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Resumo 

A coarctação da aorta (CoA) é uma das cardiopatias congénitas mais comuns e consiste num 

estreitamento na aorta torácica proximal. Pode ser tratada por meio de cirurgia ou colocação de stent. 

Melhoramentos nas imagens médicas e em técnicas computacionais oferecem à comunidade científica 

uma oportunidade única de investigar doenças cardiovasculares, com os modelos de dinâmica de 

fluidos computacional (CFD) abrindo novas formas de estudar doenças cardiovasculares. Devido à 

complexidade do sistema cardiovascular, é comum modelar apenas a região de interesse e representar 

o restante da circulação por meio de condições de fronteira (CF), cuja escolha é crítica para a CFD, 

pois diferentes CF podem resultar em diferenças quantitativas nas soluções. 

O objectivo deste trabalho foi desenvolver um método para ajustar o parâmetro da lei de Murray nas 

condições de fronteira, utilizando o método de optimização. Considerou-se o parâmetro da lei de 

Murray como o controle, e utilizou-se uma abordagem de primeiro discretizar e depois optimizar, para 

resolver numericamente o problema. 

O método foi testado usando um conjunto de dados gerados in-silico e, em seguida, aplicada a uma 

geometria realista 3D representando uma CoA, usando dados específicos do paciente, para validação. 

Os resultados mostram pequenos erros no domínio, com erros absolutos < 1% e erros relativos <10%. 

Os erros relativos mais significativos encontram-se nas fronteiras supra-aórticas quando a CF atribuída 

é diferente nos dados in-silico e no problema com o control, apesar de o erro absoluto manter-se 

pequeno (1.5%). Para a aorta normal e CoA, os parâmetros da lei de Murray obtidos são diferentes 

dos encontrados na literatura, com maiores valores de parâmetros encontrados para CoA, o que pode 

ser explicado pelo comportamento do fluxo. 

Este trabalho é a primera etapa de desenvolvimento de um método para avaliação da anatomia e 

impacto no fluxo e circulação, e consequentemente entender a gravidade da doença, e também ajudar 

no planeamento cirurgico, inclusivamente na decisão de implantação de prótese endovascular. 

 

Palavras-chave: sistema cardiovascular, coartação da aorta, dinâmica de fluidos computacional, 

condições de fronteira, lei de Murray, optimisação 
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Abstract 

The aorta coarctation (CoA) is one of the most common congenital heart diseases (CHDs). It is defined 

by a narrowing in the proximal thoracic aorta and is treated through surgery or stent placement. 

Advances in medical imaging and computational techniques provided the research community with a 

unique opportunity to investigate CHDs, with computational fluid dynamics (CFD) models opening new 

ways to understand cardiovascular pathologies. Due to the complexity of the cardiovascular system, it 

is common to model merely the region of interest and represent the remaining circulation through 

boundary conditions (BCs), whose choice is critical for CFD since different BCs could lead to 

quantitative differences in the solution.  

This work presents a framework to adjust Murray’s law BC, using an optimisation approach. Taking 

Murray’s law parameter as the control, the approach uses a discretise-then-optimise methodology to 

numerically solve the control problem. The framework was tested using generated in-silico data sets 

and then applied to a realistic 3D geometry representing a CoA, using patient-specific data, for 

validation.  

The results show small errors over the domain, with relative errors <10%. The largest relative errors 

were found in the supra-aortic outlets when different types of BCs were attributed in the in-silico data 

and in the controlled problem. For the normal aorta and CoA, the parameters obtained are different 

from those found in the literature, with higher parameter values found for the CoA, which can be 

explained by the flow behaviour. 

This work was the first stage of developing a method that could help to analyse the anatomy and flow 

patterns in the CoA, and potentially evaluate the gravity of the disease, and assist the surgical planning, 

including the decision of the stent placement 

 

Keywords: cardiovascular system, aortic coarctation, computational fluid dynamics, boundary 

conditions, Murray’s law, optimisation  
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1. Introduction 

1.1. Motivation 

Cardiovascular diseases (CVDs) are a category of heart and blood disorders, including coronary heart 

disease, cerebrovascular disease, peripheral arterial disease, rheumatic heart disease, congenital heart 

disease (CHD), deep vein thrombosis and pulmonary embolism. [1] 

According to the World Health Organization (WHO), CVDs are the leading cause of death worldwide, 

representing a significant cause of morbidity. In 2016, an approximate 17.9 million people died from 

CVDs, which corresponds to 31% of all world deaths. Within the CVDs deaths, four out of five are due 

to heart attacks and strokes, and a third of all CVDs deaths occur in people under 70 years old. [1] 

In Europe, in 2017, there were 11 million new cases of CVS which added up to the number of total 

cases to 49 million. CVDs reportedly caused 3.9 million deaths in the region, accounting for 45% of total 

deaths. CVDs are more prevalent among women, being the main cause of death in all countries except 

two, in Europe. CVDs could cost up to €210 billion to the European Union (EU) economy yearly [2]. 

According to the SNS (Serviço Nacional de Saúde), in 2017, 35 thousand Portuguese died with CVDs, 

representing a third of all deaths in the country. [3] 

Congenital Heart Diseases (CHDs), a type of CVDs, correspond to the heart conditions or defects 

developed in the womb, meaning the condition is present from birth, and its prevalence is around 9 per 

1000 new-borns. [4], [5] With the improvement of technology, and medical and surgical evolution, more 

than 90% of CHD individuals reach adulthood. The aorta coarctation (CoA) is a moderate CHD, defined 

by a narrowing in the proximal thoracic aorta, and can be treated through surgery or stent placement. 

It is one of most common CHD, with a prevalence of 3 cases per 10000 births. [6] 

In the past decades while some CVDs behavioural risk factors have improved, such as smoking rates, 

others have worsened, such as eating habits, obesity prevalence, diabetes rates, levels of inactivity and 

alcohol consumption [1], [7]  

On the positive side, many advancements in the diagnosis and treatment of these cardiovascular 

disorders have been made, but there is still a need for more effective, safe, and affordable therapies. 

Advances in vascular biology, biomechanics, medical imaging, and computational techniques provided 

the research community with a unique opportunity to investigate CVDs, with predictive mathematical 

models and simulations for computer-aided medicine opening new ways to understand the complexity 

of cardiovascular pathologies and their treatment as well as better surgical planning. These advances 

can reduce valuable time and financial cost and provide a safer environment compared to experimental 

studies. [8]–[10] 

One of these advancements occurs in the Computational Fluid Dynamic (CFD) field, an area of 

mechanical engineering that uses numerical methods and algorithms to solve and analyse problems 

involving fluid flows, heat transfer and associated phenomena computer-based simulation. [9], [11]. 

Blood flow simulations using patient-specific imaging began by the end of 1990s. However, CFD in 

biomedical models is still lagging due to human body fluid behaviour's complexity. Including real data 

in the numerical blood flow simulations increases its complexity but allows for more realistic and 

accurate results. With the decreasing hardware costs, the improvement in computing times and CFD 
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technology have made CFD modelling a critical and reliable analysis component in blood flow numerical 

simulations. [11]–[15] Several studies recently showed the applicability of CFD, which can help 

understand the pathophysiology and the mechanism of the disease, assist in the preventative and 

therapeutic measures and understand the outcome of the CoA treatment.[16]–[21] 

Nevertheless, performing a numerical simulation in the entire cardiovascular system tree is time-

consuming and requires high computational costs. Hence, computational simulations are performed in 

specific regions of interest. The excluded sections of the cardiovascular system need to be considered 

using the appropriate inflow and outflow boundary conditions (BCs), which will describe physiological 

conditions (haemodynamic or structural) acting on those boundaries, replacing the removed part. BCs 

are an essential part of developing effective CFD and fluid-structure interaction (FSI) models since they 

are directly related to the simulation's accuracy. [10], [22], [23]  

1.2. Objectives 

This thesis aims to propose a methodology to automatically adjust Murray’s law (ML) boundary 

conditions to patient-specific data, using an optimisation approach. The framework developed uses a 

variational approach which takes the ML parameter, in the supra-aortic outlets' boundary conditions, as 

the control. This approach uses a discretise-then-optimise methodology to solve the control problem 

numerically. The cost function to be minimised takes as the input the velocity obtained when generating 

an in-silico flow since patient-specific data was not available. 

1.3. Thesis outline 

This thesis contains five chapters. In Chapter 1, the motivations and objectives of this work are 

summarised. In Chapter 2, an overview of the cardiovascular system is given, including a brief insight 

of the aorta. The concepts of cardiovascular flows modelling, focusing on blood properties in the aorta 

and the several equations that govern the blood flow are clarified. Finally, a review of previous 

computational studies of blood flow focused on either boundary conditions or the variational approach, 

is presented. This work's methodology is explained in Chapter 3, which includes the numerical 

approximation and the numerical implementation, to develop the framework and its validation. In 

Chapter 4, numerical results obtained using the introduced methodology are presented and discussed 

and, ultimately, in Chapter 5, the conclusions concerning this work are drawn, and future work is 

proposed.   
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2. State of the art 

In this chapter, an overview of the concepts relevant to this work and a summary of the research being 

done in the field of boundary conditions, for blood flow simulations and the variational approach, are 

given.  

In Section 2.1, an introduction of the cardiovascular system physiology essential to the study of fluid 

dynamics is explained, emphasising the aorta anatomy and the aorta coarctation (CoA).   

In Section 2.2, the mathematical concepts will be addressed starting by the blood flow characterisation, 

from a mechanical point of view; followed by the equations that modelled blood flow, namely the Navier-

Stokes (NS), whose complete demonstration can be found in Annexe A, the Hagen-Poiseuille Law and 

Murray’s Law. Additionally, the Womersley equation for pulsatile flow is addressed in Annexe B. Finally, 

at the end of this section, the boundary conditions will be reviewed, including the latest research being 

done in this field.  

In Section 2.3, an overview of the optimisation approach is given.  

2.1. Anatomy and physiology of the cardiovascular system  

The cardiovascular system is composed of the heart and the network of blood vessels of the systemic 

and pulmonary circulation. Blood collects oxygen in the lungs and nutrients in the intestine and delivers 

them to the cells in all parts of the body. The blood in circulation removes cellular wastes and carbon 

dioxide from the cells for excretion through the kidneys and the lung, respectively. It maintains the 

visceral organs at a constant temperature through vasodilation and vasoconstriction. Another 

functionality of this system is protecting the body from infection and distributing heat accordingly. 

The human heart is placed within the thoracic cavity, in the middle of the lungs in a space denominated 

the mediastinum. In the mediastinum, the heart is separated from the other mediastinal structures by 

the pericardium, a serous, inelastic membrane that restricts excessive dilation of the heart and can limit 

ventricular filling. 

The heart comprises four chambers: two atria (singular: atrium) – a left and a right - in its upper portion 

and two ventricles – a left and a right - in the bottom portion. The atria act as receiving chambers and 

contract to push blood into the ventricles, which functions as the heart's primary pumping chambers. 

The right ventricle - a low-pressure pump - supplies the pulmonary circulation, while the left ventricle - 

a high-pressure pump - supplies the systemic circulation. 

The wall that separates the right and left sides of the heart is known as the septum. This structure can 

be sub-divided into the interatrial septum, separating the atria, and the interventricular septum, 

separating the ventricles.  

The heart contains four valves embedded in the fibrous skeleton of the heart. Each valve is found at 

the exit of each heart chamber. Valves are designated as mitral, aortic, tricuspid and pulmonary. On 

the left side of the heart, the mitral valve prevents blood from flowing back from the left ventricle to the 

left atrium, and the aortic valve prevents it from flowing from the aorta to the left ventricle. On the right 

side, the tricuspid valve prevents blood from flowing back from the right ventricle to the right atrium, and 
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the pulmonary valve prevents it from flowing from the root of the main pulmonary artery to the right 

ventricle.  

Three layers compose the heart: the endocardium - a thin membrane that lines the heart's interior; the 

myocardium - the heart muscle and the thickest layer; and the epicardium - a slim layer on the surface 

of the heart. The myocardium consists of specialised muscle cells – the cardiomyocytes - that differ 

from other muscle cells in their inability to contract anaerobically (without oxygen), and higher fatigue 

resistance. The heart is continuously supplied by coronary vessels - vessels that supply the heart 

muscle and lie in the epicardium - with oxygen to function.  

The blood flows in the body via a series of vessels: arteries, arterioles, capillaries, venules, and veins. 

Arteries carry blood from the heart to the rest of the body, and branch into smaller vessels – the 

arterioles - which branch into even thinner vessels – the capillaries. Capillaries join together to form 

small veins – the venules - which join together to form larger veins and eventually get back to the heart.  

There are two linked circuits in the human circulation - the pulmonary and the systemic. The pulmonary 

circuit transports blood to and from the lungs, where it picks up oxygen and delivers carbon dioxide to 

be expelled from the body. On the other hand, the systemic circuit carries blood to and from all of the 

body's remaining tissues, where it delivers oxygen and removes carbon dioxide to be sent back to the 

pulmonary circulation. [24], [25] 

At the beginning of the pulmonary circuit, the right ventricle pumps deoxygenated blood - known as 

venous blood – towards the lungs through the pulmonary trunk which bifurcates into the left and right 

pulmonary arteries. These two arteries branch multiple times before reaching the pulmonary capillaries, 

where the vessel walls are thin enough to allow gas exchange - carbon dioxide exits the blood and 

oxygen enters. Oxygenated blood – known as arterial blood - returning from the pulmonary capillaries 

passes through a series of vessels that join to form the pulmonary veins. The pulmonary veins conduct 

the arterial blood into the left atrium, which pumps the blood into the left ventricle, which in turn pumps 

the blood out of the heart towards the aorta, initialising the systemic circuit. [24], [25] 

From the aorta, arterial blood flows through smaller arteries that branch into arterioles and finally to 

capillaries, where the exchange with the body's cells occurs. Oxygen and nutrients exit the systemic 

capillaries to be used by the cells in their metabolic processes. Carbon dioxide and waste products 

resulting from the metabolic process enter the bloodstream through the capillaries, making the blood 

more deficient in oxygen. The capillaries will unite to form venules, which will form even larger veins, 

which will flow into the two major systemic veins - the superior vena cava and the inferior vena cava. 

The blood in these two major systemic veins flows into the right atrium, where it is pumped into the right 

ventricle. The pulmonary circulation retakes place, as the following ventricle contraction imposes the 

next cycle. [26] 

These two circulations – systemic and pulmonary - are coordinated by the cardiac cycle, which is the 

period that begins with the contraction of the atria and ends with the ventricular relaxation. The cardiac 

cycle lasts between 0.6 to 1 second, and it is comprised of the diastole and the systole. The diastole is 

the period when the myocardium is relaxing, as the ventricles fill with blood. On the other hand, the 

systole is the period when the myocardium contracts and the blood is ejected from the ventricle.  
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The cardiac cycle is pressure driven. It starts with all atria in diastole, allowing blood flow to enter 

passively from the superior and inferior vena cava into the right atrium, and from the pulmonary veins 

to the left atrium as the blood flows into the cavities the pressure increases. When this pressure 

surpasses the ventricles' pressure, the valves open (tricuspid in the right side and mitral in the left side), 

allowing the blood to flow to the ventricles. During the late diastole, the remaining blood in the atria is 

forced to flow from the atria to the ventricle, driven by the atria's depolarisation, which contracts the 

atrial muscles. Then, the ventricles start to contract (systole), increasing its internal pressure. When this 

pressure becomes higher than the arterial tree's pressure, the two semilunar valves open and the blood 

moves into the pulmonary trunk and the aorta (ventricular ejection phase). Following ventricular 

repolarisation (ventricular diastole), the ventricles begin to relax, driving the ventricular pressure down 

and starting the diastole phase again. [27]  

Blood is a fluid connective tissue whose primary function is to deliver oxygen and nutrients and remove 

wastes from body cells. Other secondary functions include defence, distribution of heat, and 

maintenance of homeostasis. 

Blood is formed of cellular elements that include erythrocytes, leukocytes and platelets. These cellular 

elements are suspended in an aqueous polymer solution - the plasma – to allow them to circulate 

through the body within the cardiovascular system. The plasma is composed ∼92 % water by weight 

and constitutes 55% of the blood volume. It contains electrolytes and organic molecules such as 

metabolites, hormones, enzymes, antibodies, and other proteins. Proteins made up 7% of its volume.  

The erythrocytes are the most common cellular element, and they are estimated to make up about 25% 

of the total cells in the body. The main functions of erythrocytes are the collection of inhaled oxygen 

from the lungs and its transportation to the body’s tissues, and then the collection of part of the carbon 

dioxide waste at the tissues and its transportation back to the lung, to be expelled from the body. 

Erythrocytes remain within the vascular network and are continuously generated by the bone marrow. 

The leukocytes are a significant component of the body’s defences against disease. They can leave 

the bloodstream to perform their defensive functions in the body’s tissues. There are five types of 

leukocytes: neutrophils, lymphocytes, monocytes, eosinophils and basophils: Neutrophils (50–70% of 

all leukocytes) can phagocytise foreign cells, toxins and viruses; Lymphocytes (25–35%) play an 

essential role in the immune response by providing antigen-specific acquired immunity (immunological 

memory); Monocytes (3–9%) give rise to mature macrophages that reside in the tissues and defend the 

body against viruses and bacteria; Eosinophils (< 5%) phagocytise antigen-antibody complexes; and 

basophils (< 1%) release preformed granule-associated mediators, including histamine, serotonin, 

bradykinin, heparin and cytokines and newly generated mediators, such as prostaglandins and 

leukotrienes. [24], [25] 

The last cellular element is the platelets, which are non-nucleated cells critical to hemostasis and the 

blood's coagulation. They secrete a variety of growth factors essential for growth and repair of tissue, 

particularly connective tissue. Once platelets enter the circulation, approximately one-third migrate to 

the spleen to be store for a future release if a rupture occurs in a blood vessel. They then become 

activated to perform their primary function, which is to limit blood loss. Platelets remain in circulation for 

about ten days until macrophages phagocytise them. 
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2.1.1.  The aorta  

The aorta is the primary and largest artery in the body, and its branches distribute blood to all tissues 

of the body. At the top of the left ventricle, the aorta originates at the semilunar aortic valve and 

descends to the abdominal region up to the aortic bifurcation. The aortic bifurcation is the point where 

the aorta splits into two smaller arteries - the two common iliac arteries, this usually occurs at the level 

of the fourth lumbar vertebra. [25], [26], [28] 

Four regions can be identified in the aorta: the ascending aorta (AA), the aortic arch, the descending 

aorta (DA) and the abdominal aorta. The ascending aorta arises from the heart. The first branchings of 

the aorta are the left and right main coronary arteries; both supply the heart with nutrients and oxygen. 

The aortic arch gives rise to the brachiocephalic artery (BA), left common carotid artery (LCA), the left 

subclavian artery (LSA). The ascending aorta, the aortic arch and the descending aorta, curves over 

the heart and branches into arteries that supply the head, neck, and arms. The descending aorta, which 

goes through the diaphragm, can be split up into the thoracic aorta and the abdominal aorta. The distal 

end of the descending aorta is the abdominal aorta which begins at the diaphragm and forms the 

aortoiliac junction with left and right iliac arteries and its continuation. The majority of organs receive 

blood from branches of the abdominal aorta. [25], [26], [28] 

Several congenital heart diseases (CHD) affect the aorta. One of them is the coarctation of the aorta 

(CoA), representing 10% of CHD cases. CoA occurs as a discrete stenosis, a narrowing, or as a long 

hypoplastic aortic (arch) segment, which causes increased blood pressure in the upper body and a 

decreased pressure in the lower body. [29], [30]  CoA is usually located in the insertion of the ductus 

arteriosus (in very rare cases might occur ectopically in the ascending, descending or abdominal aorta). 

[5] CoA can be linked to other pathologies such as a bicuspid aortic valve (BAV). [31] It is considered a 

moderate complex CHD and can be treated surgically or using a stent placement, and it is reported to 

have successful outcomes. A long-term follow-up in 274 subjects subject to CoA repair, 50 years after 

surgery, reported that 207 (81%) were still alive. Nevertheless, despite successful treatments, there is 

decreased life-expectancy due to altered aortic hemodynamics. [32] Many researchers use CFD as a 

tool to understand the hemodynamics before and after CoA treatment. [17]–[21] 

2.2. Modelling cardiovascular flows 

2.2.1. Characterisation of the blood flow  

A Newtonian viscous fluid is a fluid where the shear stress (𝜏) is linearly proportional to the strain rate 

(𝑑𝑢 𝑑𝑦⁄ ), with the proportionality constant (𝜇). [33] 

  =
du

dy
 (1) 

On the other hand, fluids which do not exhibit this property are named Non-Newtonian fluids.  They can 

be: pseudoplastic fluids (or shear-thinning fluids), which have a large dynamic viscosity at low shear 

rates and low dynamic viscosity at high shear rates;  dilatant fluids (or shear-thickening fluids), where 

the shear viscosity increases as stress are applied [34]; or Bingham plastic fluids,  which are fluids that 
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resist flowing, behaving as a rigid body until the shear stress reaches a threshold shear stress level. 

Once the fluid starts to flow, the shear stress becomes linearly proportional to the strain rate. [35] 

 

Figure 1: Relationship between shear stress and shear rate for Newtonian and non-Newtonian fluids. Newtonian 

fluids have a constant viscosity as a function of shear rate. Non-Newtonian fluids have a non-constant viscosity. 

As seen in Section 2.1, blood is composed by erythrocytes. The high concentration of erythrocytes, 

when compared to the remaining formed elements, is thought to be the cause of their significant 

influence on the mechanical properties of blood. [24] 

At low shear rates, blood can be considered a non-Newtonian fluid, while plasma by itself shows a 

nearly Newtonian behaviour. Consequently, blood must surpass initial yield stress to begin flowing. 

Once the initial yield stress is reached, the shear rate increases as blood's dynamic viscosity decreases. 

The non-Newtonian behaviour of blood can be explained by three phenomena that occur with the 

erythrocytes: their tendency to form a 3D microstructure formation at low shear rates, their deformability 

and their tendency to align, at high shear rates, with the flow field.  

At lower shear rates, the behaviour is controlled by the effect of the 3D erythrocytes microstructure 

formations on the flow and their ability to deform and store energy. At moderate to high shear rates, 

these erythrocytes are dispersed in the plasma, and the properties of the blood start being influenced 

by their deformability and their tendency to align with the flow field, forming layers in the flow. At high 

shear rates, whole blood behaves like a Newtonian fluid with a constant coefficient of viscosity.  

Fluids can also be characterised as compressible or incompressible – a fluid is compressible if its 

density can vary throughout the flow, for example, due to geometry considerations or thermal 

consideration. Gases, for instance, are highly compressible. Incompressible fluids have minor changes 

in density throughout the flow - this suggests that pressure and temperature do not impact density. 

Blood is considered to be incompressible since, in the human body, core body temperature is constant 

at 37°C. Therefore, there is no need to account for blood density changes when modelling blood flow 

through internal organs. [33]  

Flows can be characterised based on their regime as laminar or turbulent flows. While laminar regions 

are characterised by smooth transitions inflow, turbulent regions have random time-dependent 

fluctuations in fluid properties such as velocity, acceleration, and viscosity. In laminar flow, usually, there 
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is no mixing of fluid laminae. On the other hand, due to random fluctuations in turbulent flows, there is 

a mixing of fluid laminae. This mixing of fluid laminae results in a large increase in shear stress since 

there is a transfer of mass and energy between laminae. Turbulent flows typically have non-zero 

vorticity. Blood flow in the circulatory system is usually laminar, although in the ascending aorta it can 

destabilise briefly during the deceleration phase of late systole; however, this period is generally too 

quick for the flow to become fully turbulent. Nevertheless, certain disease conditions can alter this 

condition and produce turbulent blood flow - for example, the CoA. The blood is turbulent in a coarctation 

zone since its narrowing creates a flow jet with high velocity. [24], [36], [37] 

2.2.1.1. Dimensionless numbers 

There are two types of dimensionless numbers. The first type helps to scale parameters and to simplify 

numerical analysis. Combining multiple variables into one reduces their number and the amount of 

experimental data required to make correlations of the physical phenomena. [38] These dimensionless 

numbers do not change the fluid properties or analysis of the problem. The second type helps 

understand the correlation between some parameters or forces in the phenomenon and re-scaling. [39]  

Since this type of dimensionless number provides essential information about the flow conditions, many 

different dimensionless quantities have been developed. Two of them will be discussed in the next 

sections: the Reynolds number (𝑅𝑒) and the Womersley number (𝑊𝑜). 

2.2.1.1.1. Reynolds number 

The Reynolds number (𝑅𝑒) is a dimensionless number that is important to nearly all biofluid mechanics 

flows since it allows predicting the flow's behaviour - whether it is laminar or turbulent. It correlates the 

overall inertial forces that govern the flow with the viscous forces that impede the flow.  

The 𝑅𝑒  parameter naturally arises in the non-dimensionalisation of the NS equations and physically 

corresponds to the ratio of inertial forces to viscous forces providing a measure of which forces 

dominate changes to a fluid’s velocity. The 𝑅𝑒  in an internal flow of mean sectional velocity (U) within 

a pipe or vessel of characteristic diameter (D) is given by: 

 



= =

inertial forces UD
Re

viscous forces
 (2) 

where μ is the fluid’s dynamic viscosity and 𝜌 the fluid’s density.   

𝑅𝑒 gives a measure of flow characteristics. In a flow with a large 𝑅𝑒 , for example, inertial forces 

dominate over viscous forces. This dominance naturally leads to considering this number as the key 

parameter that identifies the transition of the flow to turbulence. One the one hand, if viscous effects 

are dominants, the fluid will be characterised by a smooth – laminar – flow and the 𝑅𝑒 is low; on the 

other hand, if inertial effects are dominant, blood flow is turbulent, which is represented by large values 

of 𝑅𝑒 . 

The transition between laminar and turbulent flows is difficult to define since many properties affect the 

overall laminar versus turbulent flow properties. Under most conditions, for some sources, the flow 

regime is typically divided into three cases based on the value of the 𝑅𝑒 : for 𝑅𝑒 <2300 the flow is 
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laminar; for 𝑅𝑒 >4000 the flow is turbulent, and for 𝑅𝑒 ≈2300–4000, the flow falls in an intermediate 

regime. Other sources assume 𝑅𝑒 <2100 for laminar and 𝑅𝑒 >4200 for turbulent. [39], [40] 

The 𝑅𝑒  is difficult to quantify in the aorta, since the parameters stated in the equation (2), vary from 

region to region in the aorta, as the diameter changes, and in the cardiac cycle timing, since the velocity 

changes. For example, in the peak velocity, 𝑅𝑒  in the aorta is calculated as 𝑅𝑒 ≈ 5250, while if 

considering a mean velocity, 𝑅𝑒 ≈ 1050. This value means that in systole, the inertial effects are much 

more important than viscous effects since 𝑅𝑒 ≈ 5250 ≫ 1. At this point in the cycle, some flow 

instabilities may occur at the exit of the aortic valve. In fact, in this region, the 𝑅𝑒 may reach the threshold 

value for turbulence, but only for the instantaneous period of the cardiac cycle that corresponds to the 

systolic peak, which does not give enough time for a fully turbulent flow to develop. Therefore, the 

viscous effects are still predominant for mean velocity, but the flow can be considered laminar [11]. 

2.2.1.1.2. Womersley number 

Another significant dimensionless number for the blood is the Womersley number (𝑊𝑜), especially when 

considering unsteady flows. Unsteady flows that have regular oscillating time-dependent components 

are considered pulsatile. 𝑊𝑜 corresponds to the ratio between the fluid’s oscillatory inertia and the 

viscous momentum. While the oscillatory inertia corresponds to the measure of the forces governing 

the pulsatile flow, the viscous forces are a measure of the fluids’ overall resistance to changes in its 

velocity. 𝑊𝑜 can be defined as: 

 



= =

2

2
o

oscillatory inertia D
W

viscous forces T
 (3) 

Where 𝜈 = 𝜇 𝜌⁄  is the kinematic viscosity and 𝑇 is usually taken as the fundamental period of the 

oscillatory flow. If a fluid has a low 𝑊𝑜, it is characterised by having virtually no phase difference between 

the pulsatile pressure waveform, driving the flow, and the pulsatile velocity waveform linked to the flow. 

For this type of flows, means the viscosity is much higher than unsteady inertial forces, describing a 

quasi-steady flow. In higher 𝑊𝑜, a phase difference between the pressure and velocity waveform can 

be detected. This is driven by the inertial of the fluid resisting the pressure waveform changes, and 

because the pulse frequency is relatively high. This case represents the situations where the unsteady 

inertial effects become predominant, describing an unsteady flow. 

The estimated range of 𝑊𝑜 for the aorta is between 16 and 30, a considerably high value, therefore 

describing the blood flow as unsteady. This description predicts a flattened velocity profile, where inertial 

forces are dominant in the centre of the vessel, and viscous effects are dominant near the boundary. 

Experimental studies also report that the average 𝑊𝑜 monotonically decreases from the ascending 

(16.1) towards the descending aorta (12.0), which is consistent with the dependency of the 𝑊𝑜  on the 

vessel diameter and velocity.[24], [36], [41] 
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2.2.2. Governing equations for blood flow 

2.2.2.1. Navier-Stokes equations 

The NS equations are a system of partial differential equations, named after Claude-Louis Navier (1785 

– 1836), a French mathematician [42],  and George Gabriel Stokes (1819-1903), an Irish mathematician 

[43], that describes the motion of a fluid. [44] These equations - both in their full and simplified forms - 

describe the physics of multiple physics phenomena in the area of engineering and science. They are 

one of the most important fluid dynamics concepts, since their solution, with the appropriate boundary 

conditions and initial values, predicts the fluid velocity and its pressure in every geometry. Nevertheless, 

the NS equations complexity only allows a limited number of analytical solutions. Whilst the exact 

solution can be reasonably easy to solve for simple cases, the existence and smoothness of the general 

solution of the three-dimensional NS equations have not been proven. Clay Mathematics Institute has 

considered it one of the seven most important problems in mathematics, with its solution or 

counterexample worth US$1 million. [45].  

The NS equations for a fluid with constant density 𝜌 in a domain Ω, are stated as: 
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With 𝑢 being the velocity of the fluid, 𝑝 the pressure divided by the density (designated as pressure), 𝜈 

is the kinematic viscosity (𝜈 = 𝜇 𝜌⁄ ) and 𝑓 a forcing term per unit of mass.  

The first equation in the system (4) corresponds to the conservation of linear momentum, which is the 

formulation of Newton’s second law of motion for flow, where net force equals mass times acceleration. 

The conservation of linear momentum implies that the rate of change of linear momentum must be 

equal to the net force acting on a set of fluid particles [46]. The second equation in the system (4) 

corresponds to the conservation of mass, also designated as the continuity equation, which implies that 

the rate of accumulation of mass inside a control volume and the net rate of outflow of the amount of 

mass across the control surface is zero [36], [44]. The term (𝑢 ∙ ∇)𝑢 in the first equation of system (4) 

corresponds to the convective term and −∇ ∙ [𝜈(∇𝑢 + ∇𝑢𝑇)] to the diffusive term.  

System (4) can be simplified accordingly to the assumptions made to the fluid. One assumption that 

can be considered is that the fluid is isothermal (temperature is constant), and therefore, the energy 

equation, which is temperature-dependent, can be decoupled [47]. Additionally, for example, if the fluid 

is incompressible, 𝜈 is constant, and the diffusive term reduces to: 

 ( )    + =  +  


 =


Tu u u div u v u  (5) 

Taking into consideration the equation (5), the system (4) can be re-written into the incompressible NS 

equations: 

 
( ) n• i

0 in

u
v u u u p f

t

u








−  + =



 



+


 =

 (6) 

https://www.sciencedirect.com/topics/engineering/control-surfaces
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Moreover, if the fluid is considered stationary the term 
𝜕𝑢

𝜕𝑡
 disappears, and the system becomes: 

 
( ) in

0 in

v u u u p

u

f 


 = 

−  +  +  =


 (7) 

In this system (7), considering a three-dimensional incompressible flow, there are four unknowns – the 

velocity components 𝑢 = (𝑢1, 𝑢2, 𝑢3), and the pressure 𝑝 - and four equations - one from conservation 

of mass, which is a scalar equation, and three from the conservation of momentum equation, which is 

a vector equation. These equations are coupled, meaning that some of the variables appear in all four 

equations; the system of differential equations must therefore be solved simultaneously for all four 

unknowns. Besides, to solve the system, the appropriate initial conditions and boundary conditions 

(such as inlets, outlets, and walls) need to be defined. The full derivation of the NS equations can be 

found in Annexe A. 

2.2.2.2. Hagen-Poiseuille’s law 

The Hagen-Poiseuille’s law was experimentally derived independently by Jean Léonard Marie 

Poiseuille, a French physicist and physiologist, in 1838 and Gotthilf Heinrich Ludwig Hagen, a German 

hydraulic engineer, in 1839. George Stokes, an Anglo-Irish physicist and mathematician, provided the 

theoretical derivation in 1845. [39], [48], [49] 

This law derives the relationship between the pressure drop (P) across a cylindrical tube, the volumetric 

flow rate (Q) – the volume of fluid which passes per unit time - through the tube and its respective radius 

(𝑟) in an incompressible and Newtonian fluid in laminar flow. 

To derive this law, the fluid within the tube is assumed to have constant viscosity (𝜇) and a uniform 

circular cross-sectional area (A) over its length (L), and the entry (𝑃𝑅) and exit (𝑃𝐿) pressures are such 

that 𝑃𝑅 > 𝑃𝐿 since there is a pressure difference that would compel the fluid inside to flow from left to 

right. 

 

Figure 2: Flow in a tube with a uniform circular cross-sectional area A and length L, with constant viscosity μ, the 

pressure of entry 𝑃𝑅 and the pressure of exit 𝑃𝐿. 

To obtain the Hagen-Poiseuille law, the fluid's velocity (solved from the NS equations) is integrated over 

the blood vessel area.  Considering µ is the viscosity, 𝜌 is the density, 𝑟, 𝜃 and 𝑧 are the radial 

coordinates, 𝑣 is the velocity, 𝑣𝑥 is the velocity component, and 𝑃 is the pressure. When moving across 

the tube, the fluid will have a velocity called 𝑣𝑧, a radial velocity 𝑣𝑟 and an angular velocity 𝑣𝜃.   

To simplify the Navier-Stokes equations, the tube is considered long, and the flow is steady so that the 

conditions of flow do not change with the distance along the tube nor with the time. There is no gravity 

which cancels the term 𝜌𝑔; no radial forces are acting on the fluid (𝑣𝑟 = 0) and the fluid is not spinning  

(𝑣𝜃 = 0).  
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The NS become: 

 


  
=  

  

1 1 zvP d
r

z r dr r
 (8) 

Since 𝜕𝑣𝑧 𝜕𝑧⁄ = 0, considering the continuity equation, and pressure gradients in the radial (𝜕𝑃𝑟 𝜕𝑟⁄ = 0) 

and angular directions are zero (𝜕𝑃𝜃 𝜕𝜃⁄ = 0). 

Assuming the pressure drop to be 𝑃𝑅 − 𝑃𝐿 and multiplying both sides by the radius, equation (8): 
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(9)  

To define 𝐶1 and 𝐶2 the boundary conditions will be considered. For 𝑟 =  0, 𝑣𝑧 is finite and therefore 

𝐶1 needs to be 0. For 𝑟 = 𝑅 and a no-slip wall, 𝑣𝑧 = 0 and  𝐶2 = −
𝑃𝑅−𝑃𝐿

𝐿
𝑅2. 

Therefore,  

 ( ) ( )
  

 −  
= − = − = − 

 

2 2
2 2 2 2

2
( ) 1

4 4 4

R L
Z

P P P PR r
v r r R R r

L L L R
 (10) 

The equation (10) shows, for 0 < 𝑟 < 𝑅, the laminar flow has a parabolic profile from zero at the wall 

(𝑟 = 𝑅) to a maximum achieved in the centre of the tube (𝑟 = 0), which can be seen in Figure 3. 

 

Figure 3: Longitudinal view of a tube with a laminar flow and parabolic velocity profile. 

As a result,  

 



=

2

max
4

PR
V

L
 (11) 

Considering the definition of average velocity (�̅�) in cylindrical coordinates and Equation (11), the 

average velocity in the tube is given by: 

 = max

2

V
V  (12) 

Assuming the volumetric flow rate (Q) as the cross-section area (A) multiplied by the average velocity 

in the tube and that 𝐴 = 𝜋𝑅2, the flow rate is given by: 
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The equation (14) is known as the Hagen-Poiseuille’s law and resistance (𝑅𝑒) can be defined as: 

 



=

4

8
e

L
R

R
 (15) 

Hagen-Poiseuille’s law demonstrates that small changes in the vessel radius cause substantial changes 

in the flow rate by significantly altering the resistance. It also demonstrates that the blood vessel radius 

does not significantly change to increase/decrease flow to a region with abnormal tissue oxygenation. 

If the flow rate did not change rapidly with small vessel diameter changes, then blood vessels would 

need to dilate or constrict significantly to counterbalance the tissue oxygenation level changes. This 

reaction would be associated with enormous energy demands that would effectively deplete the smooth 

muscle cells of energy, and then they would not be able to respond to changes in the tissue needs 

shortly. Instead, the biological system is designed so that minimal energy is required for profound blood 

flow changes. [33], [36] 

Nevertheless, the flow when entering the tube does not show a parabolic profile, like the one seen in 

the equation (10). The fluid particles in contact with the surface of the tube have velocity equal to zero, 

due to a non-slip condition, which is being discussed in Section 2.2.3.1. As a result of friction with the 

particles in the surface layer, fluid particles in adjacent layers see their velocity slow down. To keep the 

mass flow rate through the tube constant, the velocity in the centre of the tube needs to increase to 

compensate for the one in the surface of the tube being zero. Consequently, a velocity gradient 

develops along the tube. 

When the fluid contacts with the surface, viscous effects become important, and a boundary layer 

develops along the tube. The boundary layer is the area where the effects of the viscous shearing forces 

caused by fluid viscosity are felt. This development occurs at the expense of a shrinking inviscid flow 

region and concludes with the boundary layer merging at the centreline. The region from the tube inlet 

to the point at which the boundary layer merges at the centreline is called the hydrodynamic entrance 

region, and the length of this region is called the hydrodynamic entry length 𝐿𝑒𝑛𝑡𝑟. Following this merger, 

viscous effects extend over the entire cross-section velocity profile is fully developed and remains 

unchanged. [40], [50] 

In laminar flow, the velocity profile in a fully developed region is parabolic, and the hydrodynamic entry 

length is given by: 

 = e0.05RentrL D  (16) 

In turbulent flow, the velocity profile in a fully developed region is flatter, caused by turbulent mixing in 

the radial direction. The entry length, given by the equation (17), is shorter for these flow types since 

they have a weaker dependence on Reynolds number.  

 =
1
41.359entr eL DR  (17) 
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In several engineering fields, the tubes used are considerably longer than 𝐿𝑒𝑛𝑡𝑟. Therefore, the flow is 

always assumed fully developed for the entire length of the tube. In small tubes, artificial entries need 

to be created so that the flow can become fully developed at the tube. [40], [50]. 

The unsteady counterpart of the Hagen-Poiseuille’s Law for a constant in space and sinusoidal-in-time 

pressure drop is the 2D Womersley solution discussed in Annexe B. [26] [51] 

2.2.2.3. Murray’s law 

Murray’s law (ML), developed by Cecil D. Murray in 1926, explains the relationship between the radius 

of a vessel immediately upstream from a branch point (parent vessel) and the radii of the vessel 

immediately downstream (daughter vessel). When an artery of radius 𝑅𝑘 branches into η arteries of 

radius 𝑅𝑘+1, then 𝑅𝑘
3 = 𝜂𝑅𝑘+1

3 .  

Murray’s derivation of this relationship assumes that there are two energy contributions to the cost of 

maintaining blood flow in part of a vessel: (a) the energy required to surpass viscous drag in a fluid 

obeying Poiseuille’s law, and (b) the metabolic energy needed to keep the blood’s volume and vessel 

tissue involved in the flow. Both energy contributions are related to the radius of the vessel, in a way 

that, the larger the radius, the smaller the power, 𝑃𝑓, required for the fluid to flow, but the larger the 

power, 𝑃𝑚, needed for the metabolic maintenance of the blood’s volume and vessel tissue. For the sum 

of these powers to be minimised, 𝑃𝑡  =  𝑃𝑓  +  𝑃𝑚, the vessel cannot be too large nor too small.  

If gravitation and kinetic energy terms can be neglected, a Newtonian fluid exhibits a volumetric flow 

rate, 𝑓, which is linearly proportional to the pressure difference, 𝑝, to which is subjected: 𝑓 =  𝑐𝑝, where 

𝑐 in a conductance coefficient.  

In cylindrical tubes, the conductance is proportional to 𝑟4.  

 



=

4

8

r
c

l
 (18) 

where 𝜂 is the viscosity of the fluid, and 𝑙 is the length of the tube. For a tube of unit length (𝑙 = 1), and 

assuming 𝑎 = 8𝜂 𝜋⁄  , 

 −=  =4 4af pr p afr  (19) 

The power to maintain the flow is 

 −=  = 2 4

fP p f af r  (20) 

Offsetting this is the metabolic power requirement 𝑃𝑚, which increases linearly with the volume of the 

blood and vessel: 

 = = 2•mP m volume mr l  (21) 

Where 𝑚 is a metabolic coefficient. For unit length (𝑙 = 1) and 𝑏 = 𝜋𝑚,  

 = 2

mP br  (22) 

The power required is then, 

 −= + = +2 4 2

t f mP P P af r br  (23) 

For a specified value of the flow (𝑓), the power Pt depends only upon the radius of the vessel (𝑟), and 

Pt as a function of 𝑟 will be minimised by that value of 𝑟 where 𝑑𝑃𝑡 𝑑𝑟⁄ =  0 and 𝑑   
2 𝑃𝑡 𝑑𝑟

2⁄ >  0.  
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To find the optimum value of 𝑟: 
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Since 𝑎, 𝑏, 𝑓, and 𝑟 are always positive, 𝑑2Pt 𝑑𝑟
2⁄ =  20𝑎𝑓2𝑟−6 + 2𝑏 is positive, and any point for which 

𝑑Pt 𝑑𝑟⁄ = 0 is a minimum. Hence a minimum for Pt exists where: 

 −− + =  =  =2 5 2 6 34 2 0
2

b
af r br f r f kr

a
 (26) 

 =
2

b
k

a
 (27) 

The new coefficient 𝑘 depends only upon 𝑎 and 𝑏, so that if the fluid’s viscosity, the blood’s metabolism 

and vessel tissue remain constant throughout all vascular system, 𝑘 remains constant as well. This 

equation expresses for any vessel minimising energy requirements, a constant relation between flow 

and vessel radius. Moreover, if it applies to every vessel in a branching system, then it can be applied 

to a sum of such vessels. The flows need to be added in one side and the radii's cubes in the other.  

 = =  3 3f kr k r  (28) 

Murray himself concentrated upon the application of his equation to individual branching of parent to 

daughter’s vessels. [52] 

 = +  = +3 3 3 3 3 3

0 1 2 0 1 2r kr kr r r r  (29) 

ML will usually apply only to branching systems for which the original assumptions leading to the law 

are valid. These assumptions are: (a) that the system is arranged to minimise energy output, and (b) 

that the energy output is that which results from two terms associated with (i) Poiseuille flow, where 

energy output is proportional to 𝑓2𝑟−4; and (ii) volume of the system, where maintenance energy is 

proportional to 𝑟2.  

Murray’s law can be considered a good approximation in the cardiovascular systems where the cost is 

minimised when vessel radii are consistent with Murray’s Law. [40], [52]–[54] 

2.2.3. Boundary conditions estimation 

When studying the hemodynamics of blood flow in the circulatory system, two significant aspects affect 

the numerical simulation – the geometry of the domain of interest and the boundary conditions (BCs). 

To reduce the complexity of the blood flow simulation is essential to truncate the domain of interest by 

creating artificial sections, which separate the region of interest for the simulation from the remaining 

part of the circulatory system. The choice of BCs on artificial boundaries is an essential issue for fluid 

dynamic computations since different BCs could lead to quantitative differences in the solution. [22], 

[24], [55]–[57] 

In this work’s case, the thoracic aorta is not isolated within the cardiovascular system. This system is 

comprised of a closed network with millions of vessels interacting with each other, which makes a 

hemodynamic analysis very complicated. Therefore, there is a need to separate the upstream and 
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downstream vasculature of the aorta and provide those BCs with an appropriate equivalent. The BCs, 

together with viscosity and density values, and the initial values, are the CFD simulation input 

parameters to solve the NS equations.  

The proximal boundary is the section closest to the heart along the direction of the blood flow, 

denominated as the inlet. In contrast, the distal boundaries are named outlets and correspond to the 

outflow. The walls are also considered a boundary condition. [24], [58], [59] 

2.2.3.1. Wall boundary conditions 

Since the vessel wall encloses the fluid, it is a boundary that needs constraints. When the purpose of a 

study is to compare different scenarios, e.g. different BCs, rather than quantifying any hemodynamic 

parameter, researchers often assume the rigid-wall model [60]. This model is considered a valid 

assumption [61].  

The most-used boundary condition in the wall is the no-slip condition, which states that for fluid in 

contact with a solid wall, the fluid's velocity must equal that of the wall. Fluid particles adjacent to the 

wall adhere to its surface and move at the same velocity as the wall. 

 =fluid wallV V  (30) 

This assumption is proved to work well for viscous fluids. [62] 

2.2.3.2. Inlet boundary conditions 

The inlet BC should truncate the upstream vasculature of the vessel of interest and, in the case of the 

aorta, the inlet is a crucial part of the hemodynamic simulation once it represents the impulsion by the 

heart to the system. The inlet's complete characterisation would require having a velocity profile, with a 

vector field, or a time-dependent flow rate or pressure waveform, obtained from non-invasive in vivo 

measurements, which are not always available.  

Generally, only averaged data are available, i.e., mean velocity or mean pressure, instead of a vector 

condition, which is not sufficient for a complete mathematical formulation. Therefore, alternative 

formulations for the inflow BC need to be developed. They need to reflect the physics of the data 

available and permit the formulation of a meaningful and well-posed mathematical problem.  

The simplest alternatives include idealised velocity profiles supported by clinical evidence and often 

prescribed as the inlet BC. For example, a flat-velocity profile, an idealised profile of uniform velocity, is 

used because in vivo measurements have demonstrated that the ascending aorta's velocity profile, 

distal to the aortic valve, is essentially flat. Another example is the fully-developed profile BCs. These 

BCs can be achieved either numerically by applying a velocity profile based on an equation, or by 

affixing a flow extension to the inlet and outlets, which allows the flow to be fully developed by the time 

it reaches the right inlet or outlet, thus creating a more realistic simulation [23]. This velocity profiles can 

also be translated into a volumetric flow rate (Q) when the section's diameter is known since the flow 

rate is equal to the measured average velocity times the area of the section where the velocity profile 

was measured. The prescription of flow rate is quite common and straightforward to achieve. The 

drawback is that the constant profile may be a crude approximation that introduces local errors in the 
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numerical results. Again, a strategy to mitigate this error relies on introducing artificial extensions of the 

physical domain so that the errors are localised out of the region of interest. [55] 

Womersley profiles are also applied velocity profiles, especially in unsteady flow simulations. When 

time-varying velocity data obtained with PC-MRI (Phase-contrast Magnetic Resonance imaging) or 

ultrasound are available, an average velocity can be prescribed at the inlet.  

Nevertheless, it was found that the selection of inlet velocity conditions significantly affects only the flow 

region close to the inlet of the aorta. [63] 

2.2.3.3. Outlet boundary conditions 

Despite the importance of the inlet BC, the solutions to the NS equations in large arteries are also highly 

dependent on the imposed outlet BCs to represent the downstream vascular systems. It has been 

demonstrated that velocity and pressure fields of the same computational domain can change 

significantly depending on the choice of outflow BC. [64]–[66] 

Since it is impossible, without geometric scale reduction, to trace all branches downstream the aorta 

(as they branch and connect to smaller vessels and also because they would make the computational 

domain too big), the computational models need to be truncated by an artificial boundary condition at 

some point. The further the boundary is from the vessel of interest, the less influence it will have on 

local results, but the larger the computational domain will be.  

The BCs at the distal part of the vessel's branches of interest can be handled using many different 

strategies. Nevertheless, the most appropriate boundary conditions is still a topic of debate and 

continuous development, mainly due to the lack of patient-specific measurements for outflow, and while 

at the inlet, the missing data can be replaced by adapting literature data to the case of interest, at the 

outlets is more challenging due to the morphological variation. [67] 

Strategies similar to the ones applied in the inlet are common. The fully developed flow is applied when 

patient-specific flow measurements are unavailable, and constant fractions of the inflowing flow are 

prescribed as outflow BCs. Since ML states that flow in a vessel is proportional to the diameter of the 

vessel lumen cubed, this leads to the application of ‘flow splits’ (also known as ‘flow percentage’ or ‘flow 

ratio’), referring to the percentage of flow assigned to an outlet boundary dependent on the inlet flow 

rate. In general terms, in the MLBC, the flow split assigned to an outlet boundary is given with respect 

to the inlet flow rate, as: 

 

3
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Q D
=  (31) 

where 𝑄𝑜𝑢𝑡 is the flow rate in the outlet, 𝑄𝑖𝑛 the flow rate in the inlet, 𝐷𝑜𝑢𝑡 the diameter of the outlet, and 

𝐷𝑖𝑛 the diameter in the inlet. Therefore, the MLBC, in a generic outlet, is given by: 
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ML can substitute or be used in conjunction with incomplete in vivo data. [68], [69] For example,  [70] 

attributed ML to the BCs, changing its exponent from 3 to values between 2.25 and 2.75 and concluded 

that it did not affect the NS solutions. Furthermore, [71] assuming the widely-accepted low wall shear 
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stress theory of Caro, found that ML applied to BCs returns the most physiologically accurate results 

compared to in vivo data.  

Another example of prescribed BCs, still common amongst the cardiovascular research community, is 

the traction-free (TF), one of the simplest BC to apply in a simulation, consists in assigning a zero 

pressure to the boundary, similar to assuming the vessel is cut and exposed to atmospheric conditions, 

thus neglects the resistive effects of downstream vessels. 

New BCs have been developed to better model the interaction between the computational domain and 

the downstream vasculature, by coupling the domain with simple models such as resistance, 

impedance, lumped parameter, or distributed models, to capture the resistance and compliance effects 

of the proximal and distal vessels in the arterial tree from corresponding outlets. The three-element 

Windkessel has become one of the most widely used and accepted lumped parameter model of the 

circulatory system as it tends to produce realistic aortic pressures and flow [72]. This model attempts 

to capture the resistances of the proximal and distal arteries of the boundary and the downstream 

vessels' capacitance. These resistance and capacitance values are calculated using the values of 

measured blood pressure and flow rates. [71] Obtaining these values is complex mainly due to practical 

difficulties in acquiring pressure and flow data of all required sites, or the measurement data available 

is insufficient for accurately estimating these model parameters. The three-element Windkessel 

boundary condition is used in the latest CFD-based cardiovascular research to date. [22], [55], [73], [74] 

Another approach observed in the literature is using the variational approach using data assimilation to 

obtain more accurate boundary conditions and other flow metrics. Variational approaches, which 

consists of varying a defined number of parameters to minimise a cost function, have been used 

successfully as a strategy to take advantage of real data measurements. The variational approach 

allows for increasing the accuracy of numerical simulations. [75]  Data Assimilation techniques 

correspond to real data inclusion in the numerical blood flow simulations, allowing for more realistic and 

accurate results. 

A variational data assimilation approach where velocity measurements included noise, was firstly 

studied by [75]. The goal was to use the sparse data with noise to obtain an accurate approximation of 

the blood flow in vessels to predict medical relevant physical metrics. The authors used a DO approach 

to minimise the misfit between the recovered velocity field and the data. They concluded that the noise 

affects the accuracy of the solution and the efficiency of the simulation.  

For example, [8] solved a variational data assimilation problem to numerically reconstruct the blood flow 

circulation inside a real artery, deformed by a saccular aneurysm. The authors proposed a weighted 

cost function to recover both the velocity and the wall shear stress profiles. This weighted function was 

considered non-typical since it included WSS data information. A discretise-then-optimise (DO) 

approach, which consists of first discretising the optimal control problem and then solve the finite-

dimensional optimisation problem resulting from the discretisation, was used to obtain the numerical 

solution.  

Another example can be observed in [76], where the authors presented a fully automatic approach to 

recover boundary conditions and locations of the vessel wall, given a rough initial guess and the velocity 

at some cross-section, affected by noise. The method was used to minimise the uncertainty derived 
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from the boundary conditions choice and geometry, including noise and low resolution. The method 

showed to be useful as an unsupervised method to choose ow boundary conditions and identify a more 

accurate definition of the geometry no-slip walls.  

A different DO approach was developed by [77], consisting of a variational data assimilation approach 

based on a Dirichlet boundary control problem, where the control was an entirely unknown velocity 

profile. This method was applied in a realistic model of a brain aneurysm. In this case study, due to the 

lack of real velocity measurements, in silico profiles were generated to supply the required data. The 

results showed that this data assimilation approach improved the accuracy of specific solutions obtained 

using an idealised laminar profile, even when noise is included.  

Finally, in the case of [78], the authors proposed a sequential methodology to identify the corresponding 

boundary support parameters, such as stiffness parameters, using patient image data. They conclude 

that the resulting computational effectiveness of the complete estimation sequential method is 

comparable to that of a direct simulation. This method was validated in a patient-specific thoracic aorta, 

where the estimation of the boundary support parameters proved successful.  

Nevertheless, as seen, a variational DA approach based on Murray’s law boundary conditions has not 

been developed. Also, in the literature, the use of in-silico data can be seen, when real data is not 

available, and the inclusion of noise to simulate the medical devices errors.  

2.3. Optimisation  

As seen in the previous section, many authors chose the discretise-then-optimise approach for the 

variational problem. It is an approach to solve optimal control problems involving PDEs, challenging to 

solve due to their size and complexity. It transforms the original continuous problem into a standard 

optimisation problem by discretising the system completely. The fully discretised optimisation problem, 

typically large and sparse, can be solved by optimisation solvers. This method allows additional 

constraints and bounds when compared to optimise-then-discretise approach. [79] 

Optimisation is an important tool in the analysis of physical systems. The formulation of an optimisation 

problem begins by identifying the objective, a quantitative measure of the system's performance being 

studied, which depends on certain characteristics of the system – the variables or parameters. The 

optimisation problem consists of, therefore, finding the parameters that optimise the objective. These 

parameters might be subject to constraints, or bounds, depending on the problem and system being 

studied. Constraints allow the optimisation algorithm to avoid suggesting an infeasible solution. [80] 

The optimisation consists of the minimisation or maximisation of a function subjected to constraints (or 

not) on its parameters, and it is given by: 
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Where 𝑥 is the vector of the parameters; 𝑓 is the objective function – a scalar function of 𝑥 that will be 

minimised or maximised; 𝑐𝑖 are constraint functions - scalar functions of 𝑥 that define certain equations 

and inequalities that 𝑥 must satisfy – with Ε and Υ as their sets of indices, for equality and inequality, 

respectively. [80], [81] 



20 

 

Once all parameters and respective constraints are identified, and the objective defined, an optimisation 

algorithm is used to obtain the solutions. [80] An algorithm primarily used, and available in COMSOL 

Multhiphysics® is the SNOPT (Sparse Nonlinear Optimizer) algorithm, which was initially based on the 

code developed by Philip E. Gill of the University of California San Diego, Walter Murray and Michael 

A. Saunders of Stanford University.  

SNPOT allows for the objective function to have any form, and for any constraint to be applied. The 

algorithm minimises a linear or nonlinear function, subject to sparse constraints (linear or nonlinear) 

and bounds on the variables. It is an appropriate algorithm for large-scale linear and quadratic 

programming and linearly constrained optimisation and general nonlinear programs. [82], [83] 

SNOPT uses a sequential quadratic programming (SQP) algorithm, which has proven reliable and 

efficient. The searching directions are found from the QP subproblems that minimise a quadratic model 

of the Lagrangian function subject to linearised constraints. An augmented Lagrangian merit function is 

reduced along each search direction to ensure convergence from any starting point. SNOPT uses a 

smooth augmented Lagrangian merit function and makes explicit provision for infeasibility in the original 

problem and QP problems. It is designed for problems with many thousands of constraints and variables 

but a moderate number of degrees of freedom. [82], [83] The algorithm described applies to constrained 

optimisation problems in the form NP 
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Where 𝑥 is an n-vector of parameters, 𝑙 is a constant lower bound, 𝑢 is a constant upper bound,  𝑓0(𝑥) 

is a smooth scalar objective function, 𝑓(𝑥) is a vector of smooth nonlinear constraint functions 𝑓𝑖(𝑥) and 

𝐴𝐿 is a sparse matrix. Note that  𝑓0(𝑥) in this case, is minimised but could be maximised. The first 

derivatives (gradients) of 𝑓0(𝑥) and 𝑓𝑖(𝑥) should be known and it is given by the user. When only some 

of the gradients are known, SNOPT uses finite differences to estimate the unknown ones. Upper and 

lower bounds need to be specified for all variables and constraints. The 𝑗𝑡ℎ constraint may be defined 

as equality by setting 𝑙𝑗 = 𝑢𝑗 . However, ff certain bounds do not exist, the associated elements of 𝑙 or 

𝑢 may be set to special values treated as −∞ or +∞. Free variables and free constraints have both 

bounds infinite. [82], [83] 
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3. Methods 

In this chapter, the methodology used to achieve the objectives of this work is described. As stated in 

Section 1.2, this thesis aims to automatically adjust Murray’s Law boundary condition (MLBC) using 

real data. For that, this thesis can be split into two parts – one where a framework to obtain the adjusted 

parameters was developed, using a model of a “normal” aorta and in-silico data, and one where this 

framework was tested using a model of an aorta with coarctation and patient-specific data.  

In the first part, Section 3.1 and Section 3.2, an aorta developed and studied by [84], was used to create 

a framework where the parameters of Murray’s law (ML) were automatically adjusted, depending on 

the “real” data to be adjusted and the boundary conditions provided, using an optimisation study in 

COMSOL Multhiphysics®. This framework consists of the solution of two problems – the forward 

problem, where the in-silico data was generated to replicate real patient-specific information, and the 

controlled problem, where the parameters were adjusted.   

In Section 3.1, the mathematical model and the definition of both problems are described, including the 

discretization methods and their implementation. Section 3.2 contains an overview of the 

implementation using COMSOL Multhiphysics®, including the adaptations made in the model of [84], 

the mesh convergence studies and the post-processing tools used.  

For the second part, Section 3.3, a new model was developed of an aorta with a coarctation to validate 

our method, where real data from the patient was used. This section includes the domain's 

development, including the process from data acquisition to the final processing in COMSOL 

Multhiphysics®, and the mathematical model used.  

3.1. Numerical approximation 

3.1.1.  Mathematical model and problem definition  

The first part of this work involved the solution of two problems – the forward problem and the controlled 

problem.  The forward problem was used to generate different datasets of in-silico data. In order to test 

the developed methodology in different “real” blood flow conditions, and driven that the lack of patient-

specific data available is recurrent [85], [86], different blood flow datasets were generated in the same 

aorta model where the optimisation tool was applied. The generated in-silico data mimics real data and 

allowed testing the framework in different situations, thus understanding the capabilities of the 

methodology chosen.  

The controlled problem consisted of using a variational approach to adjust ML exponent – here 

designated as a parameter – that fitted better the in-silico data generated in the forward problem.  

The study of blood flow in the vascular system is complex; therefore, simplifying assumptions are 

needed. In both problems, the forward and the controlled, blood was modelled as a stationary, 

incompressible, laminar, homogeneous and Newtonian fluid with a constant density (𝜌𝑏𝑙𝑜𝑜𝑑) of 1060 

kg/m3 [22], [87]–[89], and constant viscosity (𝜇𝑏𝑙𝑜𝑜𝑑) of 0.004 Pa.s [22], [90]–[92]. The assumption of 

Newtonian is only possible because our domain is a large artery. If the shear rates were as low as those 
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seen for small arteries and capillaries, the assumption could not be made. Blood was also considered 

to be isothermal with a constant temperature of 37oC, the average body temperature.  

The three-dimension computational domain represents the upper part of a patient-specific aorta - 

designated as the thoracic aorta. Due to the complexity of the circulatory system, the domain was 

truncated by three planar surfaces: one at the entrance of the ascending aorta, to define the inlet; one 

in the intersection of the arteries brachiocephalic artery, left common carotid artery and left subclavian 

artery with the aortic arch, to define the supra-aortic outlets; and one in the middle of the thorax, to 

define the descendent aorta outlet. See Figure 4. 

We can categorize the different portions of the boundary 𝜕Ω that constitute the domain of this analysis 

as: 

1. Aortic Wall (Γ𝑤𝑎𝑙𝑙) representing the physical wall of the artery 

2. Aorta inlet (Γ𝑖𝑛) representing the main inflow section  

3. Aorta outlets (Γ𝑜𝑢𝑡) representing the set of non-connected outlet sections which include the 

descending aorta (Γ𝐷𝐴) outlet, the brachiocephalic artery (Γ𝐵𝐴) outlet, the left common carotid 

artery (Γ𝐿𝐶𝐴) outlet, and the left subclavian artery (Γ𝐿𝑆𝐴) outlet.  

Γ𝑜𝑢𝑡 = Γ𝐷𝐴 ∪ Γ𝐵𝐴 ∪ Γ𝐿𝐶𝐴 ∪ Γ𝐿𝑆𝐴 

𝜕Ω = Γ𝑤𝑎𝑙𝑙 ∪ Γ𝑖𝑛 ∪ Γ𝑜𝑢𝑡 = Γ𝑤𝑎𝑙𝑙 ∪ Γ𝑖𝑛𝑙𝑒𝑡 ∪ Γ𝐷𝐴 ∪ Γ𝐵𝐴 ∪ Γ𝐿𝐶𝐴 ∪ Γ𝐿𝑆𝐴 

4. The domain is divided into two by a virtual outlet, in the xy-plane, which will be used as an 

optimisation baseline (𝑆𝑜𝑏𝑠). 

 

Figure 4: Domain of the numerical model with respective artificial boundaries – inlet, outlet and wall, and the 

optimisation simulation section.  

Under the previous assumptions, blood flow can be described using the Navier-Stokes (NS) equations 

[93], and the interaction with the vessel wall will not be considered, since it is a stationary model [77]. 

As seen in Section 2.2.2.1, the stationary NS equations for an incompressible fluid is: 
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Where 𝑢 is the fluid velocity, 𝑝 is the pressure divided by density, 𝑓 is the body forces, 𝜌 is the density 

of the fluid, 𝜇 is the dynamic viscosity, and 𝜈 is the kinematic viscosity (𝜈 = 𝜇 𝜌⁄ ). 

The wall was considered a rigid surface with a no-slip condition, which means the velocity of the 

elements of the wall was set to zero, which translates by: 

 = 0u  (36) 

At the inlet, a flow rate boundary condition (BC) was imposed. Base on work from [84], the maximum 

velocity (Vmax) and the correspondent area of the cross-section where the velocity was measured, (Ain) 

were obtained. With equation (13) together with (12), the flow rate at the inlet (Qin) is given by: 

 =  = 
2

max
in mean in in

V
Q V A A  (37) 

At the outlet in the descendent aorta (ΓDA), the BC imposed was a traction-free boundary condition 

(TFBC); this condition assumes that the normal stresses at the boundary, which are approximately 

equal to the pressure, are zero. The tangential stress component is also set to 0 Pa; therefore, the 

expression used to apply this boundary condition was:  

 ( )( ) − + + = −
 




 0u u
T

pI n P n  (38) 

where P0 = 0.  

This BC is considered a ‘do-nothing’ approach, which gave fewer restrictions to the model when 

adjusting the ML parameter and simplifying the simulation.  

The inlet and outlet DA BCs were set to be the same at the forward and the controlled problem. On the 

other hand, the BCs at the supra-aortic outlets were changed accordingly to the type of in-silico data 

being generated and the controlled test being performed.  

In sum, two types of BCs were attributed in the supra-aortic outlets: TFBC, where the condition imposed 

was (38), and MLBC. ML, as seen in Section 2.2.2.3, imposes the energy minimization principle for 

blood supply. The flow rate in each branch (Qi) is, therefore, calculated by: 
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i in
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Q Q
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Where 𝑄𝑖𝑛 is the inflow given by (37). 𝐷𝑖𝑛 is the diameter of the inlet, 𝐷𝑖 is the diameter of the branch 𝑖, 

with 𝑖 ∈ (𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴), and 𝑝 is the exponent of the MLBC. Applying (39) to each supra-aortic outlet: 
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The diameters in each outlet were calculated assuming circular branches, using the area of each cross-

section. The parameter 𝛼 is what will distinguish the forward problem from the controlled problem. When 
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attributing MLBC, in the forward problem, the parameter was considered 𝛼 = 3, as stated in the 

literature [94], in the controlled problem, the parameter 𝛼 was used as the value to be optimized.  

The detailed characterization of the boundary conditions, for the forward and the controlled problem, 

can be found in Section 3.1.1.1 and Section 3.1.1.2, respectively.  

3.1.1.1. Forward problem  

Three different datasets (Data A, Data B and Data C) were generated using different combinations of 

BCs in the supra-aortic outlets, while the outlet DA and the inlet BCs were given by (38) and (37), 

respectively. The BCs attributed to the supra-aortic outlets are summarized in Table 1. 

Table 1: Boundary conditions attributed to the inlet, the outlet DA and the supra-aortic outlets (BA, LCA and LSA) 

in the forward problem. 

Test Inlet Outlet DA Outlet BA Outlet LCA Outlet LSA 

Data A ▲ ● ▲ ▲ ▲ 

Data B ▲ ● ▲ ● ▲ 

Data C ▲ ● ● ● ● 
 

 

● TFBC  

▲ 𝑄𝑖 = (𝑉𝑚𝑒𝑎𝑛 ∗ 𝐴𝑖𝑛) ∗ (
𝐷𝑖
𝐷𝑖𝑛

)
3

, 𝑖 ∈ (𝑖𝑛, 𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴) 

The forward problem consists of solving the equation (35), using the boundary conditions above 

described.  

3.1.1.2. Controlled problem 

As explained at the beginning of Section 3.1.1, the only variation between tests, in the controlled 

problem, was the BCs applied to the supra-aortic outlets. Using the forward problem data as the data 

to be adjusted, each test was given of combination of different boundary conditions attributed to each 

supra-aortic outlet. For each in-silico data set, either one control optimising a single parameter (α1)  

common to all outlets (A1, B1 and C1) or three controls optimising a different parameter(α1, α2, α3) in 

each outlet (A3, B3, C3), was attributed. For Data B an additional test (B1
LCA) was done, where the only 

outlet with an MLBC with an adjustable parameter (𝛼1) was outlet LCA, while the remaining outlets were 

given 𝛼 = 3.  In Table 2, the summary of each BC applied to each test is stated. 
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Table 2: Boundary conditions attributed to the supra-aortic outlets (BA, LCA and LSA) in the controlled problem. 

Test 
Forward 
Problem 

Inlet Outlet DA Outlet BA Outlet LCA Outlet LSA 

A1 Data A ▲ ● 𝛼1 𝛼1 𝛼1 

A3 Data A ▲ ● 𝛼1 𝛼2 𝛼3 

B1
LCA Data B ▲ ● ▲ 𝛼1 ▲ 

B1 Data B ▲ ● 𝛼1 𝛼1 𝛼1 

B3 Data B ▲ ● 𝛼1 𝛼2 𝛼3 

C1 Data C ▲ ● 𝛼1 𝛼1 𝛼1 

C3 Data C ▲ ● 𝛼1 𝛼2 𝛼3 

       
 

𝛼𝑥 𝑄𝑖 = (𝑉𝑚𝑒𝑎𝑛 ∗ 𝐴𝑖𝑛) ∗ (
𝐷𝑖
𝐷𝑖𝑛

)
𝛼𝑥

, 𝑖 ∈ (𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴) 

● TFBC 

▲ 𝑄𝑖 = (𝑉𝑚𝑒𝑎𝑛 ∗ 𝐴𝑖𝑛) ∗ (
𝐷𝑖
𝐷𝑖𝑛

)
3

, 𝑖 ∈ (𝑖𝑛, 𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴) 

As seen in Section 2.3, an optimisation problem parameter always needs an initial value, and 

sometimes might need bounds, for example, due to physical constraints. In the preliminary studies, 

using coarser meshes, the bounded interval was [1,4], with the lower bound as the initial value. A 

solution was obtained for all tests. To reduce computational time, as the mesh was refined, the bounded 

interval was adapted and can be consulted in Table 3. 

Table 3: Parameters initial values, lower bound and upper bound for each optimisation test, in the controlled 

problem.  

Test 

 𝛼1   𝛼2   𝛼3  

Initial 
Value 

Lower 
Bound 
(𝑙𝑜𝑤1) 

Upper 
Bound 
(𝑢𝑝1) 

Initial 
Value 

Lower 
Bound 
(𝑙𝑜𝑤2) 

Upper 
Bound 
(𝑢𝑝2) 

Initial 
Value 

Lower 
Bound 
(𝑙𝑜𝑤3) 

Upper 
Bound 
(𝑢𝑝3) 

A1 2 2 4  -   -  

A3 2 2 4 2 2 4 2 2 4 

B1
LCA 1 1 4  -   -  

B1 1.5 1.5 3.5  -   -  

B3 1.5 1.5 3.5 1.5 1.5 3.5 1.5 1.5 3.5 

C1 1 1 3  -   -  

C3 1 1 3 1 1 3 1 1 3 

The controlled problem consisted of looking at the parameter 𝛼𝑥 such that the following cost function: 

 ( )
2

cos ( )

obs

t d

S

f U u u dx= −  (43) 

will be minimised. Here 𝑢 corresponds to the solution of the NS for the controlled problem, and 𝑢𝑑 

represents the solution of the NS for the forward problem, both at 𝑆𝑜𝑏𝑠. 𝑢 is subjected to the parameters 

obtained and their respective bounds.  
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3.1.2.  Numerical discretization of the Navier-Stokes equations 

When coupling the stationary NS equations for incompressible fluids, stated in (35), with the appropriate 

boundary conditions referent to the domain given in Section 3.1.1 (Figure 4), the resulting system of 

equations is: 
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In system (44), since the body forces are neglected, 𝑓 = 0. The density and viscosity are represented 

by 𝜌𝑏𝑙𝑜𝑜𝑑 and 𝜇𝑏𝑙𝑜𝑜𝑑, respectively, and its values were defined in the previous section.  Also, when 

implementing laminar flow BCs, geometric extensions are going to be considered. The BCs are then 

implemented as 𝑢 = 𝑢𝑎𝑣𝑔
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ �⃗�  , 𝑖 ∈ (𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴, in). Refer to Section 2.2.2.2, for a better understanding 

of the laminar flow hypothesis.  

The NS equations, described here, are a partial differential equations (PDEs) system which is too 

complex to be solved analytically, in the patient-specific anatomic domain, like the one presented in 

Section 2.2.2.1. Therefore, it needs to be approximated by the finite element method (FEM). 

The FEM is a numerical technique that provides approximate solutions to PDEs. In short, the method 

reduces a problem defined in a domain of interest to find a solution in a finite number of points by 

subdividing the domain into smaller regions – a geometric element. To fully characterize a finite element 

besides the geometric element, the degree of interpolation and the interpolation nodes in the element 

needs to be fixed. The basis functions used to approximate the solution are defined in terms of nodal 

values. With this, a continuous problem is transformed into a discrete finite element problem with 

unknown nodal values.  

The Galerkin approach is often used for the finite element formulation [95]. In this approach, first, the 

weak formulation is constructed by multiplying both sides of the first equation in the system (44) by a 

weight function 𝑣 ∈ 𝑉, and both sides of the second equation in the system (44) by 𝑞 ∈ 𝑄, and integrating 

by parts in the domain Ω, obtaining: 
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Where ∀ 𝑣 ∈ { 𝑣 ∈ 𝐻 
1(Ω): 𝑣 = 0 𝑜𝑛 𝜕𝑠\Γ𝐷𝐴} and considering the boundary conditions on Γ𝐷𝐴, and 𝑞 ∈

𝐿 
2(Ω). To discretise the problem in (45) using the FEM, the subspaces 𝑉ℎ ⊂ 𝐻 

1(Ω) and 𝑄ℎ ⊂ 𝐿 
2(Ω) are 

considered, with finite dimensions dim(𝑉ℎ) = 𝑁𝑢 and dim(𝑄ℎ) = 𝑁𝑝, respectively. Assuming 𝑉ℎ and 𝑄ℎ 



27 

 

represent spaces of Lagrange type finite elements, associated with a partition 𝜏ℎ of 𝛺. Therefore, the 

dimensions 𝑁𝑢 and 𝑁𝑝 tend to infinity when ℎ tends to zero. A map between the nodes describing 𝜏ℎ 

and the basis functions with dimensions both 𝑉ℎ and 𝑄ℎ can be defined. 

The system  (45) can be re-written as: 
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By applying the Galerkin method, two basis of 𝑉ℎ and 𝑄ℎ are introduced, with elements 𝜙𝑗 and 𝜓𝑘, 

respectively. The approximation of the 𝑣 and 𝑝 variables are given by (47), where 𝑢ℎ and 𝑝ℎ are the 

unknown coefficients: 
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Substituting (47) into the system (46), the equivalent system is obtained: 
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Where 𝑗 = 1, 2, … , 𝑁𝑢 and 𝑘 = 1, 2, 3, … , 𝑁𝑝.  

Once the space discretization is concluded, the system of algebraic equations is formed in the form: 

 

TAU+ B P+ N(U) = 0

BU = 0





 (49) 

Where U is the matrix (𝑁𝑢 × 1) of the unknows coefficients 𝑢ℎ, and P is the matrix (𝑁𝑝 × 1) of the 

unknows coefficients 𝑝ℎ, AU is the discretised form of diffusion term, where 𝐴𝑖𝑗 = ∫ ∇𝜙𝑖 ∙ ∇𝜙𝑗
 

Ω
 𝑁(𝑢) is 

the discretised form of nonlinear convection, 𝐵𝑇𝑃 is the discretised pressure term, and 𝐵𝑈 is the 

discretised form of the divergence of U, where 𝐵𝑖𝑗 = ∫ ∇𝜙𝑖 ∙ ∇𝜓𝑗
 

Ω
 [95]–[98]. An example of the full 

derivation of the FEM for a 1D problem can be found in Annexe C. 
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3.1.3. The solution to the controlled problem  

As seen in Section 3.1.1.2, a cost function is being minimised to obtain the parameters 𝛼𝑥 in the MLBCs. 

Therefore, the system (44) needs to be adjusted, to include the parameters 𝛼𝑥 to be adjusted and the 

bounds they are subjected.  
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where 𝛼𝑥 are the parameters to be obtained with the minimised cost function, and the 𝑙𝑜𝑤𝑥 and the 𝑢𝑝𝑥 

with 𝑥 ∈ [1,3] are the lower and upper bound, respectively, for each parameter.  

For this problem, not only these NS equations need to be discretised (as in the previous section) but 

the cost function in (43). A discretise-then-optimize (DO) approach will be used to solve both (43) and 

(50), which consists of first discretizing the optimal control problem and then solving the optimisation 

problem, resulting from the discretization. Beginning by discretizing the cost functional 𝑓0(𝑈) given by 

(43).  
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Since the solution of the forward problem (�⃗� 𝑑) and the solution of the controlled problem (�⃗�  ) can be 

approximated as: 

   =  = 
u o

h
i

N N

h d di ii d

i i

u u u u u u  (52) 

Equation (51) becomes: 

 

     

     

= − +

= − +

       

    

0 ( ) , 2 , ,

, 2 , ,

j i j

obs obs obs

j i j

obs obs obs

i i j j i i d j d i d j

i j i j i jS S S

i j i j i d i j d d i j

i j i j i jS S S

f U u u dx u u dx u u dx

u u dx u u dx u u dx

  

 = − +0( ) 2T T T

d D Df U U MU U MU U MU  (53) 

Where ‖∙‖ is the norm induced by the inner product (∙,∙)𝑀 and M is symmetric 𝑁𝑢 × 𝑁𝑜 matrix where 

each element is given by: 
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The discrete problem can be stated as: 
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Where F is the discretization of the NS equations, seen in (50), taking into consideration the parameters 

𝛼𝑥 and its respective bounds.  

3.2. Numerical implementation 

The numerical approximation was implemented and solved using the software COMSOL Multiphysics®. 

COMSOL Multhiphysics® is a general-purpose simulation software for modelling designs, devices, and 

processes in all fields of engineering, manufacturing, and scientific research. COMSOL Multhiphysics®  

allows conventional physics-based user interfaces and coupled systems of partial differential equations 

(PDEs) and the junction of workflows from different engineering fields such as mechanical, fluid, 

acoustics, and chemical [99]. 

The COMSOL Multhiphysics® interface is organized as a tree-structure where the model is built by 

adding and editing nodes to the default model tree. All the nodes in the default model tree are top-level 

parent nodes. When right-clicking the parent nodes, the child nodes (sub-nodes) to add to the tree 

appear. Each node has its Settings window, where all the features and properties can be adjusted. 

A model tree always starts with a root node (which is labelled as File_Name.mph) which branches into 

a Global node and a Results node.  

The Global node, in its turn, has two sub-nodes: Definitions, where the parameters, variables, functions, 

and couplings that can be used through the entire model tree are defined, and Materials, which is a 

repository of material properties that can be referenced in all other nodes of a model [99]. 

The Results node is where the solution obtained from the simulation is stored, and the tools for post-

processing the data can be found. The Results node initially branches into five sub-nodes: Data Sets,  

which contains the list of solutions to work with; Derived Values, where the values to be calculated or 

extracted, from the solution, are defined; Tables, where the output of the derived values and other 

results generated by queries that monitor the solution while the simulation is running are stored; Export, 

where the numerical data in the form of tables, images or animations to be exported to external files, is 

defined; And finally, the Reports sub-node, which contains reports about the model, that can be 

generated automatically or custom based. Additional Plot Group sub-nodes can be added to these five 

default sub-nodes, where the graphs to be displayed in the Graphics window or the Plot windows can 

be characterised. Some of these may be created automatically, depending on the type of simulations 

being performed, but other plots and graphs can be added by right-clicking on the Results node and 

choosing from the list of plot types [99]. 

Besides the two default nodes just described, two additional top-level node types can be added to the 

root node: Component node and Study node. The Component node contains the model's geometry with 

its associated physics interface, mesh, variables, and other definitions that are local to that component. 

On the other hand, the Study node defines how to solve a model. These nodes can be added multiple 
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times, but when creating a new model using the default generator, one of each of these nodes is added 

to the root.  

As referred at the beginning of Section 2.3,  the framework's development was done using the model 

of the aorta studied by [84]. The model (.mph file type) was directly imported to COMSOL 

Multhiphysics®, with the model's geometry being directly added to the Component > Geometry node.  

The numerical simulation's first step was to remove the aorta's wall once it is not an FSI simulation. 

The wall was directly removed in Graphics window, by first, selecting the domains referring to the 

wall and then selecting the option Select and Hide. Moreover, the plane originated to create an 

artificial section in the aorta for the optimisation step was also removed. Figure 5 shows the original 

model (Figure 5 – A) and the resulting model (Figure 5 – B). 

Additionally, a convergence study for the mesh was carried and a new mesh implemented, which can 

be verified in Section 3.2.1.  

 

 

Figure 5: (A) Model used by [84]  and (B) model after the needed adjustments to be used in the testing of the 

framework.  

In the geometry displayed in Figure 5 the domain was defined, which is composed by the vessel inlet, 

the boundary in the ascending aorta (Figure 6 - A); the primary outlet, a section in the descending 

aorta (Outlet DA; Figure 6 - B); the vessel wall (Figure 6 - C), and three supra-aortic outlets - surfaces 

of the sectioned brachiocephalic artery (Outlet BA; Figure 7 - A), left common carotid artery (Outlet 

LSA; Figure 7 - B) and left subclavian artery (Outlet LSA; Figure 7 - C). An additional section, as 

described in Section 3.1, was included to be used in the optimisation study (Section 𝑆𝑜𝑏𝑠; Figure 8). 
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(A) Inlet (B) Outlet DA (C) Aortic Wall 

Figure 6: (A) inlet; (B) primary outlet – the surface of the descendent aorta (outlet DA); (C) wall of the aorta. 

 

(A) Outlet BA (B) Outlet LCA (C) Outlet LSA 

Figure 7: supra-aortic outlets: (A) surface of the brachiocephalic artery (outlet BA), (B) surface of the left common 

carotid artery (outlet LCA) and (C) surface of the left subclavian artery (outlet LSA). 

 

(A) Surface 𝑆𝑜𝑏𝑠 

Figure 8: Artificial surface to be used in the optimisation solver (Surface 𝑆𝑜𝑏𝑠).  
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In the Global > Parameters node, some parameters, defined as static objects, are defined. These 

parameters include material properties, geometry properties and physical properties used in the 

Physics node. The full list of parameters added can be found in Annexe D (Table 24). 

Once the domain and the parameters were defined, the Physics node was added to the Component 

node, by selecting in the ribbon Add Physics and expand the Fluid Flow section to add the Laminar 

Flow from the menu. To start, the physics of the forward problem was defined, and the Laminar Flow 

node was denominated as Forward Laminar Flow (spf). This new node will form its branch based on 

the model definition requirements, creating a template that automatically supplies the appropriate 

underlying PDEs. In this branch, the governing equations of blood flow and boundary constraints will 

be connected to the domain – composed by the inlet, the four outlets (DA, BA, LCA and LSA) and the 

wall. In each of them, a distinguish BC was applied.  

The Laminar Flow branch will have three built-in nodes: Fluid properties, Wall and Initial Values. Within 

the Laminar Flow node settings, several characteristics need to be selected. First, in the Domain 

Selection section, the entire domain was selected– the aorta's lumen. Then, in the Equation section, 

the chosen option was Stationary, and the following NS equations were stated: 
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Finally, in the Physical Model section, the Incompressible Flow was considered, since blood was 

assumed as an incompressible fluid, and Turbulence model was set to none.  

Next, the Laminar Flow branches were set up. Firstly, in the Fluid Properties node settings, the fluid 

domain was selected, the same as the Laminar Flow node domain. Then, the fluid properties were set 

as User-defined, and the Density and the Dynamic viscosity input fields were assigned with the 

quantities previously defined in Global Definitions > Parameters: rho_fluid and mu, respectively.  

In the Wall node, the domain was selected as the boundary to be treated as the wall (Figure 6 – C), 

and the Boundary Condition set up as No-slip where, as seen before, the velocity of the elements of 

the wall is set to zero.  

Thirdly, in the Initial Values node, the initial default values are zero, which means the initial value for 

the velocity field is u = [0,0,0] m/s and for the pressure p = 0 Pa. These initial values were used as an 

initial guess.  

After defining all the default nodes which were automatically added to the physics, a node per each 

boundary was added to the tree, by right-clicking in the Laminar Flow node and selecting either inlet or 

outlet. One inlet and four outlets (DA, BA, LCA and LSA) nodes were created, and for each, the settings 

were attributed independently.  

Starting with the Inlet node in the Boundary Selection section, boundary represented in Figure 6 – A 

was selected as the domain.  Then, in the Boundary Condition section, Laminar inflow was set, the 

flow rate was select as the boundary condition and expression (37) was introduced. The expression of 

the inlet boundary condition is given by: 

   − +  +  = −[ ( ( ) ]T

entr t t t entrL pI u u p n  (57) 

This expression takes an additional variable, the 𝐿𝑒𝑛𝑡𝑟, which is included to impose a fully developed 

profile, as discussed in Section 2.2.3. COMSOL Multiphysics® considers a virtual domain that is an 
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extrusion of the inlet with 𝐿𝑒𝑛𝑡𝑟  as length and with the same characteristics as the model itself. The 

length of this virtual extension is determined experimentally, in order to have a fully-developed flow by 

the time it reaches the real inlet, Γin. The software also adds an ODE to calculate the pressure applied 

at the entrance of this virtual extension, 𝐿𝑒𝑛𝑡𝑟, such that desired inlet flow rate is obtained. The value of 

𝐿𝑒𝑛𝑡𝑟 attributed (𝐿𝑒𝑛𝑡𝑟 = 6) was chosen assuming equation (16).  

In the node previously created of the descendent aorta (Outlet DA), the boundary represented in  Figure 

6 – B was selected from the Boundary Selection. In the Boundary Condition section, Pressure was set 

as the BC and attributed the value p0 = 0 Pa. The pressure pexit was applied at the exit of the virtual 

extension and computed by an ODE added by the software to ensure the imposed outlet flow rate is 

obtained. The expression imposed was: 

 − +  +  = − 0[ ( ( ) ]T

t tpI u u n p n  (58) 

With 𝑝0̂ ≤ 𝑝0, reflecting the suppress backflow option. This option means that the software is free to 

adjust the outlet pressure 𝑝 locally to prevent fluid from exiting the domain through the boundary. 

Effectively, it means that the prescribed pressure P is P0 if 𝑢 ⋅ 𝑛 ≥  0, but it becomes smaller at locations 

where 𝑢 ⋅ 𝑛 <  0. Sometimes it becomes smaller, and the backflow is substantially reduced, but not 

enough to prevent fluid from entering the domain through the boundary. Analogously to the laminar 

inflow condition, COMSOL Multiphysics® also considers an extrusion of the outlet with length 𝐿𝑒𝑥𝑖𝑡 as 

a virtual domain attached to it. 

For the supra-aortic outlets, the boundary conditions were different for each dataset, and their 

expressions are stated in Table 1. In the case of MLBC (seen in Data A and Data B), after selecting the 

respective boundary representing the outlet  (Figure 7), in Boundary Condition section, Laminar Outflow 

was selected, and Flow Rate applied with expressions defined in Table 1. Analogously to the laminar 

inflow condition, the COMSOL Multiphysics® also considers an extrusion of the outlet with length Lexit 

as a virtual domain attached to it. The pressure pexit is applied at the exit of the virtual extension and 

computed by an ODE added by the software to ensure the imposed outlet flow rate is obtained. Lexit 

was defined again with the value six. The expression imposed was: 

   − +  +  = −[ ( ( ) ]T

exit t t t exitL pI u u p n  (59) 

In the case of a TBC, the same methodology was applied as seen for the descendent aorta. 

Once the Forward Laminar Flow (spf) node was defined, a second Laminar Flow physics was added to 

the tree to define the controlled problem – designated as Controlled Laminar Flow (spf2). Again, one 

inlet and four outlets (DA, BA, LCA and LSA) nodes were created.  The Laminar Flow settings, the Fluid 

properties, the Wall, the Initial Values, the Inlet BC and the Outlet DA BCs, were defined using the same 

settings as the Forward Laminar Flow (spf) physics. 

For the supra-aortic outlets (BA, LCA and LSA), in Boundary Condition section, Laminar Outflow was 

selected, and Flow Rate applied with expressions defined in Table 2. The parameters 𝑝𝑥 were left as 

unknowns, which were defined in the next step – the optimisation.  

The Optimization (opt) interface contains tools for setting up advanced optimisation problems. The 

interface's primary purpose is its ability to set up objective functions, constraint contributions and control 

variables that are defined locally only on certain geometric entities and least-squares contribution with 
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a time or parameter dependence. The Optimization interface itself does not have any selection and is 

not associated with any particular space dimension [100]. 

The Optimization module can be used in combination with any other module in COMSOL Multiphysics. 

This module offers an interface for optimal computing solutions to the problem being solved. In this 

work, the optimisation module was used for the variational approach to obtain the ML parameter that 

best fits the in-silico flow. The variational approach used in this work means that the minimisation of the 

objective function was reached by varying the control variables within a set of constraints.  

The Optimization node was added to the tree, which can be found in the Add Physics > Mathematics > 

Optimization and Sensibility. There are two sub-nodes in the Optimization node that need to be added 

– the Global Objective and the Global Control Variables.  

In the Global Objective, the objective expression was set up, which was left the same during all 

simulations, and is the tolerance of the optimisation problem.  

 610 PartVelFit  (60) 

The PartVelFit is considered the Objective Function and was attributed as a variable, since it is not 

static, in the Component > Definitions > Variables. In short, it calculated the difference in the velocities 

in each direction between the solution of the Forward Laminar Flow and the solution of the Controlled 

Laminar Flow, in the observed section. To obtain the variable PartVelFit, the integration function needed 

to be defined over the observation segment (S𝑜𝑏𝑠). This was done by adding in Component > Definitions 

> Component Couplings > Integration. In this node, the boundary where the integral was being applied 

was selected. The Objective Function was, therefore, given by:  

 = − + − + −  
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In real-life examples, data measurements using medical devices include a certain amount of error in 

the form of noise. The in-silico data (Data A, Data B and Data C) was perturbed with noise to mimic this 

scenario. A random function was added to the Objective Function to modify the in-silico data to 

represent the noise. The random function was derived from a normal distribution with zero mean and 

standard deviation given by 𝜎 = 0.1 ∗
𝑉𝑚𝑎𝑥

3
, where  𝑉𝑚𝑎𝑥 is the maximum velocity at the inlet (Table 24).  

This new Objective Function is given by: 

 = + − + + − + + −  
2 2 2
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PartVelFit u rn x u v rn y v w rn z w  (62) 

Where 𝑟𝑛 is the random function generated.  

Contrarily to the Objective Function, the control variables varied according to the test which was being 

performed. In the Global Control Variables node, the Initial Value, the Upper and Lower Bound were 

defined per each parameter - 𝑝1, 𝑝2 and 𝑝3, and the values attributed to each test can be seen in Table 

3. These parameters were used in the Controlled Laminar Flow (spf2) to substitute ML exponential 

parameter.   

The logic behind the Optimization module is that the variations in the parameter 𝑝𝑥, according to the 

bounds imposed, changed the BC in the Optimization node, which returned a different solution of the 

blood flow. Comparing the obtained solution with the one from the Forward Laminar Flow (spf), the 
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Objective Function changed, and when its minimum is achieved, the adjusted parameters were returned 

as a result.   

Finally, for each test of the controlled problem, two studies were performed: 1) a study using the Forward 

Laminar Flow (spf) definitions to obtain the in-silico data (denominated Study Forward) and 2) a study 

using the Controlled Laminar Flow (spf2) definitions and the Optimization module (denominated Study 

Controlled).  

The first step to perform a simulation was to add the Study node to the tree, by clicking in the Add Study 

selection in the ribbon, which opens the menu, where the Present Studies > Stationary option was 

chosen, and the physics interface being studied was selected – the Forward Laminar Flow (spf) – and, 

finally, Add Study. This step added a study to the current model component with one default sub-node 

Step 1: Stationary. In this sub-node, since the physics was already selected in the previous step, the 

mesh was the only characteristic that needs to be select. The mesh chosen in Section 3.2.1 was 

selected. 

A second sub-node was then added to the Study by right-clicking in it and selecting Show Default Solver 

– this added a sub-node named Solver Configurations. Under Solver Configurations>Solution, the sub-

node Stationary Solver was expanded and the Fully Coupled node selected. In this node, the Linear 

Solver was set as Direct, which will enable the Direct node, and the settings under the Method and 

Termination section were changed. The damping factor was changed from 0.01 to 0.001 and the 

maximum number of iterations from 25 to 50. The nonlinear method used was kept as the Automatic 

(Newton). 

The Linear Solver chosen was the Direct since it has been proved to work well when the number of 

degrees of freedom is less than one million [101]. In the Direct node, the algorithm PARDISO was 

selected, and all characteristics were left as the default. The package PARDISO is “a high-performance, 

robust, memory–efficient and easy to use software for solving large sparse symmetric and 

nonsymmetric linear systems of equations on shared–memory and distributed-memory 

architectures”[102]. PARDISO calculates the solution of a set of sparse linear equations with multiple 

right-hand sides, AX = B, using a parallel LU, LDLT or LLT factorization, where A and X, B are (n x n) 

and (n x nrhs) matrices, respectively. PARDISO supports a wide range of sparse matrix types and 

computes the solution of real or complex, symmetric, structurally symmetric or nonsymmetric, positive 

definite, indefinite or Hermitian sparse linear systems of equations on shared-memory multiprocessing 

architectures. [44], [97] 

The simulation's last step was to create the Study Controlled, which will run on both Controlled Laminar 

Flow (spf2) and Optimization physics. The procedure is as follows: similar to the Study Forward, the 

Study node was added to the tree, but both Controlled Laminar Flow (spf2) and Optimization physics 

were selected as the physics interface studied. In the default existing sub-node Step 1: Stationary, 

besides selecting the mesh – the same as in Study Forward – the option Values of variables not solved 

for was ticked, Solution selected as the method and Study Forward, Stationary as the solution.  

A second sub-node was then added to the Study by right-clicking in it and selecting, for this study, 

Optimization. In the Optimization Solver section, SNOPT was selected as the method within this node 

and all the remaining options kept as default.  
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Finally, the Solver Configurations was added as in the Study Forward. In this case, Solver 

Configurations > Solution > Optimization Solver > Stationary was expanded to apply the same 

configurations as in the Study Forward. Moreover, within the node Optimization Solver, the QP solver 

used was the Cholesky.  

The solution for each test case was computed, with the presented definitions and the results presented 

in the next chapter. Additionally, some post-processing tools were used to visualise better and 

understand the results, namely the errors driven by the different parameters 𝛼𝑋 obtained.  

3.2.1.  Mesh convergence 

The FEM is a widely used approach to solve partial differential equations. COMSOL Multiphysics® 

applies the FEM to solve the NS equations, for fluid dynamics simulations.  

The geometrical properties of the mesh applied directly contribute to the accuracy of the obtained 

solution. A more refined mesh, consisting of smaller finite elements, lead to more accurate results since 

the geometric domain is better approximated to the real domain (18). As the mesh size reduces, the 

number of nodes increases, and so does the number of degrees of freedom to be solved. Therefore, a 

more refined mesh implies a higher computational cost and a longer computational time, usually two 

limited resources in a regular computer machine.  

The mesh selection is critical to validate the finite element model and thus have confidence in the 

solutions obtained but will be a trade-off between accuracy and computational expense. To select the 

most appropriate mesh a convergence analysis was used, and this will allow determining how many 

elements are required in a model to ensure that the results of an analysis are not affected by changing 

the size of the mesh.  

The process consists of computing the same problem, using progressively finer meshes, and track a 

pre-determined parameter used for comparison between meshes. According to the convergence 

criteria, after a few iterations, at least three, the minimum size where the parameter starts to converge 

to the true solution can be determined. As the mesh refines, the difference between the solutions 

becomes smaller, and eventually, these changes will be small enough to consider the model has 

converged. 

A convergence analysis was done in the aortic model used by [84] by reducing the element size and 

comparing the absolute and relative errors of the L2- and H1-norm of the velocity in the different 

solutions. To measure the error of the numerical solutions, it is necessary to introduce the functional 

spaces where the problem is defined. In this case, the system is defined in a Hilbert space (H1(Ω)), and 

the chosen measures for the error are the H1(Ω) semi-norm and the L2(Ω) norm. The L2(Ω) norm and 

the H1(Ω) semi-norm are defined by, respectively: 
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Where Ω is the integration domain of the previous formulas. 
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COMSOL Multiphysics® allows a manual or an automatic, which considers the problem's physics, mesh 

generator. To permit a higher rate of degrees of freedom (DOF) increase when refining the mesh, and 

taking into consideration the computational resources available, the automatic generator was chosen 

after several experiments with the training model.  For both models, seven meshes were created, 

ranging from extremely coarse to extremely fine mesh size. A mesh is added by right-clicking in the 

Mesh node, under the model builder window, that will create a sub-node under the component tree. In 

the settings, the Physics-controlled mesh was chosen and attribute the size being studied. Additionally, 

a Laminar Flow physic with the same characteristics as the Forward Laminar Flow of Data B was added 

to the Component node. Finally, per each mesh a Stationary Study, using the same solver as the Study 

Forward for Data B, was implemented individually, and its solution saved in the same .mph file. A 

solution per each mesh can be found under the node Results > Data sets.  Saving all the solutions in 

the same file allows the direct comparison of the distinct datasets, using the COMSOL Multiphysics® 

built-in operator Join. Six distinct joined datasets were created, each comparing a distinct solution (from 

Mesh 1 – 6) with the finer mesh solution (Mesh 7). For each Join, the Combination method chosen was 

Explicit so the data of each data set could be arbitrarily manipulated, by referring to its source dataset 

with the operators data1( ) and data2( ), in order to compute the errors of the velocity according to the 

L2- and H1-norms.  

The variable 𝑓, in equations (63) and (64), is the difference between the velocity (𝑢) computed with 

Mesh 1 to 6 and the velocity computed from Mesh 7. This difference is considered as the error of the 

velocity – because there is no exact solution, the best approximation was used, which is the one from 

the most refined mesh (Mesh 7). Using this definition, the absolute computational error can be 

computed, which is the difference between the exact solution of the mathematical model and the 

solution obtained through the numerical resolution of the model, and the relative error, which is the ratio 

between the absolute computational error and the exact solution. The absolute and relative error of 

velocity according to the L2-norm are defined in (65) and in (66), respectively. While the absolute and 

relative error of velocity according to the H1-norm are defined in (67) and (68), respectively.  
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In the presented expressions, 𝑢𝑖 stands for the velocity vector computed from the solution of the Mesh 

𝑖, for 𝑖 = 1,2, … , 6 and 𝑢𝑑 is the velocity vector obtained from the solution of the most refined mesh, 

Mesh 7. The parcels containing the integral over the domain, Ω, were computed in COMSOL 

Multiphysics® through the operation Results > Derived Values > Integration > Volume integration, and 
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the volume of integration selected was the whole domain. In addition to these errors, per each mesh, 

using the operation Results > Derived Values > Maximum > Volume Maximum, the maximum element 

(h) size in the domain was extracted. Within the log file per each solution, the number of DOF was 

registered as well as the computational time. These computed values are summarized in Table 4.  

Table 4: Resume of mesh: size, degrees of freedom, errors and computation time 

Mesh Size DOF 
Max Mesh 
Size (m) 

eL2
abs 

(𝑚4/𝑠) 
e𝐻1
abs 

(𝑚4/𝑠) 
eL2 
rel eH1

rel 
Computation 

time (s) 

1 Extremely Coarse 64,335 7.91E-03 2.62E-06 4.53E-03 1.50E-01 6.38E-01 64 

2 Extra Coarse 74,471 7.03E-03 2.38E-06 4.39E-03 1.36E-01 6.19E-01 79 

3 Coarser 108,855 4.82E-03 2.02E-06 4.26E-03 1.15E-01 6.01E-01 113 

4 Coarse 193,611 4.32E-03 1.80E-06 4.22E-03 1.03E-01 5.96E-01 321 

5 Normal 344,631 3.70E-03 1.72E-06 4.25E-03 9.83E-02 5.99E-01 854 

6 Fine 675,303 2.81E-03 1.70E-06 4.34E-03 9.75E-02 6.12E-01 17,500 

7 Finer 883,035 2.31E-03 - - - - 26,483 

To allow better visualization of the data, obtained errors were plotted against the DOF. From Table 4,  

as the degrees of freedom increase, the computational time also increases, but the L-2 absolute error 

does diminish from Mesh 4 and Mesh 5 onwards.  

Figure 10 shows the absolute error of the L2-norm (calculated in (65)) in terms of the DOF. The absolute 

error is the greatest for Mesh 1, as expected since it is the coarsest mesh. The smallest error is found 

for Mesh 6, also as expected, since the finer the mesh, the closest the computed solution should be the 

exact value. The absolute error of the H1-norm is plotted in Figure 10. Again, the most significant error 

is found for Mesh 1. On the other hand, the solutions obtained from the smaller meshes (Mesh 5 and 

Mesh 6), according to the H1-norm, retrieve higher absolute errors. This might be driven by higher 

gradients of the velocity, comparing to the velocity, being found close to the outflow arteries, and 

dominating the expression. 

 

Figure 9: Absolute 𝐿2 error for meshes 1 to 6 

 

Figure 10: Absolute 𝐻1 error for meshes 1 to 6 

Absolute errors do not allow a proper comparison since they are not scaled to the problem. For a better 

conclusion, the relative errors to the L2-norma and H1-norm can be found in Figure 11 and Figure 12. 

Same results were obtained comparing with the respective absolute error. 
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Figure 11: Relative 𝐿2 error for meshes 1 to 6 

 

Figure 12: Relative 𝐻1 error for meshes 1 to 6 

The analysis led to the belief that the solution starts from Mesh 3 onwards and converges to a solution. 

Despite better errors for Mesh 4 and 5, the considerable increase of DOF from Mesh 4 to 5 will drive 

an exponential increment computational time, which does not translate in the error's improvement at 

the same proportion. Therefore, considering each simulation's duration and the errors obtained, 

presented in Table 4, the chosen mesh to proceed the computational analysis was Mesh 4. 

3.2.2.  Post-processing  

The same way some parameters were added in the Global node, parameters and functions can be 

declared in the Component node to be used in its sub-nodes. The parameters and functions defined 

were used in the Study node and observed in the Results node.  

To calculate post-processing metrics, some additional functions were defined in the Component > 

Definitions node. Several integration components coupling were included, under the Component 

Couplings section, which integrates an expression over the source defined under the Integration 

settings. The expressions were defined in the Derived Values node. An integral for each BC, for the 

Surface Obs, for the domain and for the entire surface of the model, were added. 

To complete the post-processing, surfaces of each BC and Surface Obs for each solution (Forward and 

Controlled) were defined under the Results > Data Sets node. These surfaces are where the integrated 

expressions will be defined.  

Wall shear stress 

Wall shear stress (WSS) measures the forces applied tangentially to the blood's arterial wall. Blood flow 

leads to the development of superficial stresses near the vessel wall, that take the name of shear 

stresses, once they are parallel to the direction of the flow velocity vector very close to the wall.[60] The 

expression of the total stresses developed is given by:  

  = +  + [ ( ( ) )]TpI u u n  (69) 

This represents the stress tensor, which has a component normal to the surface and a component 

tangential to the surface. Since the needed stresses are the ones applied tangentially, this quantity is 

computed from (46): 

  = − WSS n  (70) 

This measure was also added to the parameters in the Component node to be plotted in the Results 

node.  

Mesh 1

Mesh 2

Mesh 3

Mesh 4
Mesh 5 Mesh 6

8.00E-02

1.00E-01

1.20E-01

1.40E-01

1.60E-01

 -  200  400  600  800

E
rr

o
r

DOF (k)

Mesh 1

Mesh 2

Mesh 3
Mesh 4

Mesh 5

Mesh 6

5.80E-01

6.00E-01

6.20E-01

6.40E-01

6.60E-01

 -  200  400  600  800

E
rr

o
r

DOF (k)



40 

 

Errors 

Three types of errors were used, in this work, to quantify the approximation of our adjustment to the in-

silico data: absolute error, the difference between the in-silico values and the values of the tests; relative 

error, the absolute error divided by the in-silico data values.  

These errors were calculated both over all the domain and over the boundaries, to understand where 

the method was better adjusted.  

The absolute error and relative error in the domain were calculated using (65) and (66), respectively. 

Where 𝑢  is the velocity of the Controlled Study in the domain Ω, and 𝑢𝑑 is the velocity of the Forward 

Problem in the domain Ω.  

In the boundaries, besides absolute error and relative error, the magnitude was also calculated using 

the following expressions:  
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Where 𝑢 is the velocity of the Controlled Study in the boundary Τi, 𝑢𝑑 is the velocity of the Forward 

Problem in the boundary Τi. 

These errors were calculated by adding a Global Evaluation node to the Derived Values node, with the 

expressions defined above and selecting as the data the respective surface or domain where the 

integral was being calculated. The Global Evaluation setting allows the definition of the evaluation of 

the numerical value of a global variable.  

3.3. Application to aortic coarctation  

3.3.1.  Data preparation 

3.3.1.1. Data acquisition 

For the aorta's coarctation, a thoracic X-ray computed tomography (CT) acquired from a 36-year-old 

patient, was given by the Hospital Santa Marta (Centro Hospitalar de Lisboa Central).  

A CT scan is a medical imaging technique that uses computer-processed combinations of multiple X-

ray measurements taken from distinct angles to produce cross-sectional images of the region of interest 

(ROI), designated as slices. The produced slices, whose thickness can range from 1 to 10mm, can be 

reformatted in multiple planes and consequently into a 3D image. In this work, images were obtained 

with a distance of 1.5 mm between each slice acquisition [104].  
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This type of medical image allows one to see the body's interior structures through the slides, in the 

three anatomical planes axial, sagittal and coronal. The images are displayed on a greyscale where 

each grey shade represents a degree of attenuation of the X-rays by the tissues. 

A contrast dye can be applied to allow a better distinction between different structures. In our case, to 

enhance the aorta, Ultravist®, a solution of iopromide, was administered intravenously to the patient. 

Iopromide is a low osmolar, non-ionic X-ray contrast molecule that works as a contrast agent since the 

blood in contact with this agent absorbs more significant radiation than the surrounding tissues, 

highlighting the path of the flow [105], [106].  

Using this set of images with adequate software and procedures, the aorta structure could be isolated 

and retrieved as a 3D model. 

3.3.1.2. Data segmentation 

This first step to obtaining the aorta model, to be used in COMSOL Multhiphysics®, was the 

segmentation of the CT images acquired and the geometry reconstruction. 

Image segmentation, an essential medical imaging process, consists of portioning an image into 

multiple segments to allow the location of the region of interest (ROI) [107], [108]. In CT or MRI 

(Magnetic Resonance Imaging) images are subdivided into sets of pixels, which are the smallest 

controllable elements of an image. In this process, pixels are classified using grey level based or textural 

feature-based techniques, and then joined together based on this classification to delineate the ROI 

[109]. 

For this step, an open-source image processing software - 3D Slicer (version 4.10.2, 

https://www.slicer.org/) - was used. This software is specialized in medical image processing and three-

dimensional visualization from DICOM data. DICOM (Digital Imaging and Communications in Medicine) 

is a format for medical files and a communication protocol to store medical information, ensuring the 

compatibility between equipment [110]. 

Once the software is launched, the DICOM data file was imported into the software. The file given by 

the hospital includes all studies and series performed in the CT acquisition. Therefore, it was necessary 

to choose the study series to load.  After the series of interest was loaded, the data was displayed in 

Axial, Sagittal and Coronal view, as shown in Figure 13. 

Each view in the 3D Slicer interface contains a set of slices, that cover the thoracic region, in each 

anatomic plane: axial (Figure 13 - A), sagittal (Figure 13 - B) and coronal (Figure 13 - C). The 

intersection of the structural information between these three planes allows the reconstruction of the 

volume of the aorta by selecting the pixels that represent the aorta in each slice, which will be merged 

to create a three-dimensional model. 

https://www.slicer.org/
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Figure 13: 3D Slicer panel after loading the DICOM data of a thoracic CT. The data was displayed as three sets of 

slices, in three different windows, according to the orientation of the image. On the top left, the axial plane; on the 

bottom left, the sagittal plane; and the coronal plane on the bottom right. 

The next step was to identify the pixels representing the aorta in the slices to perform the segmentation. 

This operation allows for the elimination of unwanted image information and the selection and 

visualization of the ROI. With the contrast used in the CT, the aorta becomes an easily identifiable 

structure. However, to create a useful distinction between the aortic structure and its involving 

structures, contrast and brightness of the images need to be continuously adjusted, during the entire 

process, to identify the contour better.  

The core plane used for the manual slice segmentation was the axial plane since it allows for better 

visualization of the complex aortic structure, especially in the aortic arch. Nevertheless, at some point, 

all planes were used to visualize the aorta, in case of doubt in distinguishing different structures, due to 

low contrast CT images, image artefacts, and noise. 

To start the segmentation process, the Segment Editor module must be selected and +Add clicked to 

add a new empty segment and select the aorta category from a built-in list. The segment was a label 

map created by painting the pixels of the ROI on several slices which are then rendered into a volume. 

The tool Level Tracing was used to facilitate this painting task. The tool defines an outline where all the 

pixels have the same background value as the selected pixel by moving the mouse in the region of 

interest.  
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The contrast enhancement can be affected by numerous factors [111], including the concentration 

levels of the contrast dye and the duration of the procedure. As the CT contrast circulates in the body, 

it is diluted by the blood. The dilution effect was most significant in organs more distal from the site 

where the contrast was injected. Additionally, a CT image acquisition can take up to one hour, and 

during that time, the heart continues to beat, deforming itself and the surrounding tissues.  Therefore, 

the contrast levels will not be uniform along the aorta, which will not allow for a perfect delineation of 

the structure using the Level Tracing tool alone. For these reasons, the Level Tracing tool was 

complemented with manual segmentation using the Paint and Erase tools – the more accurate the aorta 

is identified at this stage, the better to avoid edges or holes in the final model which will need to be 

removed. Figure 14 shows four slices in the axial plane after the pixels correspondent to the aorta are 

painted.  

 

(A) Descending aorta (B) Descending aorta and thoracic aorta 
  

 

(C) Aortic arch (D) supra-aortic arteries 

Figure 14: Segmentation of the aorta. Axial views of thoracic CT. (A) cross-sections of the descending aorta; (B) 

cross-sections of the descending aorta and the thoracic aorta; (C) cross-section of the aortic arch; (D) cross-

sections of the supra-aortic arteries (brachiocephalic artery, left common carotid artery and left subclavian artery). 

When all slices are processed, the full model can be previewed by selecting the option Show 3D, that 

generates a label map volume from the pixels selected in each slice. The 3D view permits a 

macroscopic view of the aorta, which helps check edgy places or wrongly selected pixels, which can 

be improved by manually painting and erasing, using the appropriate tools. The final segmented model 
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comprises the thoracic aorta from the ascending portion (above the aortic root) to the descending 

portion, including the beginning of the three aortic arch branches. The goal was to segment as much 

as possible of the aorta regions, and the supra-aortic branches, so more data is available in later stages 

of the modelling. However, while the descending aorta was easily defined, and therefore a big chunk 

was included, the three aortic branches due to its complexity were more difficulty defined, and the only 

a small proportion was included.  

The Smoothing tool from the Segment Editor module was used to enhance the surface of the model, 

as a next step. The Gaussian method was used, a standard linear technique where all the frequencies 

are attenuated, except for the zero frequency, to introduce an absolute blur in the image. This 

attenuation (filtering) removes noise and consequently smooths the surface. In this method, each 

vertex's new position was computed as a weighted average, with the shape of a Gaussian function, of 

the current positions of the vertex itself and its direct neighbours (the ones that share an edge or face 

with the current vertex). [112] 

Surface reconstruction from the previously segmented label map in 3D Slicer was carried on using the 

Model Maker module. A reconstruction with five smoothing iterations was chosen for a Laplacian filter 

type regarding the surface reconstruction parameters available, equivalent to a 5% smoothing. Such a 

small smoothing percentage was chosen to maintain the aortic models the most realistic possible. A 

default decimation (surface complexity reduction) value of 0.25 was chosen. 
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Figure 15: 3D visualization of the resulting segmentation in 3D Slicer after one application of Gaussian smoothing 

method with a standard deviation of 1.000 mm (continues in the previous page) 

The information was saved as a label map, so it must be converted and exported as a Model. The file 

was saved in .STL extension format saves the surface like a raw unstructured triangular mesh to be 

imported to another software – MeshLab - where further adjustments regarding surface smoothing will 

be completed.  

3.3.1.3. Data transformation 

Following the aorta's segmentation, the next step was to improve the model's smoothness created in 

3D Slicer. MeshLab (https://www.meshlab.net/) - an open-source system for processing and editing 3D 

triangular meshes – provides a set of tools for editing, cleaning, healing, inspecting, rendering, texturing, 

and converting meshes. In this step, MeshLab was solely used for its smoothing features, 

In this step, firstly, the .STL file exported from 3D Slicer was imported as a mesh, and the option Unify 

Duplicated Vertices was enabled to eliminate duplicated data. Secondly, on the Filters tab, the option 

Smoothing, Fairing and Deformation module was selected, and the Taubin smoothing method chosen. 

The Taubin smoothing method, developed by Gabriel Taubin in 1995, consists of two consecutive 

Gaussian smoothing steps to avoid shrinkage [113]. This method allows significant smoothing of 

extensive and complex surfaces without the loss of natural characteristics. The first Gaussian 

smoothing step was applied with a positive scale factor (λ) to all vertices of the object. The second 

Gaussian smoothing step was applied with a negative scale factor (μ), whose magnitude was greater 

than the positive factor (0 < λ < |μ|), to all vertices of the object as well. These two steps must be 

repeated, alternating between the positive and the negative scale factors to produce a significant 

smoothing effect. A trial and error approach was used to select the proper parameters λ and μ and the 

number of smoothing steps, and the final values chosen were 0.6, -0.6 and 100, respectively.   

https://www.meshlab.net/
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Figure 16: Model of the aorta in MeshLab, before (left) and after (right) application of Taubin smoothing method 

After the smoothing step, the resultant .STL file has a substantially refined mesh, making the file too 

heavy to be imported to COMSOL Multhiphysics® and impossible to work within the software. To reduce 

the file size, and since the model will be given a mesh at a later stage in COMSOL Multhiphysics®, 

MeshLab was used again to re-mesh the model. For that, the Remeshing, Simplification and 

Reconstruction module was selected in the Filters tab, and the Simplification: Quadratic Edge Collapse 

Decimation method chosen. This method simplifies the mesh using a quadratic based edge collapse 

strategy, and the percentage of elements to be reduced was arbitrary. In this case, the original mesh 

contemplated 53,138 vertices and 106,672 faces. After a 50% element reduction, 26,570 vertices and 

53,136 faces, were obtained. Since this file was still too heavy for the computer capacity, a second 50% 

reduction was made, where the final saved .STL file had 13,286 vertices and 26,568 faces.   

Since the fluid dynamics are only being studied within the lumen of the aorta, there was no need to 

define the aortic wall, and therefore the final step will be to convert the .STL file to .IGES. The software 

Autoconverter (https://autoconverter.software.informer.com/), a native Windows operating system 

executable that allows importing, export and converts between different 3D files formats, was used for 

file conversion [114]. The geometry was finally ready to be imported into COMSOL Multiphysics  

3.3.1.4. COMSOL Multhiphysics® transformation 

The final step to obtaining a model of the aorta to analyze blood behaviour, through the simulation, was 

to create the geometry in COMSOL Multhiphysics® using the model previous developed using 3D Slicer 

and MeshLab.  

The first step to creating the model's geometry, in COMSOL Multhiphysics®, was to import the .IGES 

file to the Geometry sub-node of the Component node. By right-clicking in the Geometry sub-node, the 

Import node was added to the tree. In the Import settings, the format chosen to import was the 3D CAD 

file, and the remaining options were kept as the default.  

The subsequent step was to line up the geometry's extremities - the inlet and the four outlets - with the 

x-y plane by creating three work planes parallel to the x-y plane and extruding them as cylinders, as 

shown in Figure 8-B. This extrusion created new solids aligned with the x-y plane. Then, the wall's 

intersection with each of these solids was eliminated, guaranteeing the resulting geometry was parallel 

to the x-y plane. This operation was done with the tool Compose from Booleans and Partitions using 
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the expression imp1-(imp1*ext1+imp1*ext2+ imp1*ext3), being imp1 the label of the imported 

geometry, ext1, ext2 and ext3 the three extrusions.  

The translation of the CAD geometry between software caused a change in its dimension, confirmed 

by measuring the inlet’s cross-section area. Assuming the inlet was almost circular, the diameter can 

be computed from the area and compared with the diameter measured in the echocardiogram. The 

comparison revealed the current geometry was ten times greater than the real aorta, and for that 

reason, the geometry was re-scaled by 10. 

The final step was preparing the geometry for meshing. The resulting geometry has more features than 

needed, i.e. thousands of faces and vertices, making the model bulky and interfering with its 

manipulation. The software has a set of attributes called Virtual Operations that enable simplifying the 

model to reduce the file size. The tool used was Form Composite Faces which ignores the boundaries 

of the selected faces, composing one major face that represented the entire surface of the geometry. 

 

Figure 17: Graphic window of COMSOL Multiphysics. First column: imported geometry created in 3D Slicer; second 

column: geometry with the three work planes parallel to the x-y plane to be extruded as cylinders; third column:  

geometry after Form Composite Faces operation. Scale in meters. 

An extra step was taken to give a virtual boundary in the middle of the aorta for the optimisation step. 

Therefore the model has two domains, an upper and a lower.  The final domain union has two domains, 

24,690 boundaries, 37,484 edges, and 12,798 vertices.  

The mesh chosen for this geometry was the Physics-controlled mesh with Coarse size.  

3.3.2. Numerical model 

The assumptions made regarding the flow were the same as those for developing the framework (see 

Section 3.1.1). The domain represents the upper part of a patient-specific aorta with a coarctation, 

which was truncated due to its complexity by three planar surfaces: one at the entrance of the ascending 

aorta, to define the inlet; one in the intersection of the arteries brachiocephalic artery, left common 

carotid artery and left subclavian artery with the aortic arch, to define the supra-aortic outlets; The 
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domain can be observed in Figure 18 and one in the middle of the thorax, to define the descendent 

aorta outlet. 

The domain Ω and respective surface 𝜕Ω are segmented as: 

1. Aortic Wall (Γ𝑤𝑎𝑙𝑙) representing the physical wall of the artery 

2. Aorta inlet (Γ𝑖𝑛) representing the main inflow section  

3. Aorta outlets (Γ𝑜𝑢𝑡) representing the set of non-connected outlet sections which include the 

descending aorta (Τ𝐷𝐴) outlet, the brachiocephalic artery (Γ𝐵𝐴) outlet, the left common carotid artery 

(Γ𝐿𝐶𝐴) outlet, and the left subclavian artery (Τ𝐿𝑆𝐴) outlet.  

Γ𝑜𝑢𝑡 = Γ𝐷𝐴 ∪ Γ𝐵𝐴 ∪ Γ𝐿𝐶𝐴 ∪ Γ𝐿𝑆𝐴 

𝜕Ω = Γ𝑤𝑎𝑙𝑙 ∪ Γ𝑖𝑛 ∪ Γ𝑜𝑢𝑡 = Γ𝑤𝑎𝑙𝑙 ∪ Γ𝑖𝑛𝑙𝑒𝑡 ∪ Γ𝐷𝐴 ∪ Γ𝐵𝐴 ∪ Γ𝐿𝐶𝐴 ∪ Γ𝐿𝑆𝐴 

Like in the framework development, a virtual boundary (𝑆𝑜𝑏𝑠) was added to the aorta for the optimisation 

process.  

 

Figure 18: Domain of the numerical model of the aorta with coarctation with respective artificial boundaries – inlet, 

outlet and wall, and the section used in the optimisation simulation. 

The controlled problem consisted of solving the system (50) using the following boundary conditions 

(Table 5), with the appropriate bounds (Table 6). The flow rate at the inlet was obtained from the 

literature (𝑄𝑖𝑛 = 316 𝑚𝐿/𝑠 ) [115], based on the geometry of the aorta.  

Table 5: Boundary conditions attributed to the supra-aortic outlets (BA, LCA and LSA) in the controlled problem for 

the aortic coarctation. 

Test 
Forward 
Problem 

Inlet Outlet DA Outlet BA Outlet LCA Outlet LSA 

P1 Data P ■ ● 𝛼1 𝛼1 𝛼1 

P3 Data P ■ ● 𝛼1 𝛼2 𝛼3 

Pv Data P ■ ● 𝛽1 𝛽1 𝛽1 

Q1 Data Q ■ ● 𝛼1 𝛼1 𝛼1 

Q3 Data Q ■ ● 𝛼1 𝛼2 𝛼3 

Qv Data Q ■ ● 𝛽 𝛽 𝛽 
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■ 𝑄𝑖𝑛  𝛼𝑥 𝑄𝑖 = (𝑉𝑚𝑒𝑎𝑛 ∗ 𝐴𝑖𝑛) ∗ (
𝐷𝑖

𝐷𝑖𝑛
)
𝛼𝑥
, 𝑖 ∈ (𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴)  

● TFBC 𝛽  𝑉𝑖 = 𝑉𝑚𝑒𝑎𝑛 ∗ (
𝐷𝑖

𝐷𝑖𝑛
)
𝛽
, 𝑖 ∈ (𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴) 

Table 6: Initial values, lower bound and upper bound for each optimisation test, in the controlled problem for the 

aortic coarctation.  

Test 

 𝛼1/𝛽1  𝛼2 𝛼3 

Initial 

Value 

Lower 

Bound 

(𝑙𝑜𝑤1) 

Upper 

Bound 

(𝑢𝑝1) 

Initial 

Value 

Lower 

Bound 

(𝑙𝑜𝑤2) 

Upper 

Bound 

(𝑢𝑝2) 

Initial 

Value 

Lower 

Bound 

(𝑙𝑜𝑤3) 

Upper 

Bound 

(𝑢𝑝3) 

P1 2 2 7 - - - - - - 

P3 2 2 7 2 2 7 2 2 7 

Pv 2 2 7 - - - - - - 

Q1 2 2 7 - - - - - - 

Q3 2 2 7 2 2 7 2 2 7 

Qv 2 2 7 - - - - - - 

Unlike the previous studies in Section 3.1.1, an additional simulation was performed for each dataset, 

where the laminar flow hypothesis was not considered (Test Pv and Test Qv). 

In this case, the objective function was built using patient-specific data. The controlled problem 

consisted of looking at the parameter 𝛼𝑥 such that the following cost function: 

 ( )
2

cos ( )

obs

t

S

f U u v dx= −  (74) 

Where 𝑢 is the controlled problem solution in the section 𝑆𝑜𝑏𝑠  and 𝑣 is the mean velocity obtained from 

a patient-specific hemodynamic gradient. A hemodynamic gradient, in the coarctation area, was 

obtained from the hospital (𝑃 = 30 𝑚𝑚𝐻𝐺) and using a simplification of Bernoulli’s equation: 

 24 2.7 m/s
4

P
P V V


 =  = =  (75) 

In the case of the coarctation of the aorta, the forward problem was also solved for a better 

understanding of the controlled problem, since it allowed the calculation of the errors in the outlets by 

comparing the solutions of both problems. This problem consisted of solving system (44), using the 

BCs in Table 7. The inlet flow rate (𝑄𝑖𝑛) was the same as in the controlled problem.  

Table 7: Boundary conditions attributed to the supra-aortic outlets (BA, LCA and LSA) in the forward problem for 

the aortic coarctation.  

Test Inlet Outlet DA Outlet BA Outlet LCA Outlet LSA 

Data P ■ ● ▲ ▲ ▲ 

Data Q ■ ● ● ● ● 
 

 

■ 𝑄𝑖𝑛  ● TFBC  

▲ 𝑄𝑖 = (𝑉𝑚𝑒𝑎𝑛 ∗ 𝐴𝑖𝑛) ∗ (
𝐷𝑖
𝐷𝑖𝑛

)
3

, 𝑖 ∈ (𝑖𝑛, 𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴) 
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4. Results 

This work aims to adjust Murray’s law boundary conditions (MLBCs) by optimising its parameter, as 

seen in Section 2.2.2.3., using real data. The lack of data is an ongoing problem in numerical simulations 

in biological systems, to overcome this problem, three in-silico solutions to substitute the real data were 

generated. In-silico data was used to adjust Murray’s law (ML) parameter and understand how it 

changes depending on the flow characteristics, varying from person to person.   

In the first part of this section, the CFD simulation results of the in-silico data (Data A, Data B and Data 

C) will be discussed. Data A was generated attributing the classic MLBC with exponent 𝛼 = 3 in all 

supra-aortic outlets. Data B was generated in the same way as Data A, but in outlet LCA a traction-free 

boundary condition (TFBC) was given. Data C was generated with all supra-aortic outlets with TFBC. 

In the second part, the adjusted solutions, obtained by adjusting Murray’s parameter using an 

optimisation study over the in-silico data generated, will be compared. All tests were given MLBC in the 

supra-aortic outlets, with the parameter being either 𝛼 = 3 or a given control to be optimized (αx). For 

each in-silico dataset, the flow was recovered using two different tests – one optimising a single 

parameter common to all outlets (Test A1, Test B1 and Test C1), closer to what was defined by Murray; 

and another with a different parameter in each outlet (Test A3, Test B3 and Test C3). Additionally, for 

Data B, the flow was recovered only in the outlet where traction free was attributed (Test 𝐵1
𝐿𝐶𝐴) with the 

remaining outlets with a classic MLBC (𝛼 = 3). Finally, since using medical devices to obtain the flow 

metrics, an error is always associated, the parameters were adjusted by assuming a certain degree of 

error (10%) (Test A1 + noise, Test B1 + noise and Test C1 + noise).  

The numerical simulations solutions will include the distribution of flow velocity over the ROI, 

emphasising the supra-aortic outlets. Additionally, the quantification of how the hemodynamics metrics 

were affected by each adjustment, through the errors, will be shown and thus numerically emphasizing 

the regions most affected by the prescribed boundary conditions (BCs). The absolute, relative and 

magnitude of the relative error were studied in the several selected sections, namely, the supra-aortic 

outlets, the descendent aorta and section 𝑆𝑜𝑏𝑠. The obtained control for ML will also be discussed.  

As will be seen in the next chapters, results using one or three parameters were very similar. Therefore, 

for simplification of the results, hemodynamic parameters will be only presented for the solutions with 

one parameter being optimized (Test A1, Test B1, Test 𝐵1
𝐿𝐶𝐴 and Test C1).  

4.1. Forward problem 

4.1.1. Velocity magnitude 

In Figure 19, the velocity’s magnitude computed from the solutions of the in silico data, Data A (Figure 

19 – A), Data B (Figure 19 – B) and Data C (Figure 19 - C), is presented at fifteen cross-sections along 

with the thoracic aorta, together with the velocity’s direction at each slice. The three solutions are 

presented with the same colour range, for a better comparison. The velocity attributed in the inflow inlet 

corresponds to the peak of systole. 
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(A) Data A (B) Data B (C) Data C 

Figure 19: Distribution of velocity magnitude and direction on 15 slices of the domain, computed from the solution 

of the studies: (A) in-silico Data A, generated with MLBC with exponent 𝛼 = 3 in the supra-aortic outlets; (B) in-

silico Data B, generated with MLBC with exponent 𝛼 = 3 in LCA, and TFBC in the outlets BA and LSA; (C) in-silico 

Data C, generated with TFBC in the supra-aortic outlets. Scale units: m/s. 

Overall, the highest velocities are achieved for Data A (1.25 m/s), in the descendent aorta, and by Data 

B (1.21 m/s), in the LCA outlet. Data C shows lower velocity values, with a maximum of 0.95 m/s 

achieved in the supra-aortic arteries. The thoracic aorta shows lower values of velocity, in all three 

solutions, in comparison with the remaining sections of the aorta. 

At the outset, for all images of Figure 19, the velocity is zero in the wall, as imposed by the no-slip 

condition. The distribution of velocity near the inlet shows a concentration of the higher values of velocity 

in the centre of the vessel, suggesting the development of a parabolic (fully developed) flow. The BC 

defined at the inlet drives this velocity distribution, since the value of 𝐿𝑒𝑛𝑡𝑟 is long enough to guarantee 

the development of the flow. 

When reaching the aortic arch, for Data A and Data B higher velocities can be observed, slightly skewing 

along with the arch's interior, with the skewness being more pronounced in which the direction of 

velocity follows the curvature of the vessel.  For Data C, as the data reaches the aortic arch, the profile 

becomes flattered, driven by the amount of flow leaving through all the outlets. When reaching the apex 

of aortic arch part of the flow exists towards the outlets, with the proportion of flow being higher for Data 

C, followed by Data B and later Data A.  

For Data A, only a small percentage of the fluid goes through the outlets, but this type of representation 

makes it difficult to study the flow profile.  When reaching the aortic arch, velocities increase at the apex 

of the curve and change direction following the vessel's bending. The diameter of the boundary drives 

the values of velocity since an MLBC is applied; since the ratio between the diameter of the boundary 

to the diameter of the inlet is powered to the estimated parameter (>1), the largest outlet takes a larger 

proportion of the flow. 

For Data B, most of the flow exits towards the outlet where the TFBC was given (LCA), and in this 

vessel, the magnitude of the velocity reaches its peak.  
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Lastly, for Data C, a uniform distribution of flow per each outlet can be observed, at a higher proportion 

than seen in Data A. The increase of velocity starts in the middle of the arch, unlike the other 

simulations, where it happens right in the arteries' base. In this solution, a flat profile is observed, but 

again, the representation type does not allow a proper understanding.  

In the three solutions, the velocity distribution exhibits the development of a characteristic crescent-

shaped axial velocity profile when exiting the aortic arch, next to the 180-degree turn, towards the 

descending aorta. These swirling velocity components often arise in arteries and may be induced by 

rapid turning of the flow direction as arteries bend along their length. When a non-uniform flow is forced 

to turn, the balance of angular momentum will cause rotational or swirl velocity components to develop 

[24]. This behaviour is more prominent for Data A than for Data B and C.  

All solutions show a flat velocity profile with the flow slightly skewed at the descending aorta, with higher 

values near the vessel's outer wall. In general, the descending aorta shows the highest velocities, with 

Data A and Data B showing considerable higher velocity values at the descendent aorta than Data C.  

As expected, the distribution across the three supra-aortic outlets is not the same for the three different 

datasets since they were generated with different BCs in these outlets.   

For Data A (94%) and Data B (90%), the most significant proportion of flow is forward towards the 

descendent aorta, according to Table 8, with section DA reaching the highest value of velocity in the 

thoracic aorta.  

Table 8: Average flow rate of the solutions of the forward problem (Data A, Data B and Data C) in the supra-aortic 

outlets (Outlet BA, Outlet LCA and Outlet LSA), in the descendent aorta (Outlet DA) and the total outflow. 

Corresponding proportion (%) of flow rate in each outlet in relation to the outflow.  

Data 
Outlet BA Outflow LCA Outflow LSA Outlet DA 

Total Outflow 
(m/s2) (m/s2) (%) (m/s2) (%) (m/s2) (%) (m/s2) (%) 

Data A 5.7E-06 4.0% 1.0E-06 0.7% 2.4E-06 1.7% 1.3E-04 94% 1.4E-04 

Data B 5.7E-06 4.2% 5.7E-06 4.2% 2.4E-06 1.8% 1.2E-04 90% 1.4E-04 

Data C 3.2E-05 22.1% 1.0E-05 7.2% 2.0E-05 13.7% 8.2E-05 57% 1.4E-04 

For Data A (Figure 20), since ML governs the distribution in all supra-aortic outlets, the largest artery 

(BA) corresponds to a higher flow rate (around 4% of total outflow), according to Table 8 followed by 

LSA (1.7%) and then LCA (0.7%). Nevertheless, according to literature, BA should receive the sum of 

LCA and LA. Since the BCs were imposed and the geometry might not fully replicate the anatomy, there 

is a discrepancy. Due to the big gap between velocities in the supra-aortic outlets and the descendent 

artery, this visualisation does not allow an understanding of the flow profile.  

Regarding Data B (Figure 21), since a TFBC was imposed in outlet LCA, a flat profile can be observed 

in this outlet, while for the remaining supra-aortic outlets a fully developed profile is verified as a 

consequence of the imposed BCs. The flow rate in outlets BA and LSA, are the same as in Data A, 

observed by the values in Table 8 because the same BCs were attributed. Additionally, a more 

significant portion of the flow goes towards LCA in Data B (4.2%) than Data A (0.7%). Therefore, the 

remaining flow going towards DA is lower in Data B than Data A, which can be observed in Figure 21 

and Table 8. 

Finally, for Data C (Figure 22), the fluid flowing towards the outlets is proportional to the vessel's 

diameter by attributing the same BC in the supra-aortic outlets. The outlet BA (22.1%) has the most 
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significant proportion, followed by LSA (13.7%) and then LCA (7.2%). In this study, the outlet DA shows 

a flat profile with the lowest magnitude values from all studies, since only 57.0% of the flow is passing 

by. Since all outlets are subjected to the same conditions, even DA is subjected to the proportion of 

flow being dependent on the diameter, showing the highest distribution amount.  

 

 

Figure 20: Distribution of the magnitude of velocity at (A) the surface of the supra-aortic outlets (B) and descendent 

aorta and inlet, computed from the solution of the study using in-silico Data A, generated with MLBC with exponent 

𝛼 = 3 in the supra-aortic outlets. Scale units: m/s. 

 

Figure 21: Distribution of the magnitude of velocity at (A) the surface of the supra-aortic outlets (B) and descendent 

aorta and inlet, computed from the solution of the study using in-silico Data B, generated with MLBC with exponent 

𝛼 = 3 in LCA, and TFBC in the outlets BA and LSA. Scale units: m/s. 

 

Figure 22: Distribution of the magnitude of velocity at (A) the surface of the supra-aortic outlets (B) and descendent 

aorta and inlet, computed from the solution of the study using in-silico Data C, generated with TFBC in the supra-

aortic outlets. Scale units: m/s. 

(A) Data A: superior view (B) Data A: inferior view 

(A) Data B: superior view (B) Data B:  inferior view 

(A) Data C: superior view (B) Data C:  inferior view 
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In section DA, a fully developed flow is observed for all solutions, skewing to the outer wall of the vessel 

in a crescent shape. This velocity distribution is justified because the fluid particles are forced to change 

direction and accelerate to preserve the axial flow. As the initial flow is fully developed, the highest 

velocities in the centre have high inertia, therefore are not easily deflected. In turn, the blood near the 

wall has less inertia, thus, significantly displaced. As a consequence, the highest velocities are found 

closer to the outer wall of the curvature.  

To have a better understanding of the flow behaviour in the outlets being studied, the cross-section of 

each boundary – outlet BA (Figure 23), outlet LCA (Figure 24) and outlet LSA (Figure 25) -  is presented. 

The first column in each figure corresponds to Data A, the second column to Data B and the third to 

Data C.  

 

(A) Data A (B) Data B (C) Data C 

Figure 23: Distribution of velocity magnitude on the outlet BA cross-section, computed from (A) in-silico Data A, 

generated with MLBC with exponent 𝛼 = 3 in the supra-aortic outlets; (B) in-silico Data B, generated with MLBC 

with exponent 𝛼 = 3 in LCA, and TFBC in the outlets BA and LSA; (C) in-silico Data C, generated with TFBC in the 

supra-aortic outlets. Scale units: m/s. 

 
(A) Data A (B) Data B (C) Data C 

Figure 24: Distribution of velocity magnitude on the outlet LCA cross-section, computed from (A) in-silico Data A, 

generated with MLBC with exponent 𝛼 = 3 in the supra-aortic outlets; (B) in-silico Data B, generated with MLBC 

with exponent 𝛼 = 3 in LCA, and TFBC in the outlets BA and LSA; (C) in-silico Data C, generated with TFBC in the 

supra-aortic outlets. Scale units: m/s. 

The first thing to notice is that the imposition of an MLBC forces a parabolic outflow in these outlets with 

the highest values of velocity being observed in the centre of the vessel (Outlets BA, LCA and LSA for 

Data A; outlets BA and LSA for Data B). For Data C, in BA, the flow is skewed towards the outside the 

vessel. As expected, velocities in outlets where the same MLBC was attributed the same values of 

velocity are obtained (0.25 m/s for outlet BA in Data A and Data B; 0.19 m/s for outlet LSA in Data A 

and B). 
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For outlets where TFBC was imposed, a flatter profile can be observed, with higher values closer to the 

wall (outlet LCA for Data B, outlets BA, LCA and LSA for Data C). In the outlet LSA, despite the same 

BC, the values of velocity in the centre of the vessel are higher for Data B than Data C. 

Maximum values obtained for Data C are higher in all outlets, comparing to A, and higher in all outlets 

except LCA, for B. Furthermore, in Data C, all values of velocity are similar between them (around 0.9 

m/s).  

 
(A) Data A (B) Data B (C) Data C 

Figure 25: Distribution of velocity magnitude on the outlet LSA cross-section, computed from (A) in-silico Data A, 

generated with MLBC with exponent 𝛼 = 3 in the supra-aortic outlets; (B) in-silico Data B, generated with MLBC 

with exponent 𝛼 = 3 in LCA, and TFBC in the outlets BA and LSA; (C) in-silico Data C, generated with TFBC in the 

supra-aortic outlets. Scale units: m/s. 

Another useful post-processing visualization element, in fluid dynamics, are the streamlines. A 

streamline is a line that is tangential to the instantaneous velocity direction. Therefore it shows the 

direction at which a fluid element will travel at any point in time [116]. In COMSOL Multiphysics®, the 

streamline positioning and the number of streamlines need to be defined to plot this type of graph. For 

this model, the inlet of the fluid domain was chosen as the starting point. A colour expression was also 

added, so the magnitude of the velocities together with the direction could be observed.  

Studies reported that highest to lowest velocities are seen in the descending aorta, the thoracic aorta 

and ascending aorta, in this order. In Figure 26, the streamlines for Data A (Figure 26 – A), Data B 

(Figure 26 - B) and Data C (Figure 26 - C) are following the literature, and again the same range was 

used.  Also, as noticed in previous visualisations, at the inlet, the velocity profile is fully developed. 

Some recirculation of the flow is observed, with insignificant velocities, in the aortic arch exit. Higher 

velocities can occur in the descendant aorta closer to the outer wall of the curvature. This phenomenon 

appears due to the initial fully-developed flow, characterised by high velocities in the centre, which imply 

high inertia, and lower velocities near the wall, subjected to less inertia. For this reason, when the blood 

is forced to change its direction and accelerate, due to the curvature of the geometry, the most 

significant displacements occur where there is less inertia, near the outer vessel wall. Data C is the only 

study where this phenomenon is less visible, with higher velocities being prominent in the supra-aortic 

arteries.  
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(A) Data A (B) Data B (C) Data C 

Figure 26: Streamline plots on the fluid domain, computed from the solution of the studies: (A) in-silico Data A, 

generated with Murray’s Law boundary condition with exponent 𝛼 = 3 in the supra-aortic outlets; (B) in-silico Data 

B, generated with MLBC with exponent  𝛼 = 3 in LCA, and TFBC in the outlets BA and LSA; (C) in-silico Data C, 

generated with TFBC in the supra-aortic outlets. The streamlines have a colour expressing the velocity magnitude 

in m/s. 

4.1.2. Wall shear stress 

As seen in Section 3.2.2, complex WSS fields are observed due to the complex flow structures. The 

most crucial aspect that will be analysed will be the location of the highest shear stresses. 

WSS peaks can be mainly found at the aortic arch since it is the branches' base and includes all the 

bifurcations. Because of these bifurcations, when blood arrives at the aortic arch, it is forced to divide 

into the branches. However, due to its high inertia, it cannot be immediately displaced into the axial 

directions of the branches. Consequently, the flow moves next to the bifurcation's inner walls, 

developing high shear stresses on the flow divider, as observed in the third column of Figure 29. These 

significant differences in the WSS within the branches connected to the aortic arch have been reported 

in previous studies [70]. 

Secondly, as a consequence of the asymmetry of the initial flow, which is skewed to the inside of the 

curvature of the vessel (at the aortic arch), the change in the direction of velocity implies that high shear 

stress develops on the outer wall of the curvature, and low shear stress on the inner wall.  

Additionally, there are WSS peaks detected in the apex of the curve of the aortic arch. These may be 

an overestimation resultant for any error in the geometry, and it has been reported in previous studies 

[87]. Higher values of magnitude can be found for Data B, mainly concentrated in the artery LCA.  
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(A) Data A: anterior view (B) Data A: posterior view (C) Data A: superior view 

Figure 27: WSS magnitude distribution computed from the solution of study using in-silico Data A. Scale units: Pa. 

 
(A) Data B: anterior view (B) Data B: posterior view (C) Data C: superior view 

Figure 28: WSS magnitude distribution computed from the solution of study using in-silico Data B. Scale units: Pa. 

 
(A) Data C: anterior view (B) Data C: posterior view (C) Data C: superior view 

Figure 29: WSS magnitude distribution computed from the solution of study using in-silico Data C. Scale units: Pa. 
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4.2. Simulations with controlled parameter 

4.2.1. Recovering Data A 

Data A was proxied as real data by attributing to the supra-aortic outlets (BA, LCA and LSA) MLBC, 

with the exponent defined by Cecil Murray [94] (α = 3). The recovery of the flow in all three outlets was 

made by applying the optimisation study using either one control optimising a single parameter (α1)  

common to all outlets, for Test A1, or a using three controls optimising a different parameter in each 

outlet (α1, α2, α3), for Test A3. These simulations function as a validation of the method since the same 

flow characteristics given in Data A were also attributed to the tests.  

Table 9 contains the optimized ML exponent parameters for each test. Table 10 contains the errors of 

the domain, of the section used for the optimisation problem (𝑆𝑜𝑏𝑠) and the descendent aorta. Lastly, 

Table 11 contains the errors from the optimisation study of the supra-aortic outlets.  

Table 9: Murray’s Law parameters obtained by solving Test A1, with and without noise, and Test A3. 

Test  𝛂𝟏 𝜶𝟐 𝜶𝟑 

A1 3.0000 - - 

A1 + noise 2.9831 - - 

A3 2.9996 3.0005 3.0005 

Table 10: Absolute errors, relative errors and magnitude in the domain, section 𝑆𝑜𝑏𝑠 and outlet DA of the controlled 

solutions obtained by solving Test A1, with and without noise, and Test A3. 

Test 

Domain  𝑆𝑜𝑏𝑠 Section  Outlet DA 

Abs. 
Error 

Rel. Error  
Abs. 
Error 

Rel. Error  Mag. Abs. Error Rel. Error  Mag. 

A1 1.1E-07 3.0E-05 7.9E-07 7.8E-05 1.3E-11 2.0E-07 1.7E-05 -6.5E-07 

A1 + noise 6.9E-06 1.8E-03 1.6E-05 1.6E-03 1.5E-03 1.6E-05 1.4E-03 1.4E-03 

A3 1.5E-07 4.0E-05 7.9E-07 7.8E-05 -9.3E-11 1.6E-07 1.4E-05 -2.1E-06 

 

Table 11: Absolute errors, relative errors and magnitude in the supra-aortic outlets (Outlet BA, Outlet LCA and 

Outlet LSA) of the controlled solutions obtained by solving Test A1, with and without noise, and Test A3. 

Test 

Outlet BA Outlet LCA Outlet LSA 

Abs. 
Error 

Rel. 
Error  

Mag. 
Abs. 
Error 

Rel. 
Error  

Mag. 
Abs. 
Error 

Rel. 
Error  

Mag. 

A1 5.8E-09 6.0E-06 5.9E-06 2.8E-09 9.1E-06 9.1E-06 4.1E-09 7.5E-06 7.5E-06 

A1 + noise 1.8E-05 1.8E-02 -1.8E-02 8.6E-06 2.8E-02 -2.8E-02 1.3E-05 2.3E-02 -2.3E-02 

A3 3.9E-07 4.0E-04 -4.0E-04 2.6E-07 8.5E-04 8.5E-04 8.5E-04 7.0E-04 7.0E-04 

The expected value for all controls, in this simulation, would be αx = 3 since it is the value given for the 

exponent of Murray's Law in Data A. Both tests served as a validation of the method. While for Test A1, 

the exact value was obtained, for Test A3, the values obtained for the three parameters were: 𝛼1 =

2.9996 for outlet BA,  α2 = 3.0005 for outlet LCA, and α3  =  3.0005 for outlet LSA.  

A more thorough approach of the errors used can be found in Section 3.2.2. For all tests, the error in 

the section 𝑆𝑜𝑏𝑠 is negligible since it was the section used in the objective function. Meaning, the 

optimisation would be achieved when the error in that section would be small enough. 
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For Test A1, given that the obtained parameter α1 is the same as the one used to obtain the in-silico 

Data A, the errors in all geometries are insignificant. Regarding Test A3, absolute errors are also 

negligible, in the order of 10−7, except for the absolute error in LSA (10−4). Regarding relative errors, 

the outlet DA shows lower values than for the supra-aortic outlets (BA, LCA, LSA) - while the former 

has a relative error of 10−5 the error in the secondary outlets is in the order 10−4. 

Regarding the magnitude, for Test A3, the imposition of a Murray's Law boundary condition in Data A 

and the optimisation study forces a parabolic flow in those sections (Figure 30). Therefore, the velocities 

in both studies have the same direction but with different magnitudes since αx ≠ 3.  This results in a 

similar relative and magnitude error, which can be observed in Table 11.  

 

(A) Data A: outlet BA (B) Data A: outlet LCA (C) Data A: outlet LSA 

 

(D) Test A3: outlet BA (E) Test A3: outlet LCA (F) Test A3: outlet LSA 

Figure 30: Velocity magnitude (colour range) and direction (arrows) in each supra-aortic outlet for Data A (top row) 

and Test A3 (bottom row). Scale units: m/s. 

When adding the variable noise to the study (A1 + noise), the absolute error over the domain increases 

in the order of  101 and the relative error by  102. Regarding the supra-aortic outlets, the relative error 

is  104 times higher when compared with the test without noise (A1). Nevertheless, the errors obtained 

for this test are negligible.  

4.2.2.  Recovering Data B 

In this section, the recovery of the flow from Data B, which was produced by attributing TFBC (𝑃 = 0) to 

one chosen outlet and attributing to the remaining supra-aortic outlets, MLBC with α = 3. For Data B, 

the outlet chosen was outlet LCA.  

Three optimisation tests were performed to recover Data B. Firstly, MLBC was attributed with one 

control optimising a single parameter (α1) to the outlet with TFBC in the in-silico data – Test B1
LCA. 

Secondly, MLBC was attributed to the three supra-aortic outlets, with one control optimising a single 

parameter (α1)  common to all outlets - Test B1 – or with three controls optimising a different parameter 

in each of the supra-aortic outlets (α1, α2, α3) - Test B3. Additionally, both tests Test B1
LCA and Test B1 
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were repeated considering noise (Test B1
LCA + noise and Test B1 + noise). The ranges of the controls 

used can be found in Section 3.1.1.2.  

Table 12 contains the obtained optimized ML exponent parameters for each test. Values when applying 

a control in only one outlet (Test B1
LCA) are around 60% lower than when applying controls in all three 

supra-aortic outlets (Test B1 and Test B3). Therefore, the velocities obtained in the outlet LCA will be 

higher for Test B1
LCA. On the other hand, since the remaining boundary conditions for Test B1

LCA  have 

α = 3 and  α1
 < 3, in Test B1 and Test B3, outlets LSA and BA will have higher values for both tests. 

For Test B3, as the diameter decreases, DBA > DLSA > DLCA, the value of the parameter increases, α1 <

α3 < α2. Considering the equation (39), as the diameter of a daughter’s vessel increases the flow 

entering that vessel also increases. Additionally, as the parameter of ML increases, the flow declines, 

since it is powered to a number < 1. Therefore, as the diameter increases, the parameter adapts to the 

largest daughter's flow is proportional high. For Tests B1/B3, where the flow in all outlets was subjected 

to optimisation, the parameters obtained for Test B3 are analogous between them - 𝛼1 = 2.3107, α2 =

2.3122 and α3 = 2.3118 – and between the parameter obtained for Test B1 (α1 = 2.3114). Since the 

parameters are very close to each other, the velocity, pressure, and WSS solutions will be the same. 

Therefore, the errors derived will also be similar. As seen previously, the noise added to the simulations 

does not impact the control obtained – while, for Test B1
LCA the difference between the parameters 

obtained with and without noise is around -0.03%, for Test B1 is 0.33%.  

Table 12: Murray’s Law parameters obtained by solving Test 𝐵1
𝐿𝐶𝐴, with and without noise, Test B1, with and without 

noise, and Test B3. 

Test  𝛂𝟏 𝜶𝟐 𝜶𝟑 

B1
LCA  1.4437 - - 

B1
LCA + noise 1.4441 - - 

B1  2.3114 - - 

B1 + noise 2.3039 - - 

B3 2.3107 2.3122 2.3118 

Table 13 contains the errors of the domain, of the section used for the optimisation problem (𝑆𝑜𝑏𝑠), and 

of the descendent aorta. As seen before, the errors in 𝑆𝑜𝑏𝑠 can be neglected since it is used as the 

optimisation stop and therefore need to be as small as defined in the Objective Function.  

The three tests have a low absolute error in the domain, with Test B1
LCA presenting 0.002% and Tests 

B1/B3 0.034%. Tests B1/B3, nonetheless, present a considerable relative error (9.7%) while Test B1
LCA a 

small one (0.678%). Since the same BC was attributed for outlets BA and LSA, in Test B1
 LCA, this relative 

error is only driven by the solution in outlet LCA while for Tests B1/B3 all outlets contribute to the error.  

The attribution of the same boundary conditions from Data B explains the neglectable error found for 

B1
LCA  in Table 14, for those two outlets, in both absolute error (0.00% for BA and LSA) and relative error 

(0.06% for BA and 0.02% for LSA). On the other hand, for LCA – the outlet where the parameter was 

imposed – the absolute error is around 0.12% and the relative error 32.58%. This value of error means 

that the velocity in these outlets, with an optimised parameter, is 1/3 higher or lower than the velocity 

obtained in the controlled solution. Relative errors take into consideration the differences in the 

magnitude of the velocity vectors and their direction. Since the MLBC was imposed in the optimised 
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solution, this solution must have a parabolic shape while in the controlled solution, the flow does not 

necessarily achieve a parabolic flow. 

Table 13: Absolute errors, relative errors and magnitude in the domain, section 𝑆𝑜𝑏𝑠 and outlet DA of the controlled 

solutions obtained by solving Test 𝐵1
𝐿𝐶𝐴, with and without noise, Test B1, with and without noise, and Test B3. 

Test 
Domain 𝑆𝑜𝑏𝑠 Section Outlet DA 

Abs. Error Rel. Error Abs. Error Rel. Error Mag. Abs. Error Rel. Error Mag. 

B1
LCA  2.4E-05 6.8E-03 6.8E-07 7.4E-05 -8.2E-12 3.3E-07 3.2E-05 3.8E-06 

B1
LCA + noise 2.4E-05 6.8E-03 9.6E-07 1.0E-04 -6.3E-05 6.7E-07 6.4E-05 -5.9E-05 

B1  3.4E-04 9.7E-02 6.6E-05 7.2E-03 -1.2E-10 2.7E-05 2.6E-03 1.5E-04 

B1 + noise 3.4E-04 9.7E-02 7.1E-05 7.7E-03 1.6E-03 3.3E-05 3.2E-03 1.8E-03 

B3 3.4E-04 9.7E-02 6.6E-05 7.2E-03 -9.0E-11 2.7E-05 2.6E-03 1.4E-04 

Table 14: Absolute errors, relative errors and magnitude in the supra-aortic outlets (Outlet BA, Outlet LCA and 

Outlet LSA) of the controlled solutions obtained by solving Test 𝐵1
𝐿𝐶𝐴, with and without noise, Test B1, with and 

without noise, and Test B3. 

Test  
Outlet BA Outlet LCA Outlet LSA 

Abs. 
Error 

Rel. 
Error 

Mag. 
Abs. 
Error 

Rel. 
Error 

Mag. 
Abs. 
Error 

Rel. 
Error 

Mag. 

B1
LCA  5.6E-09 5.8E-06 -9.5E-08 1.2E-03 3.3E-01 2.2E-02 1.1E-09 1.9E-06 -3.5E-08 

B1
LCA + noise 7.2E-09 7.4E-06 -3.3E-08 1.2E-03 3.3E-01 2.3E-02 2.5E-09 4.5E-06 -3.0E-08 

B1  1.1E-03 1.1E+00 -1.1E+00 2.8E-03 7.6E-01 7.7E-01 8.4E-04 1.5E+00 -1.5E+00 

B1 + noise 1.1E-03 1.1E+00 -1.1E+00 2.8E-03 7.6E-01 7.6E-01 8.6E-04 1.6E+00 -1.6E+00 

B3 1.1E-03 1.1E+00 -1.1E+00 2.9E-03 7.6E-01 7.7E-01 8.4E-04 1.5E+00 -1.5E+00 

The high values in the relative error can be explained in Figure 31. This figure shows the magnitude of 

the velocity using an arrow; this will draw the shape of the profile in the graph, and a parabolic profile 

from a flat velocity profile can be easily distinguished.  The controlled solution shows a flat profile with 

a parabolic profile with the optimisation solution, with higher and lower values of velocity in the centre 

and wall, respectively. To better understand the discrepancies between the two solutions, the 

magnitude of the velocity should be considered by itself.  The magnitude for Test B1
 LCA  is 2.23%, 

comparing to a relative error of 35.28%. To better understand the differences between the relative error 

and the magnitude, please refer to section 3.2.2.  

 
(A) Data B: outlet LCA 

 
(B) Test B1

 LCA : outlet LCA 

Figure 31: Velocity magnitude (colour range) and direction (arrows) in each supra-aortic outlet for (A) Data B and 

(B) Test 𝐵1
 𝐿𝐶𝐴. Scale units: m/s. 

For Tests B1/B3, while the absolute error is relatively small (ranging from 0.08% in LSA to 0.28% in 

LCA) in all supra-aortic outlets, relative errors and magnitude are significant, ranging from 76% in LCA, 

outlet with the TFBC, to 153% in LSA. LCA shows the highest absolute error but the lowest relative 



62 

 

error. Relative error and magnitude show the same value, in absolute values, driven by the same 

imposition of a fully-developed flow in outlets BA and LSA.  

Relatively to the errors obtained using a noise component in the objective function, Table 14 shows that 

they are in the same order of the errors obtained for the same tests without noise. Therefore, in the 

remaining part of the section, the tests without noise will be the focus. 

The solutions at several cross-sections along the aorta, representing both velocity’s magnitude and 

direction, can be found in Figure 32, for Test B1
 LCA (Figure 32-B), Test B1 (Figure 32-C) and for 

comparison with the in-silico data, solution for Data B is also represented in Figure 32-A. The solutions 

for Test B3 will not be present since its values are very similar to Test B1.  

A non-slip condition can be observed in the wall and a parabolic flow profile near the inlet as seen for 

the forward problem. Moreover, for all solutions, the ascending aorta reporting lower values of velocity 

compared to the remaining portions of the aorta.  

When reaching the aortic arch’s base, velocities slightly skew along with the aortic arch's interior, with 

the skewness being more evident in which the direction of velocity follows the vessel's curvature. This 

skewness is most pronounced for Test B1. Test B1
 LCA, similar to Data B, presents a flatter velocity profile 

justified by the significant amount of blood exiting towards the LCA outlet. 

When reaching the apex of the aortic arch, part of the flow exits towards the outlet where the traction 

free boundary condition was given – LCA – for Test B1
 LCA. Table 16 shows that 9.2% of the outflow 

exists through the boundary LCA, compared to 4.0% for BA and 1.7% for LSA.  

For Test B1, the flow exiting towards the outlets is proportional to its diameter since the parameters are 

similar. The outlet BA retains 8.3% of the flow, and the outlet LSA retains 4.3% and the outlet LCA 

2.2.%. Neither test gives a good estimate of the percentage of flow rate in LCA, on the one hand, Test 

B1
 LCA overestimates (9.2% vs 4.2%), on the other, Test B1 underestimates (2.2% vs. 4.2%). In the 

remaining supra-aortic outlets, Test B1 overestimates the flow rate comparing to Data B. According to 

the literature, BA should have the sum of the remaining (6.5%).  

In Test B1
 LCA, a fully-developed high-velocity flow exists towards LCA, for Test B1 the flow keeps low 

velocity towards the outlets with higher velocities being only found in the arch's interior. Since the 

parameter of ML applied in Test B1 is the same for all outlets (and >1), it is expected that vessels with 

higher diameter show the highest velocities. The characteristic crescent-shaped axial velocity profile 

when exiting the aortic arch seen for Test B1
 LCA is lesser prominent for Test B1.  

The velocity distribution exhibits the development of a characteristic crescent-shaped axial velocity 

profile when exiting the aortic arch, next to the 180-degree turn, towards the descending aorta. These 

swirling velocity components often arise in arteries and may be induced by rapid turning of the flow 

direction as arteries bend along their length. When a non-uniform flow is forced to turn, the balance of 

angular momentum will cause rotational or swirl velocity components to develop. [24]  

When the flow reaches the descending aorta, it becomes more uniform as it goes towards the 

abdominal aorta. Velocities are higher than in the thoracic aorta, and the flow shows a flatter profile, 

slight skewing to the curve of the aorta. Again, Test B1 shows the highest velocity values. 

As seen for Test B1
 LCA, in the descending aorta, the flow skews towards the curve of the aorta. The 

values of velocity along the aorta, except for the outlet LCA, are similar for the three studies. While 
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maximum velocity for Data B and Test B1
 LCA is reached in the outlet, for Tests B1 is in the descent aorta. 

Values, nevertheless, a similar for all three solutions.  

 

(A) Data B (B) Test B1
 LCA (C) Test B1

 LCA + noise 

 

(D) Test B1 (E) Test B1 + noise 

Figure 32: Distribution of velocity magnitude and direction on 15 slices of the domain, computed from the solution 

of the studies: (A) in-silico Data B, generated with MLBC with exponent 𝛼 = 3 in LCA, and TFBC in the outlets BA 

and LSA; (B) controlled Test 𝐵1
 𝐿𝐶𝐴 , (C) controlled Test 𝐵1

 𝐿𝐶𝐴 with noise, (D) controlled Test B1 and (E) controlled 

Test B1 with noise. Scale units: m/s. 
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Table 15: Average flow rate of the controlled solutions obtained by solving Test 𝐵1
𝐿𝐶𝐴, with and without noise, Test 

B1, with and without noise, and Test B3, in the supra-aortic outlets (Outlet BA, Outlet LCA and Outlet LSA), in the 

descendent aorta (Outlet DA) and the total outflow. Corresponding proportion (%) of flow rate in each outlet in 

relation to the outflow. The flow rate of Data B solution for comparison. 

Test  
Outlet BA Outflow LCA Outflow LSA Outlet DA Total Outflow 

(m/s2)  (%) (m/s2) (%) (m/s2) (m/s2)  (%) (m/s2) (m/s2) 

B1
LCA  5.7E-06 4.0% 1.31E-05 9.2% 2.41E-06 1.7% 1.22E-04 85.9% 1.4E-04 

B1
LCA + noise 5.7E-06 4.0% 1.30E-05 9.1% 2.41E-06 1.7% 1.22E-04 85.3% 1.4E-04 

B1 1.2E-05 8.3% 3.12E-06 2.2% 6.12E-06 4.3% 1.22E-04 85.3% 1.4E-04 

B1 + noise 1.2E-05 8.3% 3.16E-06 2.2% 6.18E-06 4.3% 1.22E-04 85.2% 1.4E-04 

B3 1.2E-05 8.3% 3.12E-06 2.2% 6.12E-06 4.3% 1.22E-04 85.3% 1.4E-04 

Data B 5.7E-06 4.2% 5.7E-06 4.2% 2.41E-06 1.8% 1.22E-04 89.9% 1.4E-04 

In Figure 33 to Figure 37, the velocity distribution among the supra-aortic outlets (column 1) and for the 

inlet and outlet DA (column 2), for Data B (Figure 33), Test B1
LCA (Figure 34), Test B1

LCA with noise 

(Figure 35), Test B1 (Figure 36) and Test B1 with noise (Figure 37) can be seen. Colour ranges were 

kept independent for a better understanding of the behaviour in each test. 

For Data B, a flat profile can be observed in the outlet with traction free boundary condition (LCA), and 

a fully-developed profile is assumed for the remaining outlets as imposed by its boundary condition.    

For Test B1
 LCA, by applying TFBC in LCA, a large proportion of the flow exist the aorta through this 

outlet, achieving a fully developed profile. For the remaining outlets, due to the range of the legend, is 

challenging to study their profiles. The maximum velocity achieved for LCA in Test B1
 LCA is significantly 

higher than the one obtained for Data B. Since the control obtained was smaller than 3, the velocity will 

reach higher values here.  

For Tests B1, since the MLBC is being imposed in all outlets, the proportion of flow is directly related to 

the diameter; therefore, the velocities reached are the same for all of them. Again, due to the range in 

the visualisation, a fully developed flow cannot be predicted. Nevertheless, by ML, the flow should be 

parabolic. Velocities in BA and LSA are higher in these studies than for Data B and Test B1
 LCA. In the 

aorta descendent, a similar profile, as seen in the in-silico data., was obtained.  

 

 

Figure 33: Distribution of the magnitude of velocity at (A) the surface of the supra-aortic outlets (B) and descendent 

aorta and inlet, computed from the solution of the study using in-silico Data B, generated with MLBC with exponent 

𝛼 = 3 in LCA. Scale units: m/s. 

(A) Data B: superior view (B) Data B: inferior view 
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Figure 34: Distribution of the magnitude of velocity at (A) the surface of the supra-aortic outlets (B) and descendent 

aorta and inlet, computed from the solution of the controlled Test 𝐵1
 𝐿𝐶𝐴. Scale units: m/s. 

 

 

Figure 35: Distribution of the magnitude of velocity at (A) the surface of the supra-aortic outlets (B) and descendent 

aorta and inlet, computed from the solution of the controlled Test 𝐵1
 𝐿𝐶𝐴 with noise. Scale units: m/s. 

 

 

Figure 36: Distribution of the magnitude of velocity at (A) the surface of the supra-aortic outlets (B) and descendent 

aorta and inlet, computed from the solution of the controlled Test B1. Scale units: m/s. 

(A) Test B1
 LCA: superior view (B)  Test B1

 LCA: inferior view 

(A) Test B1
 LCA+ noise: superior view (B)  Test B1

 LCA+ noise: inferior view 

(A) Test B1: superior view (B)  Test B1: inferior view 
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Figure 37: Distribution of the magnitude of velocity at (A) the surface of the supra-aortic outlets (B) and descendent 

aorta and inlet, computed from the solution of the controlled Test B1 with noise. Scale units: m/s. 

To better understand the flow behaviour in the supra-aortic outlets, the cross-section of BA, LCA, and 

LSA is compared for each study. These representations will allow for a better comparison between the 

real data solution and the optimisation solution.  

 

Figure 38: Distribution of velocity magnitude on the outlet BA cross-section, computed from (A) in-silico Data B, 

generated with MLBC with exponent 𝛼 = 3 in LCA, and TFBC in the outlets BA and LSA; (B) controlled Test 𝐵1
 𝐿𝐶𝐴 , 

(C) controlled Test 𝐵1
 𝐿𝐶𝐴 with noise, (D) controlled Test B1 and (E) controlled Test B1 with noise. Scale units: m/s. 

 

Figure 39: Difference between velocity magnitude of the solution of the study using in-silico Data B and velocity 

magnitude computed from controlled (A) controlled Test 𝐵1
 𝐿𝐶𝐴 , (B) controlled Test 𝐵1

 𝐿𝐶𝐴 with noise, (C) controlled 

Test B1 and (D) controlled Test B1 with noise, at outlet BA cross-section.  Scale units: m/s. 

In Figure 38, the outlet BA cross-section is represented for Data B (Figure 38 - A), Test B1
 LCA  (Figure 

38 - B) , Test B1
 LCA  with noise (Figure 38 - C), Test B1 (Figure 38 - D) and Test B1 with noise (Figure 38 

- E). A fully developed profile can be observed for all studies, with maximum velocity obtained at the 

artery's centre. Maximum velocity is higher for Test B1 (0.52 m/s) than for Test B1
 LCA (0.25 m/s), which 

show similar values to the in-silico Data B because the same BC was attributed.  

(A) Test B1 + noise: superior view (B)  Test B1 + noise: inferior view 

(A) Data B (B)  Test B1
 LCA 

(C) Test B1
 LCA + 

noise 
(D) Test B1 (E)  Test B1 + noise 

(A)  Test B1
 LCA (B) Test B1

 LCA + noise (C) Test B1 (D)  Test B1 + noise 
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In Figure 39, the difference between the in-silico data and (A) Test B1
 LCA , (B) Test B1

 LCA with noise, (C) 

Test B1 and (D) Test B1 with noise, at outlet BA, is presented. While differences in (A) and (Figure 39 - 

B) are negligible (~10−7m/s), in (Figure 39 - C) and (Figure 39 - D) are in the same order as the velocity 

and showing a parabolic profile. Higher differences can be found at the centre of the vessel (-0.25 m/s), 

while the wall, due to the same imposed no-slip condition, does not show any difference.  

 

Figure 40: Distribution of velocity magnitude on the outlet LCA cross-section, computed from (A) in-silico Data B, 

generated with MLBC with exponent 𝛼 = 3 in LCA, and TFBC in the outlets BA and LSA; (B) controlled Test 𝐵1
 𝐿𝐶𝐴 , 

(C) controlled Test 𝐵1
 𝐿𝐶𝐴 with noise, (D) controlled Test B1 and (E) controlled Test B1 with noise. Scale units: m/s. 

 

Figure 41: Difference between velocity magnitude of the solution of the study using in-silico Data B and velocity 

magnitude computed from controlled (A) controlled Test 𝐵1
 𝐿𝐶𝐴 , (B) controlled Test 𝐵1

 𝐿𝐶𝐴 with noise, (C) controlled 

Test B1 and (D) controlled Test B1 with noise, at outlet LCA cross-section.  Scale units: m/s. 

In Figure 40, the cross-section at LCA is studied, which was the outlet where TFBC was attributed when 

generating the in-silico data (Data B). For Data B, a flatter profile is observed compared to the 

optimisation tests. For in-silico data solution there are fewer levels of segmentation of the velocity 

magnitude, with the highest value being reached closer to the vessel wall; for the tests’ solutions, there 

is an apparent and paced increase of the velocity until a maximum velocity closer to the centre. In this 

outlet, a more considerable discrepancy can be seen between the different solutions. Test B1
 LCA, where 

the only unknown parameter was imposed, shows higher velocities (1.83 ms−1), followed by Data B 

(1.24 ms−1) and finally, Test B1 (0.44 ms−1). 

In Figure 41, the difference between the in-silico data and (Figure 41 - A) Test B1
 LCA , (Figure 41 - B) 

Test B1
 LCA with noise, (Figure 41 - C) Test B1 and (Figure 41 - D)  Test B1 with noise, at outlet LCA, is 

compared. All differences are in the same order as the velocity. For differences in (A) and (B), values 

range from -0.5 m/s in centre of the vessel to 0.4 m/s closer to the wall (but not in the wall due to non-

slip condition).  

As seen before, for Data B, velocity achieves higher values closer to the wall, therefore, in order for 

Test B1
 LCA become more parabolic in comparison to Data B, needs to have lower values in the zone 

(A) Data B (B)  Test B1
 LCA 

(C) Test B1
 LCA + 

noise 
(D) Test B1 (E)  Test B1 + noise 

(A)  Test B1
 LCA (B) Test B1

 LCA + noise (C) Test B1 (D)  Test B1 + noise 
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(positive difference), while the centre of Test B1
 LCA needs an increase in velocity (negative difference). 

For Test B1, the flow imposed by a parameter much higher than the one obtained for Test B1
 LCA, implies 

much lower velocity in this outlet. For the flow to become more parabolic than Data B, larger decreases 

must happen closer to the wall, as seen in Figure 41. 

Finally, in Figure 42, section LSA is observed. Again, in all studies, a fully developed flow can be seen 

with Test B1 achieving higher velocities (0.48 m/s) than Data B/ Test B1
 LCA (0.19 m/s), which again have 

the same velocity because the boundary condition is the same.  

 

Figure 42: Distribution of velocity magnitude on the outlet LSA cross-section, computed from (A) in-silico Data B, 

generated with MLBC with exponent 𝛼 = 3 in LCA, and TFBC in the outlets BA and LSA; (B) controlled Test 𝐵1
 𝐿𝐶𝐴 , 

(C) controlled Test 𝐵1
 𝐿𝐶𝐴 with noise, (D) controlled Test B1 and (E) controlled Test B1 with noise. Scale units: m/s. 

The differences between the in-silico data and the tests, Figure 43, follow the same patterns and 

magnitude as seen for outlet BA (Figure 39). 

 

Figure 43: Difference between velocity magnitude of the solution of the study using in-silico Data B and velocity 

magnitude computed from controlled (A) controlled Test 𝐵1
 𝐿𝐶𝐴 , (B) controlled Test 𝐵1

 𝐿𝐶𝐴 with noise, (C) controlled 

Test B1 and (D) controlled Test B1 with noise, at outlet LSA cross-section.  Scale units: m/s. 

Studying each outlet alone is easier to understand that maximum velocities obtained for Test B1 are 

similar in all outlets, as expected. For these studies, while for outlets BA and LSA, there is an 

overestimation of the velocity compared to Data B, for LCA, the velocity is underestimated.   

In Figure 44, the streamlines for Data B (Figure 38 - A), Test B1
 LCA  (Figure 44 - B) , Test B1

 LCA  with 

noise (Figure 44- C), Test B1 (Figure 44 - D) and Test B1 with noise (Figure 44- E), are following the 

literature that states that highest velocities are seen in the descending aorta and lowest in the ascending 

aorta. [117], [118] 

Also, as noticed in previous visualisations, at the inlet, the velocity profile is fully developed. Some 

recirculation of the flow can be observed, with insignificant velocities, in the aortic arch exit. Higher 

velocities can occur in the descendant aorta closer to the outer wall of the curvature. This phenomenon 

appears due to the initial fully-developed flow, characterised by high velocities in the centre, which imply 

(A) Data B (B)  Test B1
 LCA 

(C) Test B1
 LCA + 

noise 
(D) Test B1 (E)  Test B1 + noise 

(A)  Test B1
 LCA (B) Test B1

 LCA + noise (C) Test B1 (D)  Test B1 + noise 
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high inertia, and lower velocities near the wall, subjected to less inertia. For this reason, when the blood 

is forced to change its direction and accelerate, due to the curvature of the geometry, the most 

significant displacements occur where there is less inertia, near the outer vessel wall. 

For Test B1
 LCA despite higher velocities, those are concentrated only in the outlet LCA.  

 

(A) Data B (B) Test B1
 LCA (C) Test B1

 LCA + noise 

 

(D) Test B1 (E) Test B1 + noise 

Figure 44: Streamline plots on the fluid domain, computed from the solution of the studies: (A) in-silico Data B, 

generated with MLBC with exponent 𝛼 = 3 in LCA, and TFBC in the outlets BA and LSA; (B) controlled Test 𝐵1
 𝐿𝐶𝐴 , 

(C) controlled Test 𝐵1
 𝐿𝐶𝐴 with noise, (D) controlled Test B1 and (E) controlled Test B1 with noise. Scale units: m/s. 

The streamlines have a colour expressing the velocity magnitude in m/s. 

4.2.3. Recovering Data C 

In this section, the flow will be recovered from Data C, generated by attributing TFBC (𝑃 = 0)  to all 

supra-aortic outlets. Again, the MLBC was attributed to the three supra-aortic outlets, with one control 

optimising a single parameter (α1) - Test C1 - or with three controls optimising a different parameter in 

each of the supra-aortic outlets (α1, α2, α3) - Test C3. Test C1 was also repeated, considering noise (Test 

C1 + noise). The ranges of the controls used can be found in Section 3.1.1.2. 
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Table 16 contains the optimised exponent parameters of ML for each test. As seen for the two previous 

sections, the parameters obtained for the two tests (Test C1 and Test C3) are similar, and as the 

diameter decreases, the parameters value increase.  The results between Test C1 and Test C2 and 

Test C1 and Test C1 + noise are very similar. Therefore, only Test C1 will be analysed in detail.   

Table 16: Murray’s Law parameters obtained by solving Test C1, with and without noise, and Test C3. 

Test   𝛂𝟏  𝛂𝟐  𝜶𝟑 

C1 1.4731 - - 

C1 + noise  1.4734 - - 

C3 1.4722 1.4742 1.4733 

Table 17 contains the errors of the domain, of the section used for the optimisation problem (𝑆𝑜𝑏𝑠), and 

of the descendent aorta, as well as the objective value obtained. An additional test was added (Test 

Ccontrol) as a comparison. In this test, the supra-aortic outlets' BCs were forced to be the classic ML with 

𝛼 = 3. In general, errors are considerably greater in this test than the ones where the parameters were 

adjusted automatically. Absolute errors for all tests are around 0.01%, while for the control is 0.15%. 

The relative error in the domain is around 3.8%, for all tests, which is considered acceptable and is 

lower than seen for Test B1 and B3. For Test Ccontrol, the relative error is 58%. As seen before, 𝑆𝑜𝑏𝑠 's 

errors can be neglected since it is used as the optimisation stop and needs to be as small as defined in 

the Objective Function. The relative error in the descent aorta is significantly lower than the domain’s 

(~0.2%), in all tests. 

Table 18 refers to the errors in the supra-aortic outlets. Higher relative errors can be seen for all outlets 

with outlet LCA with the highest (~45%), followed by LSA (~35%) and BA (~34%). Here is observable 

again the significant drop in the magnitude error, driven by the imposition of a parabolic profile in the 

control outlet. The error magnitude for LSA is around 3.2% while for BA is 8.4%. Larger errors are still 

seen for LCA (20.8%). 

Table 17 Absolute errors, relative errors and magnitude in the domain, section 𝑆𝑜𝑏𝑠 and outlet DA of the controlled 

solutions obtained by solving Test C1, with and without noise, and Test C3. 

Test 

Domain 𝑺𝒐𝒃𝒔 Section Outlet DA 

Abs. 
Error 

Rel. Error  
Abs. 
Error 

Rel. Error  Mag. 
Abs. 
Error 

Rel. Error  Mag. 

C1 1.0E-04 3.8E-02 2.3E-05 3.7E-03 5.3E-12 1.7E-05 2.4E-03 8.3E-04 

C1 + noise  1.0E-04 3.8E-02 2.3E-05 3.7E-03 -2.9E-04 1.6E-05 2.3E-03 5.3E-04 

C3 1.0E-04 3.7E-02 2.3E-05 3.7E-03 1.4E-12 1.6E-05 2.3E-03 8.1E-04 

Ccontrol 1.5E-03 5.8E-01 4.1E-03 6.5E-01 -6.4E-01 4.5E-03 6.3E-01 -6.5E-01 
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Table 18: Absolute errors, relative errors and magnitude in the supra-aortic outlets (Outlet BA, Outlet LCA and 

Outlet LSA) of the controlled solutions obtained by solving Test C1, with and without noise, and Test C3. 

We can observe that higher velocities are achieved before reaching the outlets in both solutions (Figure 

45). For Test C1 the flow is less skewed along the curvature of the aorta.  

 

(A) Data C (B) Test C1 (C) Test C1 + noise 

Figure 45: Distribution of velocity magnitude and direction on 15 slices of the domain, computed from the solution 

of the studies: (A) in-silico Data C, generated with TFBC in the supra-aortic outlets; (B) controlled Test C1 and (C) 

controlled Test C1 with noise. Scale units: m/s. 

The next three figures (Figure 46 - Figure 48) show the distribution of flow across the supra-aortic outlets 

(column A) and the inlet and descendent aorta (column B), for Data C (Figure 46), Test C1 (Figure 47) 

and Test C1 with noise (Figure 48). 

In Data C (Figure 46), there is a skew of velocity in BA towards the aorta's interior. Differences between 

the velocity obtain in LCA in both studies is higher, with LCA showing in Test C1 (Figure 47) the 

maximum velocity and significantly higher than in the remaining outlets. While for the in-silico data, the 

velocities among outlets are similar. For the in-silico Data C, the maximum velocities obtained were 

similar for all outlets – ranging from 0.93 m/s for LSA, 0.98 m/s for BA and 0.99 m/s for LCA.  On the 

other hand, the range for velocities for the Test C1 is winder – 1.27 m/s for outlet BA, 1.49 m/s for outlet 

LSA and finally, 1.74 m/s for outlet LCA. The larger the diameter, the lower was the velocities obtained. 

The non-split condition for all figures is also observed, with velocities being zero in the vessel wall.  

 

Test 

Outlet BA Outlet LCA Outlet LSA 

Abs. 
Error 

Rel. 
Error  

Mag. 
Abs. 
Error 

Rel. 
Error  

Mag. 
Abs. 
Error 

Rel. 
Error  

Mag. 

C1 1.7E-03 3.4E-01 8.4E-02 1.3E-03 4.5E-01 -2.1E-01 1.4E-03 3.5E-01 3.2E-02 

C1 + noise  1.7E-03 3.4E-01 8.4E-02 1.3E-03 4.5E-01 -2.1E-01 1.4E-03 3.5E-01 3.2E-02 

C3 1.7E-03 3.4E-01 8.3E-02 1.3E-03 4.5E-01 -2.1E-01 1.4E-03 3.5E-01 3.2E-02 

Ccontrol 4.1E-03 8.2E-01 8.2E-01 2.6E-03 9.0E-01 9.0E-01 3.6E-03 8.8E-01 8.8E-01 



72 

 

 

Figure 46: Distribution of the magnitude of velocity at (A) the surface of the supra-aortic outlets (B) and descendent 

aorta and inlet, computed from the solution of the study using in-silico Data C, generated with TFBC in the supra-

aortic outlets. Scale units: m/s. 

 

Figure 47: Distribution of the magnitude of velocity at (A) the surface of the supra-aortic outlets (B) and descendent 

aorta and inlet, computed from the solution of the controlled Test C1. Scale units: m/s. 

 
(A) Test C1 + noise: superior view (B) Test C1 + noise: inferior view 

Figure 48: Distribution of the magnitude of velocity at (A) the surface of the supra-aortic outlets (B) and descendent 

aorta and inlet, computed from the solution of the controlled Test C1 with noise. Scale units: m/s. 

As seen before, the traction free boundary condition results in a flatter profile than the Murray’s Law 

boundary condition. This can be easily observed in Figure 49 - Figure 51, for all outlets, where for Data 

C, the maximum velocity is achieved closer to the wall and occupies a more significant proportion of 

the vessel. For Test C1, the transition between velocities is more defined by a circular ‘doughnut’ for 

each velocity, from zero in the wall to the maximum at the centre. This is the description of a parabolic 

profile. Additionally, a slight skew of maximum velocities can be observed, in both outlet BA and LSA, 

(A) Data C: superior view (B) Data C: inferior view 

(A) Test C1: superior view (B) Test C1:  inferior view 
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which is confirmed in column 3, where the highest positive values of difference are not across the entire 

vessel. On the other hand, for outlet LCA, the difference can be seen all around the aorta next to the 

wall. 

In Figure 49 (BA), Figure 50 (LCA) and Figure 51 (LSA), the difference between the in-silico data and 

(A) Test C1 and (B) Test C1 with noise at each respective outlet, can be observed. 

As seen in Section 4.2.2, for outlet LCA, the velocity profile from the in-silico data is different from the 

one obtained as the solution for the tests. In these figures. All differences are in the same order as the 

velocity. For differences in (A) and (B), values range from -0.4 m/s in centre of the vessel to 0.4 m/s 

closer to the wall (but not in the wall due to non-slip condition). As seen before, for Data C, velocity 

achieves higher values closer to the wall, and therefore, in order for any test to become more parabolic 

in comparison to Data C, it needs to have lower values in the zone (positive difference), while the centre 

needs an increase in velocity (negative difference). 

 

Figure 49: Distribution of velocity magnitude on the outlet BA cross-section, computed from (A) Data C, (B) Test 

C1, (C) Test C1 with noise. Difference between velocity magnitude of the study's solution using in-silico Data C and 

velocity magnitude computed from (D) controlled Test C1 and (E) controlled Test C1 with noise, at outlet BA cross-

section. Scale units: m/s. 

 

Figure 50: Distribution of velocity magnitude on the outlet LCA cross-section, computed from (A) Data C, (B) Test 

C1, (C) Test C1 with noise. Difference between velocity magnitude of the solution of the study using in-silico Data 

C and velocity magnitude computed from (D) controlled Test C1 and (E) controlled Test C1 with noise, at outlet LCA 

cross-section.  Scale units: m/s. 

 

Figure 51: Distribution of velocity magnitude on the outlet LSA cross-section, computed from (A) Data C, (B) Test 

C1, (D) Test C1 with noise. Difference between velocity magnitude of the solution of the study using in-silico Data 

C and velocity magnitude computed from (D) controlled Test C1 and (E) controlled Test C1 with noise, at outlet LSA 

cross-section.   Scale units: m/s. 

(A) Data C (B) Test C1 (C)  Test C1 + noise (D) Test C1 (E)  Test C1 + noise 

(A) Data C (B) Test C1 (C) Test C1 + noise (D) Test C1 (E)  Test C1 + noise 

(A) Data C (B) Test C1 (C)  Test C1 + noise (D) Test C1 (E)  Test C1 + noise 
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The flow in LCA is overestimated, while in BA and LSA is underestimated, according to Table 19. 

Table 19:  Average flow rate of the controlled solutions obtained by solving Test C1, with and without noise, and 

Test C3, in the supra-aortic outlets (Outlet BA, Outlet LCA and Outlet LSA), in the descendent aorta (Outlet DA) 

and the total outflow. Corresponding proportion (%) of flow rate in each outlet in relation to the outflow. The flow 

rate of Data C solution for comparison.  

Test 
Outlet BA Outflow LCA Outflow LSA Outlet DA Total Outflow 

(m/s2) (%) (m/s2) (%) (m/s2) (%) (m/s2) (%) (m/s2) 

C1 2.9E-05 20.4% 1.24E-05 8.7% 1.91E-05 13.4% 8.20E-05 57.5% 1.4E-04 

C1 + noise 2.9E-05 20.4% 1.24E-05 8.7% 1.91E-05 13.4% 8.19E-05 57.5% 1.4E-04 

C3 2.9E-05 20.5% 1.24E-05 8.7% 1.91E-05 13.4% 8.18E-05 57.4% 1.4E-04 

Data C 3.2E-05 22.1% 1.0E-05 7.2% 1.97E-05 13.7% 8.19E-05 57.0% 1.4E-04 

4.3. Validation with aortic coarctation 

In this section, the framework developed in Section 3.1 will be applied to an aorta with coarctation 

(CoA). The flow will be recovered from data (Data P) generated by attributing patient-specific data as 

the inflow BC and using patient-specific data in the objective function. The remaining supra-aortic 

outlets were given MLBC with 𝛼 = 3, and the outlet DA was left with a ‘do-nothing’ approach. For the 

controlled study, the MLBC was attributed to the three supra-aortic outlets, associated with a single 

optimising parameter (α1) - Test P1. In this section, a detailed analysis will be done for Test P1. 

As a comparison, two additional tests (Test P3, Test Pv) were performed using Data P and three tests 

(Test Q1, Test Q3 and Test Qv) with Data Q, which was generated with TFBC in all supra-outlets instead 

for MLBC. In Test Pv and Qv, instead of a BC assuming a laminar profile (where Lentr is given, and 

therefore the flow is fully-developed), a velocity BC was attributed.  

The bounds for the controls used in this section can be found in Table 6 (Section 3.3.2.), and the detailed 

tests in Table 5. A brief comparison between these tests will be made at the end of this section.  

Table 20 contains the optimised exponent parameters of ML for all tests performed. For Test P1, the 

obtained parameter (𝛼 = 5.5296) is considerably higher when comparing to the tests done in Section 

4.2. With the abrupt decline in the aorta radius in the coarctation area, the velocity significantly increases 

(𝑉𝑚𝑒𝑎𝑛
𝑖𝑛 = 0.3539 𝑚/𝑠, 𝑉𝑚𝑒𝑎𝑛

𝑐𝑜𝑎𝑟𝑡 = 2.76𝑚 𝑠⁄ ), therefore the majority of the flow must go into the DA instead of 

into the supra-aortic outlets. For that to happen, the ratio (𝐷𝑖 𝐷𝑖𝑛⁄ )𝛼 , 𝑖 ∈ (𝐵𝐴, 𝐿𝐶𝐴, 𝐿𝑆𝐴) needs to be small, 

which is accomplished by a higher 𝛼 (since 𝐷𝑖𝑛 > 𝐷𝑖).  

Table 20: Murray’s Law parameters obtained by solving the CoA tests mentioned in Section 3.3.2. 

Test  𝛂𝟏 𝜷𝟏⁄  𝜶𝟐 𝜶𝟑 

P1 5.5296 - - 

P3 5.9972 4.2723 4.3380 

Pv 3.3576 - - 

Q1 5.4765 - - 

Q3 5.9972 4.2723 4.3380 

Qv 3.3576 - - 
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Table 21 shows that by having a much larger 𝛼, around 99% of the flow goes towards the DA while for 

an 𝛼 = 3 that number drops to 91%. For both Data P and Test P1, outlet BA obtains almost all the flow 

that goes into the supra-aortic outlets, which from a physiological point of view is not true. The difference 

in the flow rate from Data P to Test P1 is around 98% for outlets LSA and LCA, 90% for outlet BA and 

9.3% outlet DA.  

Table 21: Average flow rate of the controlled solutions obtained by solving the CoA tests mentioned in Section 

3.3.2. in the supra-aortic outlets (Outlet BA, Outlet LCA and Outlet LSA), in the descendent aorta (Outlet DA) and 

the total outflow. Corresponding proportion (%) of flow rate in each outlet in relation to the outflow. 

Test 
Outlet BA Outflow LCA Outflow LSA Outlet DA Total Outflow  

(m/s2)  (%) (m/s2) (%) (m/s2) (%) (m/s2) (%) (m/s2)  

Data P 2.1E-05 6.7% 3.39E-06 1.1% 3.70E-06 1.2% 2.80E-04 91.0% 3.1E-04 

Test P1 2.1E-06 0.7% 7.71E-08 0.0% 9.00E-08 0.0% 3.06E-04 99.3% 3.1E-04 

Test P3 1.4E-06 0.5% 5.05E-07 0.2% 5.18E-07 0.2% 3.06E-04 99.2% 3.1E-04 

Test Pv 2.2E-06 0.7% 8.11E-08 0.0% 9.47E-08 0.0% 3.05E-04 99.2% 3.1E-04 

Data Q 1.5E-04 43.7% 4.75E-05 13.8% 4.49E-05 13.1% 1.01E-04 29.4% 3.4E-04 

Test Q1 2.2E-06 0.7% 8.35E-08 0.0% 9.73E-08 0.0% 3.05E-04 99.2% 3.1E-04 

Test Q3 1.4E-06 0.5% 5.05E-07 0.2% 5.18E-07 0.2% 3.06E-04 99.2% 3.1E-04 

Test Qv 2.2E-06 0.7% 8.11E-08 0.0% 9.47E-08 0.0% 3.05E-04 99.2% 3.1E-04 

Table 22 contains the errors of the domain, of the section used for the optimisation problem (𝑆𝑜𝑏𝑠), and 

of the descendent aorta. Absolute error is around 0.1%, which, although very small, is higher than what 

was seen for the tests presented in (Section 4.2). The relative error in the domain is around 9.8%. This 

is driven by the errors in the supra-aortic outlets (Table 23) because an MLBC with 𝛼 = 3 was imposed 

in Data P, which might not be the reality and it is difficult to confirm due to the complexity of acquiring 

patient-specific data. The discrepancy in the patient-specific data might also drive these errors: while 

the literature gives the velocity at the inlet, the pressure at the 𝑆𝑜𝑏𝑠 is obtained by the patient’s 

hemodynamic gradient test.  

Table 22: Absolute errors, relative errors and magnitude in the domain, section 𝑆𝑜𝑏𝑠 and outlet DA of the controlled 

solutions obtained by solving the CoA tests mentioned in Section 3.3.2. 

Test 

Domain 𝑺𝒐𝒃𝒔 Section Outlet DA 

Abs. 
Error 

Rel. Error  
Abs. 
Error 

Rel. Error  Mag. 
Abs. 
Error 

Rel. Error  Mag. 

P1 1.1E-03 9.8E-02 2.6E-03 9.4E-02 -9.4E-02 1.6E-03 9.3E-02 -9.3E-02 

P3 1.1E-03 9.7E-02 2.6E-03 9.4E-02 -9.3E-02 1.6E-03 9.3E-02 -9.3E-02 

Pv 1.1E-03 9.7E-02 2.6E-03 9.4E-02 -9.3E-02 1.6E-03 9.3E-02 -9.3E-02 

Q1 8.4E-03 1.5E+00 2.0E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 

Q3 8.4E-03 1.5E+00 2.0E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 

Qv 8.4E-03 1.5E+00 2.0E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 

For the errors at the supra-aortic outlets (Table 23), as explained before, are driven by the big 

discrepancy in the obtained parameter 𝛼. Nevertheless, since we attributed a laminar outflow profile, 

the errors and the magnitudes are in the same order. This can be confirmed in Figure 53 (Data P) and 

Figure 54 (Test P1), where the profiles in each outlet and 𝑆𝑜𝑏𝑠 are similar, but the magnitude of the 

velocity different. Also, ML assumes a circular vessel, which is not the case for outlet BA and could be 



76 

 

an additional factor of higher error values. Despite considerably high errors in the supra-aortic outlets, 

the absolute error in the outlet DA is around 0.2%, and the relative error around 9.3% (<10%).  

Table 23: Absolute error, relative error, and magnitude in the supra-aortic outlets (Outlet BA, Outlet LCA and Outlet 

LSA) of the controlled solutions obtained by solving the CoA tests mentioned in Section 3.3.2. 

The solutions at several cross-sections along the aorta, representing both velocity’s magnitude and 

direction, can be found in Figure 52, for Data P (Figure 52-A) and Test P1 (Figure 52-C). As expected, 

maximum velocities are found near the coarctation, with the flow higher at the end of the aortic arch 

skewing towards the interior of the aorta, unlike what was seen in the previous tests, where the higher 

values of flow were found near the outer wall in the descending aorta. Also, in Figure 52-C (Data P) 

and Figure 52-D (Test P1), despite the higher velocities near the CoA, we can observe some 

recirculation at the beginning of the descendent aorta but not right after the CoA. 

 
(A) Data P: Velocity 

Magnitude 
(B) Test P1: Velocity 

Magnitude 
(C) Data P: Streamlines (D) Test P1: Streamlines 

Figure 52: Distribution of velocity magnitude and direction on 15 slices of the domain, computed from the solution 

of the studies: (A) patient-specific Data P and (B) controlled Test P1. Scale units: m/s. Streamline plots on the fluid 

domain, computed from the solution of the studies: (C) patient-specific Data P and (D) controlled Test P1. The 

streamlines have a colour expressing the velocity magnitude in m/s. Scale units: m/s. 

First, for both Data P (Figure 53 – (A) to (E)) and Test P1 (Figure 54– (A) to (E)), the profiles seen for 

all sections are similar. Secondly, the attribution of outflow laminar profiles in outlets BA, LCA and LSA 

explains the parabolic profile observed in both figures, although much higher values for Data P. For the 

outlet DA, there is a slight skew of higher velocities towards the aorta's outer wall in both simulations, 

which was already discussed in previous sections. As expected, velocities in the outlet DA are much 

higher than velocities in the supra-aortic outlets. Finally, for section 𝑆𝑜𝑏𝑠, which corresponds to the CoA, 

Test 

Outlet BA Outlet LCA Outlet LSA 

Abs. 
Error 

Rel. 
Error  

Mag. 
Abs. 
Error 

Rel. 
Error  

Mag. 
Abs. 
Error 

Rel. 
Error  

Mag. 

P1 1.6E-03 9.3E-02 -9.3E-02 1.6E-03 9.3E-02 -9.3E-02 1.6E-03 9.3E-02 -9.3E-02 

P3 1.6E-03 9.3E-02 -9.3E-02 1.6E-03 9.3E-02 -9.3E-02 1.6E-03 9.3E-02 -9.3E-02 

Pv 1.6E-03 9.3E-02 -9.3E-02 1.6E-03 9.3E-02 -9.3E-02 1.6E-03 9.3E-02 -9.3E-02 

Q1 1.2E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 

Q3 1.2E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 

Qv 1.2E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 1.2E-02 2.0E+00 -2.0E+00 
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values for Test P1 are in accordance with the hemodynamic gradient given, as expected. The CoA 

velocity is much higher (x3) than in the DA driven by the narrowing of the vessel. In this section 

observable a skew of higher velocity values towards the interior of the aortic arch.  

 

(A) Data P: Outlet 
DA 

(B) Data P: Outlet 
BA 

(C) Data P: Outlet 
LCA 

(D) Data P: Outlet LSA (E) Data P: 𝑆𝑜𝑏𝑠 

Figure 53: Distribution of velocity magnitude from the patient-specific Data P, on the (A) outlet DA, (B) outlet BA, 

(C) outlet LCA, (D) outlet LSA and (E) 𝑆𝑜𝑏𝑠. Scale units: m/s. 

 

(A) Test P1: Outlet 
DA 

(B) Test P1: Outlet 
BA 

(C Test P1: Outlet 
LCA 

(D) Test P1: Outlet LSA (E) Test P1: 𝑆𝑜𝑏𝑠 

Figure 54: Distribution of velocity magnitude from the controlled Test P1, on the (A) outlet DA, (B) outlet BA, (C) 

outlet LCA, (D) outlet LSA and (E) 𝑆𝑜𝑏𝑠. Scale units: m/s. 

When comparing all the CoA tests, the first observation is that the controlled parameter obtained (Table 

20) is similar in the same type of tests, regardless of the data used (Data P or Data Q). For example, 

𝛼1 in Test P3 is similar to 𝛼1 in Test Q3, while 𝛽1 in Test Pv is similar to 𝛽1 in Test Qv. The fact that the 

same values were obtained regardless of the data used confirms the method's validity, even if the flux 

in the outlets is not well adjusted to the real data.  Moreover, as seen in Section 4.2, the parameters 

show different values as seen in the literature [94], with the tests using a non-laminar profile approach 

with the closest values to 𝛼 = 3. In this case, the values obtained as parameters for the CoA were 

higher than the ones for the normal aorta.  

Additionally, unlike what was obtained for the tests in the previous section, when using a different control 

per each outlet (Test P3 and Test Q3) the values obtained are considerably difference, mainly between 

the parameter for the outlet BA (𝛼1) and the remaining ones. These higher values in 𝛼1 reduce the flow 

rate going into this outlet which, in the end, approximates the proportion of flow in each supra-aortic 

outlet to what would be expected. However, this outlet BA does not have a circular shape, but an 

elliptical one, which might influence the results since Murray’s Law was developed in pipes.  

Similar parameters lead to the same flow rate in each outlet, which can be observed in Table 21. As 

seen for Test P1, the velocity in the coarctation reaches much higher values than the outlets' velocity, 

which means the majority of the flow is directed to the coarctation and consequently to the outlet DA. 

This explains the low percentages of flow seen for the supra-aortic outlets. Tests P1, Q1, Pv and Qv 

present the same values for flow rates in the outlets (Outlet DA ~ 99.2%, Outlet BA ~ 0.7%, Outlet LCA 

~ 0.0% and Outlet LSA ~ 0.0%), meaning that different ML parameters might lead to the same velocity 
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in the boundary. Test P3 and Q3, on the other hand, are similar between them (Outlet DA ~ 99.2%, 

Outlet BA ~ 0.5%, Outlet LCA ~ 0.2% and Outlet LSA ~ 0.2%) and goes according to what is expected 

in the supra-aortic outlets – the flow in the outlet BA being twice the flow in remaining two. Note that for 

all tests, the flow in the outlet DA is similar. For Data Q, since a TFBC was attributed, the flow rate in 

each boundary is not dependent on the outlet's diameter, which explains the discrepancy in 

percentages of flow rate seen in the table, compared to the remaining tests.  

Errors - both absolute and relative – are similar for all test, with the absolute error in the domain < 1%. 

Nevertheless, for tests with Data P, the relative error in the domain is <10% while for the test with Data 

Q is ~145%, driven by the errors in the outlet DA and the coarctation section. In the supra-aortic outlets, 

relative errors are in the order of 101 and absolute errors around 0.2% for tests with Data P and 1.4% 

for tests with Data Q.  
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5. Conclusions, limitations, and future work 

Boundary conditions replace the upstream and downstream vasculatures absent in the region of interest 

in a numerical simulation; therefore, studying boundary conditions is important to substitute the regions 

with physically accurate and robust alternatives to driving better and more realist computational results. 

When patient-specific data is not available, the choice of appropriate boundary conditions has been a 

subject of intensive research, especially in the outlet boundary conditions, where data is even more 

limited. In this work, a framework to adjust Murray’s law boundary conditions using a variational 

approach was developed in a normal aorta and validated in an aorta with coarctation.   

The absolute errors over the domain obtained for both models are small (< 1%), with the normal aorta 

(where the framework was developed) showing smaller values (<0.03%). Relative errors in the domain 

are considerably higher but no more than 10%, for both models except for the tests using traction-free 

boundary conditions in the aorta with coarctation. In these tests, errors were much higher than in any 

other test, driven by the section's errors with coarctation and the outlet DA.  

In general, relative errors in the supra-aortic outlets were higher driven by the laminar profile forced in 

the boundary conditions. The magnitude of the error was considered to have a better understanding of 

the true relative error.  The best results of magnitude were obtained for the tests using the in-silico data 

with a traction-free boundary condition (Tests C). Here, for the outlet LSA, for example, the magnitude 

was around 3.2%. Worst errors were found for tests using traction-free boundary condition in only the 

outlet LCA (Tests B), where the relative error in LSA reached 154%. For the aorta with coarctation, all 

outlets show similar errors (~100%).  

For the normal aorta, using a single controlled parameter versus three control parameters does not 

seem to impact the results since the obtained variables are similar. This goes under Murray’s law, where 

all the vessels radius are powered to the same constant (𝛼 = 3). Values obtained for the normal aorta 

were under the 𝛼 = 3, varying from 𝛼𝑥 = 1.4 to 𝛼𝑥 = 3.0.  

Different results were found when applying the framework to an aorta with coarctation. Firstly, the values 

of the parameters are higher than 𝛼 = 3. Ranging from 𝛼𝑥 = 3.4 to 𝛼𝑥 = 6.0. By increasing the 

parameter 𝛼, the ratio between the outlet's diameter and the inlet's diameter becomes smaller, which 

decreases the flow in the outlet.  

Secondly, the use of one controlled parameter versus three controlled parameters impacted the results. 

Solutions using three controlled parameters show a more balanced proportion of flow in each outlet, 

under the aorta's physiology. This is achieved by a much larger 𝛼𝑥 in the outlet BA comparing to the 

remaining two outlets.  

Finally, different datasets lead to the same results since the objective function was only dependent on 

the patient-specific velocity, which helps to validate the method developed.  

To conclude, using a variational approach is an acceptable method to attribute boundary conditions 

when patient-specific is not available to provide individual characteristics to the boundary conditions, 

particularly when an abnormal or defective anatomy is being studied – such as the case of the 

coarctation. Nevertheless, this work was only the first stage of developing a method that could help to 

analyse the anatomy and flow in the CoA, and potentially evaluate the gravity of the disease and assist 

the surgical planning, including the decision of the stent placement. Surpassing the limitations of the 
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work and improving some of the assumptions, as a next step, could lead to better and more useful 

results.  

As a first step, to acquire a better understanding of the underlying processes and for the sake of 

computational savings, several simplifying assumptions were considered. 

The first simplification was to model the aortic flow as stationary, which is a valid assumption since the 

interaction with the aortic wall was not considered. Nevertheless, the inclusion of time dependency 

would have allowed understanding the implications of the cardiac cycle in the output but, on the other 

hand, it would drive a significant increase in the computational cost, since it would be associated to 

each time step iteration. A future step in this work could be applying this framework to a time-dependent 

simulation and the coupling with additional models describing FSI. 

Secondly, the flow was also considered laminar. A turbulence or transition model should be considered 

when studying the aortic arch's hemodynamics since, in pathologies like the aorta's coarctation, the 

flow is proved to be turbulent.  

Moreover, the mesh densities used in the numerical simulations were not the ideal ones, since they 

have associated a relatively high error. The choice of a less refined mesh was mainly driven by the lack 

of computational memory needed to assemble the matrixes with a high number of degrees of freedom.  

Another type of limitations concerns the numerical data used—the lack of patient-specific data forced 

to generate in-silico data, for the first part of this work. The use of exclusively realistic data would have 

been an improvement. Additionally, even in the second part of the work, a proxy using literature data 

for the inflow boundary condition was needed when testing with patient-specific data. Moreover, for the 

optimisation problem, an average velocity in the coarctation zone was used. A better approach should 

include a velocity vector.  

Another limitation concerns the aorta's data preparation with coarctation, especially the geometry since 

the image acquisition could introduce some errors. The CT images include artefacts and that in most 

of the slices differentiation between the TA and the surrounding tissues barely existed. The images 

were acquired first for medical diagnosis and not for image segmentation, which influences its 

processing after the segmentation. On top of that, because of the complexity of the geometry due to 

high curvature, the bifurcations and the coarctation, the generation of a proper mesh was tricky.  

Regarding the validation, another limitation was the lack of data for the inflow boundary condition. A 

flow rate taken from the literature was used instead while, for the cost function, a patient’s hemodynamic 

gradient was used. Also, the exact plane where the gradient was measured was difficult to select in 

COMSOL Multiphysics®. The discrepancy in sources and the misalignment of the gradient plane might 

lead to an increase in error. The use of patient-specific data in the entire model could be the next step 

in this work. The use of a mean velocity in the coarctation, instead of a vector of velocities, is one of the 

biggest challenges in CFD.  

Finally, since this was a single patient-specific study, the methodology should be applied to more 

patients with different anatomical and physiological characteristics to draw more substantial 

conclusions. The conclusion of different simulations will help to understand if the method is reliable and 

compatible with different subjects.  
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Annexes  

Annexe A: Navier-Stokes equations 

Reynold’s Transport Theorem  

The Reynold’s Transport Theorem (RTT) formulation, named after Osborne Reynolds (1842 – 1912), 

an Irish mathematician and physicist [119], is the relationship that relates the time rate of change of an 

extensive property (N) as a function of the intensive property (𝜂). While the extensive property is a 

property that depends on the mass contained in a fluid, the intensive property corresponds to the same 

property per unit mass of volume and therefore does not depend on the mass. [36], [120] 

The RTT is used to compute the derivatives of integrated quantities, which is needed to derivate the 

basic conservation laws of fluid mechanics.  In this study, the RTT will be used to derivate the Navier-

Stokes equations from the mass, linear momentum, and energy conservation laws. These conservation 

laws are adopted from classical mechanics and classic thermodynamics where the system approach is 

usually applied.  The system approach refers to a fixed mass within a boundary where the mass remains 

constant with time, even if the system's boundary changes [121]. On the other hand, in fluid mechanics, 

the control volume approach is usually chosen because it is challenging to recognize and keep track of 

a system of fluid particles. In the control volume approach, a fixed volume enclosed by a control surface 

is either standing still in space or moving with a constant velocity through which the fluid flows. 

Therefore, the RTT will be used to link the system equations and the corresponding control volume 

equations. [36], [120] 

The RTT states that the total rate of change of an extensive property of a system occupying a control 

volume (𝛺) at time 𝑡 is equal to the sum of the 1) temporal rate of change of N within the control volume 

and 2) the net flux of the property N through the control surface (𝜕𝛺) that surrounds the control volume. 

It is expressed in terms of a substantive derivative on the left-hand side: 

 ˆ ˆ( ) b r

DN
dV v ndA v ndA

Dt t
  

  


= +  + 

    (76) 

Here 𝜌 is the fluid density, 𝑉 is the volume, 𝑣𝑏 is the velocity of the control surface, 𝑣𝑟 is the velocity of 

the fluid in the control surface, 𝑛 is the outward pointing normal vector on the control surface, and 𝐴 is 

the area of the 𝜕𝛺. [36], [120] 

From the relationship defined by the RTT, all conservation laws can be derived by substituting the 

appropriate extensive and intensive properties.  

Navier-Stokes equations 

As seen in Section 2.2.2.1, the NS equations correspond to the continuity equation and the conservation 

of linear momentum, which will be derived in the following two sections.  

• Continuity Equation for Conservation of Mass 

To derive the continuity equation for the conservation of mass, Reynolds’s Transport Theorem is 

applied. Substituting the extensive property (N) by the mass, the intensive property by 𝜂 = 1 and the 

right-side to zero due to the conservation of mass, the following general expression for conservation of 

mass applied to a control volume is obtained:   
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If there are well-defined inlets and outlets, the net rate of change of mass within the control volume is 

equal to the rate at which mass flows into the control volume minus the rate at which mass flows out of 

the control volume, which is written as: 

 
in outCV

dV m m
t


= −


   (78) 

Considering the control volume as an infinitesimal cubed control volume, with dimensions 𝑑𝑥, 𝑑𝑦 and 

𝑑𝑧 and volume 𝑉 =  𝑑𝑥 𝑑𝑦 𝑑𝑧, aligned with the axes in Cartesian coordinates. The centre of the cube 

is revealed at some arbitrary point P from the origin, and its density and velocity components are 𝜌, 𝑢, 

𝑣, and 𝑤, respectively. To generate a differential equation for conservation of mass, the control volume 

is considered to diminish to infinitesimal size, shrinking in the limit to a point in the flow.  

At locations distant from the centre of the cube, a Taylor series expansion is used about the centre of 

the cube (point P) to define mass flow rate (�̇�). As the cube representing the control volume shrinks to 

a point, second-order and higher terms of the expansion become negligible. For example, the centre of 

the right-most face of the cube is located a distance 𝑑𝑥/2 from the middle of the cube in the x-direction; 

the value of 𝜌𝑢 at that point is: 

 
22

2
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( )

2 2! 2 2
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u u u

x xx
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Applying this truncated Taylor series expansion to the density times the normal velocity component at 

the centre point of each of the six faces of the cube, it becomes: 
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The mass flow rate into or out of one of the faces is equal to the density times the normal velocity 

component at the centre point of the face times the surface area of the face 

 
nm V A=  (86) 

Where 𝑉𝑛 is the magnitude of the normal velocity through the face and 𝐴 is the surface area of the face.  

As the control volume shrinks to an infinitesimal point, the rate of change of mass within the control 

volume becomes: 
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 dV dx dy dz
t t

 



 


   (87) 

Applying the normal velocity components in each face, given above, and adding up all the mass flow 

rates into (left, back and bottom faces) and out (right, front and top faces) of the control volume through 

the faces,  the net mass flow rate into CV becomes: 

 ( ) ( ) ( )

2 2 2in

u dx v dy w dz
m u dy dz v dx dz w dx dy

x y z

  
  

      
 − + − + −    

      
  (88) 

And the net mass flow rate out of CV: 

 
( ) ( ) ( )

2 2 2out

u dx v dy w dz
m u dy dz v dx dz w dx dy

x y z

  
  

      
 + + + + +    

      
  (89) 

Inserting these two terms into the equation (78), and considering all the needed combinations and 

simplifications, the Continuity Equation in Cartesian Coordinates is given by: 

 

( ) ( ) ( )

( ) ( ) ( )
0

u v w
dx dy dz dx dy dz dx dy dz dx dy dz

t x y z

u v w

t x y z

   

   

   
= − − −

   

   
+ + + =

   

 (90) 

When the fluid is incompressible, the density is constant: 

 0
u v w

x y z

  
+ + =

  
 (91) 

 

• Conservation of Linear Momentum 

To derive Cauchy’s equation, once again, the Reynolds Transport Theorem is again the starting point. 

Considering the extensive parameter (N) as linear momentum, velocity (𝑣) as the intensive parameter 

(𝜂), 𝜎𝑖𝑗 as the stress tensor and well-defined inlets and outlets.  

 ( ) ( )ij

CV CS CV CS

F g dV ndA V dV V V ndA
t

  


= +  = + 


      (92) 

 ( )body surface

out inCV

F F F V dV mV mV
t
  


= + = + −


      (93) 

Where �⃗�  in the last two terms is taken as the average velocity at an inlet or outlet, and 𝛽 is the 

momentum flux correction factor. From Newton’s second law, the total force acting on the control 

volume is equal to the rate at which momentum changes within the control volume plus the rate at which 

momentum flows out of the control volume minus the rate at which momentum flows into the control 

volume. 

Considering, once more, the control volume as an infinitesimal cube-shaped control volume, with 

dimensions 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 and volume 𝑉 =  𝑑𝑥 𝑑𝑦 𝑑𝑧, aligned with the axes in Cartesian coordinates. 

The centre of the cube is revealed at some arbitrary point P from the origin and where the density (𝜌), 

velocity components (𝑢, 𝑣 and 𝑤) and stress tensor (𝜎𝑖𝑗) are defined. To generate a differential equation 

for conservation of linear momentum, one imagines the control volume shrinking to infinitesimal size 

and the limit to a point in the flow.  
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Considering the x-component of the equation (93), for simplicity, and 𝑢 as the x-direction of �⃗� , the total 

forces in the system become: 

 ( ), ,x body x surface
x

out inCV

F F u dV mu mu
tF   


= + = + −


      (94) 

As the control volume shrinks to a point, the first term of the right-hand side becomes: 

 ( ) ( )
CV

u dV u dx dy dz
t t
 

 


   (95) 

Which is the rate of change of x-momentum within the control volume. To obtain the remaining two 

terms of the right-hand side of the equation (94), first, a first-order truncated Taylor series expansions 

is applied at locations away from the centre of the cube control volume to approximate the inflow and 

outflow of momentum in the x-direction obtaining for the six faces: 

 
( )

( )
2

centreof right face

uu dx
uu uu

x


 


 +


 (96) 

 
( )

( )
2

centreof left face

uu dx
uu uu

x


 


 −


 (97) 

 
( )

( )
2

centreof top face

vu dy
vu vu

y


 


 +


 (98) 

 
( )

( )
2

centreof bottomface

vu dy
vu vu

y


 


 −


 (99) 

 
( )

( )
2

centreof front face

wu dz
wu wu

z


 


 +


 (100) 

 
( )

( )
2

centreof back face

wu dz
wu wu

z


 


 −


 (101) 

Only the normal velocity component at each face needs to be considered, since the tangential velocity 

components contribute no mass flow out of (or into) the face, and hence no momentum flow through 

the face either.  

Secondly, summing all outflows and subtracting the all the inflows one obtains and considering 𝛽 equal 

in all faces, one has: 

 ( ) ( ) ( )
out in

mu m vu uu u wu dx dy dz
x y z

   
   

+ + 
  

− 
 

   (102) 

The equation (102) represents the net outflow of x-momentum through the control surface.  

To derive the left-hand side of the equation (94), all the forces – body and surface - acting on our 

infinitesimal control volume in the x-direction need to be summed. The gravity force (weight) is the only 

body force  to be considered, and since the control volume is aligned with the axes, for the x-direction, 

the body forces become: 

 , ,x body x gravity xF F g dxdy dz=    (103) 

For the surface forces, each stress component (𝜎𝑖𝑗) is multiplied by the surface area of the face on 

which it acts. For the x-direction, the components that point in the x- (or -x-) direction are only 
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considered. Using truncated Taylor series expansions, all the surface forces contributing to a net x-

component of surface force acting can be obtained for the differential fluid element. 

Summing all these surface forces, the approximation for the net surface force acting on the differential 

fluid element in the x-direction is obtained: 

 ,x surface xx yx zxF dx dy dz
x y z
  

   
 + + 

   
  (104) 

Finally, substituting equations (95) and (102) to (104) into equation (94), and eliminating 𝑑𝑥 𝑑𝑦 𝑑𝑧, for 

the x-direction: 

 ( ) ( ) ( ) ( )x xx yx zx uu vu wu
x yt

g
y z z

u
x

       
   

+ + + = +
  

 
+ +
 




 (105) 

Similarly, one can obtain the same equations for the y- and z-directions: 

 ( ) ( ) ( ) ( )y xy yy zy uv vv wv
x yt

g
y z z

v
x

       
   

+ + + = +
  

 
+ +
 




 (106) 

 ( ) ( ) ( ) ( )z xz yz zz uw vw ww
x yt

g
y z z

w
x

       
   

+ + + = +
  

 
+ +
 




 (107) 

And obtain the vector equation for the Cauchy’s equation: 

 ( )( )g ij V VV
t

   


+   = +  


 (108) 

Which can also be written as: 

 ( )
V DV

V V g ij
t Dt

   
 

+  = = +   
 

 (109) 

Since  

 ( )
V

V V
t t t


 

  
= +

  
 (110) 

 ( ) ( ) ( )VV VV V V V    =  +   (111) 

Fluid mechanics problems cannot be solved by using Cauchy’s equation by itself, even when combined 

with the Continuity Equation, since the stress tensor 𝜎𝑖𝑗 needs to be expressed in terms of the primary 

unknowns in the problem: density, pressure, and velocity. [122] 

The stress tensor 𝜎𝑖𝑗 contains nine components, six of which are independent because of symmetry. 

Thus, in addition to density and the three velocity components, there are six additional unknowns, for a 

total of 10 unknowns (𝜌, 𝑢, 𝑣, 𝑤,  𝜎𝑥𝑥 ,  𝜎𝑥𝑦 ,  𝜎𝑥𝑧 ,  𝜎𝑦𝑦 , 𝜎𝑦𝑧 and 𝜎𝑧𝑧).  

The Continuity Equation returns one equation while the Cauchy equations return three equations. Since 

the number of equations needs to be the number of unknows, six more equations are missing. These 

additional equations are called constitutive equations and enable writing the stress tensor components 

in terms of the velocity field and pressure field. 

To obtain these constitutive equations, the pressure stresses and the viscous stresses are separated. 

When a fluid is at rest, the only stress acting at any surface of any fluid element is the local hydrostatic 

pressure P, which always acts inward and normal to the surface. Therefore, the stress tensor reduces 

to: 
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0 0

0 0

0 0

xx xy xz

ij yx yy yz

zx zy zz

P

P

P

  

   

  

  − 
   

= = −   
   −  

 (112) 

When a fluid is moving, pressure still acts inwardly normal, but viscous stresses may also exist. 

Therefore, the system can be written as: 

 

0 0

0 0

0 0

xx xy xz xx xx xx

ij yx yy yz yx yy yz

zx zy zz zx zy zz

P

P

P

     

      

     

   − 
    

= = − +    
    −    

 (113) 

𝜏𝑖𝑗 is the viscous stress tensor, which can be expressed using constitutive equations in terms of velocity 

field and measurable fluid properties like viscosity.   

If the fluid is incompressible, the equation of state is replaced by the equation 𝜌 = constant, and 𝑃 

cannot be defined as the thermodynamic pressure anymore. Instead, 𝑃𝑚 is defined as the mechanical 

pressure, which is the mean normal stress acting inwardly on a fluid element.  

 ( )
1

3
m xx yy zzP   = + +  (114) 

Thus, when dealing with incompressible fluid flows, pressure variable 𝑃 is always interpreted as the 

mechanical pressure 𝑃𝑚. For compressible flow fields, however, pressure 𝑃 is the thermodynamic 

pressure, but the mean normal stress felt on the surfaces of a fluid element is not necessarily the same 

as 𝑃 (pressure variable 𝑃 and mechanical pressure 𝑃𝑚 are not necessarily equivalent). 

Considering the fluid a Newtonian, therefore the stress tensor is linearly proportional to the strain rate 

tensor. Additionally, if the fluid isothermal (local temperature changes are small or non-existent) allows 

assuming properties such as dynamic viscosity 𝜇 and kinematic viscosity 𝜈 are constant, therefore: 

 2i j ij =  (115) 

where 𝜀𝑖𝑗   is the strain rate tensor. 

In Cartesian coordinates, the nine components of the viscous stress tensor are listed, six of which are 

independent due to symmetry: 

 

2

2

2

xx xx xx

i j yx yy yz

zx zy zz

u u v u w

x y x z x

v u v v w

x y y z y

w u w v w

x z y z z

  

  

      

  

  

       
+ +    

        
         
 = = + +              
  

       + +           

 (116) 

For the same type of coordinates, the stress tensor becomes: 

 

2

0 0

0 0 2

0 0

2

ij

u u v u w

x y x z x
P

v u v v w
P

x y y z y
P

w u w v w

x z y z z

  

   

  

       
+ +    

       
−             = − + + +              −   

       + +           

 (117) 

Substituting these into the three cartesian components of the Cauchy’s equation (108): 
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2

2

2x

Du P u u v u w
g

Dt x x y y x z z x
    

         
= − + + + + + +   

         
 (118) 

 
2

2
2y

Dv P v u v v w
g

Dt y x x y z z yy
    

          
= − + + + + + +   

         
 (119) 

 
2

2
2z

Dw P w u w v w
g

Dt z x x z y y z z
    

         
= − + + + + + +  

          
 (120) 

Notice that since pressure consists of normal stress only, it contributes only one term these equations. 

However, since the viscous stress tensor consists of both normal and shear stresses, it contributes 

three terms. 

Since the velocity components are smooth functions of 𝑥, 𝑦 and 𝑧, the order of differentiation is 

irrelevant, therefore, after some rearrangements equations (118)-(120):  

 
2

2

2 2 2

2 2

2 2 2

2 2

x

x

Du P u u v u w u
g

Dt x x x x y x zy zx

P u v w u u u
g

x x x y z y zx

  

 

          
= − + + + + + + + 

        

         
= + + + + + + +  
        

 (121) 

 
2

2

2 2 2

2 2

2 2 2

2 2

y

y

Du P v u v v w v
g

Dt y y x y y y zy zx

P u v w v v v
g

y y x y z y zx

  

 

          
= − + + + + + + + 

        

         
= + + + + + + +  
        

 (122) 

 
2

2

2 2 2

2 2

2 2 2

2 2

z

z

Du P w u v w w w
g

Dt z z x z y z zy zx

P u v w w w w
g

z z x y z y zx

  

 

          
= − + + + + + + + 

        

         
= + + + + + + +  
        

 (123) 

The term in round parenthesis is zero for incompressible flows because of the continuity equation for 

incompressible flow. The last three terms of each equation are the Laplacian of the correspondent 

velocity component (𝑢, 𝑣 or 𝑤) in Cartesian coordinates. Therefore the three components of the 

momentum equation can be written as: 

 
2

x

Du P
g u

Dt x
  


= − + + 


 (124) 

 2

y

Du P
g v

Dt y
  


= − + + 


 (125) 

 
2

z

Du P
g w

Dt z
  


= − + + 


 (126) 

Finally, combining the three components into one vector equation results in the Navier-Stokes (NS) 

equation for incompressible flow with constant viscosity. 

 2DV
P g V

Dt
  = − + +   (127) 

The equation (127) is an unsteady, non-linear, second-order, partial differential equation. It has four 

unknows (three velocity components and pressure), yet it represents only three equations. The fourth 

equation is the incompressible continuity equation:  
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 0
u v w

x y z

  
+ + =

  
 (128) 

The incompressible NS equation can be represented per each direction in the form: 

 
2

2 2 2

2 2x

u u u u P u u u
u v w g

t x y z x y zx
  

         
+ + + = − + + + +  

         
 (129) 

 
2

2 2 2

2 2y

v v v v P v v v
u v w g

t x y z y y zx
  

         
+ + + = − + + + +  

         
 (130) 

 
2

2 2 2

2 2z

w w w w P w w w
u v w g

t x y z z y zx
  

         
+ + + = − + + + +  

         
 (131) 

Annexe B: Womersley pulsatile flow  

The blood flow in the heart and arteries is quite pulsatile, meaning that the flow has a periodic behaviour 

and a net directional motion over the cycle (i.e., the average flow is > 0). When the heart contracts 

during systole, a pressure originates from the left ventricle and travels out as a wave driven by the 

arteries’ elasticity. The most immediate consequence of the heart contraction is that the pressure in the 

left ventricle (upstream) exceeds that in the aorta (downstream) resulting in the opening of the aortic 

valve and the blood being ejected from the heart. The pulsatile nature of blood flow also affects the 

pressure distribution out into the vessels, the velocity profiles within them and the point of transition 

from a laminar to a turbulent regime. This later effect is since flow accelerates rapidly in early systole, 

when, based on the instantaneous Reynolds number in the ascending aorta, the blood flow would be 

expected to be turbulent during a significant part of systole. 

In the tube seen for Section 2.2.2.2, if the flow is pulsatile, the partial derivative of velocity 𝑢 concerning 

time is not zero. Moreover, the partial derivative of pressure P with respect to distance along the tube 

𝑥 is non-zero. These were the necessary conditions for Poiseuille’s law. Therefore, Poiseuille flow is no 

longer a reasonable estimate for the case of pulsatile flow. 

To estimate flow from a pulsatile driving pressure in rigid tubes, a Newtonian fluid, uniform, laminar, 

axially symmetric, pipe flow, similar to the Poiseuille flow problem is assumed. However, considering 

pulsatile flow rather than steady now. 

Considering the unsteady Navier-Stokes equations 

 
( ) ( )




   





−  + 

=

+ =




in 0

0

• ,

in

u
v

i

u u u p f
t

d v u

 (132) 

Where Ω ≡ (0,1) × (0,1) with boundary conditions 

 = 0 on Du  (133) 

 ( )  −  = −  1• 2 sin on Npn u n t n  (134) 

 −  =  2• 0 on Npn u n  (135) 
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With initial condition 𝑢0 = 0, where Γ𝐷 is given by the sides 𝑥2 = 0 and 𝑥2 = 1 (with 0 ≤ 𝑥2 ≤ 1), Γ𝑁1 is 

the boundary {𝑥1 = 0, 0 ≤ 𝑥2 ≤ 1}, Γ𝑁2 is the boundary {𝑥1 = 1, 0 ≤ 𝑥2 ≤ 1} and n is the outward normal 

unit vector to 𝜕Ω. 

Considering 𝑢2 = 0, the second component of the momentum reduces to 
𝜕𝑝

𝜕𝑥2
= 0, so that 𝑝 is only a 

function of 𝑥1.  Continuity equation yields 
𝜕𝑢1

𝜕𝑥1
= 0, so 𝑢1 is a function only of 𝑥2.  

The first equation, the momentum equation, can be written as: 

 
  

− = −
 

2

1 1

2

12

u u p

t xx
 (136) 

Since pressure is a linear function of 𝑥1, 
𝜕𝑝

𝜕𝑥1
 is constant in space and amounts to the difference between 

outlet and inlet pressure divided by the length of the domain, i.e. 

 ( ) 


= −
 1

2 sin
p

t
x

 (137) 

First momentum equation reduces then to: 

 ( )  
 

− =
 

2

1 1

2

2

2 sin
u u

t
t x

 (138) 

Expanding the solution 𝑢1(𝑥2, 𝑡) defined in a bounded interval of the independent variable 𝑥2 as a 

Fourier Series,  

 ( ) ( ) ( ) 


=

=1 2 2
0

, k

k

u x t t sin k x  (139) 

The first momentum equation gives 

 
( )

( ) ( ) ( )


      
 

= =


+ =


  2 2

2 2

0 0

sin 2 sin
k

k

k k

t
sin k x k k x t

t
 (140) 

Sinusoidal functions are orthogonal with respect to the 𝐿2 scalar product, for any integer 𝑙 and 𝑚. 

Multiplying for sin( 𝑙𝜋𝑥2) for any integer 𝑙 and integrate over 0 ≤ 𝑥2 ≤ 1, by the orthogonality of 

sinusoidal functions and assuming: 

 ( )






= 




1

2 2
0

0 for even,

2
for odd

l

sin l x dx
l

l

 (141) 

We get a decoupled system of ordinary differential equations in the form 

 
( )

    






+




+ = 



2 2

2 1

0 for even,

8
for odd

l k

l

l
sin t l

l

 (142) 

With initial conditions 𝛾𝑙(0) = 0 since 𝑢1(𝑥2, 0) = 0. For 𝑙 even, 

   + = 0b  (143) 

With 𝑏 = 𝜈𝑙2𝜋2. General solution 𝛾 = 𝐶𝑒−𝑏𝑡reduces to 𝛾 = 0 due to the initial condition.  

For 𝑙 odd,  

 ( )   + =b Asin t  (144) 
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With 𝐴 =
8𝜈

𝑙𝜋
. The general solution for this type of equations is given by summing a particular solution to 

the general solution of the homogeneous problem. The right-hand side gives the particular solution: 

     = +sin cospart t t  (145) 

We have then  

 ( ) ( ) ( ) ( ) ( )      + + − =cos sin sinb t b t A t  (146) 

Therefore,  

 
 

 

+ =


− =

0b

b A
 (147) 

 


=
+2 2

Ab

b
 (148) 

 





= −
+2 2

A

b
 (149) 

 ( ) ( ) ( )


     
 

 −+ =  = + −
+ +2 2 2 2

sin sin cosbt Ab A
b A t Ce t t

b b
 (150) 

For the initial condition,  

 



=

+2 2

A
C

b
 (151) 

 ( ) ( )    
 

− 
= − + 

+ + 
2 2 2 2

sinbtA Ab
e cos t t

b b
 (152) 

Finally,  

 ( ) ( )( ) 


+

=

= +1 2 1 2
0

2 1k

k

u t sin k x  (153) 

Using 

  

 

( )( )
( ) ( ) ( )

( )( )( )

 

     
 

   

− +

+

− + +
= −

+ + +

2 22 1 2 2

2 1 42 4 2

2 1 sin
8

2 1 2 1

k t

k

e cos t k t

k k
 (154) 

Which is the unsteady counterpart of the Poiseuille’s Law for a constant in space and sinusoidal-in-time 

pressure drop and takes the name of 2D Womersley solution.[26] [51] 

Annexe C: Full derivation in 1D of the FEM  

To illustrate the FEM, consider the following partial differential equation: 

   in [0,L]
d du

EA f
dx dx

 
− =  

 
 (155) 

With boundary conditions  

 (0) 0u =  (156) 

 ( )
du

E L g
dx

=  (157) 

Assuming E = 0.1, A = 1, L = 1, f = 1 and g = 0.001, one has: 
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2

2

( )
0.1 1   in [0,1]

d u x

dx
− =   (158) 

 (0) 0u =  (159) 

0.1
du(x)

dx
= 0.001 

 
( )

0.1 0.001
du x

dx
=  (160) 

Considering also a mesh with n = 3 elements ((x1, x2), (x2, x3), (x3, x4)) and four nodes (x1, x2, x3, x4). 

The mesh is uniform, therefore h =
L

n
=

1

3
.  

The piecewise functions will be given by: 

ϕ1 = {

 
1
3
− x

h
   if   0 ≤ x <

1

3
0       otherwise

 ϕ′
1
= {

 
1

h
   if    0 ≤ x <

1

3
0       otherwise

 

ϕ2 =

{
 
 

 
 

x

h
   if   0 ≤ x <

1

3
2
3
− x

h
   if   

1

3
≤ x <

2

3
0       otherwise

 ϕ′
2
=

{
 
 

 
 
1

h
   if   0 ≤ x <

1

3

−
1

h
   if   

1

3
≤ x <

2

3
0       otherwise

 

ϕ3 =

{
 
 

 
 x −

1
3

h
   if   

1

3
≤ x <

2

3
1 − x

h
   if   

2

3
≤ x < 1

0       otherwise

 ϕ′
3
=

{
 
 

 
 
1

h
   if   

1

3
≤ x <

2

3

−
1

h
   if   

2

3
≤ x < 1

0       otherwise

 

ϕ4 = {

x − 1

h
   if   

2

3
≤ x < 1

 
0       otherwise

 ϕ4
′ = {

1

h
   if   

2

3
≤ x < 1
 

0       otherwise

 

Since our mesh is uniform hi = h, one has: 

 

1 1 1
0 0

2 1 0 0 2 1 0 01 1 1 1
0

1 2 1 0 1 2 1 01
3

1 1 1 1 0 1 2 1 0 1 2 1
0

0 0 1 2 0 0 1 2

1 1 1
0 0

h h h

h h h h
A

h

h h h h

h h h

 
+ − 

  − −    − + −      − − − −
   = = = 
   − − − − − + −      − −   

 
 − +
 

 (161) 

 

1 0 2

2 0

2 02

1 1

2

h

hh
F f g

h

h
g

 
    
    
    =  + =     
    
     +  

 (162) 
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Finally, the discretization of the equation (155) results in the following linear system, where U is the 

matrix of the unknown velocities in each node: 

 

1

2

3

4

2 1 0 0 2

1 2 1 0
3

0 1 2 1

0 0 1 2

2

h

u

u h
AU F

u h

u h
g

 
 −   
   

− −    =  =    − −
   

−      +  

 (163) 

 

Annexe D: Parameters used in COMSOL Multiphysics® for Section 3.2 

 

Table 24: Parameters defined in the Global node.  

Parameter Description Expression 

𝜌𝑏𝑙𝑜𝑜𝑑 Blood density 𝜌𝑏𝑙𝑜𝑜𝑑 = 1060 𝑘𝑔 ∙ 𝑚
−3 

𝜇𝑏𝑙𝑜𝑜𝑑 Blood viscosity 𝜇𝑏𝑙𝑜𝑜𝑑 = 0.004 𝑃𝑎 ∙ 𝑠 

𝑉𝑚𝑎𝑥 Maximum velocity at Τ𝑖𝑛𝑙𝑒𝑡 Measured in the patient 

𝑉𝑚𝑒𝑎𝑛 Average velocity at Τ𝑖𝑛𝑙𝑒𝑡 𝑉𝑚𝑒𝑎𝑛 =
𝑉𝑚𝑎𝑥
2

 

𝐴𝑖𝑛𝑙𝑒𝑡 Area of the cross-section of Τ𝑖𝑛𝑙𝑒𝑡 Measured in the geometry 

𝐴𝐷𝐴 Area of the cross-section of Τ𝐷𝐴 Measured in the geometry 

𝐴𝐵𝐴 Area of the cross-section of Τ𝐵𝐴 Measured in the geometry 

𝐴𝐿𝐶𝐴 Area of the cross-section of Τ𝐿𝐶𝐴 Measured in the geometry 

𝐴𝐿𝑆𝐴 Area of the cross-section of Τ𝐿𝑆𝐴 Measured in the geometry 

𝐷𝑖𝑛𝑙𝑒𝑡 Diameter of the cross-section of Τ𝑖𝑛𝑙𝑒𝑡 Measured in the geometry 

𝐷𝐷𝐴 Diameter of the cross-section of Τ𝐷𝐴 𝐷𝐷𝐴 = √

 
4 × 𝐴𝐷𝐴

π
 

𝐷𝐵𝐴 Diameter of the cross-section of Τ𝐵𝐴 𝐷𝐵𝐴 = √

 
4 × 𝐴𝐵𝐴

π
 

𝐷𝐿𝐶𝐴 Diameter of the cross-section of Τ𝐿𝐶𝐴 𝐷𝐿𝐶𝐴 = √

 
4 × 𝐴𝐿𝐶𝐴

π
 

𝐷𝐿𝑆𝐴 Diameter of the cross-section of Τ𝐿𝑆𝐴 𝐷𝐿𝑆𝐴 = √

 
4 × 𝐴𝐿𝑆𝐴

π
 

𝑅𝑒 Reynold’s number 𝑅𝑒 =
𝜌 × 𝑉𝑚𝑎𝑥 × 𝐷𝑖𝑛𝑙𝑒𝑡

𝜇
 

 


