
Validating the plot for Interactive Narratives
games

Carolina Veloso

 Instituto Superior Técnico

Lisboa, Portugal

carolina.veloso@tecnico.ulisboa.pt

ABSTRACT

The authoring of an interactive dialog in video games is an

overwhelming and complex task for game writers.

Developing an Interactive Narrative that balances authorial

intent and players’ agency requires frequent in-depth testing,

and the limited range of tools to assist authors in verifying

their story can limit the creation of more complex narratives.

Through reviews of the existing literature, we discuss the

challenges of Interactive Story design and provide a model

consisting of a set of metrics for testing interactive dialogs.

Using this model, we developed a prototype for the Story

Validator. This debugging tool allows game writers to

experiment with different hypotheses and narrative

properties in order to identify inconsistencies in the authored

narrative and predict the output of different playthroughs,

with visual representation support. Using the Story

Validator, we conducted a series of user tests to investigate

whether the tool adequately helps users identify problems in

the game's story. The results showed that the tool enables

content creators to easily test their stories, setting our model

as an essential step towards automated authoring assistance

for interactive narratives.

Keywords

interactive narrative, authoring tools, game writing, twine

INTRODUCTION

The presence of an immersive story or narrative in video

games is often a central part of game design [1, 2] As an

attempt to combine interactivity and storytelling Interactive

Storytelling (IN) is a form of nonlinear narrative that gives

the game an element of choice and, consequently, allows the

player’s actions to alter the course of the story [3, 4].

Although IN has enormous potential, enabling the

creation of interactive systems that combine player

interaction and dynamic plots, its main limitation lies in the

challenges that authors face when writing this type of stories

[5]. Developing an IN where players can feel immersed and

engaged involves making the player’s actions and choices

have a powerful influence on the direction of the narrative,

which makes it challenging for the author to guarantee a

well-formed story.

Most traditional approaches rely on extensive and

rigorous playtesting to obtain information on how the players

experience the narrative and what might need to be

improved. Playtesting provides insightful information that is

not anticipated during development, helping authors ensure

that both the game’s narrative and the player’s behaviour are

well balanced [6, 7]. However, obtaining quality feedback

for a detailed analysis can be challenging, expensive, and

time-consuming [8].

Various works have offered different solutions to handle

narrative conflicts caused by user behaviour in-game.

However, hardly any works have focused on letting the

author simulate and question their narrative during

development. Instead, they opt for online AI approaches

(such as drama managers [9]) that, during gameplay, provide

ways to dynamically adapt the narrative and resolve conflicts

created by unintended player’s actions. These approaches

create changes to the narrative that the author might not have

intended, making them lose control over their story.

On the other hand, most authoring tools, such as Twine,

Tinderbox, while facilitating the creation of IN, they lack the

proper tools to identify possible continuity errors, to keep

track of specific narrative properties and to envision the

output of playthroughs prior to human playtesting. Instead,

these tools rely heavily on the author’s intuition to foresee

these challenges or on an exhaustive number of later

playtests.

Figure 1: Story Validator tool interface

This work outlines the development of a tool that

supports game writers in the creation of IN, whilst

maintaining the human author's directorial control.

Essentially, we strive to maintain the idea of authorial intent

[10] and develop a system that allows human authors to

mailto:carolina.veloso@tecnico.ulisboa.pt

express their artistic intentions without feeling constrained.

As a product of this work, we have designed, developed, and

tested a prototype for the Story Validator. This tool takes a

JavaScript Object Notation (JSON) file outputted from

Twine and, by treating the branching narrative as a directed

graph, uses a Depth-First Search (DFS) based algorithm to

traverse all possible narrative paths and provide insightful

data on different story metrics, and design issues

encountered, via visual representations.

CONCEPTS

Before discussing related work and our solution to the

problem, we will present the main concepts needed to

understand this paper, in particular, definition of Interactive

Narratives (IN) and common authoring challenges.

The Concept of Interactive Narratives

Interactive narratives (IN) are a form of nonlinear

storytelling, where the player’s actions and choices have a

direct influence on the unfolding of the story. They function

similarly to the Choose-Your-Own-Adventure storybooks

[11], where the reader is faced with various decision points

at which they must make a choice that alters the course of the

story. At each decision point, the story branches in different

directions, often leading to different outcomes.

Games with nonlinear narratives often have higher levels

of interactivity, which facilitates the sense of causal-agency

[12]. Causal-agency is the perception of being in control,

meaning the player feels immersed in the virtual world as

they believe that their actions have significant effects on the

development of the narrative. In IN, instead of being tied up

to one linear story, the player feels free to take their own

path. This “freedom”, however, is often an illusion. Each

branch in the story has to be carefully tailored by the game’s

writer, who consequentially has to predict the different

possible player behaviours that can affect the story at various

states so that they can present those choices to the player.

Nevertheless, narrative choice needs to be thought through

carefully and authoring an IN is not done without a few

challenges.

Authoring challenges in Interactive Narratives

The authoring of interactive stories in video games represent

is an overwhelming and complex task for game writers, both

in narrative design and implementation.

Next, we present a non-exhaustive list of challenges

pertaining to the development of interactive narratives:

• Authorial intent vs Player agency — The most

challenging problem with interactive narratives is the

necessity to balance authorial intent and player agency

in the context of storytelling [13]. Authorial intent is the

trajectory that the game writer wishes the player

follows, regardless of how the player acts during the

game. Because interactive narratives allow for the user

to interact freely within the story world, users often

have the power to behave in ways that are inconsistent

with the plot. This can either prevent the plot from

advancing or make the player experience the story in a

way that was not intended by the author.

• Narrative exponential growth — As the plot grows in

complexity and the number of decision points

increases, the authoring experience will often require

substantial changes to keep the narrative coherent and

can become overwhelming for the author [14]. Not to

mention that the impact a choice has may end up only

revealing itself in future states of the story, which is not

always easy to predict.

• Monitoring other game variables — Besides what

choices the player makes, the development of the story

can be based on different variables and status, that are

updated throughout to game. A common example are

the karma systems, like in Fallout 3 [15], which

consider the player’s good and evil deeds, and shape the

world around them as they progress. In more complex

narratives, game variables can become difficult to keep

track and their consequences may only unravel in later

states in the game, which is not easy for the author to

foresee during development.

• Measuring the impact in user’s experience — The

player playstyles are reflected not only in how they

interact with the narrative but also on how they expect

the story to unfold [16]. Due to the complex nature of

interactive narratives, it is difficult for the author to

predict the player’s behaviour and their overall

emotional experience. This is not only challenging to

predict without prior human playtesting, as it is hard to

ensure during development.

LITERATURE REVIEW

Interactive Drama

To maintain narrative coherency even when the player

has freedom of choice, some past approaches have focused

on the idea of integrating real-time AI methods to shape the

narrative, allowing players to freely interact the game but, at

the same time, making sure the narrative still follows a

coherent structure. A popular example, first proposed by

Bates [9], is the use of a drama manager. A Drama Manager

(DM) is an omniscient agent that monitors the game world

and guides the player’s experience through the story, by

searching for possible future plot points based on the

evaluation of the current game world, while still allowing the

players to interact freely.

For instance, one of the most famous examples of the

implementation of a DM is the Mateas and Stern interactive

drama Façade [17–19]. Façade uses its DM to monitor and

update the simulation in real-time in response to text the user

inputs by selecting the next story beat.

Figure 2: The interactive drama Façade

Like Façade, Riedl et al. presented the prototype for IN-

TALE [20], where the agents are directed by the DM called

Automated Story Director. The way the Automated Story

Director handles user interactions is by maintaining a script

of expected events and by planning out new narrative follow-

ups to respond to the player’s actions and achieve all

concrete narrative goals pre-defined by the author.

The above-mentioned studies show that online AI

approaches, particularly drama managers, are a popular

solution to guarantee narrative coherence while allowing the

player to freely interact with the game. Unfortunately, there

has been hardly any work done regarding off-line approaches

that attempt to identify possible narrative problems during

development and allow the author to validate their narrative

with different story metrics and predict the output of

different playthroughs.

Interactive storytelling authoring tools

The authoring process remains one of the most significant

challenges in the creation of interactive stories, and there is

a need for authoring tools that both enable and assist authors

in the creation of their content. Next, we present a study on

different authoring tool for Interactive Narratives:

Tinderbox — Tinderbox1, by Mark Bernstein [21] is a

commercial spatial hypertext editor. The tool is mainly

targeted at supporting authors’ writing processes by creating

and associating notes and ideas in the form of maps and

charts. As they create their notes, authors can link and

arrange them, building relationships between different text-

based items.

Ultimately, while it provides many visual signifiers to

utilize on individual nodes, this tool lacks metrics that inform

the author on the possible outcomes and errors.

Ren’Py — The Ren’Py2 engine, by Tom ’PyTom’ Rothamel,

is a software for creating visual novels. Ren’Py does not

provide a visual representation of the story, such a node

graph, and since a story has to be written directly on the text

editor, if a project reaches a larger scale, the author might

become overwhelmed by the amount of paths they have to

monitor. Additionally, while Ren’Py includes a check script,

called Lint, that runs through the project checking for errors,

this system only includes errors in the project’s python code

and, according to the Ren’Py documentation page, “Lint is

not a substitute for thorough testing” [22].

FAtiMA — Fearnot AffecTIve Mind Architecture

(FAtiMA)3 Toolkit, created by GAIPS, is a collection of

tools and assets designed for the creation and use of cognitive

and reactive agents with socio-emotional competences [23],

and was developed to guide the emotional behaviour of the

characters in the serious game FearNot! [24]. FAtiMA uses

a character-based approach, meaning that the narrative is

shaped by the way players interact with the agents and vice-

versa. This differs from other popular game authoring tools,

such as Twine, that are designed towards a plot-centric

approach, which tends to restrict player involvement with the

narrative to pre-defined key points [25].

Twine — Created by game designer Chris Klimas in 2009,

Twine4 is a tool designed to facilitate the creation of

interactive stories with branching narratives. Twine’s UI

offers a bird-eye view storyboard, using a directed graph

layout to create and visualize the narrative structure.

The creation of games with Twine, due to its simple

design, requires only two elements: Passages and Links.

Passage is the Twine’s terminology for the nodes on the

story graph that players navigate through. Each Passage

contains a block of text (known as lexia in hypertext theory)

that is shown to the player when they reach that Passage

during gameplay. Passages can also possess one or more

tags, which function as labels that add information to the

Passage but are not visible on the published version of the

story.

Like branching narratives, where arcs connect nodes to

each other, Passages are connected through Links,

represented by an arrow on Twine’s storyboard. To create a

Link, the author needs to write the title of the Passage they

want to link to surrounded by double square brackets (e.g.

[[Open the door]]).

The author can also write multiple Links on separate lines

inside a Passage, and because the player can only pick one

at a time, this creates a branching point, meaning the story

splits into different paths. Path refers to the “route” the

player has taken through the game’s narrative. In Twine, the

story branches at each decision point, so the choices the

player makes throughout the game determine the path. At the

end of the game, the narrative path includes all the Passages

visited by the player during gameplay.

Besides which dialog options are chosen by the user, the

path in which the narrative develops can also be dependent

on different story’s variables. These variables persist

between Passages and store data that can be updated

throughout the story. To test the values stored in a story

variable at a certain point, Twine uses conditional statements

(if, else-if and else), known as the <<if>> macros, which

operate on a true or false logic.

Debugging and Troubleshooting

At the bottom of the Twine’s storyboard page, there is a

toolbar with both a “Test” and “Play” buttons, which open a

playable version of the created story in a browser window,

that the author can play. However, the “Test” button will

also enable debugging facilities that help the author identify

possible errors in the story.

It is important to note, however, that because of the way

that Twine is designed, the author is obligated to play

through the whole story in debugging mode to find every

possible error or to consult all the metrics, since they can

only view one Passage’s state at a time. This means that

testing a more complex interactive narrative, with multiple

possible paths and endings, can prove to be a cumbersome

and time-consuming task. Not to mention that the debugging

mode lacks certain metrics that are essential for providing

ways for the author to adjust their stories to their own

narrative goals, such as: number of paths, number of

endings, non-visitable Passages, endings’ reachability

imbalance, and others.

We have observed that many authoring tools lacked the

proper tools that helped them analyse important narrative

metrics and identify possible continuity errors.

Nonetheless, due to its wide adoption and easy to work

architecture, we concluded that Twine was the most

promising candidate for the incorporation of our model,

which we will describe in the next section.

IMPLEMENTATION

In this section, we describe the design and development of

the proposed tool. Figure 3 represents the conceptual model

for our solution.

Authoring an interactive narrative

First, we chose to use Twine’s authoring tool for the creation

of the interactive narrative that will be used for testing.

Because Twine is designed to develop and publish

Figure 3: Conceptual model of our solution

interactive stories in the Web, all its data is encoded in a

single HTML file. But while HTML is the default hypertext

output for Twine, we found that exporting Twine’s internal

XML data in a JSON format would be an added value, for

reasons of simplicity and easier processing. Therefore, we

opted to use the story format Twison by lazerwalker [26] that

converts the Twine’s story data into a JSON document. This

JSON file contains the data of each Passage, including the

Passages’ text, name, pid, Links and position on the Twine’s

storyboard.

After loading a JSON file into the Story Validator tool, if

we parse it into a variable (e.g., story), we can then access

the data inside. For example:

story.get("passages")[0].get("links")

gives us access to all the Links of the first Passage.

By treating the Twine’s branching narrative as a directed

graph, we can extract the information about the Passages and

their Links from the JSON data and pass them as the tree’s

nodes and edges, and with that create a tree-like structure,

similar to the branching dialogue tree graph that we built in

Twine.

Functionality

In order to reach our goal, our solution needed to provide

insightful data on different story metrics and identify design

issues that could be encountered by players during gameplay.

With this in mind, we opted to explore the tree graph using a

DFS algorithm, since we wanted to explore the different

Passages by following the same trajectory as a human

player. While traversing through the tree graph, the

algorithm gathers various metrics concerning the story, as

follows:

• Number of paths — this metric enumerates all

possible traversals of the story tree, including which

Passages the player visits on each narrative path.

• Endings Hit Percentage — calculates the distribution

of story’s endings, to understand which ones are more

likely to be reached.

• Stroke Points — we also needed to identify which plot

points were common in all narrative paths. These refers

to Passages, that regardless of the choices the player

makes, are always reached.

• Lost Plot — this metric identifies narrative sections

that, while plotted by the author, were never reached in

an actual playthrough due to some design error. It

should also notify the author of paths that end abruptly

and do not each an ending.

• Variables Evolution — a branching narrative might

contain different variables that the author needs to

monitor. This metric keeps track of those variables and

respective values throughout the different story paths.

In order to test their narrative, the author can use any of the

previous metrics. Furthermore, it was important that our

solution provided a way for the author to analyse any path in

detail. Therefore, we made sure that the Story Validator

would provide reports (according to the selected metrics)

both of the overall story and of each chosen path, through

visual representations (tree graph).

GUI application

Based on previous experience with the programming

language, we decided to use Python to build a GUI using

tkinter. Figure 4 presents the GUI conceptual representation

that was created for the Story Validator of which we describe

each of its components as follows:

Figure 4: The Story Validator GUI conceptual structure

1. Load Story — Opens a file dialog window in tkinter that

asks the user to select a story file (in JSON format) to be

analysed by the tool.

2. Analysis Conditions — The user can select one or more

options from a selection of analysis conditions. Each one

of these conditions will influence different visual aspects

of the Dialog Trees (5 and 7) and what information is

shown on the Main Log Report (6).

3. Select Path — From a drop-down menu, the user can

select which story path they want to analyse in detail. The

path selected will appear on the Path Dialog Tree (7) area.

4. Graph Timeline — We use Python’s Pyplot library to

plot a dotted chart with the changes of the values of the

story variables selected (throughout the path selected

(3)), where the y-axis corresponds to the variable’s

values, and the x-axis corresponds to the Passages visited

in the path selected.

5. Main Dialog Tree — We use GraphViz’s DOT language

to draw a dialog tree where each node represents a

Passage in the story. If a Passage has Links to other

Passages, they are represented in the graph as edges. This

tree shows all possible narrative paths in the story

selected and updates according to the Analysis

Conditions (2) selected.

6. Main Log Report — Displays textual information

regarding the overall narrative, according to the Analysis

Conditions (2) selected.

7. Path Dialog Tree — We use GraphViz’s DOT language

to draw a second dialog tree where each node represents

a Passage in the path selected (3). This tree also updates

according to the Analysis Conditions (2) selected.

8. Path Log Report — Indicates what path was selected in

(3) and prints the complete interactive story text into the

log as well.

9. Toggle Tooltips — We use vegaseat’s tooltip class to

create a tkinter’s tooltip widget that appears when the

mouse is above the widget and explains what each

Analysis Condition does for first time users. Then, we

added the possibility for the user to switch these tooltips

on-and-off by pressing the Toggle Tooltips button.

10. Save Report — We create and print a report that contains

all the tests performed regarding the current visualisation,

including what Analysis Conditions (2) were checked,

the story variables and story path (3) selected, both dialog

trees (5) and (7) and corresponding logs (6) and (8) and

the Graph Timeline. This is accomplished by generating

a PDF file using the PyFPDF library for Python. These

PDFs can be used for a clearer reading of the results and

for comparing validations with different conditions

selected.

Using the tool to identify common IN problems

As stated previously, the main objective of this work is to

support game writers by working as a debugging tool.

Therefore, the tool performs a series of tests and reports on

possible narrative problems:

Keeping track of Passages visited — The tool tells the user

how many different paths the player can take, along with

which Passages are visited on each path. The Main Dialog

Tree (5) displays a directed tree graph with all the narrative

paths that the player can possibly take, giving the author a

general idea of how the story flows. To make a more in-depth

assessment, the Main Report Log (6) displays which

Passages are visited in each path. Furthermore, the user can

pick a path to analyse in detail (3), and the path will be

displayed on the Path Dialog Tree (7), as a directed tree

graph.

Moreover, the tool is also able to identify Stroke Points.

We define Stroke Points as Passages that are visited in all

possible narrative paths, meaning that regardless of the

choices the player makes, they always end up reaching these

Passages. This can be part of the designer goals, as it can be

useful to ensure some parts of the story is always conveyed

to the player. However, it may happen that the author does

not want to withdraw the player’s ability to choose, in which

case Stroke Points become a problem. While travelling

through all narrative paths, the tool’s algorithm keeps track

of the Passages visited. At the end, Passages that are visited

in all narrative paths will be marked as Stroke Points. If the

user has the analysis condition Stroke Points selected, the

Main Report Log (6) will print out which Passages are visited

in all paths. Moreover, on the Dialog Trees (5 and 7), Stroke

Point nodes will have a bolded outline for easier

identification.

Keep track of endings’ reachability — Depending on the

choices in dialog made, the player is led to different endings.

However, it is difficult for the author to predict and monitor

the distribution of those endings, without it being a laborious

and time-consuming task. As a design objective, the author

may want to create certain restrictions on the distribution of

the endings, such as having an ending that is more common

to obtain (i.e., has more paths that reach it than other

endings), or even an ending with only one possible path.

If the analysis condition Endings Hit Percentage is

selected, the Main Report Log (6) then provides the author

with percentages on the likelihood of reaching each of the

Ending Passages, as well as how many paths can reach each

ending. Besides, on the Main Dialog Tree (5) the user can

observe the distribution of the paths that enter each of the

Ending Passages if the analysis condition Number of Paths

is selected.

Keep track of story’s variables — The tool identifies and

keeps track of all story variables defined by the author and

their values throughout each path. The user can also

specifically select which story variables they wish to analyse

(up to three). By selecting the analysis condition Variables

Value Evolution, the user can observe the value changes of

each variable selected, as well as the numeric value of each

variable when an ending is reached.

By selecting the analysis condition Variables value inside

Threshold, the tool highlights the Passages where the

selected variables have a value between the MIN and MAX

values, both defined by the user. Additionally, the tool can

draw a graph with the value evolution of each variable

selected, so the user can better keep track of the variables

throughout the story.

Avoiding Dead-Ends and losing plot — A Dead-End is a

Passage in the story that, once reached, prevents the player

from continuing to play. These are different from an ending

Passage since the latter corresponds to the end of the story.

It is crucial for the designer to identify these cases, as they

abruptly stop the player from continuing playing, however,

doing so is difficult, due to the combinatorial nature of the

exploration of the story.

As mentioned previously, Twine 2 supports the addition

of tags in Passages. By taking advantage of this system, we

defined that the author must attach the tag ENDING-POINT

to a Passage to denote that Passage as an ending. Therefore,

while traversing through the story, if it reaches a Passage

where it cannot go any further, and that Passage does not

have an ENDING-POINT tag, then the tool knows it has

reached a Dead-End.

Furthermore, it is also important to identify if there are

sections in the story that are never visited, regardless of how

many times the player plays through the game and what

choices are made.

If the user selects the analysis condition Lost Plot, the

Main Report Log (6) will print out the Passages that were

never visited as well as display which paths were not able to

reach an ending Passage.

Figure 5: Example of an ENDING-POINT tag in Twine

AVALUATION

The following section presents the methods that were used to

perform a series of user studies. These controlled

experiments were conducted with the intent of:

• Finding out if the tool adequately helps the users

identify problems in the game story.

• Determining whether users can operate the tool with

ease and identify usability issues.

For this purpose, we conducted two phases of user testing,

with a total of 25 participants. The data collected to uncover

the usability problems in these studies were a variety of

qualitative and quantitative data.

During Phase 1, we examined how the users feel about

the tool’s design and if it is easy and intuitive to use. During

Phase 2, users were asked to use the Story Validator to

identify problems in a branching story with various design

issues and suggest possible solutions.

Phase 1

During Phase 1, we performed a user test with a first

prototype of our solution, to assess the usability of the tool.

This prototype was an earlier version of the final application

that was presented in the Implementation section, designed

to evaluate the concept, and collect feedback from users to

improve the tool. It differed from the final model in the fact

that it did not include toggleable tooltips, the option to save

a pdf report of the results, the story variables’ values

graphical timeline and it only allowed to test one story

variable at a time. In addition, except for the background, the

prototype had a black and white wireframe.

Performance

To perform the test, the users received a story (created using

Twine) with no design problems to get familiarized with the

tool and were then asked to perform 10 tasks using the Story

Validator first prototype.

1. What is the total number of paths?

2. In PATH #7 what is the ending value for the story

variable $anger?

3. In how many paths does the story variable $anger

reaches an ending value of 0?

4. In what paths and passages does the story variable

$anger has values between -4 and and -2?

5. Which ending is reached more often?

6. How many paths lead to Ending 2?

7. Which passages are visited in all paths?

8. Do all paths reach an ending?

9. Is there a passage that is never visited?

10. What is the text in passage Choice 4?

While the participants completed the tasks, we observed their

performance and took notes. During this phase we used the

think-aloud method, meaning that we asked the test

participants to use the system while continuously verbalizing

their thoughts. This helped us gather possible properties and

design changes that the users might want to see in the

updated version of the tool.

After completing the tasks, the participants were asked to

rate how easy or difficult it was to solve each task through a

Likert-scale based questionnaire. Additionally, participants

were given a demographic questionnaire to help us identify

the profile of our sample population and were asked to score

the usability of the tool using the System Usability Scale

(SUS).

Results and Discussion

Figure 6: Task Completion Rate Results [Phase 1]

Total Completion Rates — Results show that two of the

participants in the study group failed to complete Task 3.

These incidences seemed to occur due to the rise in difficulty

from tasks 1 and 2 to task 3.

Additionally, there was one participant that was not able

to complete task 4, as they did not understand they needed to

insert -4 on the MIN box and -2 on the MAX box, under the

“Variable Value by given Threshold” section. Instead, they

analysed one path at a time, searching for Passages where the

variable $anger had values within that range. Eventually,

they gave up, stating “This is taking me too long. I feel like I

am doing something wrong.”.

Finally, the same participant was unable to complete task

10, as they did not realise they could find what they were

looking for under the Path Results Log. For all the previous

tasks, the answers were under the Main Results Log, and

because they were used to looking for answers to each task

there, they did not realise they should look for the solution

on the other log.

In conclusion, the completion rate for task 3 is 60%, and

for task 4 and 10 is 80%. For all the other tasks (1, 2, 5, 6, 7,

8 and 9) the completion rate is 100%, meaning every

participant was able to complete them.

Task Level Usability score — After completing each task,

the participants were asked to respond to a Single Ease

Question (SEQ), where they were asked how difficult or

easy a task was to complete on a scale of 1 (very difficult) to

7 (very easy).

Figure 7: Average values of Single Ease Question (SEQ) [Phase 1]

The results show that the average user found Task 3 the

most difficult, followed by Tasks 4 and 10. Tasks 1, 8 and 9

were the easiest to complete, with an average score of 7,

according to all participants. These results match the ones in

the “Total Completion Rates”, as the tasks that some

participants were unable to complete (3, 4 and 10) were the

ones that were considered the most difficult.

Average Task Completion Time — During the

experiments, we measure how long each user took to

complete every single task.

The results presented show that most users took the

highest time completing Task 3, spending an average of 104

seconds (almost 2 minutes) on it, followed by task 4 and 10,

where users spent an average of 48 and 42 seconds,

respectively. These results are equivalent to the ones found

in the “Total Completion Rates” results and in the “Task

Level Usability score” results. As expected, the tasks that

were considered more challenging were the same ones that

took longer to complete.

On the other hand, the task that took the least time on

average to complete was Task 9, with an average of 3

seconds. After discussion, we concluded that this was

because the response to Task 9 was in the same place as the

response to Task 8, and therefore users took a short time to

complete the task.

System Usability Scale — The average SUS score was 83.5

(SD = 9.45) which means that our solution, regarding its

overall usability, is considered “passable”. However, the

participant P3 SUS score of 67.5, suggests that the tool had

some usability issues.

Usability suggestions — The following describes the

different suggestions proposed by the participants regarding

the tool’s usability:

• Help understanding how the tool works: Some

users reported having initial issues when trying to

understand how the tool functions. While everyone

was quick to learn, most still suggested with would

had been easier had they been given a tutorial demo

to explain the tool and how it worked. As one

participant stated, “Once you start clicking some

check boxes you learn pretty quickly how [the tool]

works [...] but having a help button or something

similar would have helped a lot.” and added “[the

tool] is very overwhelming at first.”

• Easier to read log report: In cases where multiple

analysis conditions were selected, users had issues

navigating through the log report box, and often had

to keep scrolling up and down to locate what they

were seeking. Participants noted that if the box were

bigger or if the analysis conditions were separate

from each other, it would be easier to navigate.

• Desire to analyse more than one variable: One of

the users (20%) reported the desire to view an

analyse more than one variable at a time. While this

did not hinder their ability to complete the tasks,

their suggestion was noted as a hurdle that could

arise in the future and therefore needed fixing.

Phase 2

During this phase, we performed a follow-up user test of the

improved prototype, where participants were given a

branching story (created using Twine) with various problems

and were asked to use the Story Validator to identify those

problems. They were then asked to propose

solutions/changes to these problems.

Performance

The test story that was given for the participants to analyse

had the following issues:

Problem 1: The Path #7 does not reach an Ending Passage.

Problem 2: The Path #8 does not reach an Ending Passage.

Problem 3: The Path #14 does not reach an Ending Passage.

Problem 4: The Passage “Ending 1” is never visited in any

path.

Problem 5: The Passage “Choice 6” is never visited in any

path.

All the previous problems can be identified in the Story

Validator under the Analysis Condition “Lost Plot”, which

reveals Passages that cannot be visited and Paths that do not

reach an ending.

Throughout the study, we observed their performance,

took notes, and measured the time each participant took to

identify the problems, or until they gave up. Afterwards, the

subjects were asked to score the usability of the tool using

the SUS and to respond to a questionnaire.

Results

Total Completion Rate — We gathered that most

participants were able to identify all the problems, except for

three of them that were not able to identify Problem 2. We

believe that the reason for the misidentifying of this problem

was due to the fact that these participants in question, instead

of using the Analysis Condition “Lost Plot” to identify the

issues with the story, they found them by observing the Main

Dialog tree directly. While this method is legitimate, none

realized that while 4 paths reached the Passage “Mr S

handkerchief” only 3 of them reached an ending.

Consequently, none of these users solved the problem in

question. The completion rate for the identification and

resolution of Problem 2 is 85%.
Figure 8: Task Completion Rate Results [Phase 2]

Additionally, two users (90%) were unable to solve the

Problems 1 and 3. Alternatively, Problem 5 seemed to be the

one that was harder to solve, at least for five of the

participants (75%). For all the other situations the

completion rate was 100%.

Figure 9: Average values of Single Ease Question (SEQ) [Phase 2]

Task Level Usability score — The average SEQ score for

identifying the problems is 6.25 and for resolving the

problems is 5.8. While using the tool to pinpoint the

problems was easy and only required a few “clicks”, solving

the problems required more energy to analyse the results and

deduct a solution.

Figure 10: Task Completion Time for each task type [Phase 2]

Average Task Completion Time — Results show that when

comparing the time it took users to identify all the problems,

to the time it took solve them, the former took much longer.

On average the time it took users to identify all the problems

was 52.3 sec. (SD = 22.66), and to solve them it took them

on average 146.2 sec. (SD = 31.84).

Overall, the time values for both finding and solving

problems prove that the tool is efficient and that, with little

habit, users can quickly use the tool to pinpoint and repair

errors in their interactive narratives.

Usability Scale (SUS) System — On average the SUS score

of our system is 92.4 (SD = 4.76). Our average SUS score

proves that our system is considered a “truly superior

product”, however, we nonetheless received some

suggestions for improvements on the tool.

Usability suggestions — The following describes the

different suggestions proposed by the participants regarding

the tool’s usability:

• Exploring using clickable Passages — Some users

suggested that, besides exploring the narrative through

each path, it would be useful to have the option to

explore using Passages. What they proposed was the

possibility to interact directly with tree graph, by

clicking on the nodes.

CONCLUSION

In this paper, we have underlined the current challenges

concerning the authoring process of Interactive Narratives.

After analysing several past works pertaining to the

authoring of Interactive Narratives, we noticed how there

was a lack of tools that provided ways for the author to test

their narrative while considering the player’s agency, during

the game’s developmental stage. More often than not, these

works opt for online Artificial Intelligent (AI) approaches

that, during gameplay, dynamically adapt the narrative and

resolve conflicts created by unintended player’s actions. This

might lead to situations where the system takes control of the

story, replacing human authorship.

With this work, we set ourselves to develop a tool for

testing interactive dialogues for video games, that allows

human authors to express their artistic intentions without

feeling constrained. This approach has been designed to

facilitate the development of interactive narratives in stages

before human playtesting by letting the author explicitly test

different hypotheses and narrative properties to identify

possible design mistakes. The tool’s GUI allows for a clearer

picture of the interactive narrative authoring process, by

providing a visual representation of the narrative structure

through the use of directed graphs, that run through different

test conditions.

After a thorough analysis of our test results, we

concluded that we met our requirements. Several users said

that they found the tool to be an essential asset for the

creation of interactive stories, even though many expressed

the desire to have more testing features and the option to

interact directly with tree graph.

Overall, we believe that, as a first approach to this type

of systems, our prototype managed to achieve the proposed

objectives.

REFERENCES

1. E. Aarseth, “A narrative theory of games,” in
Proceedings of the international conference on the
foundations of digital Games, 2012, pp. 129–133.

2. H. Qin, P.-L. Patrick Rau, and G. Salvendy,
“Measuring player immersion in the computer game
narrative,” Intl. Journal of Human– Computer
Interaction, vol. 25, no. 2, pp. 107–133, 2009.

3. M. O. Riedl and V. Bulitko, “Interactive narrative: An
intelligent systems approach,” Ai Magazine, vol. 34,
no. 1, pp. 67–67, 2013.

4. S. Dinehart, “Dramatic play,” 2009, online; Retrived
5-November- 2020. [Online]. Available:
http://www.gamasutra.com/view/feature/4061/drama
tic play.php

5. M. Mateas, “The authoring challenge in interactive
storytelling,” in Joint International Conference on
Interactive Digital Storytelling. Springer, 2010

6. P. Mirza-Babaei, N. Moosajee, and B. Drenikow,
“Playtesting for indie studios,” in Proceedings of the
20th International Academic Mindtrek Conference,
2016, pp. 366–374.

7. P. Mirza-Babaei, V. Zammitto, J. Niesenhaus, M.

Sangin, and L. Nacke, “Games user research: practice,
methods, and applications,” in CHI’13 Extended
Abstracts on Human Factors in Computing Systems,
2013, pp. 3219–3222.

8. N. Moosajee and P. Mirza-Babaei, “Games user
research (gur) for indie studios,” in Proceedings of the

2016 CHI Conference Extended Abstracts on Human

Factors in Computing Systems, 2016, pp. 3159– 3165.

9. J. Bates, “Virtual reality, art, and entertainment,”
Presence: Tele- operators and Virtual Environments,
vol. 1, no. 1, pp. 133–138, 1992.

10. M. O. Riedl, “Incorporating authorial intent into
generative narrative systems.” in AAAI Spring
Symposium: Intelligent Narrative Technologies II,
2009, pp. 91–94.

11. B. Books, Choose Your Own Adventure Book Series.
Bantam Books: NYC, 1979 - 1998.

12. C. Moser and X. Fang, “Narrative structure and player
experience in role-playing games,” International
Journal of Human-Computer Interaction, vol. 31, no. 2,
pp. 146–156, 2015.

13. R. Aylett, “Emergent narrative, social immersion and
“storification”,” in Proceedings of the 1st International
Workshop on Narrative and Interactive Learning
Environments, 2000, pp. 35–44.

14. E. Adams, Fundamentals of game design. Pearson
Education, 2014, pp. 172–173.

15. Bethesda Game Studios, “Fallout 3,” Rockville,
Maryland: Bethesda Softworks, 2008.

16. S. Dow, B. MacIntyre, and M. Mateas, “Styles of play

in immersive and interactive story: case studies from a

gallery installation of ar fac¸ade,” in Proceedings of the
2008 International Conference on Advances in

Computer Entertainment Technology, 2008, pp. 373–380

17. M. Mateas and A. Stern, “Architecture, authorial idioms
and early observations of the interactive drama fac¸ade,”
2002.

18. [M. Mateas and A. Stern, “Fac¸ade: An experiment in
building a fully- realized interactive drama,” in Game
developers conference, 2003, pp. 4–8.

19. M. Mateas and A. Stern, “Structuring content in the
fac¸ade interactive drama architecture.” in AIIDE, 2005,
pp. 93–98.

http://www.gamasutra.com/view/feature/4061/dramatic%20play.php
http://www.gamasutra.com/view/feature/4061/dramatic%20play.php
http://www.gamasutra.com/view/feature/4061/dramatic%20play.php

20. M. O. Riedl and A. Stern, “Believable agents and

intelligent story adaptation for interactive

storytelling,” in International Conference on
Technologies for Interactive Digital Storytelling and

Entertainment. Springer, 2006, pp. 1–12.

21. M. Bernstein, “Collage, composites, construction,” in
Proceedings of the fourteenth ACM conference on
Hypertext and hypermedia, 2003, pp. 122–123.

22. T. Rothamel, “Quickstart - ren’py documentation,”
2020, online; Retrieved 20-
December-2020. Available:
https://www.renpy.org/doc/html/quickstart.html

23. S. Mascarenhas, M. Guimar˜aes, R. Prada, J. Dias, P.
A. Santos, K. Star, B. Hirsh, E. Spice, and R.

Kommeren, “A virtual agent toolkit for serious games

developers,” in 2018 IEEE Conference on
Computational Intelligence and Games (CIG). IEEE,

2018, pp. 1–7.

24. R. S. Aylett, S. Louchart, J. Dias, A. Paiva, and M.
Vala, “Fearnot!– an experiment in emergent
narrative,” in International Workshop on Intelligent
Virtual Agents. Springer, 2005, pp. 305–316.

25. M. Cavazza, F. Charles, and S. J. Mead, “Character-
based interactive storytelling,” IEEE Intelligent
systems, vol. 17, no. 4, pp. 17–24, 2002.

26. lazerwalker/twison (2020). Retrieved 30 December
2020, from https://github.com/lazerwalker/twison

https://www.renpy.org/doc/html/quickstart.html
https://www.renpy.org/doc/html/quickstart.html
https://github.com/lazerwalker/twison

