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Abstract—Machine learning has been used to aid decision-
making in several domains, from healthcare to finance. Under-
standing the decision process of ML models is paramount in
high-stakes decisions that impact people’s lives, otherwise, loss
of control and lack of trust may arise. Often, these decisions
have a sequential nature. For instance, the transaction history
of a credit card must be considered when predicting the risk of
fraud of the most recent transaction. Although RNNs are state-
of-the-art models for many sequential decision-making tasks,
they are perceived as black-boxes, creating a tension between
accuracy and interpretability. While there has been considerable
research effort towards developing explanation methods for ML,
recurrent models have received relatively much less attention.
Recently, Lundberg and Lee unified several methods under a
single family of additive feature attribution explainers. From
this family, KernelSHAP has seen a wide adoption throughout
the literature; however, this explainer is unfit to explain models
in a sequential setting, as it only accounts for the current
input not the whole sequence. In this work, we present Time-
SHAP, a model-agnostic recurrent explainer that builds upon
KernelSHAP and extends it to sequences. TimeSHAP explains
recurrent models by computing feature-, timestep-, and cell-level
attributions, producing explanations at both the feature and time
axes. As sequences may be arbitrarily long, we further propose
two pruning methods that are shown to dramatically decrease
TimeSHAP’s computational cost and increase its reliability. We
validate TimeSHAP by using it to explain predictions of two
RNN models in two real-world fraud detection tasks, obtaining
relevant insights into these models and their predictions.

I. INTRODUCTION

With developments in deep learning (DL), the complexity
of machine learning (ML) models has dramatically increased,
resulting in a black-box paradigm in which data scientists
and decision-makers (the end-users) strive to understand the
decision processes of these models, hindering trust. Understand-
ing the decision-making processes of complex models may
also be crucial to detect and correct flawed reasoning [1] or
possible discriminatory reasoning against specific sub-groups
of the population, based on race, gender, or any other sensitive
attribute [2], [3].

By explaining the reasoning in a given model, we simul-
taneously gather insight into how it may be improved and
may advance human understanding of the underlying task.
Moreover, regulators may want to be able to audit automated
decision-making systems to make sure they are compliant with
existing domain-specific regulations (e.g. finance). Understand-
ing the model’s reasoning may be a requirement in certain

real-world applications, as exemplified in GDPR’s “right to
explanation” [4] (although its reach is contested [5], [6]).

This work focuses on sequential decision-making tasks, very
common in several domains, such as healthcare and finance.
In this kind of task, each decision takes into account the full
history of events of the entity of interest (e.g., a patient or a
bank account). Recurrent neural network (RNN) models, such
as long-short term memory (LSTM) [7] and gated recurrent
unit (GRU) [8], are state-of-the-art models in these domains.
However, while their application has grown ubiquitous and its
performance steadily increased, the complex decision-making
processes in these models is seen as a black-box, creating a
tension between accuracy and interpretability.

In recent years, numerous methods have been put forth to
explain DL models [9]–[20]. However, RNNs pose a distinct
challenge, as their predictions are not only a function of
the immediate input instance, but also of the previous input
instances in the sequence and the context (hidden state) drawn
thereafter. Blindly applying state-of-the-art DL explainers to
RNNs often disregards the importance of the hidden state,
attributing all the feature importance solely to the features of
the current input (as illustrated by Figure 1).

Recently, in landmark work, Lundberg and Lee [20] unified
a large number of explanation methods into a single family
of “additive feature attribution methods”. The authors further
proved that there is a unique solution to these attribution
methods that fulfills three desirable properties of explanations
(which will be described in detail below), namely consistency,
local accuracy, and missingness, dubbing this implementation
KernelSHAP. Although this method has become quite popular,
it is not directly applicable to sequential decision-making tasks,
as it only calculates attributions at the feature level and for a
single input instance.

In this dissertation, we propose TimeSHAP, a post-hoc
model-agnostic method to explain recurrent models. TimeSHAP
leverages KernelSHAP’s [20] strong theoretical foundations
and empirical results, and adapts it to the recurrent setting. By
doing so, we enable explaining, not only which features are
most important to a recurrent model, but also which previous
events had the largest impact on the current prediction.

As sequences are arbitrarily long, we further propose two
pruning algorithms to dramatically reduce the computational
cost of TimeSHAP by aggregating or removing older events,
unimportant to the current prediction. By doing so, we improve
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Fig. 1: Comparison between SHAP-based methods [20] from the literature (on the left) and TimeSHAP (on the right) when
used to explain a recurrent model’s predictions.

significantly the stability of TimeSHAP attributions and reduce
the computational cost needed to obtain them.

In summary, the main contributions of this dissertation are
the following:
• Adaptation of KernelSHAP [20] to the recurrent setting;
• Calculation of three types of explanations: Feature-, event-

and cell-wise explanations;
• Two pruning methods that reduce the execution cost of

TimeSHAP and increase explanation reliability;
• Validation of our method in two real-world fraud detection

datasets.
Part of the work developed in this dissertation was accepted

and presented at the NeurIPS 2020 workshop HAMLETS
(Human And Machine in-the-Loop Evaluation and Learn-
ing Strategies)1 in the paper TimeSHAP: Explaining Recurrent
Models through Sequence Perturbations.

II. BACKGROUND AND RELATED WORK

A. RNN Preliminaries

Although our method can be used to explain any sequence
model, throughout this paper we will use the example of a
vanilla RNN, as it is both simple and widely used. Other types
of recurrent models that could be used include the LSTM [7],
the GRU [8], or conditional random field (CRF) [21]. The
predictions of a sequence model at a given time-step t are
a function, not only of the current input x(t), but also of
its previous inputs x(t−1), x(t−2), . . . , x(0). For RNNs, this
recurrence is achieved indirectly through a hidden state h that
aims to encode all relevant information from previous time-
steps. The prediction of an RNN, ŷ(t) = f(x(t), h(t−1)), is
given by [22]

a(t) = b+Wh(t−1) + Ux(t), (1)

h(t) = σ(a(t)), (2)

o(t) = c+ V h(t), (3)

ŷ(t) = softmax(o(t)), (4)

where b and c are learnable bias vectors, U, V , and W are
learnable weight matrices, and σ is a nonlinearity (often chosen

1HAMLETS official webpage: https://hamlets-workshop.github.io/

to be the hyperbolic tangent). Moreover, a(t) is known as the
activation, h(t) as the hidden state, o(t) is the output, ŷ(t)

is a vector of probabilities over the output, where ŷ
(t)
i =

eo
(t)
i /

∑
j=1 e

o
(t)
j . If the RNN is the last layer of the model,

then ŷ(t) is used directly as the prediction. Otherwise, o(t) is
passed to the subsequent layers, and the prediction is given by
the last layer in the forward-pass.

B. Related Work

Research on ML explainers can generally be subdivided into
two categories: model-agnostic and model-specific.

Model specific explainers exploit characteristics of the
model’s inner workings or architecture to obtain more accurate
explanations of its reasoning [23]. The task of explaining
RNNs is often tackled by using attention mechanisms [24]–
[27]. However, whether attention can in fact explain a model’s
behavior is debatable and a known source of controversy in
the ML community [28]–[30].

DL models, in which RNNs are included, can also be
explained using gradient-based methods. These explainers
attribute a weight wi to each feature, representing the im-
portance, or saliency, of the i-th feature, based on the partial
derivatives of the prediction function f(x) with respect to the
input xi: wi =

∣∣∣∂f(x)∂xi

∣∣∣ [10], [11], [31]. Another approach in the
class of gradient-based methods redefines the backpropagation
rules instead of utilizing the out-of-the-box gradient of the
explained methods. These methods iteratively backpropagate a
relevance value (which initially corresponds to the predicted
score) over all the layers of the model until the input layer is
reached and the relevance is distributed across all features. The
contribution that reaches each input feature is its final feature
attribution. These methods define the rules to distribute the
relevance at each layer depending on the domain in which they
are inserted [13]–[16]. However, when explaining sequential
inputs, DL-specific methods focus on each input, leaving event
relevance as a largely unexplored research direction. Finally,
this approach is susceptible to noise and complexities that may
affect the gradient, like the vanishing gradients problem [24],
[32]. Regarding RNN-specific explainers [17]–[19] through
neural inspection, these models do not create explanations as
they only allow users to gain insights into the model behaviour.
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At the same time, these explainers are inflexible with regards to
the model’s architecture. For instance, if the RNN is a building
block of a larger DL model, preceded/succeeded by other types
of layers, it is not the direct input to the RNN we want to
explain but the input to the model.

Model-agnostic explainers are substantially more flexible
as they can explain any architecture and can be applied to
already trained architectures, possibly in production. These
explainers generally rely on post-hoc access to a model’s
predictions under various settings, such as perturbations of
its input [33]. A perturbation hx of the input vector x ∈ Xm

is the result of converting all values of a coalition of features
z ∈ {0, 1}m to the original input space Xm, such that zi = 1
means that a feature i takes its original value xi, and zi = 0
means that a feature i takes some uninformative background
value bi representing its removal. Hence, the input perturbation
function hx is given as follows:

hx(z) = x� z + b� (1− z), (5)

where � is the component-wise product. The vector b ∈ Xm

represents an uninformative input sample, which is often taken
to be the zero vector [34], b = 0, or to be composed of the
average feature values in the input dataset [20], bi = xi.

Lundberg and Lee [20] unified this and other explainers
(both model-agnostic and model-specific) into a single family
of “additive feature attribution methods”. Moreover, the authors
prove that there is a single solution to this family of methods
that fulfills both local accuracy (the explanation model should
match the complex model locally), missingness (features that
are set to be missing should have no impact on the predictions),
and consistency (if a feature’s contribution increases, then its
attributed importance should not decrease).

Those authors put forth KernelSHAP [20], a model-agnostic
explainer that fulfills these three properties. KernelSHAP
approximates the local behavior of a complex model f with
a linear model of feature importance g, such that g(z) ≈
f(hx(z)). The task of learning the explanation model g is
cast as a cooperative game where a reward (f(x), the score
of the original model) must be distributed fairly among the
players (i ∈ {1, . . . ,m}, the features). The optimal reward
distribution is given by the Shapley values formulation [35].
However, obtaining the exact Shapley values for all features
would imply generating all possible coalitions of the input,
z ∈ {0, 1}m, which scales exponentially with m, the number
of features in the model. As this task is computationally
intractable, KernelSHAP approximates the exact values by
randomly sampling feature coalitions [36]. The authors further
show that a single coalition weighing kernel, πx(z), and a
single loss metric, L(f, g, πx), lead to optimal approximations
of the Shapley values:

πx(z) =
(m− 1)(

m
|z|
)
|z| (m− |z|)

, (6)

L(f, g, πx) =
∑

z∈{0,1}m
[f(hx(z))− g(z)]2 · πx(z), (7)

where |z| is the number of non-zero elements of z, and L is
the squared error loss used for learning g.

Although adopted by the ML community, KernelSHAP is
not applicable to sequential decision-making tasks, as it only
calculates attributions at the feature level and for a single input
instance, disregarding all previous sequence inputs. There have
been a few approaches to extend this method to recurrent
settings, but with debatable implementations. Ho et al. [37] use
KernelSHAP to explain RNN predictions on an ICU mortality
dataset [38]. However, their implementation perturbs only the
time-step t being explained, ignoring all the previous elements
of the sequence, and therefore only calculates attributions at the
feature level for the one most recent feature vector, ignoring
the sequential nature of the input.

III. TIMESHAP

The main goal of our work is to produce a recurrent local
model explainer that is model-agnostic, post-hoc, and able to
be applied in the recurrent setting. In order to explain the
decision about one instance, our method should provide both
event and feature attribution values. At the same time, this
method should be resource-efficient to be applicable in real-
world scenarios. Additionally, we aim to explain sequential
models while preserving the three desirable properties of
importance attribution stemming from the Shapley values: local
accuracy, missingness, and consistency [39]. Hence, we put
forth TimeSHAP, a model-agnostic recurrent explainer with
sound theoretical footing and strong empirical results.

TimeSHAP builds upon KernelSHAP [20], a state-of-the-
art model-agnostic explainer, and extends it to work on
sequential data. Our method produces feature-wise and event-
wise explanations. Hence, TimeSHAP attributes an importance
value to each feature/event in the input that reflects the degree
to which that feature/event affected the final prediction. In
order to explain a sequential input, X ∈ Rd×l, with l events
and d features per event, our method fits a linear explainer g
that approximates the local behavior of a complex explainer
f by minimizing the loss given by Equation 7. As events are
simply features in a temporal dimension, and the algorithm
for explaining features x ∈ R1×l and events x ∈ Rd×1 is
conceptually equal, we will henceforth use the word feature to
mean both rows and columns of X ∈ Rd×l. Thus, the formula
for g is:

f(hX(z)) ≈ g(z) = w0 +

m∑
i=1

wizi, (8)

where the bias term w0 = f(hX(0)) corresponds to the model’s
output with all features toggled off (dubbed base score), the
weights wi, i ∈ {1, . . . ,m}, correspond to the importance of
each feature, and either m = d or m = l, depending on
which dimension is being explained. The perturbation function
hX : {0, 1}m 7→ Rd×l maps a coalition z ∈ {0, 1}m to the
original input space Rd×l. Note that the sum of all feature
importances corresponds to the difference between the model’s
score f(X) = f(hX(1)) and the base score f(hX(0)).

3



Input perturbations are generated differently, depending
on which dimension is being explained. The perturbation
function described in Equation 5 is suited to explain a
single dimension of features. We extend this function to the
recurrent (and bi-dimensional) setting as follows. Given a
matrix B ∈ Rd×l representing an uninformative input (the
absence of discriminative features or events), a perturbation hfX
along the features axis (the rows) of the input matrix X ∈ Rd×l

is the result of mapping a coalition vector z ∈ {0, 1}d to the
original input space Rd×l, such that zi = 1 means that row
i takes its original value Xi,:, and zi = 0 means that row i
takes the background uninformative value Bi,: . Thus, when
zi = 0 the feature i is essentially toggled off for all events of
the sequence. This is formalized by,

hfX(z) = DzX + (I −Dz)B, Dz = diag(z). (9)

On the other hand, a perturbation heX along the events axis
(the columns) of the input matrix X ∈ Rd×l is the result of
mapping a coalition vector z ∈ {0, 1}l to the original input
space Rd×l, such that zj = 1 means that column j takes its
original value X:,j , and zj = 0 means that column j takes
the value B:,j . Thus, when zj = 0 all features of event j are
toggled off. This is formalized by,

heX(z) = XDz +B(I −Dz), Dz = diag(z). (10)

Hence, when explaining features hX = hfX , and when
explaining events hX = heX . This change in the perturba-
tion function is the sole implementation difference between
explaining events and features. Moreover, the perturbation of X
according to a null-vector coalition z = 0 is the same regardless
of which dimension is being perturbed, hfX(0) = heX(0), and
equally for z = 1, hfX(1) = heX(1).

In our setting, we define the background matrix B ∈ Rl×d

as containing the average feature values in the training dataset,

B =


x1 . . . x1
x2 . . . x2
...

. . .
...

xl . . . xl

 . (11)

A. Pruning

One glaring issue with TimeSHAP is that the number of
event (temporal) coalitions scales exponentially with the length
of the observed sequence, just as in KernelSHAP the number of
feature coalitions scales exponentially with the number of input
features. Moreover, in a recurrent setting, the input sequence
can be arbitrarily long, making this a serious issue that we
address by proposing two pruning algorithm.

In a real-world scenario, it is common for events to be
preceded by a long history of past events, with only a few of
them being relevant to the current prediction (e.g, the whole
transaction history of a client to detect fraud on the most recent
one). Additionally, recurrent models are known to seldom
encode information from events in the distant past [40].

With the previously stated insight, we group together older
(unimportant) events as a single coalition of events, thereby
reducing the number of coalitions by a factor of 2l−i+1,
where i is the number of grouped events of a sequence
with l elements. Essentially, we are sacrificing explanation
granularity on older, probably unimportant, events, in favor of
a runtime improvement and increased precision of explanations
on important events. By grouping these events as one, we
are allowing this group of events to still be considered in the
explanations, receiving their, albeit smaller, importance. The
pruning method, defined in Algorithm 1, consists in splitting
the input sequence X ∈ Rd×l into two sub-sequences X:,1:i,
X:,i+1:l, i ∈ {1, . . . , l− 1} (X:,l being the most recent event),
and computing the true Shapley values for each. Computing
these Shapley values amounts to considering 22 = 4 coalitions.
Our objective is to find the largest i such that the importance
value for X:,1:i falls below a given importance threshold η.

Alternatively, following the same rationale that older events
are seldom important to the most recent prediction, we propose
a sequence pruning algorithm. This method, described in
Algorithm 2, is based on the intuition that if a sequence’s score
does not change significantly when adding events, then those
events are likely unimportant to the decision-making process.
As such, in order to prune an input sequence X ∈ Rd×l, we
look for the smallest sub-sequence of recent events X ′ =
X:,i:l, i ∈ {1, . . . , l}, that matches the model’s original score,
within a given relative tolerance η, |f(X)− f(X ′)| ≤ f(X)·η.
The number of coalitions is hence reduced by a factor of 2l−i+1,
where i is the number of grouped events of a sequence with l
elements.

While Algorithm 1 prunes the temporal coalitions of a given
input sequence maintaining the original sequence, Algorithm 2
prunes the sequence itself, changing the predicted score
within a given error bound. The execution of both pruning
algorithms scales only linearly with the number of events,
O(l). Consequently, when employing pruning, the run-time of
TimeSHAP is reduced from O(2l) to O(2l−i) with i being the
number of events lumped together. As older events are usually
unimportant, a high number of events is pruned, thus l− i� l,
rendering the performance increase highly significant. When
considering the run-time of the underlying model, which for
recurrent models scales at least linearly with the length of the
input sequence, the two proposed pruning algorithms differ.
Taking the best-case scenario of a model whose run-time scales
linearly with l, such as a recurrent neural model (e.g., RNN,
LSTM, GRU), TimeSHAP’s run-time with temporal-coalition
pruning (Algorithm 1) is O(l2l−i), while TimeSHAP’s run-
time with sequence pruning (Algorithm 2) is O((l − i)2l−i).
Overall, Algorithm 2 leads to a faster execution, but with
possibly lower fidelity explanations than Algorithm 1, as the
explained sequence X ′ is a subsequence of the original input
X .

B. Cell-level Explanations

Event-level and feature-level explanations provided by Time-
SHAP indicate which columns (events) and features (rows) of

4



Algorithm 1 Temporal Coalition Pruning
Input: input sequence X ,

model to explain f ,
tolerance η,

1: for i ∈ {l − 1, l − 2, . . . , 1} do . Starting from the end of the sequence
2: Z ← {[0, 0], [0, 1], [1, 0], [1, 1]} . Full set of coalitions to use for each i
3: w1, w2 ← KernelSHAP( . Call adapted KernelSHAP

model=f ,
input=[X:,1:i, X:,i+1:l], . X given as composed of only two features
perturbation=heX , . Parameterized by our temporal perturbation function
coalitions=Z) . Employing only 22 coalitions (SHAP sees only 2 features)

4: if |w1| < η then . w1 is the aggregate importance of all events up to i
5: return i . Index from which it is safe to lump event importances
6: return 0 . No sequential group of events fits the pruning criteria

Algorithm 2 Score-based Sequence Pruning
Input: input sequence X ,

model to explain f ,
tolerance η,

1: ŷ ← f(X)
2: for i ∈ {l, l − 1, . . . , 1} do . Starting from the end of the sequence
3: X ′ ← X:,i:l . Truncate to most recent events
4: if |ŷ − f(X ′)| ≤ ŷ · η then . If heuristic is fulfilled
5: return X ′ . Sequence pruned to l − i+ 1 recent events
6: return X . Sequence cannot be pruned

the input matrix are most relevant for the model prediction.
We propose also a cell-level explanation method that indicates
the most relevant features at particular events.

Cell-level explanations can be obtained by turning individual
cells of the input matrix on and off. Although this approach
calculates the individual contribution of each cell, it is in-
tractable to compute, as the number number of coalitions is the
product of the number of events with the number of features.
Considering a small input example X ∈ R40×20, there exists
800 cells, thus O(2800) coalitions. In order to obtain reliable
cell-level explanations, the number of cells to consider and
perturb needs to be drastically reduced.

To obtain reliable cell-level explanations, TimeSHAP forms
groups of cells calculating the attribution of these groups.
Doing so reduces the granularity of the explanations, but
makes its computation possible. In order to find the most
relevant cells, TimeSHAP calculates both event- and feature-
level explanations, indicating the most relevant features (rows)
and events (columns) of the input matrix. Feature or events
are considered relevant if their attribution value is higher than
a user-defined threshold θ. Given that these rows and columns
were signaled as relevant by TimeSHAP, it is assumed that the
most, if not all, relevant cells of the input matrix are contained
in the union of these rows and columns with special relevance to
the cells on their intersection. As such, TimeSHAP isolates each
cell of the intersection and calculates its individual attribution.
After isolating the intersection cells, TimeSHAP then forms
groups of cells that belong to the same relevant event/feature

but are not on the intersection. Finally, TimeSHAP forms two
additional cell groups: the cells belonging to the events lumped
together by the temporal-coalition pruning, Algorithm 1, and
all the remaining cells that do not belong to the union of the
most relevant event/features and are not on the pruned events.

The aforementioned cell grouping strategy yields a good
trade-off between cell granularity and computational cost. The
number of considered cells with this strategy is (|e||f |)+ |e|+
|f |+2, where f and e represent the considered relevant features
and events (contribution > θ), while |f | and |e| denote their
respective number.

Considering cell-level explanations with the grouping strat-
egy defined before, coalitions of individual cells and cell groups
are formed, represented by z ∈ {0, 1}(|e||f |)+|e|+|f |+2, where f
and e represent the indices of the features and events considered
relevant, and |f | and |e| are the corresponding lengths. As
opposed to event-wise and feature-wise explanations, each
element of a coalition vector z does not map directly into a
column or a row. Instead, each zi ∈ z maps to a different cell
group depending on its index i.

Calculating the cell-wise perturbation hcX of the input matrix
X ∈ Rd×l is the result of mapping a coalition vector z to
the original input space Rd×l, such that zi = 1 means that
cell group i takes its original value, and zi = 0 means that
cell group i takes the correspondent background uninformative
value. Given a matrix B ∈ Rl×d, defined in Equation 11, the
perturbation function hcX is then given by Algorithm 3.
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Algorithm 3 Cell perturbation function
Input: coalition vector z, input sequence X , background matrix B, relevant events indices e, relevant features indices f ,

number of events d, number of features l, pruning index p

1: cells← permutations_size_2(e, f) . Calculate intersection cells (event, feature)
2: H ← B . Start perturbation with all groups absent
3: for i← {0, 1, . . . , |z|} do . Iterate over coalition vector
4: if z[i] = 0 then . Cell group is turned off
5: continue
6: else if i < |e| ∗ |f | then . Group is a cell
7: event, feature = cells[i] . Obtain cell indices
8: Hevent,feature = Xevent,feature . Turn on cell
9: else if i < (|e||f |) + |e| then . Relevant event group

10: event = e[i− (|e||f |)] . Obtain relevant event index
11: features = {0, 1, . . . , d} \ f . Obtain non-relevant features indices
12: Hevent,features = Xevent,features

13: else if i < (|e||f |) + |e|+ |f | then . Relevant feature group
14: events = {0, 1, . . . , p} \ e . Obtain non-relevant event indices
15: feature = f [i− (|e||f |)] . Obtain relevant feature index
16: Hevents,feature = Xevents,feature

17: else if i < (|e||f |) + |e|+ |f |+ 1 then . Other non-pruned group
18: features = {0, 1, . . . , d} \ f . Obtain non-relevant features indices
19: events = {0, 1, . . . , p} \ e . Obtain non-relevant event indices
20: Hevents,features = Xevents,features . Turn on other cells group
21: else
22: features = {0, 1, . . . , d} . All feature indices
23: events = {p+ 1, . . . , l} \ e . Non pruned events
24: Hevents,features = Xevents,features . Turn on cell
25: return H . No sequential group of events fits the pruning criteria

C. TimeSHAP Remarks

TimeSHAP computes explanations by fitting a linear ex-
plainer g that approximates the local behavior of a complex
explainer f by minimizing the loss given in Equation 7.
This linear explainer g is parameterized by our proposed
perturbation functions, hfX , heX , and hcX , depending on the
desired explanations. To mitigate the exponential growth of the
number of coalitions when explaining events, due to sequences
being arbitrarily long, we further proposed two pruning
algorithms (Algorithm 1 and Algorithm 2). These algorithms
find the shortest relevant sequence input, as defined by the
user, drastically reducing the number of considered coalitions
or events, which in turn makes the produced explanations
more reliable and reduces their computational cost. To further
increase the reliability of cell-level explanations, we incorporate
a cell grouping strategy into the cell perturbation function
(defined in Algorithm 3).

IV. EXPERIMENTS

To validate our method, we use it to explain predictions of
two RNN models in two real-world fraud detection tasks. In
this extended abstract, we will only present the results for one
of them, due to space constraints. The results for the second
dataset are present on the dissertation document.

The explained DL model is composed of an embedding layer
for categorical variables, followed by a GRU layer [8], followed
by a feed-forward classifier with four layers. The task for this
dataset consists in predicting account takeover fraud, a form
of identity theft where a fraudster gains access to a victim’s
bank account, enabling them to place unauthorized transactions.
The data is tabular, consisting of approximately 20M events,
including clients’ transactions, logins, or enrollments2, as well
as corresponding geo-location and demographics data.

We run TimeSHAP on all sequences of the dataset that
contain a positive prediction by the model. We set the maximum
number of coalition samples to n_samples = 32K. Regarding
the pruning algorithm, we employ our proposed temporal-
coalition pruning algorithm and set its tolerance η = 0.025.
On the full dissertation, we discuss in detail the rationale behind
the selection of these parameters.

A. Pruning Results

In this Section we present the results from using the
temporal-coalition pruning algorithm. Results for the sequence
pruning algorithm are present on the full dissertation. For this
experiment, we randomly select 1000 sequences and apply

2Examples of an enrollment event include changing the password or logging
in from a new device.
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our method, TimeSHAP to them, considering only event-level
explanations, as feature-level explanations are not affected by
the pruning.

Table I shows average, median, and maximum num-
bers of events for unpruned sequences, and for se-
quences pruned using Algorithm 1, with tolerance η ∈
{0.005, 0.0075, 0.01, 0.025, 0.05}. The percentage of se-
quences whose length, |X|, is smaller than log2(n_samples) ≈
15 is shown in the fourth row. This represents the percentage of
sequences whose Shapley values can be exactly computed by
exhaustively evaluating all 2|X| coalitions. The Shapley values
for all sequences longer than log2(n_samples) are estimated
by randomly sampling coalitions. We note that, for the original
sequences, we can only compute exact Shapley values for
10% of the samples. For the median original sequence, with a
total number of coalitions on the order of 2|X| = 2139, 32000
sampled coalitions represents 10−36% of the total universe of
coalitions. Hence, pruning is absolutely necessary in order to
achieve accurate results. Using η = 0.01, we can compute
exact Shapley values for 36.5% of sequences. On the other
hand, using η = 0.025, we can compute exact values for 58.3%
of the sequences. Finally, the last row of Table I shows the
relative standard deviation3 (RSD) [41] of the Shapley values
over 10 random seeds; as expected, lower pruning tolerances
lead to finer-grained event-level explanations (higher number of
explained events) but with lower stability (higher RSD values).
In fact, there is a strict negative relation between pruning
tolerance and RSD values. Running TimeSHAP on the original
sequences leads to very high variance (RSD 1.71), while the
highest pruning tolerance η = 0.05 leads to relatively low
variance (RSD 0.68).

B. Global Explanations

Supplying a data scientist with global explanations provides
an overview of the model’s decision process, revealing which
features, or events in the case of TimeSHAP, are relevant to
the model and which ones are not. This provides an insight
into the decision process, guiding the data scientist’s analysis
of the model. TimeSHAP provides this type of explanations
by explaining N sequences and drawing conclusions from
aggregations and visualizations of the N local explanations.

Figure A.1 and A.2 present the event and feature global
explanations for the Account Takeover (ATO) dataset produced
by TimeSHAP applied to all sequences that contained a
positive prediction, explaining the first positive prediction
of each sequence. For hyperparameters, η = 0.025 and
n_samples = 32000 were used in the temporal coalition
pruning algorithm.

Figure A.1 presents event-wise Shapley values (y-axis), for
each event index (x-axis, with index 0 corresponding to the
event being explained and decreasing indexes representing the
distance to event 0). When evaluating event-wise explanations
globally, it is possible to conclude that, on average, the

3A standardized measure of dispersion, computed as the ratio of the standard
deviation to the mean, σ/µ.

transaction being explained, t = 0, is the event that most
contributes to the score with an average contribution of 0.28.
The next most relevant events, are those between indexes −1
and −4, with average contributions ranging from 0.05 to 0.13,
indicating that the model is, on average, valuing these previous
events to perform a decision at t = 0. For events with an
index lower than −5, the average contribution is around 0.
Nonetheless, it is possible to observe that there is a significant
number of events between indexes −5 and −30 with high
contributions. These significant contributions at distant events
display the models’ capability of keeping crucial information
in the hidden state in order to compute the score of the event
at t = 0, as well as the ability of TimeSHAP to capture it. We
found that events at index t = −1 have a lower importance
(0.05) than adjacent events, due to the fact that these events are,
80% of the time, logins that precede the explained transaction
and, most of the times, these have a low attribution value given
by TimeSHAP.

One crucial insight provided by these explanations is that
the most recent event is responsible for, on average, 41% of
the sequence’s score, while the preceding events represent 59%
of the sequence’s score. This shows TimeSHAP’s ability to
understand the sequential domain, as other post-hoc methods
would attribute 100% to the most recent event.

Figure A.2 in Appendix presents feature-wise Shapley values
(x-axis) for each feature (indexed in the y-axis, ordered by
mean attribution value). In this figure, feature names have
been redacted due to privacy constraints. From Figure A.2,
we conclude that some features have predominately positive
contributions, having a higher average contribution than others.
These features are, on average, valued by the model over
other features in order to predict account takeover fraud and
they consist of the Transaction (0.29) and Event (0.092) types,
the clients’ age (0.090), and features related to the IP and
location of the events (0.08 to 0.03). These features, indicated
as the most relevant ones by TimeSHAP, agree with domain
knowledge where the event and transaction types together with
IP and location features encode account behavior, while the
age of the client might indicate, on average, the susceptibility
of a person to fraud.

From Figure A.2, we also conclude that there are features that
contribute, on average, negatively to the score. These features
are related to the account (physical branch A and account
feature D) and the type of token of the event in question.
This features are related to the authentication and security of
the account and the event itself. This negative contribution is
in accordance with our domain knowledge, as these feature
represent the authentication and security of the client and,
therefore, provide confidence in the legitimacy of the event
represented in the negative contribution to the score.

TimeSHAP’s global analysis of feature explanation also
allows data scientists to understand if there are features that are
being ignored by the model. When analysing Figure A.2, two
features, IP Feature A and IP Feature B, have null contribution
for all explained sequences. Upon inspection of the raw data
we see that these features take a single constant value for all
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Original η = .005 η = .0075 η = .01 η = .025 η = .05

Average seq. length 182.1 69.0 58.4 50.0 32.9 19.7
Median seq. length 138.5 33.0 27.0 23.0 14.0 9.0
Max seq. length 2187 2171 1376 1132 1130 879
Percentile at log2(32000) 10.0 27.3 32.7 36.5 58.3 78.8
TimeSHAP RSD, σ

µ
1.71 1.19 1.17 1.09 0.98 0.68

TABLE I: Temporal-coalition pruning analysis (Algorithm 1) for the ATO dataset. Sequence length indicates the number of
events to be explained (events that were aggregated after pruning count as 1).

sequences. This demonstrates the usefulness of TimeSHAP in
aiding the detection of useless or redundant features.

C. Local explanations

Local explanations explain the model’s rationale regarding
one specific instance. These explanations can be utilized in
several use-cases, for example, for bias auditing or model
debugging. However, these explanations can mostly be used
by fraud analysts in order to aid on their decision task.

In this Section we present two case-studies/sequences. For
the two analyzed sequences, we selected two predicted-positive
sequences, hence labeled A and B. Sequence A has a model
score of f(A) = 0.57, and a total length of 47 events. Sequence
B has a model score of f(B) = 0.84, and a total length of 286
events. As a convention, we dub the current event’s index (the
most recent) as t = 0, and use negative indices for previous
events (the event at index t = −1 immediately precedes the
event at index t = 0, and so on).

Figures 2a and 2d show the Shapley values, (importance,)
respectively, for Sequences A and B, split into two disjoint sub-
sequences at a given index t. This corresponds to the application
of the “for loop” in Algorithm 1, continuing even after the
pruning condition has been fulfilled. Figure 2d only displays the
first 100 indexes as displaying all 286 events would clutter the
Figure. As expected, the aggregate importance of older events
(from the beginning of the sequence up to index t) suffers a
steep decrease as its distance to the current event increases. This
trend corroborates our hypothesis and supports our coalition
pruning algorithm. Using coalition pruning tolerance η = 0.025,
Sequence A is pruned to 11 events, grouping the 36 older events
together. Similarly, sequence B is pruned to 9 events, grouping
the last 277 events together.

Event-wise explanations for sequence A are shown in
Figure 2b, and its feature-wise explanations in Figure 2c. We
conclude that there are two events crucial for the model’s
prediction: the transaction being explained (t = 0), with a
Shapley value of 0.36, and another transaction, 4 events before
(t = −4), with a Shapley value of 0.17. Between the two
relevant transactions (events −3 ≤ t ≤ −1), there are three
logins with little to no importance. Prior to event t = −4, there
are 5 logins and one transaction with reduced importance, which
were nonetheless left unpruned by Algorithm 1. Regarding
feature importances, we observe that the most relevant features
are, in decreasing order of importance, the transaction’s amount,
IP feature D, and the clients’ age. When inspecting the
raw feature data, we observe that the amount transferred at

transaction t = 0 is unusually high, a known account takeover
indicator. This is in accordance with the simultaneous high
event importance for t = 0, together with the high feature
importance for the transaction amount. Moreover, we observe
that the client’s age is relatively high, another well-known
fraud indicator, as elderly clients are often more susceptible
to being victims of fraud [42]. When analysing IP feature
D, although this feature does not show any strange behavior,
it assumes a value that is frequent throughout the dataset.
Upon further inspection, we conclude that the IP belongs to a
cloud hosting provider, which domain experts confirm to be
suspicious behavior. Analyzing the cell-level explanations for
this sequence, with θ = 0.1, we verify the previously stated
insight, where the high transaction amount at t = 0 is abnormal.
This cell is solely responsible for 0.21 of the score, revealing
an extreme importance in a sequence with more than 2000
cells. These cell-level explanations also show that the relevant
cells are present on the relevant events, with the cells in all
non-relevant events receiving a total importance of 0.005.

Event-wise explanations for sequence B are shown in
Figure 2e, and its feature-wise explanations in Figure 2f.
Regarding event importance, we conclude that the most relevant
events are at indices −4 and −1, with their corresponding
Shapley values of 0.48 and 0.24, followed by events −2
(0.089) and −3 (0.049). Interestingly, for this sequence, the
most relevant event is not the current one (t = 0), with
near null contribution to the score (0.001). The event types
for the sequence of events from t = −4 to t = −2 are
enrollment-login-transaction, a well-known pattern that is
repeated on numerous stolen accounts. This sequence of events
encodes a change of account settings, e.g., a password change
(enrollment), followed by a login into the captured account,
subsequently followed by one or more fraudulent transactions.
Interestingly, events t = −1 and t = −2 are transactions that
succeed the fraudulent enrollment and login, but precede the
current transaction (t = 0). The information up to t = −1
is already sufficient for the model to correctly identify the
account as compromised, corroborated by the low contribution
of the transaction at t = 0.

Regarding feature importances, the most relevant features
are related to the transaction type, event type, the clients’ age,
and the location. The feature transaction type indicates a finer
grained event taxonomy for when event type = “transaction”.
When inspecting the raw feature data, we observe that the client
is in the elderly age range, which, as previously mentioned,
may indicate a more susceptible demographic. When analysing
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2: Figures (a), (b), (c), and (g) show TimeSHAP results for Sequence A. Figures (d), (e), (f), and (h) show TimeSHAP results
for Sequence B. Figures (a) and (d) show the importance of older (X:,:t−1) vs current events (X:,t:) calculated using Algorithm 1
also displaying also Shaps’ local accuracy property. Event-level importance shown in Figures (b) and (e). Feature-level importance
shown in Figures (c) and (f). Cell-level importance shown in Figures (g) and (h).

the location features Location feature A and Location feature
D, we observe a discrepancy between the location of the
enrollment, login and transactions from the account’s history.
This discrepancy in physical location is highly suspicious
and indicates that there was an enrollment on the account
from a previously unused location. Regarding the cell-level
explanations, with θ = 0.1, we obtain that the most relevant
cell, with importance 0.274, is the intersection between the
most relevant event and feature. This cell is followed by the
groups of cells that aggregate the other features of the relevant
events (separately) with the other features of event t = −4,
having a relevance of 0.153, and of event t = −1, with an
importance of 0.148. Considering the second most relevant
feature, Event type, it appears to be relevant at event t = −4
with importance 0.091 and Customer age being important
on mostly other non-relevant events. Another relevant insight
provided by these explanations is that the cells of non-relevant

features or events have an importance of 0.03.

V. CONCLUSION

Several sensitive domains have seen the application of
complex ML models supporting decision-making tasks. From
healthcare to finance, several of these domains present a
sequential nature, where each decision is based, not on a
single input, but on a sequence. RNNs have been applied to
sequential domains, as they are state-of-the-art on these tasks.
However, their complex decision-making process is still seen
as a black-box, generating apprehension regarding their use in
sensitive domains. While considerable effort has been guided
towards explaining deep learning models, recurrent models
have received relatively much less attention, with the majority
of proposed methods being unfit for the sequential setting.
Recently, the SHAP [20] framework unified several methods
under a single family of additive feature attribution explainers.
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From this family, the model-agnostic explainer, KernelSHAP,
has seen a wide adoption throughout the literature, however,
this explainer is unfit to explain models in a sequential setting,
as it only accounts for the input at hand instead of the whole
sequence.

In this dissertation, we proposed TimeSHAP, a post-hoc
model-agnostic recurrent explainer. Our method leverages
KernelSHAP’s sound theoretical footing and strong empirical
results and applies it to the sequential domain. Applying
TimeSHAP to a recurrent model allows a user to obtain feature-
level and event-level explanations. The explanations indicate
the most relevant features throughout the sequence and the
most relevant events/timesteps to the explained transaction,
respectively. Given event and feature explanations, TimeSHAP
also computes cell-level attribution indicating the most relevant
features at particular events. In addition to the proposed
explanation methods, we proposed two pruning algorithms that
both decrease the execution time of TimeSHAP and increase
the reliability of the explanations.

In order to validate TimeSHAP, we applied it to two real-
world fraud decision tasks. For each task, we analyzed two
individual case-studies displaying the TimeSHAP’s explanation
process. We also performed global analysis of our models,
validating the obtained explanations with domain knowledge.
Through this analysis, we were able to identify sequences
where the most relevant event was several events previous to
the event being explained and where the event being explain did
not contribute to the score at all. We also showed that the most
recent event of a sequence is, on average, responsible for 41%
of the sequence’s score, while the preceding events represent
59% of the sequence’s score. TimeSHAP also provided the
insight that, for the ATO dataset, one of the most relevant
features was the age of the client, hinting at potentially
discriminatory reasoning. This insight was confirmed after
performing a bias-audit on our model, showcasing TimeSHAP’s
capabilities to find possible bias vectors.

Finally, the main contributions of this work can be summa-
rized as follows:
• We adapted KernelSHAP to the recurrent setting, redefin-

ing it’s perturbation functions, background instance, and
other necessary adaptations;

• We proposed a method to calculate three types of attribu-
tions: feature-, event- and cell-wise explanations;

• We propose two difference pruning algorithms to reduce
the computational cost of the method and increase expla-
nation reliability;

• We performed an empirical analysis and validation of our
method on two real-world fraud detection datasets;

VI. FUTURE WORK

For future work, we intend to further validate our method
with users at Feedzai. We want to have data-scientists use
TimeSHAP on their model development cycles in order to
understand the impact of our method on their daily tasks.
Additionally to data scientists, we intent to perform user testing
with fraud analysts. This would quantify the usefulness of our

method as a tool to help in the decision process. Moreover,
regarding the evaluation of our method, we would like to test
it against other methods in the literature that are being used to
explain recurrent models.

Regarding TimeSHAP itself, we aim to develop the cell-level
attributions even further in order to decouple them from both
event and feature explanations.We also aim to develop a method
equivalent to our sequence pruning but applied to the feature-
axis. Although this has a fixed number of elements, there
might exist models with large numbers of features, reducing
the reliability of explanations. Finally, we want to explore
different perturbation strategies based on domain knowledge,
in order to achieve higher granularity on important attributes
at the cost of human power.
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APPENDIX

Fig. A.1: Event global explanations.

Fig. A.2: Feature global explanations.
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