class decreased in proportion to the other classes, which may explain

the small decrease in accuracy from Av1 raw to Av3 raw and also explains the decrease in majority

baseline. Av3 macro F1-measure and accuracy increase approximately 63% and 62% over Av1, which

may be explained by the exponential increase in data quality provide by the data normalization and noise

removal described in Chapter 4.

Offspring datasets - Re-balance Total
Classes

Total
Emails

Classifier Features

A Av1 105
(100%)

11894
(100%)

OvO - SGD TFIDF-3500 1-gram,
Chi2-1000

B Av1 noc 98
(93,3%)

11894
(100%)

OvO - SGD TFIDF-3500 1-gram,
Chi2-1500

C Av1 noc ag100a nmc 40
(38,1%)

9179
(77,2%)

OvO - SGD TFIDF-3500 1-gram,
Chi2-1000

D Av1 noc ag100a nmc mi100 m100 13
(12,4%)

8570
(72,1%)

OvO - SGD TFIDF-3500 1-gram,
Chi2-250

E Av1 noc ag100a nmc mi100 m100 u100 13
(12,4%)

1690
(14,2%)

OvR - SVC TFIDF-3500 1-gram,
Chi2-250

Figure 6.2: Evaluation results of Av1 offsprings

Figure 6.2 shows that class re-structure techniques described in section 5.2 improve macro-F1 per-

formance mainly by reducing the number of classes with very low amount of samples by removing them

and by aggregating them and creating classes with more significance.

64

6.3 Local Classification Per Level Approach

The local classification per level approach consists of training one multi-class classifier for each level of

the class hierarchy.

Figure 6.3: Evaluation results (macro-F1-measure and accuracy) of hierarchically cutted datasets

Offspring datasets - Re-
balance

Total
Classes

Total
Emails

Classifier Features

HC2-A1
Av3 hc2 49564 25

XGBoost TFIDF-3500 1-gram

HC2-A2 OvR - SVC TFIDF-3500 1-gram, TruncSVD-1500

HC2-B1
Av3 bhc2 M500 6259 24

XGBoost TFIDF-3500 1-gram

HC2-B2 OvR - SVC TFIDF-3500 1-gram, TruncSVD-500

HC2-C1
Av3 bhc2 M500 mi100 m100 6073 15

XGBoost TFIDF-3500 1-gram

HC2-C2 OvO - SVC TFIDF-3500 1-gram, TruncSVD-2500

HC3-A1
Av3 hc3 49564 62

XGBoost TFIDF-3500 1-gram

HC3-A2 OvR - SVC TFIDF-3500 1-gram, TruncSVD-2000

HC3-B1
Av3 bhc3 M500 11193 49

XGBoost TFIDF-3500 1-gram

HC3-B2 OvR - SVC TFIDF-3500 1-gram, TruncSVD-2000

HC3-C1
Av3 bhc3 M500 mi100 m100 10837 29

XGBoost TFIDF-3500 1-gram

HC3-C2 OvR - SVC TFIDF-3500 1-gram, TruncSVD-500

HC4-A1
Av3 hc4 49564 126

XGBoost TFIDF-3500 1-gram

HC4-A2 OvR - SVC TFIDF-3500 1-gram, TruncSVD-1500

HC4-B1
Av3 bhc4 M500 17788 104

XGBoost TFIDF-3500 1-gram

HC4-B2 OvO - SVC TFIDF-3500 1-gram, TruncSVD-1500

HC4-C1
Av3 bhc4 M500 mi100 m100 17149 51

XGBoost TFIDF-3500 1-gram

HC4-C2 OvO - SVC TFIDF-3500 1-gram, TruncSVD-1000

Table 6.1: “Hierarchically cut” offspring datasets statistics

We use the strategies of hierarchical cut and balanced hierarchical cut, presented in section 5.2 to

obtain level-class-based datasets to train each level classification models. Figure 6.3 (and complemen-

tary Table 6.1) show that just by aggregating ”cutted” classes with balance, using Balanced Hierarchical

Cut (Figure 5.1) macro-F1-measure increases, probably due to the fact that the new generated dataset

65

classes have less class imbalance and are more cohesive.

By further removing ill represented classes (classes with very low amount of samples) we can also

observe that macro-F1-measure increases substantially, with the sacrifice of only a very small amount

of data.

These observations act like a rule, for all cut levels. Macro-F1-measure reduces from level to level

because the amount of classes increase and because, as explained in section 2.2.5 and Chapter 4,

the boundary between classes is smaller which makes class overlap occur more dramatically. Since

lower level classes are more hard to distinguish, they are more susceptible to label noise. These factors

combined (number of classes, class overlap and label noise) may be the cause for the continuous

decrease of performance from “hierarchically cut” level to “hierarchically cut” level.

Despite we call these approaches as local classification per level, we do not in fact create a multi-

model classification model, composed of a model trained for level 2, a model trained for level 3 and a

model trained for level 4. Traditionally, local classification per level is useful when the class path is impor-

tant, which are the situations when a given node may have more than one parent node (DAG [Silla and

Freitas, 2011]). Since we have a tree, our local classification per level approaches are more of flat classi-

fication approaches where classes have been “hierarchically cut”. For example dataset Av3 hc3 includes

not only leaf nodes at level 3, but also leaf nodes at level 2 that did not had any child nodes originally.

Furthermore, if we used Equation 6.4 to compute an overall performance of a multi-model composed

by local models Av3 bhc2 M500 mi100 m100 (level 2) and Av3 bhc3 M500 mi100 m100 (level 3), the

overall macro F1 would be about 28.6% (0.57 · 0.502) in the best case scenario.

6.4 Local Classification Per Parent Node-based Approach

Classically, a local classification per parent node approach is a top-down approach where we train a

model to classify each parent-node’s children At the second level of our hierarchy, this strategy does not

differ from the local classification per level approach, because all nodes at this level are siblings.

In order to further explore the hierarchy relations and the semantic relations of classes, we developed

artificial nodes/classes to separate siblings classes in different classifiers. These nodes were defined

taking in consideration the semantic relations of classes, class-email frequency distribution portrayed in

Figure 4.7 (Section 4.2.5), and the structure of the hierarchy portrayed in Figure 4.6 (Section 4.2.5).

Figure 6.4 shows the new hierarchy of classes with artificial classes represented as squares. This

class structure display was found empirically and with the support of clustering techniques and semantic

analysis and built with the help of the re-structuring methods presented at section 5.2.

First, we transformed the second level of the tree in a two class problem: class ‘AMA’ was already

a class at level 2 which is the parent of a tree-branch that sums up to 30498 emails (64.67% of total

66

Class Nr. of Child Classes Number of Emails Avg. Nr. Emails / Child Classes

Info Cidadão (root) 2 47156 23578

AMA 2 30498 15249

Others 23 16658 724,26

AMA/Autenticação.Gov-CC 5 25911 5182,2

AMA/Others 12 4587 199.43

Figure 6.4: Class Structure Re-organization for Classification

data instances) and class ‘Others’, which compile all the other 23 classes at level 2, summing up to

16658 emails (35.33% of total data instances). The next level of class ‘AMA”s branch has 17 categories

and a serious class imbalance problem. Five of these classes have a strong semantic relation and

where grouped under the artificial class ‘AMA/Autenticação.Gov-CC’, which contains 25911 emails. The

remaining classes have no visible semantic relations and where grouped under ‘Others’, which contains

12 classes but only 4587 emails. The class ‘Others’ contains 23 classes which have also an extreme

class imbalance problem and since they are all level 2 classes, there is not a strong visible semantic

relation between classes to group them.

During this approach we defined a threshold for the exploration of the hierarchy, where models that

were classifying classes of level 3 or lower and that could not achieve a performance greater than 80%

would not be considered for the final model, to safeguard the accuracy and reliability of our composed

model.

To perform classification using this model, the following classification models are needed:

AMA Others: Classify all data between ‘AMA’ and ‘Other’

1. AMA/Autenticação.Gov-CC Others: Classify ‘AMA’ data between ‘AMA/Autenticação.Gov-

CC’ and ‘AMA/Other’

(a) AMA/Autenticação.Gov-CC: Classify ‘AMA/Autenticação.Gov-CC’ data between all

its classes (5)

67

(b) AMA/Others: Classify ‘AMA/Others’ data between all its classes (12)

2. Others: Classify ‘Others’ data between 23 classes

Model Observations Feat. Ex-
traction

Feat. Se-
lection

Classifier L.
maF1

O.
maF1

L.
Acc

O.
Acc

AMA vs Others TF-IDF
1-gram

MI 2000
features

XGBoost 0.725 0.725 0.761 0.761

AMA/Autenticação
.Gov-CC vs
AMA/Others

TF-IDF
1-gram

SGD
(OvO -
OvR) /
XGBoost
(tied)

0.912 0.661 0.913 0.695

AMA/Autenticação
.Gov-CC

Removed 2 classes
that contained less
than 0.1% of data

TF-IDF
1-gram

OvR -
SGD

0.810 0.535 0.872 0.606

AMA/Others Removed 4 classes
that contained less
than 0.1% of data

TF-IDF
1-gram

MI 2000
features

XGBoost 0.788 0.521 0.866 0.602

Others Removed 7 classes
that contained less
than 0.1% of data

TF-IDF
1-gram

XGBoost 0.579 0.420 0.631 0.458

L. maF1 = Local Macro-F1; O. maF1 = Overall Macro-F1; L. Acc = Local Accuracy; O. Acc = Overall Accuracy

Table 6.2: Classification Performance for Parent Node-based Approach

Overall Accuracy was calculated using equation 6.4. It is important to notice that with this approach

we can predict 64.67% (30498/47156) of data (‘AMA’) branch to the second level with 76.1% accuracy

and third level classes with 60% accuracy.

6.5 Feature-level

As mentioned in section 5.6, there were three major feature selection strategies that where implemented.

From all the results observed during the development of this work, we observed that usually using no

feature selection method gives a good performance and that the general impact of feature selection

methods is small (approximately 1-4%). Chi-squared is the most successful feature selection method,

which is in accordance to the literature described in Chapter 3, but there are some situations where

TruncatedSVD achieves the best performance.

The performance of the application of the feature selection methods is compared between each other

and the use of no feature selection for all ML classifiers applied with TF-IDF for the most tested dataset,

Av3 bhc2 M500 mi100 m100, and shown on Figure 6.5.

TF-IDF was present in most of our experiments, and despite TF and Term Presence having had

similar performances to TF-IDF in some cases, in most of them they were considerably under TF-IDF.

68

Figure 6.5: Performance of Feature Selection Methods for Av2 bhc2 M500 mi100 m100 - (TF-IDF)

On the other hand, the custom engineered features from text and metadata proved successful, used

as standalone feature extraction method and specially when combined with TF-IDF. Table 6.3 shows a

small excerpt of the experiments executed with Av3 bhc2 M500 mi100 m100 where we see that we can

get 0.301 and 0.19 in two different feature experiments that do not extract any features from text, and

that TF-IDF 1-gram increased 0.312% of macro-F1 performance by joining with custom features from

text statistics, keywords from all levels of the hierarchy tree, the ‘reply nr’, and the previous category

name cut by level 2 and level 4 (complete name of category).

69

Features Extracted Feature
Selection

macro-F1 Accuracy

TF-IDF + 1-gram + Text Statistics + Keyworks (levels 2 to 4) +
Reply nr + Previous Level 2 Category + Previous Level 4 category

Chi2 1000
features

0.586 0.574

TF-IDF 1-gram Chi2 1000
features

0.274 0.271

Keyworks (levels 2 to 4) + Reply nr + Previous Level 2 Category None 0.301 0.316

Text Statistics + Keyworks level 2 + Reply nr + Previous Level 2
Category

None 0.190 0.203

TF-IDF 1-gram TruncatedSVD
1500 features

0.562 0.546

Table 6.3: Features Performance for OvO - SVC on Av3 bhc2 M500 mi100 m100

6.6 Classifier-level

Av3 bhc2 M500 mi100 m100 was the most tested dataset because it contains only a fraction of the total

quantity of data, turning its train and testing more efficient and contains a small quantity of classes that

represent a big proportion of data and do not suffer from much class imbalance.

Figure 6.6: Classifiers Performance for Av3 bhc2 M500 mi100 m100 - (ML models trained with TF-IDF and best
feature selection method. DL models show the best experimental result)

Figure 6.6 shows a comparison between the different classifiers. In this figure, all the models were

trained with TF-IDF weighted features in conjunction with the best performing feature selection method

for each classifier. The DL classifiers show the best experimentally attained performance results. Two

major observations can be taken from these results:

70

• Very different algorithms obtain similar performance.

• Several algorithms cannot surpass the 53%-58% performance range.

6.7 Discussion

6.7.1 Flat Classification

The first conclusion we can obtain from the results from flat classification is that substantial improvement

can be obtained by improving data quality and by increasing data quantity. We have to take in consider-

ation that each time we increased data quantity we also gained more classes, increasing the complexity

of the classification problem and that the proportion of data instances between each class was altered

between each iteration.

From the results shown in Figure 6.1 we cannot distinguish the effects on the performance between

the increase in data quantity and the improvement in data quality, except in the following situations: from

Av2 to Av3 raw, only there was only an increase in data quantity and not in quality and from Av1 raw to

Av1 and Av3 raw to Av3 there was an improvement in data quality but not in quantity.

The improvement in data quantity alone shows little improvement in performance, both in macro-

F1 measure and in accuracy, but there was an increase in class quantity, so the fact that macro-F1

performance did not drop in face of increasing complexity may be a proof of the positive side of data

increase.

The two situations where there was data quality increase alone, are distinct because of the strategies

employed for data quality improvement. In the first situation (Av1 raw to Av1), data quality increased by

removing mainly systematic noise (removing irrelevant data). In the second situation, the measures

applied aimed to improve the meaning of relevant data mainly by normalization and correction of data

anomalies. The results show that improving relevant data is much more beneficial than removing irrele-

vant data.

Figure 6.2 shows the effects of some of our proposed class re-structure strategies. Just as oversam-

pling is, generally, a trade-off between class balance and possibly model overfitting and class overlap-

ping (in multi-class cases), and undersampling is, generally, a trade-off between class balance and data

(data with important features may be lost), most of our strategies also act as a trade-off. Following the

examples in Figure 6.2, the No Only Child (noc) strategy applied from A to B reduce classes to a more

concise hierarchy structure and results in improved macro-F1. From B to C, the No Middle Class (nmc)

removes inter-level classes (and respective data (22,8%)) that we consider to have a profound impact

on performance from our virtual tree (where only leaf-nodes are target classes) view of the classification

problem and Aggregate (agg) strategy aggregates ill represented classes (minority classes with very

low number of data instances) in parent classes. The improvement in macro-F1 from these strategies

71

is the advantageous and until this point, we consider that we are only trading class fidelity to the orig-

inal structure for data sparsity, class overlap and class imbalance reduction. From C to D, Merge and

Integrate (mi) and Removing classes with less than 100 data instances (m100) dramatically reduced

the number of classes, but only reduced data in 5%, meaning that we are removing non representative

classes (which is negative because they are the target of our classification, but not so negative because

they represent a minimal fraction of data) in exchange for a huge improvement in macro-F1. From D to

E, we undersample all classes to 100 data instances. It is a trade-off between class balance and data

loss, which results in a positive increase of macro-F1 performance, but at the cost of a huge loss of data.

Overall, from A to D, macro-F1 performance increased remarkably, but 48.3% macro-F1 it is still

low, and despite our data was only reduced by 27.9%, most of it was considered errors (middle-node

classes), the total number of classes dropped 87.6% which is a big simplification of our problem that

does not pay off the performance improvement to 48.3%.

6.7.2 Local Classification Per Level Approach

As mentioned before, dataset Av3 bhc2 M500 mi100 m100 was the subject of most of our experiences,

due not only to the fact that it has a low amount of data and classes, making it practical considering

that most classification processes are costly in computational resources and time, but also due to the

fact that its classes are the most important and where each class domain is more concise. From level

to level, Figure 6.3 shows that performance tends to decrease. This may be explained just because

the number of classes increases but also because in lower levels data sparsity, data overlap and label

noise play a bigger role. In each of the three cases, the application of the Balanced Hierarchical Cut

(bhc) when compared with the simple Hierarchical Cut is much beneficial in performance. The former

ensures that undersampling is done without the risk of eliminating all data instances from a former lower

level class, aiming for the class that resulted from the cut to completely and fairly represent all of its child

classes.

As was the case in the flat classification experiences, applying the Merge and Integrate (mi) and

Removing classes with less than 100 data instances (m100) strategies dramatically reduced the num-

ber of classes while only eliminating a minimal fraction of data. For example, from Av3 bhc3 M500 to

Av3 bhc3 M500 mi100 m100, data instances amount reduces only from 11193 to 10837, which is a

reduction of only 3.18% that were distributed over 20 classes (40.82% of previous dataset classes) and

results in an increase in macro-F1 performance of 16.4%, resulting in a positive 50.2% score.

72

6.7.3 Local Classification Per Parent Node-based Approach

In the local classification per parent node-based approach strategy we created two artificial levels with

two classes, from which results a binary classification problem and the performance results from it are

considerably higher than the ones from the multi-class classification problems observed before.

Following the results in Table 6.4, the ‘AMA vs Other’ model classifies data between a more concise

class ‘AMA’ and a very sparse class ‘Others’ and obtains 72.5% and 76.1% of macro-F1 and Accu-

racy, respectively. The other binary classification model ‘AMA/Autenticação.Gov-CC vs AMA/Others’

distinguishes between more concise classes and obtains macro-F1 and Accuracy scores of 91.2% and

91.3%, respectively. Furthermore, ‘AMA/Autenticaçaao.Gov-CC’ and ‘AMA/Others’ perform multi-class

classification on the ‘AMA’ class branch data and obtain very good scores of 81% macro-F1 and 87,2%

of accuracy and 78.8% macro-F1 and 86.6% accuracy respectively. On the other hand, ‘Others’ per-

forms multiclass classification on the ‘Others’ branch data, a sparse domain with 6 classes (in which

one is an artificial class representing 19 classes with low amount of data) where class overlap, class

imbalance and data sparsity is more severe, leads to 57.9% macro-F1 and 63.1% accuracy.

6.7.4 Features and Classifier

The combination techniques applied for feature extraction and feature selection have a big impact on

performance. Table 6.3 shows that TF-IDF when applied only with a Chi-squared (1000 features) alone

may be surpassed in performance by a conjunction of metadata and engineered features that do not

include text and that if combined with a certain conjunction of metadata and engineered features may

have its performance more than double. Also, the same feature extraction algorithm may have a cer-

tain performance when combined with a given feature selection method (Chi-squared) and the double

when combined with other feature selection (TruncatedSVD). Furthermore, Figure 6.5 shows how per-

formance may be so impacted by feature selection and the number of features in one classifier (such

as the case of Random Forest classifier) and suffer almost no impact, such as the case of SVC. It also

shows how performance varies between classifiers. This information is completed by Figure 6.6 which

shows the performance of all classification methods applied, including DL algorithms. DL performed

worse than expected, but we also have to acknowledge that due to the complexity and computational

cost of these algorithms, they were not tested as extensively as ML and ensemble learning algorithms.

6.7.5 Overview and Summary

In summary, flat classification does not seem the most adequate for this kind of problem. It puts aside the

hierarchy relations which are important to structure data and even when applied with class re-structure

techniques that sacrifices lots of data and classes to obtain better results, its performance is lacking.

73

Local Classification approaches are more promising. With per level approaches, classifying data

only to hierarchically cut classes at level 2, presents the best achieved results and assigns the most

important classes to data. Further classifying data to level 3 or 4 is getting more errors than correctly

predicted classes and does not seem feasible to the improvement of the email classification process at

the contact center. Per parent node-based approaches obtain the best results although they are more

complex since they rely on a complex multi model classification strategy.

To compare the local classification per parent node-based approaches with the local classification

per level approaches, its important to compare macro-F1 measures, specially at the most relevant level,

level 2. To calculate the average macro-F1 at hierarchy level 2, using per class with local classification

per parent node-based, we have to take into account the number of classes described in Figure 6.4, 1

class ‘AMA’ plus 23 classes ‘Others’, and the performance results reported in table 6.4, 72.5% macro-F1

for ‘AMA’ and 42.0% for ‘Others’ 16 classes (7 classes were removed for before the classification step).

This means that the average macro-F1 measure at level 2 is 43.8% (given by Equation 6.5).

0.725 ∗ 1 + 0.420 ∗ 16

17
= 0.438. (6.5)

When compared to level based approach with dataset Av3 bhc2 M500 mi100 m100 (a dataset that

also has 15 classes at level 2) which has 57% macro-F1 (see HC2-C1 of table 6.1 and Figure 6.3),

the parent node-based approaches falls short with 43.3% macro-F1. However, the parent-node based

approach ensures a better performance of 72.5% macro-F1 and 76.1% of accuracy for 64.67% of data

which is represented by a single class: ‘AMA’.

Despite the hierarchical classification approaches having a significant importance in the performance

of our system, Figure 6.6 demonstrates that data quality and label noise are the big limitations of our

work. Several algorithms, from traditional ML, to complex DL algorithms and state of the art approaches

such as BERT, very different in their mechanics, obtained very similar high-scores (in the range of 54%-

59% macro-F1). This evidence suggests that performance is hitting a wall, which we consider to be the

lack of data quality and the presence of label noise.

This situation hinders our decision on the several approaches and algorithms taken into account

in Chapter 5, to be used to build our final proposal for the email classification system. But, having to

make a decision at this point, our proposed email classification system is based on a XGBoost model

trained on the Av3 bhc2 M500 mi100 m100 dataset (described in HC2-C1 of Figure 6.3 and Table 6.1),

using TF-IDF features. XGBoost not only achieved the best performance with almost all the hierarchical

approaches and most offspring datasets, but also proved to be very resilient to the methods used as

feature selection (Figure 6.5). Our proposed system is illustrated in Figure 6.7.

74

Figure 6.7: Proposed Email Classification System (model training process on top and prediction process on bottom)

75

76

7
Conclusion

We don’t have better algorithms, we just have more data. More data beats clever algorithms, but

better data beats more data

– Peter Norvig, Director of Research, Google

Contents
7.1 Contributions . 79
7.2 Future Work . 79

77

The main objective, declared in section 1.3, was: to develop an email system able to classify emails

of the domain of the Contact Center of the Portuguese Public Services. We have developed a project that

evolved a lot from the initial experiences where our best performance was at 30% (macro F1-measure)

to the final experiences were our performance was near 60% (macro F1-measure). The proposed email

classification system uses the robust and efficient algorithm, XGBoost, and achieves a macro-F1 score

of 57%.

Data noise plays a major role in this work. There are few related works in literature based on real-

world data. Literature about noisy data describes artificially created noise, not native noise. This project

started as a hierarchical classification problem and it was during the development of a solution to that

problem that we realized that was not the biggest challenge. At the beginning of iteration 1, we were

solving a hierarchical classification problem. At the beginning of iteration 2, we knew that the main

problem was not to perform hierarchical classification, but to perform classification with noisy data. By

the beginning of iteration 3, after a multitude of strategies regarding noisy data have been applied, we

started to suspect another problem even harder to solve: label noise. Label noise corrupts the learning

process and greatly impacts the performance of the classification process.

The improvements obtained from the data cleaning and normalization, and the extensive range of

algorithms used for classification and their respective performance (where different algorithms achieved

similar performance) validate the fact that data noise and label noise are the primary problems that

negatively impact the learning and classification processes.

A hierarchy may be very useful for classification, but if it is not properly designed and properly main-

tained it may pose challenges to automatic classification such as class imbalance, class overlap and

label noise. This work proposed new approaches to these challenges, that focus on exploration of class

relations and semantic meaning and their consecutive re-structure. The results achieved show that

these approaches are successful.

Overall, the work described is this thesis is a testimony of how a problem may unfold into other

problems and with that, an extensive study of solutions to the problems of hierarchical classification,

noisy data, class imbalance, class overlap and label noise. Meanwhile, we achieved all the challenges

listed in the objectives:

1. We successfully collected data from the business context and compiled it into a dataset that

iteratively increased in size and quality;

2. We explored the data and where able to identify the many problems that plagued it as well as

develop increasingly better solutions to deal with these problems and increase data quality;

3. A compilation of feature selection, feature extraction and dimensionality reduction were not only

reviewed but applied and studied with our datasets;

4. The classification strategies applied, range from the most simple and traditional to the complex

78

deep learning models in recent literature as well as popular state of the art approaches such as

BERT.

7.1 Contributions

Section 1.5 summarizes contributions in three separated scopes: data, features and classification. Over-

all, this thesis gives a comprehensive description of how the combination of the strategies applied in

these three scopes can overcome the challenges of the problem of text classification with hierarchical

classes, with noisy data and noisy labels.

Our main contribution is a set of strategies that take advantage of the hierarchical relations between

classes to counter class issues such as class imbalance. Furthermore, this contribution is accompanied

by a report of evolving strategies regarding data cleaning, data normalization, feature extraction, feature

selection, dimensionality reduction, feature engineering, text classification using ML, text classification

using DL and using novel state of the art approaches, and their performance, to an evolving problem of

text classification, that started as a hierarchical classification problem and revealed itself more complex

at each step.

Literature about class imbalance asks for new methods to deal with class imbalance, especially in

the poorly explored problems of multi-class and hierarchical classification [Esteves, 2020], the few works

about label noise state that there are many open research questions to label noise and, for example,

methods such as the removal of noisy unreliable data instances should be explored [Frénay and Kabán,

2014]. Class hierarchy maintenance literature underlines the need to explore the hierarchy relationships

in favour of its purpose, which is in our case automatic classification [Yuan et al., 2012]. [Kowsari et al.,

2017] denotes a research need in identifying new architectures that work with hierarchically structured

data.

To the best of our knowledge there are no works in literature about hierarchical classification of real-

world data with systematic and natural noise nor works with hierarchy trees similar (in terms of structure

and properties) to the one that grounded this problem (described in Figure 4.6).

7.2 Future Work

This thesis is the product of an iterative process of development, shaped by the CRISP-DM methodology.

Each iteration saw new approaches to tackle the problems identified in the previous iteration and with

each approach new improvements in the performance. However, the iterations that this project saw were

limited by data acquisition constraints, time, and human and computational resources. When searching

for a solution there are many ways to follow, but limitations such as the aforementioned ones forced us

79

to narrow the solution space, to follow only certain ways leaving aside strategies and methods that were

less prioritized and to limit the extent to which the strategies and the methods adopted can be studied

and developed.

Future work lays on the continuation of the development process and the overcoming of the limita-

tions aforementioned, which may be summarized as:

• Further improvement of data quality;

• Oversampling techniques and other unexplored class imbalance strategies that were not priori-

tized during the development of this work;

• Class imbalance techniques specialized on hierarchy text classification is an open field with little

to no contributions;

• The use of unsupervised learning strategies to study the class relation and distribution.

80

Bibliography

[Ali et al., 2019] Ali, H., Salleh, M., Saedudin, R., Hussain, K., and Mushtaq, M. (2019). Imbalance

class problems in data mining: A review. Indonesian Journal of Electrical Engineering and Computer

Science, 14.

[Alizamini et al., 2010] Alizamini, F. G., Pedram, M. M., Alishahi, M., and Badie, K. (2010). Data quality

improvement using fuzzy association rules. In 2010 International Conference on Electronics and

Information Engineering, volume 1, pages V1–468. IEEE.

[Arafat et al., 2019] Arafat, M., Hoque, S., Xu, S., and Farid, D. M. (2019). Machine learning for mining

imbalanced data. IAENG International Journal of Computer Science, 46(2):332–348.

[Atkinson and Metsis, 2020] Atkinson, G. and Metsis, V. (2020). Identifying label noise in time-series

datasets. In Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive

and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable

Computers, pages 238–243.

[Azevedo and Santos, 2008] Azevedo, A. and Santos, M. (2008). Kdd, semma and crisp-dm: A parallel

overview. pages 182–185.

[Balakrishnan and Lloyd-Yemoh, 2014] Balakrishnan, V. and Lloyd-Yemoh, E. (2014). Stemming and

lemmatization: A comparison of retrieval performances.

[Batista et al., 2004] Batista, G., Prati, R., and Monard, M.-C. (2004). A study of the behavior of several

methods for balancing machine learning training data. SIGKDD Explorations, 6:20–29.

[Bawden et al., 1999] Bawden, D., Holtham, C., and Courtney, N. (1999). Perspectives on information

overload. In Aslib proceedings, volume 51, pages 249–255. MCB UP Ltd.

[Bootkrajang, 2016] Bootkrajang, J. (2016). A generalised label noise model for classification in the

presence of annotation errors. Neurocomputing, 192:61 – 71. Advances in artificial neural networks,

machine learning and computational intelligence.

81

[Brutlag and Meek, 2000] Brutlag, J. D. and Meek, C. (2000). Challenges of the email domain for text

classification. In ICML, volume 2000, pages 103–110.

[Carvalho and Cohen, 2007] Carvalho, V. R. and Cohen, W. (2007). Recommending recipients in the

enron email corpus. Machine Learning.

[Carvalho and Cohen, 2005] Carvalho, V. R. and Cohen, W. W. (2005). On the collective classification

of email speech acts. In Proceedings of the 28th annual international ACM SIGIR conference on

Research and development in information retrieval, pages 345–352. ACM.

[Cassier et al., 2019] Cassier, M., Sellami, Z., and Lorré, J.-P. (2019). Meeting Intents Detection Based

on Ontology for Automatic Email Answering. In Journées francophones d’Ingénierie des Connais-

sances (IC 2019), Toulouse, France.

[Chi et al., 2019] Chi, S., Qiu, X., Xu, Y., and Huang, X. (2019). How to fine-tune bert for text classifica-

tion?

[Clark et al., 2003] Clark, J., Koprinska, I., and Poon, J. (2003). A neural network based approach to

automated e-mail classification. pages 702 – 705.

[Cohen, 1996] Cohen, W. W. (1996). Learning rules that classify e-mail. In Proceedings of the 1996

AAAI Spring Symposium on Machine Learning and Information Access.

[Cruz et al., 2019] Cruz, R. M., Souza, M. A., Sabourin, R., and Cavalcanti, G. D. (2019). Dynamic

ensemble selection and data preprocessing for multi-class imbalance learning. International Journal

of Pattern Recognition and Artificial Intelligence, 33(11):1940009.

[Denning, 1982] Denning, P. J. (1982). Acm president’s letter: Electronic junk. Commun. ACM,

25(3):163–165.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

[Dou et al., 2015] Dou, D., Wang, H., and Liu, H. (2015). Semantic data mining: A survey of ontology-

based approaches. In Proceedings of the 2015 IEEE 9th International Conference on Semantic Com-

puting (IEEE ICSC 2015), pages 244–251.

[Dredze et al., 2009] Dredze, M., Schilit, B. N., and Norvig, P. (2009). Suggesting email view filters for

triage and search. In Twenty-First International Joint Conference on Artificial Intelligence.

[Esteves, 2020] Esteves, V. M. S. (2020). Techniques to deal with imbalanced data in multi-class prob-

lems: A review of existing methods.

82

[Favaretto et al., 2019] Favaretto, M., De Clercq, E., and Elger, B. S. (2019). Big data and discrimination:

perils, promises and solutions. a systematic review. Journal of Big Data, 6(1):12.

[Flores and Moreira, 2016] Flores, F. N. and Moreira, V. P. (2016). Assessing the impact of stemming

accuracy on information retrieval – a multilingual perspective. Information Processing Management,

52(5):840 – 854.

[Frénay and Kabán, 2014] Frénay, B. and Kabán, A. (2014). A comprehensive introduction to label

noise. In ESANN.

[Frénay and Verleysen, 2013] Frénay, B. and Verleysen, M. (2013). Classification in the presence of

label noise: a survey. IEEE transactions on neural networks and learning systems, 25(5):845–869.

[Friedman, 2001] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.

Annals of statistics, pages 1189–1232.

[Galar et al., 2011] Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., and Herrera, F. (2011).

A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based ap-

proaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),

42(4):463–484.

[Gutiérrez et al., 2016] Gutiérrez, P. A., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernández-Navarro, F.,

and Hervás-Martı́nez, C. (2016). Ordinal regression methods: Survey and experimental study. IEEE

Transactions on Knowledge and Data Engineering, 28(1):127–146.

[Haixiang et al., 2017] Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., and Bing, G. (2017).

Learning from class-imbalanced data: Review of methods and applications. Expert Systems with

Applications, 73:220 – 239.

[Heidarysafa et al., 2018] Heidarysafa, M., Kowsari, K., Brown, D. E., Meimandi, K. J., and Barnes, L. E.

(2018). An improvement of data classification using random multimodel deep learning (rmdl). arXiv

preprint arXiv:1808.08121.

[Henderson et al., 2017] Henderson, M., Al-Rfou, R., Strope, B., Sung, Y.-h., Lukács, L., Guo, R., Ku-

mar, S., Miklos, B., and Kurzweil, R. (2017). Efficient natural language response suggestion for smart

reply. arXiv preprint arXiv:1705.00652.

[Honnibal and Montani, 2017] Honnibal, M. and Montani, I. (2017). spaCy 2: Natural language under-

standing with Bloom embeddings, convolutional neural networks and incremental parsing. To appear.

[Horvitz et al., 1999] Horvitz, E., Jacobs, A., and Hovel, D. (1999). Attention-sensitive alerting. In Pro-

ceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pages 305–313. Morgan

Kaufmann Publishers Inc.

83

[Japkowicz, 2000] Japkowicz, N. (2000). The class imbalance problem: Significance and strategies. In

Proc. of the Int’l Conf. on Artificial Intelligence, volume 56. Citeseer.

[John, 1962] John, A. (1962). How to do things with words.

[Kannan et al., 2016] Kannan, A., Kurach, K., Ravi, S., Kaufmann, T., Tomkins, A., Miklos, B., Corrado,

G., Lukács, L., Ganea, M., Young, P., and Ramavajjala, V. (2016). Smart reply: Automated response

suggestion for email. In Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, volume 13-17-August-2016, pages 955–964.

[Katakis et al., 2007] Katakis, I., Tsoumakas, G., and Vlahavas, I. (2007). E-mail mining: Emerging

techniques for e-mail management. In Web Data Management Practices: Emerging Techniques and

Technologies, pages 220–243. IGI Global.

[Ke et al., 2006] Ke, S.-W., Bowerman, C., and Oakes, M. (2006). Perc: A personal email classifier. In

European Conference on Information Retrieval, pages 460–463. Springer.

[Kingma and Ba, 2017] Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

[Klimt and Yang, 2004] Klimt, B. and Yang, Y. (2004). The enron corpus: A new dataset for email clas-

sification research. volume 3201, pages 217–226.

[Kowsari et al., 2019] Kowsari, Meimandi, J., Heidarysafa, Mendu, Barnes, and Brown (2019). Text

classification algorithms: A survey. Information, 10(4):150.

[Kowsari et al., 2017] Kowsari, K., Brown, D. E., Heidarysafa, M., Jafari Meimandi, K., Gerber, M. S.,

and Barnes, L. E. (2017). Hdltex: Hierarchical deep learning for text classification. In 2017 16th IEEE

International Conference on Machine Learning and Applications (ICMLA), pages 364–371.

[Kowsari et al., 2018] Kowsari, K., Heidarysafa, M., Brown, D. E., Meimandi, K. J., and Barnes, L. E.

(2018). Rmdl. Proceedings of the 2nd International Conference on Information System and Data

Mining - ICISDM ’18.

[Labadie and Prince, 2008] Labadie, A. and Prince, V. (2008). The impact of corpus quality and type on

topic based text segmentation evaluation. In 2008 International Multiconference on Computer Science

and Information Technology, pages 313–319.

[Lavanya et al., 2014] Lavanya, S., Palaniswami, D. S., and Sudha, S. (2014). Efficient methods to solve

class imbalance and class overlap.

[Li et al., 2017] Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., and Li, J. (2017). Learning from noisy labels

with distillation. CoRR, abs/1703.02391.

84

[Liu et al., 2020] Liu, Q., Kusner, M. J., and Blunsom, P. (2020). A survey on contextual embeddings.

[Manning et al., 2008] Manning, C. D., Schütze, H., and Raghavan, P. (2008). Introduction to information

retrieval. Cambridge university press.

[Meadow et al., 2000] Meadow, C., Boyce, B., and Kraft, D. (2000). Text Information Retrieval Systems.

Library and information science. Academic Press.

[Mitra et al., 2014] Mitra, N., Goel, N., Chakraverty, S., and Singh, G. (2014). Adaptive content based

textual information source prioritization. ICTACT Journal on Soft Computing, 5(1).

[Moreira and Huyck, 2001] Moreira, V. and Huyck, C. (2001). A stemming algorithmm for the portuguese

language. pages 186– 193.

[Mujtaba et al., 2017] Mujtaba, G., Shuib, L., Raj, R. G., Majeed, N., and Al-Garadi, M. A. (2017). Email

classification research trends: Review and open issues. IEEE Access, 5:9044–9064.

[Müller and Markert, 2019] Müller, N. M. and Markert, K. (2019). Identifying mislabeled instances in

classification datasets. CoRR, abs/1912.05283.

[Neustaedter et al., 2005a] Neustaedter, C., Brush, A., and Smith, M. A. (2005a). Beyond from and

received: Exploring the dynamics of email triage. In CHI’05 extended abstracts on Human factors in

computing systems, pages 1977–1980. ACM.

[Neustaedter et al., 2005b] Neustaedter, C., Brush, A. B., Smith, M. A., and Fisher, D. (2005b). The

social network and relationship finder: Social sorting for email triage. In CEAS.

[Nicolosi, 2008] Nicolosi, N. (2008). Feature selection methods for text classification. Department of

Computer Science, Rochester Institute of Technology, Tech. Rep.

[Park et al., 2019] Park, S., Zhang, A. X., Murray, L. S., and Karger, D. R. (2019). Opportunities for

automating email processing: A need-finding study. In Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems, page 374. ACM.

[Piatetsky, 2014] Piatetsky, G. (2014). Crisp-dm, still the top methodology for analytics, data mining, or

data science projects. KDD News.

[Porter, 1980] Porter, M. (1980). An algorithm for suffix stripping. Program, 14:130–137.

[Roberts et al., 2010] Roberts, P. J., Howroyd, J., Mitchell, R., and Ruiz, V. (2010). Identifying problem-

atic classes in text classification. In 2010 IEEE 9th International Conference on Cyberntic Intelligent

Systems, pages 1–6.

85

[Salih et al., 2019] Salih, F. I., Ismail, S. A., Hamed, M. M., Yusop, O. M., Azmi, A., and Azmi, N. F. M.

(2019). Data quality issues in big data: A review. In Recent Trends in Data Science and Soft Comput-

ing, pages 105–116. Springer.

[Sarrafzadeh et al., 2019a] Sarrafzadeh, B., Awadallah, A. H., and Shokouhi, M. (2019a). Exploring

email triage: Challenges and opportunities. In Proceedings of the 2019 Conference on Human Infor-

mation Interaction and Retrieval, pages 325–329. ACM.

[Sarrafzadeh et al., 2019b] Sarrafzadeh, B., Hassan Awadallah, A., Lin, C. H., Lee, C.-J., Shokouhi, M.,

and Dumais, S. T. (2019b). Characterizing and predicting email deferral behavior. In Proceedings of

the Twelfth ACM International Conference on Web Search and Data Mining, pages 627–635. ACM.

[Schafer and Graham, 2002] Schafer, J. L. and Graham, J. W. (2002). Missing data: our view of the

state of the art. Psychological methods, 7(2):147.

[Searle and Searle, 1969] Searle, J. R. and Searle, J. R. (1969). Speech acts: An essay in the philoso-

phy of language, volume 626. Cambridge university press.

[Sebastiani, 2002] Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Com-

put. Surv., 34(1):1–47.

[Shanmugalingam et al., 2019] Shanmugalingam, K., Chandrasekara, N., Hindle, C., Fernando, G., and

Gunawardhana, C. (2019). Corporate it-support help-desk process hybrid-automation solution with

machine learning approach. In 2019 Digital Image Computing: Techniques and Applications (DICTA),

pages 1–7.

[Silla and Freitas, 2011] Silla, Jr., C. N. and Freitas, A. A. (2011). A survey of hierarchical classification

across different application domains. Data Min. Knowl. Discov., 22(1-2):31–72.

[Silva et al., 2018] Silva, S., Ribeiro, R., and Pereira, R. (2018). Less is more in incident categorization.

[Sinha et al., 2018] Sinha, K., Dong, Y., Cheung, J. C. K., and Ruths, D. (2018). A hierarchical neural

attention-based text classifier. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 817–823, Brussels, Belgium. Association for Computational Linguistics.

[Snelting and Tip, 1998] Snelting, G. and Tip, F. (1998). Reengineering class hierarchies using con-

cept analysis. In Proceedings of the 6th ACM SIGSOFT International Symposium on Foundations

of Software Engineering, SIGSOFT ’98/FSE-6, page 99–110, New York, NY, USA. Association for

Computing Machinery.

[Souza et al., 2020] Souza, F., Nogueira, R., and Lotufo, R. (2020). BERTimbau: pretrained BERT

models for Brazilian Portuguese. In 9th Brazilian Conference on Intelligent Systems, BRACIS, Rio

Grande do Sul, Brazil, October 20-23 (to appear).

86

[Spark Jones, 1972] Spark Jones, K. (1972). A statistical interpretation of term importance in automatic

indexing. Journal of Documentation, 28(1):11–21.

[Tan, 2005] Tan, S. (2005). Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert

Systems with Applications, 28(4):667–671. Cited By :207.

[Tang et al., 2006] Tang, L., Zhang, J., and Liu, H. (2006). Acclimatizing taxonomic semantics for hier-

archical content classification. volume 2006, pages 384–393.

[The Radicati Group, 2015] The Radicati Group, I. (2015). Email statistics report, 2015-2019. Technical

report.

[Toman et al., 2006] Toman, M., Tesar, R., and Jezek, K. (2006). Influence of word normalization on text

classification.

[Van der Aalst et al., 2018] Van der Aalst, W. M., Bichler, M., and Heinzl, A. (2018). Robotic process

automation.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V.,

Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural

Information Processing Systems, volume 30, pages 5998–6008. Curran Associates, Inc.

[Vijayarani et al., 2015] Vijayarani, S., Ilamathi, M. J., and Nithya, M. (2015). Preprocessing techniques

for text mining-an overview. International Journal of Computer Science & Communication Networks,

5(1):7–16.

[Whittaker and Sidner, 1997] Whittaker, S. and Sidner, C. (1997). Email overload: exploring personal

information management of email. Culture of the Internet, pages 277–295.

[Wibowo Haryanto et al., 2018] Wibowo Haryanto, A., Kholid Mawardi, E., and Muljono (2018). Influ-

ence of word normalization and chi-squared feature selection on support vector machine (svm) text

classification. In 2018 International Seminar on Application for Technology of Information and Com-

munication, pages 229–233.

[Wille, 1982] Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of con-

cepts. In Rival, I., editor, Ordered Sets, pages 445–470, Dordrecht. Springer Netherlands.

[Williams et al., 2015] Williams, J. D., Kamal, E., Ashour, M., Amr, H., Miller, J., and Zweig, G. (2015).

Fast and easy language understanding for dialog systems with microsoft language understanding

intelligent service (luis). In Proceedings of the 16th Annual Meeting of the Special Interest Group on

Discourse and Dialogue, pages 159–161.

87

[Xia et al., 2007] Xia, Y., Wang, J., Zheng, F., and Liu, Y. (2007). A binarization approach to email

categorization using binary decision tree. In 2007 International Conference on Machine Learning and

Cybernetics, volume 6, pages 3459–3464.

[Xiong et al., 2010] Xiong, H., Wu, J., and Liu, L. (2010). Classification with classoverlapping: A sys-

tematic study. pages 303–309. Atlantis Press.

[Yang and Liu, 1999] Yang, Y. and Liu, X. (1999). A re-examination of text categorization methods. In

Proceedings of the 22Nd Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, SIGIR ’99, pages 42–49, New York, NY, USA. ACM.

[Yoo et al., 2011] Yoo, S., Yang, Y., and Carbonell, J. (2011). Modeling personalized email prioritization:

classification-based and regression-based approaches. In Proceedings of the 20th ACM international

conference on Information and knowledge management, pages 729–738. ACM.

[Yu and hua Zhu, 2009] Yu, B. and hua Zhu, D. (2009). Combining neural networks and semantic feature

space for email classification. Knowledge-Based Systems, 22(5):376 – 381.

[Yuan et al., 2008] Yuan, P., Chen, Y., Jin, H., and Huang, L. (2008). Msvm-knn: Combining svm and

k-nn for multi-class text classification. In IEEE International Workshop on Semantic Computing and

Systems, pages 133–140.

[Yuan et al., 2012] Yuan, Q., Cong, G., Sun, A., Lin, C.-Y., and Thalmann, N. (2012). Category hierarchy

maintenance: A data-driven approach.

[Zhu and Wu, 2004] Zhu, X. and Wu, X. (2004). Class noise vs. attribute noise: A quantitative study.

Artificial intelligence review, 22(3):177–210.

[Zhuge and He, 2017] Zhuge, H. and He, L. (2017). Automatic maintenance of category hierarchy.

Future Generation Computer Systems, 67:1 – 12.

88

A
Email Overload

A.1 Email Overload

Since email overload has been mentioned in 1982 [Denning, 1982,Whittaker and Sidner, 1997,Bawden

et al., 1999], email management importance has been increasing. As the volume of emails grow, the

user’s time spent processing emails increase. It has been estimated that emails, in the context of work,

receive an average of 100 emails per day [Carvalho and Cohen, 2007, The Radicati Group, 2015]. It

has been estimated that users, in the context of work, receive an average of 100 emails per day [The

Radicati Group, 2015,Carvalho and Cohen, 2007].

[Katakis et al., 2007] explore how Machine Learning (ML) and Data Mining (DM) can contribute as a

solution to the email overload problem [Denning, 1982,Whittaker and Sidner, 1997,Bawden et al., 1999],

stating that “email categorization into folders, email answering and summarization, spam filtering, are

only a few representatives”.

89

A.1.1 Email Management and Processing Research

Generally, the main tool for email management is email classification [Cohen, 1996, Brutlag and Meek,

2000], where emails are classified into one or more of a discrete set of predefined categories. Currently,

popular email clients allow users to classify emails into important or normal, starred or normal, spam or

not spam categories, using machine learning techniques [Yoo et al., 2011,Ke et al., 2006].

However, email overload suggests that these binary models are not enough to manage email atten-

tion. [Park et al., 2019] presented a need-finding study to identify the needs of the email users, regarding

the automation of their email experience. The study conducted three different experiments. The first ex-

periment conducted a workshop to gather ideas from users ”for automating email in their own inboxes”

and found out that 47% of the ideas could not be expressed by common email clients (for instance Gmail

and Oultook). The second experiment studied how email users where already “automating aspects of

their email” (by mining public repositories on GitHub that make use of IMAP) to see which needs have

been addressed and found that 90% of those automations didn’t exist in common email clients. They

examined automations implemented by programmers, who, having the ability to do it, carried out their

desires for personalized automation. In the third experiment,a platform called YouPS was developed to

allow users to write, test, debug, save and execute simple Python scripts that manipulate emails arriving

in inbox. With a platform, that allows users to “easily” test and run their scripts over their own email,

they invited 12 subjects to write and execute scripts for a week and then examined their scripts and

interviewed them to find out about their experiences, and therefore their needs. The results where that

40% of their needs were not possible to be fulfilled by common email clients.

The needs identified in these studies were grouped in the following categories:

1. Triage and prioritization (of incomming emails);

2. Inbox folder management (more interactions with the inbox folder: move emails to different loca-

tions, shared inboxes, sort inbox emails);

3. Categorization of emails (create and tag emails with labels);

4. Email sending automatization (easily/automatically draft responses and reply);

5. Email “modes” (toggle email modes, like ”vacation”, ”work”, ”sleep”, ...);

6. Inbox presentation (alternative views for email threading, different views for email messages);

7. Aggregation and processing of multiple emails (aggregate multiple emails in a response, group

multiple emails information in a summary, chart or visualization model).

These seven categories of email automation needs/opportunities are a reflection of the problem of

email overload. The identification of these challenges is not recent. Most of them have been tackled

90

since they were identified, especially spam filtering which, due to its financial impact, has been observed

to gather most of the attention [Katakis et al., 2007,Mujtaba et al., 2017].

Mujtaba et al., 2017 reviews articles on e-mail classification published between 2006 and 2016 and

confirms this trend, showing that almost two thirds (63 in 98 analyzed) of the articles are related to spam

and/or phishing email classification. Multi-folder Categorization in which researchers develop a multi-

class classifier that categorizes emails into various predefined categories (for example user-defined

directories) comes second with 20/98 articles and is in line with the scope of this project. Also “Interesting

or Uninteresting Email Classification”, “Inquiry Email Classification”, “Complaint Email Classification”,

“Private or Official Email Classification” all with only 1 in 98 articles examined meet the needs of email

attention management [Park et al., 2019].

A.1.2 Triage and Prioritization

The first process identified in the email processing process in figure 1.1 was Email Triage.

The Oxford Dictionary defines triage as ”(in a hospital) the process of deciding how seriously ill/sick

or injured a person is, so that the most serious cases can be treated first” and prioritization as ”the act of

putting tasks, problems, etc. in order of importance, so that you can deal with the most important first”.

Similarly, email triage is defined as ”the process of going through unhandled email and deciding what to

do with it” [Neustaedter et al., 2005a, Neustaedter et al., 2005b, Sarrafzadeh et al., 2019a, Sarrafzadeh

et al., 2019b] or simply as ”sorting email” [Dredze et al., 2009].

Prioritization of email is understood as ranking emails by discrete levels of importance, based on

their relevance/importance [Mitra et al., 2014]. Email triage research papers usually refer Prioritization

as a sub-process of Triage, namely the stage where users decide what emails to handle first (by priority

vs sequentially) [Neustaedter et al., 2005a,Sarrafzadeh et al., 2019a,Sarrafzadeh et al., 2019b].

A.1.3 Email Categorization

From the opportunities/needs identified in section A.1.1 to deal with the problem of email overload, Inbox

Folder Management, Categorization of email, Email sending automatization and Triage and prioritization,

all count with email classification strategies.

Inbox folder Management and Categorization of emails suggest that emails should be divided into

folders or classified with labels to deal with email overload.

Email sending automatization, proposes to automatically send email replies. To send email replies,

emails first need to be categorized and then a reply needs to be generated. The answer may be auto-

matically generated [Kannan et al., 2016, Henderson et al., 2017, Cassier et al., 2019] or there may be

a set of predefined answers that are related with the category assigned to the email (the contact center

91

case).

Triage and prioritization, namely prioritization, is a subject that also involves email categorization,

because prioritization is the process of assigning an urgency or importance level to the email, and

therefore makes use of email classification techniques to classify emails in a Likert scale of urgency or

importance.

So, it is safe to say that the main subject of this research is email categorization. Email categorization,

email classification or email category prediction is the problem of linking an email with a category label.

In the email context, a category is usually a label that represents the intent, the summary subject, the

action required, the topic, etc, characterized/described in the email.

To understand how email categorization may be done, first we need to understand what is an email.

A.1.4 Emails as Data

The type of data that we have in this work are emails.

An email is a semi-structured source of information [Katakis et al., 2007]. Structured, because it

follows a structure: to, from, cc, bcc, date, subject and body. Semi because the body, which is the

largest source of information, is written in natural language.

These properties may be grouped under header features (”to”, ”from”, ”bcc”, ”cc” and ”subject”) and

body features (”body” and ”attachments”). Furthermore, since each email is sent at a time point and may

start or be part of a chain of emails, we may consider the time of sending, the relation with the previous

and the next emails and its position in the chain of emails as a metadata.

The body and the subject of the email usually contain the features that best discriminate the email.

This means that the main source of information from our data is text, and the problem of email classifi-

cation can ultimately be reduced to a problem of text classification, a well known and popular research

domain.

A.2 Email Triage Background

Both Carman Neustaedter et al. [Neustaedter et al., 2005a, Neustaedter et al., 2005b] and Bahareh

Sarrafzadeh et al. [Sarrafzadeh et al., 2019a, Sarrafzadeh et al., 2019b] investigate the problem of

email triage by formalizing interview and survey results about user’s triage behaviours into rules and

processes, giving a more concise comprehension of the subject. Both see Triage and Prioritization as

an approach to deal with email overload [Denning, 1982, Bawden et al., 1999, Whittaker and Sidner,

1997].

Neustaedter et al. [Neustaedter et al., 2005a] interviewed ten information workers and then dis-

tributed a survey to 2000 employees getting 233 responses. Sarrafzadeh et al. [Sarrafzadeh et al.,

92

2019b] also employed a study methodology of interview and survey. They conducted an interview with

15 information workers and second and distributed a survey to different mailing lists within that company,

having collected 91 responses.

Users can either use a single pass or multiple passes to when they triage their emails, which means

handling all mails that come across starting at the top or bottom of the list or handling only certain types

of emails in each pass, respectively. Multiple pass users usually scan the same email more than once

before handling it.

Users reported on how they handle emails regarding order (sequentially or by priority). Neustaedter

et al. [Neustaedter et al., 2005a] stated that all single-pass users handle emails sequentially while

multiple-pass users handle a certain type of emails in each pass, either sequentially or by priority.

Fig. A.1 shows the results from both Neustaedter et al. [Neustaedter et al., 2005a] and Sarrafazadeh et

al. [Sarrafzadeh et al., 2019b]’s studies regarding the order in which the users handle their emails and

the number of passes (multiplicity).

Multiplicity Single-Pass Multiple-pass Both Neutral

Neustaedter 17% 47% 9% 27%

Sarrafzadeh 46% 51-54%

Order Sequentially Priority Both Neutral

Neustaedter 30% 19% 15% 36%

Sarrafzadeh 48% 41%

Table A.1: Results regarding triage strategies [Sarrafzadeh et al., 2019b,Neustaedter et al., 2005a]

Carman Neustaedter et al. [Neustaedter et al., 2005a] described Triage as ”Look, Act”, where ”Look”

means literally looking, without opening the email and ”Act” means to read, not read, move, leave, reply,

delete or performing another task.

Sarrafzadeh et al. [Sarrafzadeh et al., 2019b] defined triage is going through a list of emails and mak-

ing a decision over each one. Deciding how to handle an email comprehends three steps: Prioritization,

Deferral, Strategy to Facilitate Revisiting.

1. Prioritization: the user may use different strategies to measure the level of attention that each email

requires.

2. Deferral: the user needs to decide whether to deal with email immediately or later. Several factor

impact the decision of whether the message is deferred including: time or effort needed, urgency,

sender and workload.

3. Strategies to Facilitate Revisiting: When the email is deferred, the user has to deal with it in

the future. Users may take actions to facilitate dealing with deferred emails. Two types of email

93

management strategies were identified:

(a) Preparatory Organization encompasses managing attention and anticipating contact retrieval

with approaches ranging from flagging or marking emails as unread to creating tasks and

”ToDo” lists in planners and calendars.

(b) Opportunistic Management leaves context retrieval to the time of retrieval, which basicaly

leads to re-triage.

Both strategies are costly and impact productivity.

Email Prioritization focuses on making a personalized prediction of the importance label of non-spam

emails.

Starting as early as 1999, Horvitz, Jacobs, and Hovel [Horvitz et al., 1999], took the perspective

that human attention is the most valuable and scarcest commodity in human-computer and interaction,

dwelling on the challenge of attention management, explore the problem of inferring the expected ”crit-

icality” of email. The family of systems/prototypes developed in this work (called ”PRIORITIES”) use

a SVM classifier coupled with importance-specific tokens to classify emails into importance classes.

These tokens include labels and patterns such as the Sender, Recipients, Time Criticality (inferred time

of an implied meeting, language indicating cost with delay), Past tense, Future-tense, Future dates,

Coordination (language used to refer to coordinative tasks), Personal requests, Importance (language

referring to importance), Length of message and Presence of attachments.

Neustaedter et al. [Neustaedter et al., 2005b] present the term ”social sorting” which is the re-ranking

of collections of email based on social attributes. It defines metrics for measuring the social importance

of users based on the email elements (from, to, cc) and user actions of reading or replying, which can

potentially be used for measuring email prioritization.

Triage is an intrinsic email management process. We presented two views of defining the triage.

Simply as ”Look, Act” or as ”going through a list of emails and making a decision over each one”, where

the decision comprehends three steps (prioritization, deferral and strategies to facilitate revisiting). It

may be characterized according to the order how emails are handled (sequentially/by priority) and to the

multiplicity of the process (single-pass/multiple pass).

94

B
Data Description

B.1 Raw Data

Data collected from the API was store in multiple JSON files and there was no documentation. All

information about the data collected had to be inferred. Each JSON file represents all the actions

following the first email received, regarding some issue, until the issue (”ticket” in the business context)

is closed. The JSON schema was inferred and is presented in Listings B.1

95

Listing B.1: Inferred schema from json files

1 {
2 ”$schema”: ”http://json-schema.org/draft-04/schema#”,
3 ”type”: ”object”,
4 ”properties”: {
5 ”domain”: { ”type”: ”string”},
6 ”email quality log”: {
7 ”type”: ”array”,
8 ”items”: { ”items”: {}, ”additionalItems”: true},
9 ”additionalItems”: true

10 },
11 ”episodes”: {
12 ”type”: ”array”,
13 ”items”: {
14 ”type”: ”object”,
15 ”properties”: {
16 ”attachments”: {
17 ”type”: ”array”,
18 ”items”: { ”items”: {}, ”additionalItems”: true },
19 ”additionalItems”: true },
20 ”close comments”: { ”type”: [”string”, ”null”] },
21 ”description”: { ”type”: ”null” },
22 ”episode create date”: { ”type”: ”string” },
23 ”episode subject”: { ”type”: [”string”, ”null”] },
24 ”html part”: { ”type”: [”string”, ”null”] },
25 ”queue name”: { ”type”: ”string”,”enum”: [”Info Cidad[U+FFFD]o”] },
26 ”queue uuid”: { ”type”: ”string” },
27 ”sent to”: { ”type”: [”string”, ”null”] },
28 ”status”: { ”type”: ”string”,”enum”: [”CLOSED”, ”OPEN”, ”NEW”, ”FW CLOSED”,

”FW WAIT”
29]},
30 ”subject uuid”: { ”type”: [”string”, ”null”] },
31 ”text part”: { ”type”: [”null”, ”string”] },
32 ”ticket tags”: {”type”: ”null” },
33 ”type”: { ”type”: ”string”, ”enum”: [”OUTBOUND”,”SETAGENT”,”INBOUND”,”OPEN”

] },
34 ”user name”: {”type”: [”string”, ”null”]
35 },
36 ”uuid”: { ”type”: ”string” },
37 ”visibility”: { ”type”: ”string”, ”enum”: [”PUBLIC”, ”PRIVATE”] }
38 }
39 },
40 ”additionalItems”: true
41 },
42 ”occurrence”: { ”type”: ”integer” },
43 ”queue name”: { ”type”: ”string” },
44 ”queue uuid”: { ”type”: ”string” },
45 ”scripts info”: {
46 ”type”: ”array”,
47 ”items”: {
48 ”items”: {},
49 ”additionalItems”: true },
50 ”additionalItems”: true },
51 ”source type”: { ”type”: ”string” },
52 ”status”: { ”type”: ”string” },
53 ”subject”: { ”type”: ”string” },
54 ”ticket create date”: { ”type”: ”string” },
55 ”ticket expires on”: { ”type”: ”string” },
56 ”ticket id”: { ”type”: ”string” },
57 ”user id”: { ”type”: ”integer” }
58 }
59 }

96

B.2 Common Offspring Datasets

Dataset
Emails/Class

Emails Classes Min Max Mean Q1 Median Q3 IQR

Av3 49564 138 1 5676 359.16 6 51.5 297.5 291.5

Av3 hc2 49564 25 2 30498 1982.56 25 252 1569 1544

Av3 hc3 49564 62 1 22002 799.42 6.25 97 444 437.75

Av3 hc4 49564 126 1 5676 393.37 6 54 311.5 305.5

Av3 hc5 49564 138 1 5676 359.16 6 51.5 297.5 291.5

Av3 noc 49564 129 1 5676 384.22 7 72 313 306

Av3 noc ag100a 49564 108 1 5676 458.93 8.75 127.5 402.75 394

Av3 noc ag100a nmc 44347 91 1 5676 487.33 9 140 406.5 397.5

Av3 noc ag100a nmc
mi100 m100

43802 54 104 5676 811.15 200.75 328.0 605.5 404.75

Av3 noc ag100a nmc
mi100 m100 u100

5616 54 104 104 104 104 104 104 0

Av3 nmc 42993 112 1 5676 383.87 6 63 308.5 302.5

Av3 noc nmc 44419 111 1 5676 400.17 7 88 315.5 308.5

Av3 noc nmc m100 43319 53 100 5676 817.34 200 327 607 407

Av3 bhc2 M500 6259 24 2 500 260.79 20.75 249.5 500 479.25

Av3 bhc2 M500 m100 6073 15 129 500 404.87 304 500 500 196

Av3 bhc2 M500 mi100 6259 24 2 500 260.79 20.75 249.5 500 479.25

Av3 bhc2 M500
mi100 m100

6073 15 129 500 404.87 304 500 500 196

Av bhc3 M500 11193 49 1 500 228.43 9 136 500 491

Av3 bhc3 M500 m100 10837 29 104 500 373.69 247 454 500 253

Av3 bhc3 M500 mi100 11193 44 2 500 254.39 45.25 242 500 454.75

Av3 bhc3 M500
mi100 m100

10837 29 104 500 373.69 247 454 500 253

Av3 bhc4 M500 17788 104 1 500 171.04 6 78.5 320.25 314.25

Av3 bhc4 M500 m100 16674 48 100 500 347.38 192.25 374.5 500 307.75

Av3 bhc4 M500 mi100 17788 77 1 500 231.01 46 172 500 454

Av3 bhc4 M500
mi100 m100

17149 51 100 500 336.25 175.5 327 500 324.5

Table B.1: Common Offspring Datasets Statistics

97

98

C
Algorithms

C.1 Text Representation

The most usual are:

One-hot encoding: is one of the simplest forms of representation, one-hot encodings convert a

single word into a vector of N dimensions, filled with zeros and with a single (hot) position with

a one. N is the size of the dictionary being used, where each position represents a word. It is

computationally cheap to convert data to one hot encoding data and each vector carries only bare

information.

BOW: is a representation where text is converted into a vector, vocabulary sized, where each index

represent a word and its value represents the word frequency in the text. This model only represents

the words and their frequency. It does not represent the order of the words neither their meaning.

WE: is a mapping of words into vectors, where each word gets converted into a vector of N dimen-

sions. Each dimension has a meaning and the values of these dimensions represent the meaning

of the word. Different words with similar meanings will have similar vectors. There are generally two

approaches for using a word embedding in a problem: the WE model may be trained from the data

99

being used in the problem or a pre-trained WE model may be used. Training a model is an computa-

tionally expensive process, so for most problems, the best approach is using a pre-trained WE model.

Whoever, some corpus have very specific vocabulary, where training a WE model would be a good

approach to represent the data. Despite being more sophisticated than the previous representations

fall short when dealing with multiple meanings, misspellings, neologisms and OOVs.There are four

popular approaches to calculate word embeddings: Word2Vec, GloVe, FastTexc and using a Word

Embedding Layer.

Contextual Embedding: ”assigns each word a representation based on its context, thereby cap-

turing uses of words across varied contexts and encoding knowledge that transfers across lan-

guages” [Liu et al., 2020].

C.2 Feature Extraction Algorithms

Term Frequency (TF) is the most basic form of weighted terms feature extraction, where each term

is mapped to a number corresponding to the number of occurrences of that word in a document. It

is given by equation:

TFd,t =
Number of times term t appears in a document

Total number of terms in the document d
(C.1)

Term Presence (TP) is basically a boolean TF where each term is mapped to 1 if it occurs at least

one time in a given document or 0 otherwise.

Inverse Document Frequency (IDF) is a measure where each term is mapped to the quotient be-

tween the number of documents in a collection/corpus and the number of documents where the

terms occurs at least one time in the same collection/corpus, given by equation:

IDFt =
Total number of documents

Number of documents where term t appear
(C.2)

Term Frequency - Inverse Document Frequency (TF-IDF) is a popular statistic proposed by [Spark Jones,

1972] which reflects how important a term is to a document in a collection/corpus. It is the combina-

tion of TF and IDF and is given by equation:

TF-IDFd,t =
TFd,t

IDFt
(C.3)

100

C.3 Feature Selection Algorithms

Chi Squared is used in statistics to test the independence of two variables (in this work context:

terms). Given the data of two variables, we can get observed count O and expected count E. Chi-

Square measures how expected count E and observed count O deviates each other. If Chi2 test

value is high it means that there is a correlation between two variables where the opposite means

that there is no correlation. This feature selection methods ranks terms by Chi2 test value and selects

the n highest terms.

Mutual Information measures the reduction in uncertainty for one variable given a known value of

the other variable. measures the average reduction in uncertainty about one variable that results

from learning the value of another value; or vice versa, the average amount of information that one

variable conveys about other variable. This measure is used to rank features and select the top n.

Information Gain (IG) is the same as Mutual Information [Nicolosi, 2008,Manning et al., 2008].

Truncated Singular Value Decomposition (TruncatedSVD) is a matrix factorization technique that

factors a matrix similarly to Principal Components Analysis (PCA), excepting that the factorization for

SVD is done on the data matrix, whereas for PCA, the factorization is done on the covariance matrix,

to reduce the number of features.

C.4 Machine Learning Algorithms

Naı̈ve Bayes (NB) classifier uses the Bayes Theorem to compute the probabilities of membership

for each class, for each data instance. The highest probability is considered the most likely class.

K-Nearest Neighbors (KNN) algorithm is a non-parametric technique which uses a distance mea-

sure (normally Euclidean distance) to identify which are the k nearest neighbors of a document x

among all the documents in the training set, and scores the category candidates based on the class

of these neighbors.

Decision Tree (DT) is a classification method where the data is continuously split according to a

certain parameter, in a process known as binary recursive partitioning. Data may be partitioned till

the instances in the leaves are pure (instances at each leaf belongs to a single class) or earlier to

prevent overfitting.

Support Vector Machine Classifier (SVC/SVM) is a method based on the idea of finding a hyper-

plane that best divides a dataset into two classes. It performs binary classification, so it is adapted

for multi-class classification with the use of OvO (splits a multi-class classification into one binary

classification problem per each pair of classes) or OvR (splits a multi-class classification into one

binary classification problem per class) approaches.

101

Random Forests is an ensemble learning method that creates a multitude of decision trees on

randomly selected data samples, gets prediction from each tree and selects the best solution by

means of voting.

Stochastic Gradient Descent (SGD) is a simple approach to fitting linear classifiers under convex

loss functions such as (linear) Support Vector Machines. Strictly speaking, SGD is merely an opti-

mization technique and does not correspond to a specific family of machine learning models. In the

context of this work, it is equivalent to SVC.

XGBoost [Friedman, 2001] is an implementation of gradient boosted decision trees designed for

speed and performance. Gradient boosting is an approach where new models are created that

predict the residuals or errors of prior models and then added together to make the final prediction.

It is called gradient boosting because it uses a gradient descent algorithm to minimize the loss when

adding new models.

C.5 Deep Learning Algorithms

MLP is a feed forward neural network that has no “state memory”.

CNN are feed forward neural networks that use a spatial-invariant convolutional kernel to efficiently

learn local patterns, most commonly in images. They share weights across space and usually employ

sequential convolutional layers.

RNN are networks that are cyclic in nature. They share weights across time, processing and effi-

ciently representing patterns in sequential data. Therefore they have a “state memory”.

LSTM is a variant of RNN, that uses long short-term memory units as the recursive element.

Transformer is an architecture for transforming one sequence into another one with the help of

two parts: encoder and decoder. The encoder takes an input sequence and maps it into a higher

dimensional space (n-dimensional vector). That abstract vector is fed into the decoder which turns it

into an output sequence.

102

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Context
	1.3 Objectives
	1.4 Methodology
	1.5 Contributions
	1.6 Document Outline

	2 Background and Fundamental Concepts
	2.1 Data Processing
	2.2 Dataset Classes
	2.2.1 Hierarchical Class Structure
	2.2.2 Class Imbalance
	2.2.3 Label Noise
	2.2.4 Class Overlap
	2.2.5 Class Hierarchy Structure Issues
	2.2.6 Summary

	2.3 Text Categorization
	2.3.1 Class Relations
	2.3.2 Classification Techniques

	2.4 Information Retrieval
	2.4.1 Pre-processing
	2.4.2 Type of Representation
	2.4.3 Dimensionality Reduction

	3 Related Work
	3.1 Motivation
	3.2 Email Classification Systems
	3.3 Similar Text Classification Problems
	3.3.1 Traditional Classification Strategies
	3.3.2 Hierarchical Classification Strategies
	3.3.3 Other Classification Strategies

	3.4 Summary

	4 Data
	4.1 Domain Understanding
	4.2 Data Exploration and Cleaning (Data Understanding)
	4.2.1 Data Acquisition and Exploration
	4.2.2 Data Noise
	4.2.3 Data Description
	4.2.4 Data Cleaning
	4.2.5 Class Taxonomy

	4.3 Summary

	5 Features and Models
	5.1 Design Overview
	5.2 Class Structure Inspection and Re-structuring
	5.2.1 Class Structure Redesign
	5.2.2 Hierarchical Classification
	5.2.3 Class Re-balance
	5.2.4 Partial Class Set Classification and Manual Selection

	5.3 Text Pre-processing
	5.4 Metadata and Custom Features
	5.5 Feature Extraction
	5.6 Feature Selection
	5.7 Word Embeddings
	5.8 Classification
	5.9 Development Overview

	6 Evaluation
	6.1 Evaluation Metrics
	6.2 Flat Classification
	6.3 Local Classification Per Level Approach
	6.4 Local Classification Per Parent Node-based Approach
	6.5 Feature-level
	6.6 Classifier-level
	6.7 Discussion
	6.7.1 Flat Classification
	6.7.2 Local Classification Per Level Approach
	6.7.3 Local Classification Per Parent Node-based Approach
	6.7.4 Features and Classifier
	6.7.5 Overview and Summary

	7 Conclusion
	7.1 Contributions
	7.2 Future Work

	Bibliography
	A Email Overload
	A.1 Email Overload
	A.1.1 Email Management and Processing Research
	A.1.2 Triage and Prioritization
	A.1.3 Email Categorization
	A.1.4 Emails as Data

	A.2 Email Triage Background

	B Data Description
	B.1 Raw Data
	B.2 Common Offspring Datasets

	C Algorithms
	C.1 Text Representation
	C.2 Feature Extraction Algorithms
	C.3 Feature Selection Algorithms
	C.4 Machine Learning Algorithms
	C.5 Deep Learning Algorithms

