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The detection of radioactive hot-spots has been a challenge for the security sector, especially in
situations involving chemical, biological, radiological and nuclear (CBRN) threats. This work pro-
poses a solution based on Machine Learning techniques, with a focus on Artificial Neural Networks
(ANNs), so observations of radiological intensity counts and corresponding localizations can be used
to estimate not only the number of unknown radioactive sources present in a given scenario, but
also their location and activity at the same time. For this, a simulator is used to generate a training
data set for the training process, and so, using the model already trained through a Divide and
Conquer algorithm, fast and accurate predictions are achieved, ensuring the reliability of such an
ANN-based approach.

The proposed solution is then tested in scenarios with multiple sources, with obstacles included,
and with non-point-like sources. Unlike most existing algorithms, which begin failing in scenar-
ios with those conditions, ANNs have shown that are capable of performing an accurate hot-spots
detection, with a low number of limitations. Additionally, experimental results, done in lab environ-
ments and real scenarios located at old deposits of radioactive ore, have shown that the algorithm is
scalable for very large regions, as well as for very short scenarios. Thus, ANNs have demonstrated
the capability of being an emerging tool with the potential to make a difference in the nuclear field,
by helping in the development of novel techniques and new solutions in order to safeguard human
lives.

Keywords: Radioactive Hot-spots, Machine Learning, Artificial Neural Networks, Divide and Con-
quer

I. INTRODUCTION

Radioactivity is a field that can bring a lot of benefits
for the human being, namely in science, medicine and
industry areas. However, it also involves many issues
and dangers, related to chemical, biological, radiologi-
cal and nuclear (CBRN) threats [1] and the naturally
occurring radioactive materials (NORMs) [2], which can
arise from anywhere (although there are potential loca-
tions). Therefore, the detection of dirty bombs in public
places, the autonomous inspection of nuclear sites and
the remote control of places, like the one that followed
the Chernobyl disaster in 1986, are examples of applica-
tions that have been developed in this field in the past
decade. To perform an inspection in such radioactive sce-
narios, portable devices, such as radiological sensors, can
be handled, in a backpack, or even in mobile robots, like
an unmanned aerial vehicle (UAV). For example, in [3]
the UAV helps in detecting radioactive material through
search strategy methods within a specific area, whereas
in [4], it is used to build a 2D radioactive heatmap.

Then, despite the success of some state-of-the-art al-
gorithms, in detecting a single or a small number of ra-
dioactive point sources, most of them start failing as the
scenarios get more complex. A high number of sources,
the presence of obstacles, and the existence of sources
with non-trivial shapes are some of the main limitations.

In addition, even in simpler scenarios, when larger or
shorter dimensions are considered, or when the data ac-
quisition approach is different from the one considered,
most existing works are not capable of keeping providing
good results.

For this reason, in this work, a solution based on Ar-
tificial Neural Networks (ANNs) is proposed in order to
estimate not only the distribution and the positions of the
sources, but also the number and the respective activities
of each of them. The reasons for this selected solution are
the reduction of computing time through recent improve-
ments in both software and hardware, the huge amount
of current available open source frameworks, and also the
fact that, although there is still not much nuclear data,
according with the World Institute for Nuclear Security
[5], it is intended that, in the near future, there will be
large amounts of nuclear data. Thus, the main contribu-
tions of this work are as follows:

• A novel approach for detecting radioactive hot-
spots, that is efficient in (i) handling multiple
sources, without requiring any information about
the number of sources; (ii) predicting the parame-
ters of the detected sources (location and activity);
(iii) considering scenarios with obstacles included,
without any information given in advance and with-
out training data composed of such scenario condi-
tions; (iv) handling regions of the scenario with-
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out any observation and still get accurate predic-
tions; (v) approaching non-point-like sources with
interesting results; and (vi) handling both large and
short-scale scenarios, through the application of an
algorithm based on the Divide and Conquer (DAC)
method.

• Quantitative results are provided and show that
the selected approach is capable of getting accu-
rate predictions, with a low number of false nega-
tives (missed detections) and false positives (false
alarms) rates, as well as precise estimations regard-
ing the exact location and activity of the detected
sources.

The remainder of this work is organized as follows: the
state of the art is presented in Section 2. In section 3,
it is formulated the problem statement and, in section
4, the selected approach is described. In section 5, it is
detailed the setup and data assumptions, as well as the
way the simulator is used. The data preprocessing, the
implementation of the selected approach, and the differ-
ent tests performed to select the best models are detailed
in section 6. Finally, chapter 7 provides the performance
results with real and simulated scenarios, and chapter 8
summarizes the conclusions.

II. STATE OF THE ART ALGORITHMS

Earlier detection systems are designed for a single
source, or separated distributed sources [6, 7], where
the radiation field could be described by several uni-
modal distributions and the cumulative effect of multi-
ple sources could be neglected. Whereas, more recently,
many approaches have also been adopted to locate mul-
tiple sources, taking into account the cumulative effect
in statistic models [8, 9]. Most of them assume that the
number of sources N is known a priori, being in this
case a parameter estimation problem, where the goal is
to find the most probable source parameters (location
and strength) of each source. Thus the number of esti-
mated parameters increases with N , and then the algo-
rithm complexity also increases. On the other hand, in
works where the number of sourcesN is unknown, the pa-
rameters of the sources are estimated for a range of pos-
sible values for N , using in the end the ones with highest
probability. This can lead to inaccurate predictions, since
a large range of possible N values and a superposition of
signal strengths from different sources are examples of
factors that make existing algorithms more complicated,
and even more when these factors are jointly considered.
For instance, if we consider the problem of non-point-like
sources, a sensor can record a high measurement induced
by a single strong source or by a combined multiple weak
sources. This means that we may get similar results that
seem to be valid for distinct values of N .

According to [10], ANNs are the dominant learning-
based algorithm used in nuclear and radiological science,
mainly in applications of reactor health and monitoring,
radiation protection (characterization and identification

of radionuclides), and optimization. However, regarding
the concrete problem of radioactive hot-spot detection,
one has not found approaches in the literature of the
last decade (only [11] from 1995 which detects only one
source), which can be confirmed by the reviews [10, 12].
This may be related to the fact that, as we will see later,
to build an ANN model, a training process has to be per-
formed and some conditions must be fixed, such as the
conditions of the scenario (e.g. its dimensions and the
strength of the sources) and the way the observations
are acquired (sensors distribution or the path taken by
the UAV). Otherwise, new training processes must be
performed and the time necessary for this may be a bar-
rier to the development of such ANN-based approaches.
Besides that, the computational costs in relation to both
software and hardware to train the model, and the need
to get a huge and varied training data set, can also be
some of the constraints to obtain accurate results.

III. PROBLEM STATEMENT

This work aims to solve the problem of radioactive
hot-spot detection (which includes its localization and
quantification of the radiation level), by using an UAV
with a Geiger-Müller Counter (GMC) and a Global Po-
sitioning System (GPS) receiver to get observations and
then compute the number, location and activity of the
source(s) present in the area of interest.

It is assumed an unknown number of radioactive
sources, N ≥ 0, with no information regarding the re-
spective activities and locations, within an area of inter-
est treated as a two-dimensional environment (since the
distance to the ground is considered constant). Let S =
[sT1 . . . s

T
N ]T denote the set of radiations sources. Each

source is considered as isotropic point-like source, which
is parameterized by the vector parameter si = [psiasi ]

T

∈ R2×R+, for i = 1, ..., N . The position of the ith source
is given in Cartesian coordinates, with psi = (xsi , ysi) in
meters (m), and the activity, asi , is measured in units
of becquerel (Bq), which means the number of disinte-
grations per second. Also, the activity is assumed to be
stable, i.e., the duration of any measurement is negligible
when compared to the half-life of the source.

Then, the radiation intensity measurements are as-
sumed as independent random variables each following
a Poisson distribution, with an equal exposure time.
Having a known number of measurements, M , let O =
[oT1 . . .o

T
M ]T denote the set of observations, with oj =

[qojcoj ]T ∈ R2×R+
0 , for j = 1, ...,M , where M >> N .

Similarly, qoj = (xoj , yoj ) represents the jth measurement
position, and its intensity (number of particles detected
within the exposure time interval), measured in units of
becquerel per squared meter (Bq/m2), is given by

coj = cb +

N∑
i=1

asi exp(−αdoj ,si)
d2oj ,si

(1)

where both the coefficient α, which is related to the ab-
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sorption of radiation particles in the air, and the back-
ground intensity, cb, are known a priori, and doj ,si is the
Euclidean distance between positions qoj and psi .

When obstacles are considered, some of the previous
expressions must get adapted, since they shield (totally
or partially) the radiation rays. Also, the obstacles have
different types of materials and shape, and can be located
anywhere in the area of interest. So, assuming that each
obstacle is made of homogeneous material, and the radi-
ation source is on one side of the obstacle, the intensity
that comes from the ith source, asi , becomes asie

−µl,
where l is the thickness and µ the attenuation coefficient
for the material of the obstacle. Finally, eq. (1) becomes

coj = cb +

N∑
i=1

asi exp
(
−αdoj ,si −

∑
b∈Boj,si

µblb

)
d2oj ,si

(2)

where Boj ,si denotes the set of obstacles that intersect
with the straight line between qoj and psi . Consequently,
regarding each obstacle b, lb is the total thickness along
that intersection, and µb is the corresponding attenuation
coefficient.

Thus, the localization problem is to use the vector of
measurements, O, in order to make predictions regard-
ing the number of sources, N̂ , and respective parameters
vector, Ŝ = [ŝT1 . . . ŝ

T
N̂

]T , with ŝk = [p̂ ŝk âŝk ]T ∈ R2×R+,

for k = 1, ..., N̂ .

FIG. 1: Illustration of Problem Statement, with
obstacles in gray color.

IV. SELECTED APPROACH

The proposed approach to detect radioactive hot-spots
is the use of Machine Learning techniques, namely ANNs,
and related architectures such as Convolutional Neural
Networks (CNNs), essentially due to its ability in deal-
ing with radiological data, which is non-linear, noisy and
inconsistent. Besides, the training of such deep architec-
tures has become even more efficient with improvements
and breakthroughs in techniques related to training, opti-
mization and regularization [13]. To overcome the prob-
lems and limitations involved in the development of an
algorithm based on ANNs, which were mentioned in sec-
tion I, the selected approach of this work aims to build
an ANN model using a training data set composed only
of simulated data, and adapting the simulator parame-
ters according to the scenario conditions. Then, using
an algorithm with the pre-trained ANNs, and taking ad-
vantage of the capacity of the regression and classifica-

tion problems, it is possible to apply the model in both
large and short-scale scenarios. Besides, the ANN abili-
ties, and the way they are used in this selected approach,
may solve some limitations of most existing algorithms,
such as the existence of a maximum number of sources to
get accurate detections (since some models degrade or the
runtime explodes as the number of sources increases), the
non-scalable applications of the models, and the obsta-
cles information given a priori. Lastly, having the ANN
model already trained, it is possible to use this approach
in real-time (during a real surveillance, for instance), ob-
taining fast responses within an extremely short time (in-
dependently on the number of sources and the presence of
obstacles), which can be highly demanded in radiological
operations related with the detection of hot-spots.

Therefore, the ANN model adopted is inspired on Yolo
state of the art [14], where a model based on classifica-
tion and regression problems is applied for object detec-
tion tasks, with images used as input. Since the input
data of this work is composed of intensity measurements
acquired throughout the entire map, instead of a matrix
of pixels, it is used a matrix with the intensity values.
Then, the map is divided into S×S grid, and if a source
is located in a grid cell b, then this grid cell is responsible
for detecting that source. So, the classification outputs
give the probability of having a source in each grid cell
(it should be zero if no source exists in that cell, and
one otherwise), making possible to compute the number
of sources (assuming for now that each box has at most
one source) and the regions (cells) where they are. Then,
to compute the parameters of the sources (activity and
location), the regression problem is applied in each cell,
by associating 3 outputs (ab, xb, yb) for each cell b.

Thus, in the end, we have an S × S × 4 tensor, where
each grid cell can be represented as a four-dimensional
vector:

zb = [pb xb yb ab]
T (3)

where pb is the probability of having a source in the re-
spective grid cell, b. If pb = 1, and supposing that it is
the ith source the one present in this cell b, then (xb, yb)
parameters are equivalent to the positions (xsi , ysi) and
ab refers to its activity asi . Otherwise, if pb = 0, then
(xb, yb, ab) = (?, ?, ?) as done in Yolo approach, where ”?”
means ”Don’t care”. Thus, despite a regression problem
is going to be done even in cells without any source, by
combining the results of both problems, we can select
which outputs of regression problem matter (while the
other ones must be neglected) and, in the end, we get
the final estimations with regressions only on the cells
where the classification problem have determined that
there is a source, as represented in Fig. 2.

As we can see in eq. (3), only one source can be de-
tected per each grid cell. Therefore, an algorithm based
on the DAC method is applied, in such a way that the
pre-trained ANN model can be used. This is a strategy
typically used to solve a problem recursively by applying
three steps according to the level of recursion: divide,
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FIG. 2: Scheme of the classification and
regression-based model.

conquer and combine. In the first step, ”divide”, the
problem breaks into smaller sub-problems that are sim-
ilar to the original problem (called ”Division 0”), until
the problem is small enough to be solved. These sub-
problems are regions of the original map, so the input of
the model is just the set of observations that is measured
in this region. Only the outputs related to the classifi-
cation problem are used, where pb has now a different
meaning, referring to the probability of having at least
one source (pb = 1) or not having any source (pb = 0)
in the corresponding cell b. Then, the ”conquer” step
is when the original problem is already divided into the
smallest possible parts and, therefore, both the classifi-
cation and the regression outputs are used. In Fig. 3 it
is represented one division (”Division 1”) where the ”di-
vide” step is applied, whereas the ”conquer” step occurs
on the last division (”Division 2”). Finally, the last step,
called ”combine”, is when we are able to combine all the
predictions of number, location and activity of the found
sources, and, in the end, to solve the whole problem and
compare the results with the real values.

FIG. 3: Representation of the Divide and Conquer
method, with an example of two divisions.

The number of divisions depends on the quantity and
quality of the observations that are used as input of the
ANN model over the successive divisions (since they must
be dense and spatially well-distributed throughout the
scenario); and on the dimensions of the scenario where
the ”conquer” step will be applied.

A. Quality Metrics

For each model considered, the neural network is
trained using the training set, while its error is evalu-
ated at the same time in the validation set. According
to the Early-stopping technique [15], those parameters
corresponding to the best iteration are saved, and are
then used with the test data set in order to evaluate the
performance of the model.

Therefore, there are some criteria to evaluate and then
select the best models. Regarding the regression outputs,
the Mean Squared Error (MSE) is used to measure the
average of the squares of the errors, as follows:

MSEa =
1

n

n∑
i=1

(âi − ai)2 (4)

which is used for the activity predictions â, and with
n being the total number of samples. For the location
predictions (x̂, ŷ), a similar expression is used:

MSEx,y =
1

n

n∑
i=1

[
(x̂i − xi)2 + (ŷi − yi)2

]
(5)

where (a, x, y) represent the real values.
Regarding the classification outputs, the Precision and

Recall concept [16] is used. The Precision measures how
accurate are the predictions by giving the percentage of
corrected identifications, while the Recall measures the
efficiency of the model to find the proportion of positives
correctly identified. Also, there are the terms true pos-
itives (TP), true negatives (TN ), false positives (FP),
and false negatives (FN ), to compare the results from
the model (associated to positive/negative) with the re-
ality (related to true/false). Therefore, the corresponding
rates are given by:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
(6)

There are other important definitions to evaluate how
good the prediction are, such as the Accuracy (eq. (7)),
which corresponds to the measure of all the correctly
identified cases, and the F1-score (eq. (8)), which makes
a relationship between Recall and Precision. The Accu-
racy metric is also used during the training process for
the classification outputs.

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

F1-score = 2× Recall × Precision
Recall + Precision

(8)

V. SETUP AND DATA ASSUMPTIONS

A. Real Data

The assumed setup is depicted in Fig. 4 (left). Since
the radiation sources are assumed to be stable, static and
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located on the ground, the UAV is used to get measure-
ments. More precisely, they are acquired by a drone,
which carries on a GMC to measure the intensity, and a
GPS receiver to measure the position. Two other sensors,
a depth camera and a rangefinder, are also used to allow
the mission to be planned at a given constant distance
to the ground.

Another way to get measurements without using a
drone is the one depicted in Fig. 4 (right). This alter-
native experiment is associated to a human operation
walking in the scenario, equipped with a mobile phone
connected to the GMC, and, as done with the drone,
with an approximately constant distance between the
sensor and the ground. Both experimental approaches
are done with the aid of a mobile application, denomi-
nated MARIA (Mobile Application for Radiation Inten-
sity Assessment), which is being developed at Instituto
de Plasmas e Fusão Nuclear (IPFN) and is detailed in
[17].

FIG. 4: Experimental setup with a drone flying over the
scenario. Alternative with a person operation instead of

a drone. Images from [18].

B. Simulated Data

In the MSc Thesis of Yoeri Brouwer [19], it was devel-
oped in Python a computer algorithm able to provide a
radiological heatmap in 2D, given the initial conditions of
the radioactive sources: number, activity and spatial dis-
tribution. Later, a similar simulator was also developed
to consider the presence of obstacles.

Thus, taking into account the objectives of this work,
a simulator based on the previous two simulators is used
with some improvements implemented. It is adopted two
different approaches (see Fig. 5) to get them: Random,
by taking the ”Poisson-disk sampling” method that uses
Robert Bridson’s algorithm [20]; and Grid approach, with
a grid sampling based on Gaussian distribution, to make
a discretization of the space and get a grid of pre-defined
G×G fixed positions.

The generated training data has similar dimensions to
the last division of the DAC method since it is here when
both the regression and classification problems are used.
Instead, in the previous divisions, only the classification
problem is needed. Although the more distinct are the
dimensions of the scenarios used during the training pro-
cess, the lower is the accuracy obtained regarding the
classification outputs, the model is still capable of get-
ting accurate predictions, as we will see in subsection
VI C by studying the threshold’s influence.

FIG. 5: Representation of Random (left) and Grid
(right) approaches.

It is generated 20, 000 simulations, each one with a
different set of sources, and the corresponding configura-
tion was as follows: scenario dimensions of 3.33×3.33 m;
sources activity within range [106, 108] Bq; one source at
most in each of the S × S grid cells, with S = 3; and a
maximum total number of possible sources of 4 for each
scenario. Regarding the observations, it is defined 11×11
data points for the Grid approach, and about 200 for the
Random approach.

VI. NEURAL NETWORKS IMPLEMENTATION

The neural networks algorithm was implemented in
Python supported by Jupyter Notebook [21]. It was
used the framework Keras [22], running on top of the
open-source Machine Learning platform TensorFlow [23],
which is supported by Graphics Process Unit (GPU).
All the computations associated to the neural networks
implementation were performed through the CUDA
compatible Nvidia GeForce MX150 and an Intel(R)
Core(TM) i7-8550U CPU @ 1.80GHz × 8 processor.

A. Data Preprocessing

Firstly, the simulated data acquired from the simula-
tor is transformed so we have the input vector, with a
format (Nsim, 3×M), where Nsim represents the number
of simulations with a set of source(s) and 3 ×M means
the total number of values (coj , xoj , yoj ) of all the mea-
surements, with j = 1, ...,M ; and the target vector, with
a format (Nsim, 3×N), with 3×N being the total num-
ber of values (asi , xsi , ysi) of all the parameters of the
sources, with i = 1, ..., N .

Then, both vectors are transformed to fit the respective
input and output layers of the ANN model. The input
is a square matrix composed of intensity values, whose
corresponding measurement positions in the map match
with the positions of each of the s×smatrix entries. Since
the drone’s positions have always uncertainty associated
and the measurements may be acquired in a random way,
then the positions (xoj , yoj ) should be part of the input
too to get more accurate results. To do so, as represented
in Fig. 6, a three-dimensional matrix is used as input,
where each dimension is composed by the parameters coj ,
xoj and yoj . For the Grid approach, we have G = s,
which means that each fixed point of the grid has already
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a correspondence to each entry of the input matrix. For
the Random approach, the data must be clustered in
each of the s×s input cells, so only one input is obtained
through the average pooling or max pooling methods (see
how it is done in the thesis).

FIG. 6: ANN model’s input, with s = 9 and Random
approach used. For the Grid approach, s = 11 is used.

FIG. 7: Map division with 3× 3 grid cells.

The target vector must be divided into three distinct
vectors: one for the classification problem and the other
two for the regression problem, with one referring to the
activity values of the sources (asi) and the other to the
position values (both xsi and ysi parameters). For the
classification target, it is followed the scheme with 3× 3
boxes represented in Fig. 7 in order to encode the po-
sitions of the sources so it is possible to associate each
classification output neuron to a specific box of the map.
This way, using the example from Fig. 7, where the boxes
0 and 8 are the ones with a source, the classification tar-
get is as follows:

[p0, p1, p2, p3, p4, p5, p6, p7, p8] = [1, 0, 0, 0, 0, 0, 0, 0, 1]
(9)

whereas the regression target is

[x0, nan, nan, ..., nan, x8, y0, nan, nan, ..., nan, y8] (10)

for the location values, with x0,8, y0,8 ∈ R, and

[a0, nan, nan, nan, nan, nan, nan, nan, a8] (11)

for the activity values, with a0,8 ∈ R+, and ’nan’ repre-
senting the expression ”Don’t care”.

B. Neural Networks Model

The model is implemented based on CNNs, where the
initial convolutional layers extract features from the in-
put while the fully connected layers (composing a Mul-
tilayer Perceptron (MLP)) predict the classification and

regression outputs. The size of the dense layers, the num-
ber of hidden layers, the number of respective neurons,
and the number of convolutions (as well as the kernel
size, the stride and the depth) have been subject of exten-
sive experiments. In the end, the best hyperparameters
found are represented in Fig. 8, where it was observed
that adopting small differences in these hyperparameters
according to the classification, localization and activity
outputs, better results are achieved. Being a multi-label
classification problem, the loss function used during the
training process is the Binary Cross Entropy function,
which is given by the following expression:

Lp = − 1

Nsim

Nsim∑
i=1

[pi log(p̂i) + (1− pi) log(1− p̂i)] (12)

Based on the MSE metric, the loss functions for the
activity and the location are, respectively, as follows:

La =
1

Nsim

Nsim∑
i=1

pi(âi − ai)2 (13)

Lx,y =
1

Nsim

Nsim∑
i=1

pi
[
(x̂i − xi)2 + (ŷi − yi)2

]
(14)

with the output values (p̂i, âi, x̂i, ŷi). So, if there is no
source in a certain cell, multiplying by pi ensures that the
regression predictions of that cell do not get penalized.

FIG. 8: Scheme of the final ANN model.

C. Training Process and Results

During the training process, there are some parameters
that must remain fixed, namely the background intensity,
the range of activity values of the sources, the scenario
dimensions (width and length) used during the last di-
vision of the DAC process, and the approach used for
the observations acquisition. Otherwise, if any of these
parameters change considerably, then a new training pro-
cess must be performed.

The optimizer used during training is the Adam al-
gorithm [24], with a learning rate η = 10−4, and a L2
(ridge regression) regularization [25] is implemented on
every layer, with λ = 0.001. Then, having simulated
20, 000 samples in total, which leads to ∼ 16, 000 data for
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training, it means that we get approximately 65 batches,
using a batch size of 256. Then, 600 epochs are per-
formed, where each epoch represents a loop made over
all the batches.

In Table I the best values of accuracy and loss error
are presented, related to the Early-stopping point, for
the three different approaches regarding the way the ob-
servations enter the ANN. The accuracy is very high,
which means that the model is detecting the region with
a source almost perfectly. Regarding the position predic-
tions, the error is lower than 0.02 m2 (much shorter than
the scenario dimensions of 3.33 × 3.33 m), which means
that the model is able to get precise results. About the
activity estimations, although it seems we are getting an
error too high, around ∼ 1014 Bq2, it is important to
note that, since the target activities are within the range
[106, 108] Bq, and La is based on MSE function (see eq.
(13)), when computing the loss error, all the quadratic
errors of entire training data are being summed, leading
to an expected huge loss error.

Approach Pooling Acc (%) La (1014 Bq2) Lx,y (10−2 m2)
Grid - 97.33 0.594 1.025

Random
Avg 95.38 1.247 1.802
Max 95.14 1.655 1.879

TABLE I: Early-stopping points of the different
approaches.

Threshold study for DAC algorithm

An important characteristic of the classification prob-
lem is the threshold value, i.e the value of probability
(classification output) from which it means that there is
at least one source on the corresponding box. Although
it is commonly assumed that the threshold should be
0.5, the choice of a threshold is a problem-dependent.
Besides, we may assume different values of threshold de-
pending on the division and the goals we have according
to that division. Therefore, in Fig. 9, it is presented the
plots of the quality metrics related to the classification
problem, using the test data set. In the first divisions, the
goal is to have a low FNR (rate of FN) as possible so as
not to have lost sources at the beginning of the DAC pro-
cess, and a low FPR (rate of FP ) so unnecessary boxes
are not approached later. In the last division, the goal is
to obtain the best combination of accuracy and F1-score
and with FPR practically zero. In intermediate divisions,
the threshold must belong to the range in which accuracy
and F1-score present the best results, and both FNR and
FPR remain less than 10%. This way, a threshold value
of 0.1 is selected for ”Division 0”, 0.9 for the last division,
and for the intermediate divisions, the [0.5, 0.8] range is
the choice for the Grid approach. Although similar, the
difference with the Random approach is explained in the
thesis.

Considering Missing Observations

During the data acquisition step, it may happen that
some regions of the scenario do not have any observation,
which leads to the problem that some of the s× s entries

FIG. 9: Threshold study for the Grid approach.

of the input matrix do not get any value. In order to
simulate this situation, the input layer becomes also a
dropout layer, where a given rate of random input neu-
rons are neglected. The goal is to extrapolate information
from empty observations based only on those available.
The problem of having regions of the map without any
observation is more likely to happen when we collect data
according to the Random approach. Therefore, using the
average pooling, tests are made to assess the performance
gain with rates 0, 0.05, 0.10 and 0.15 in scenarios with
0, 10, 15 and 20 random inputs set to zero. The re-
sults are shown in Fig. 10 and, analyzing the accuracy
and F1-score metrics, we see that, initially with all the
observations, the dropout rate of 0 provides the best re-
sults, but when we have 15 and 20 missing observations,
the dropout rates of 0.05 and 0.10 produce the best re-
sults, whereas the dropout rate of 0 becomes the worst
in the end. Regarding the activity and localization of the
sources, which are respectively evaluated by eqs. (4) and
(5), the dropout rate of 0 provides similar results com-
pared to the remaining rates only with all observations,
whereas, for 10 or more missing observations, the results
improve as the dropout rate increases.

FIG. 10: Plots of Accuracy, F1-score, MSEa and
MSEx,y, as a function of the number of missing

observations.
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VII. RESULTS

A. Simulation Results

Starting with the simulation results, two scenarios are
approached (see Fig. 11), both with 6 sources but with
different complexities, related to the proximity between
the sources.

FIG. 11: Simulated scenarios 1.a) and 1.b).

In relation to the scenario 1.a), the final result rep-
resented in Fig. 12 (right) shows that all the 6 sources
are detected, and also the location and activity predic-
tions are both very accurate, which is confirmed by the
relationship between the ’o’ (predictions) and the ’x’ (tar-
gets) symbols and the similarity between colors, respec-
tively. Regarding the scenario 1.b), from Fig. 12 (right),
we see that now only 5 sources are detected and there
is one missed detection. This non-detected source is so
weak and there may be an overlay of the closest source’s
intensity. Besides, there are 5 false positives, where 4 of
them are associated with target sources. Nevertheless,
in practical terms, the ”user” can also identify where to
confirm the existence of hot-spots, in terms of location
and must take into account that the predictions are inde-
pendent of each other, i.e. the estimated activity is not
distributed among the different predicted sources, and so
the real value does not decrease.

FIG. 12: Result of scenarios 1.a) (left) and 1.b) (right).

One of the main problems of this work is related to the
fact that it is not known how many sources the ANNs are
able to detect. Therefore, follows a scenario (called 1.c)),
with a high number of sources, namely 16, as represented
in Fig. 13 (left). Analyzing the final result depicted in
Fig. 13 (right), we see that all the 16 sources are detected,
even with sources so close to each other and some of them
much weaker than others, although some false positives
arise. Regarding the parameters of the detected sources,
we can verify that both location and activity estimations

FIG. 13: Scenario 1.c) (left) and final result (right).

are very close to the real values.

Considering the presence of Obstacles

In order to test the presence of obstacles in a scenario,
two obstacles (with µ = 18.4m−1) were added to the
previous scenario 1.b). Recall that there was not a new
training process, and so the weights of the model are
still the same. The configuration and the position of the
obstacles are represented in Fig. 14 (left).

FIG. 14: Scenario 1.d) (left) and final result (right).

In Fig. 14 (right) it is represented the final result. All
the 6 sources are now detected, including the one that
was not detected without the obstacles. This also means
that, even with a more complex environment that was
not part of the training data set at all, the ANN model
is capable of detecting the sources, presenting even bet-
ter results in relation to the model’s accuracy. This
may be related to the shielding created by the obsta-
cles, which reduces the interference between two or more
sources, and leads to better observations for the individ-
ual sources. Regarding the disadvantages, we see that,
although there are less false positives, new false positives
may occur near to the position of the obstacle(s), due to
the fact that there may be gaps of intensity that lead to
wrong interpretations by the ANNs. Still, this false posi-
tive has a very low activity (less than 105 Bq). Therefore,
the presence of obstacles does not provide significant neg-
ative effects, and may even provide good effects (namely
by reducing false negatives and false positives).

Non-point-like source Approach

To test non-point-like sources, the simulator is used in
such a way that a non-point-like source is actually an ar-
range of multiple sources in a certain configuration. In
Fig. 15 two different scenarios are presented. On the left,
with scenario 1.e), there are 36 sources in a L-shaped
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configuration with the activity of 5× 106 Bq and with a
distance of 10 cm from each other. On the right, with
scenario 1.f), we have the same number of sources with
the same values of activity, but the distance between each
other is just 3 cm. Then, in Fig. 16, the final results show

FIG. 15: Scenarios 1.e) (left) and 1.f) (right).

that, in both cases, the point-like sources are detected
with accurate predictions in relation to the correspond-
ing parameters, and so there is not any negative impact.
Regarding the non-point-like source, in scenario 1.e) it is
detected almost the total number of actual sources (28 of
36), and the activity values are close to the actual value
(5×106 Bq). On the other hand, in scenario 1.f), there is
only 3 predictions, which is closer to what was desirable
(i.e., only one prediction), located in points with almost
the same distance between each other, and activity values
within the range [8, 9]× 107 Bq.

FIG. 16: Result of scenarios 1.e) (left) and 1.f) (right).

B. Lab Results

At Instituto Superior Técnico, some lab tests (see
setup in Fig. 17), in short-scale scenarios, were carried
out with real sources with activity values within the range
[102, 103] Bq. So, a new training process was performed,
using the Grid approach with 11× 11 inputs.

In Fig. 18 it is depicted the lab scenario 2.a) with, on
the left, the data points acquired by MARIA, with CPM
(counts per minute) unit. The conversion to Bq/m2 is
explained in the thesis). Some isolated points can be vi-
sualized with intensity ∼ 150 CPM due the fact that the
sources are covered by lead which is not entirely homoge-
neous, and so the sources are not as isotropic as desirable.
Applying the ANN model (on the right), the final result
shows that false positives may appear (although most of
them with very low estimated activity), which may be re-
lated to the previous isolated data points. Regarding the

FIG. 17: Lab setup: Mobile phone running MARIA
(left) and scenario’s representation (right).

true positives, accurate results are obtained, since both
estimations of the position and activity of the sources are
very close to the targets (represented by circles).

FIG. 18: Data from lab scenario 2.a) (left) and the
final result (right).

C. Real Results

Finally, in this section we have one of the real scenarios
(located at old deposits of radioactive ore) tested, with
dimensions that are very larger than the ones considered
in the previous subsections, and represent a real context
where the proposed solution of this work is intended to
be used. Fig. 19 (up) shows the considered scenario 3.a)
with the radiological heatmap provided by MARIA.

The ANN model is used with the Random approach
and Fig. 19 (bottom) shows the final results, after ap-
plying the DAC algorithm. Since the activity and po-
sition of the targets are unknown, instead of visualizing
these parameters, a plot of all observational data with
an intensity higher than 100 CPM is done, so the loca-
tion of possible hot-spots can be seen. Thus, we see that
the three main hot-spots seen in the heatmap (with red
color) are detected and, besides that, there are also a few
sources identified in other points of the map.

VIII. CONCLUSIONS

The results of the present work show that the usage of
ANNs provides good results in detecting radioactive hot-
spots in simple and more complex scenarios, where the
most existing algorithms present some limitations. The
main downsides are related to the long time required for
training, the computational costs (i.e., the software and
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FIG. 19: Radiological heatmap of scenario 3.a) (up),
and final result (bottom).

hardware needed to train the ANN model), and the use
of a training data set composed only of simulated data.

Nevertheless, having the ANN model already trained,

it can be used through the DAC algorithm in order to ob-
tain fast and accurate predictions, which can be very use-
ful in real-time operations (e.g. for a real surveillance).
Simulation results verified the accuracy of the algorithm,
involving realistic complexities. The dimensions of the
various tested scenarios had variations from 1 m2 to more
than 104 m2, which shows that the model is scalable to
large regions and capable of dealing with a high num-
ber of sources. Besides, the use of a dropout input layer
may improve the results when missing observations must
be considered. The presence of obstacles was also tested
and, without requiring any prior information about them,
the algorithm shows to be capable of obtaining good
results and even improving in some cases, by reducing
the number of missed detections. Lastly, non-point-like
sources were approached, by arranging multiple sources
in a certain configuration, and the performance of the
model was dependent on the distance between each of
these sources. This is, the shorter the distance, the lower
number of detected sources was associated with a non-
point-like (target) source.

Thus, we can affirm that Machine Learning, namely
ANNs, has indeed conditions to make such a difference
on the nuclear problem of radioactive hot-spots detec-
tion, taking into account the reproducibility of the pre-
sented model in the most varied scenarios, as well as the
expected improvements in computing time and in Ma-
chine Learning frameworks with developments in both
software and hardware.
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