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Abstract

This work proposes a multi-objective genetic algorithm that aims to optimize the schedule of the
staff in a hospital service. Health professionals are one of the indispensable resources in the quality of
services provided and represent more than half of hospitals’ operating costs, which requires an endless
search for methods to improve the efficiency of operations. This work is motivated by Hospital da Luz
de Lisboa, which identified some needs in the planning of these resources, since its management is time
consuming, mostly hand-made and by trial and error, which often causes several inconsistencies. This
can be reflected in a dissatisfied staff or situations of staff shortages, overloading the remaining staff.
The Intensive Care Unit (ICU) served as case study and intends to incorporate personal preferences in
a balanced way, ensuring a fair schedule. The algorithm was also applied in the Imagery service. Both
have points in common, mainly the emerging need to find a solution for staff scheduling. The algorithm
is able to effectively find good approximations of the Pareto-front in a timely manner. Additionally, it
incorporates the possibility of choosing a single solution based on weights attributed by the decision-
makers. The ICU is satisfied with the results, mainly by the fact that the algorithm is able to generate
a balanced schedule with the possibility of using historical records from previous months, contributing
to a more effective and fair scheduling in the long term.
Keywords: Staff Scheduling, Genetic Algorithm, Fairness, Preferences, Multi-objective

1. Introduction

One of the biggest challenges faced by the world is
the provision of high-quality healthcare with afford-
able expenses. This requires a never-ending search
for methods to improve the efficiency of the oper-
ations. Staff-related costs accounts for more than
half of the operating costs in hospitals [1]. Fur-
thermore, the health workforce is an indispensable
and decisive resource in the quality of the health-
care delivery [2]. Consequently, it is crucial to find
efficient and effective ways to plan and schedule the
healthcare resources. This is a remarkably complex,
time-consuming and error-prone work that should
simultaneously consider multiple criteria from cost
savings, preferences and employee and patient satis-
faction to dependencies between human and mate-
rial resources. Therefore, the number of conditions
is high and most of the time they are variable and
uncertain, thus complex to meet simultaneously.

Personnel scheduling problems have been widely
discussed in literature [1]. Although, over time, the
way it is approached has changed, there has been
a growing concern regarding employee satisfaction
and preferences [3]. There is an increased inter-

est among hospitals to satisfy these demands, not
only due to the scarcity of available health staff on
the job market but also the difficulty in replacing,
which often leads to understaffing [1, 4]. Hospitals
cannot stop and they are under high uncertainty
and fluctuating conditions and, these issues could
lead to an increase of lengths of stay and waiting
times, which leads to a loss of quality. Addition-
ally, to compensate this scenario it is necessary to
increase the workload of the team, creating a fur-
ther unsatisfied and unmotivated staff, and this will
also have a negative impact in effectiveness and can
lead to an increase of absences [1]. The opposite
scenario is also possible - overstaffing - in times of
less demand. This can cause extra costs and staff
dissatisfaction since they cannot use their time so
usefully.

Currently, the most part of schedules are hand-
made, which often raise unfairness and violations of
labor regulation; for the most part it is planned by
a team element - who wastes valuable time. Fur-
thermore, this implies extra and needless costs.

The aim of this work is to develop an algo-
rithm to support and optimize the staff schedul-
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ing, considering the available resources and satis-
fying the rules and targets that must be met, as
well as the stakeholder’s perspective. A decision
support algorithm, based on Operations Research
techniques, to automate and improve the hospi-
tal schedules is proposed. This follows the main
steps of the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II), a metaheuristic method based
on the theory of evolution that advocates that the
most able individuals perpetuate themselves in the
species. This will be made analyzing the Hospital
da Luz de Lisboa (HLL) case study. The prefer-
ences, restrictions and objectives must be identified
in order to automate and improve scheduling activ-
ities.

The contributions of this study are four-fold: (i)
reducing the time needed to obtain a feasible sched-
ule; (ii) increasing the efficiency of the schedules
produced; (iii) ensuring that a greater number of
conditions are met; and (iv) incorporating prefer-
ences and fairness.

The remainder of this paper is organized as fol-
lows. Section 2 describes the case study description.
Section 3 provides an overview of healthcare staff
scheduling literature. Section 4 introduces the Ge-
netic Algorithm (GA) developed. Section 5 presents
the computational experiments and the discussion
of the results. Finally, in Section 6 , conclusions,
limitations and future work are stated.

2. Background

Most of hospitals continue to use manual schedul-
ing, a time-consuming and error-prone task, which
in most cases is conducted by a highly qualified
staff, as happens in HLL, which additionally has
been faced with shortages of healthcare personnel.
Two cases studied are addressed in this work: In-
tensive Unit Care (ICU) and Imagery Service (IS).

HLL is a private hospital that belongs to Luz
Saúde (LS) Group, which incorporates several Hos-
pitals and Clinics.

2.1. Intensive Care Unit

The ICU carries patients with life-threatening ill-
nesses and injuries, who require constant supervi-
sion. Furthermore, this implies highly trained staff
and a higher staff-to-patient ratio comparing with
other wards, and consequently this is an expensive
resource. The ICU in HLL is composed by 15 physi-
cians, where one is in charge with administrative
tasks. Thus, he/she works less hours. There is
the possibility of receiving external physicians in
the less populated shifts, i.e. nights and weekend
shifts. Currently, the scheduling task has been done
in an Excel file, which is performed by trial-error
method. The goal is to build an entire month sched-
ule. There are five types of shifts: (i) Morning shift
(from 8:30am to 4:30pm - 9 hours); (ii) Prolongation

shift (from 8:30am to 9pm - 12.5 hours), coincident
with the morning in part of the day; (iii) Night shift
(from 3:30pm to 9:30am - 18 hours); (iv/v) 24-hour
and weekend shifts (from 8:30am to 9:30am - 25
hours).

After following the process it was possible to iden-
tify some inconsistencies, such as the same physi-
cian assigned to the morning or afternoon shift on
Monday being assigned to the Sunday before, vi-
olating a hard constrain. There were also writ-
ing mistakes which affected the counts; in addition,
sometimes the same physician is assigned in a morn-
ing and prolongation shift, which could not be pos-
sible since they are simultaneous shifts.

2.2. Imagery Service

A hospital IS is equipped with image technology
able to give support and find the correct diagnostic
based in images of organs. The machines are oper-
ated - and exams are provided - by technicians. As
aforementioned, the LS Group incorporates several
Hospitals and Clinics; for this reason,IS technicians
can be scheduled in HLL and in Amadora and in
Oeiras Clinics.

In total, there are 46 technicians and they are
divided into two main groups: Central (composed
by 34 technicians) and Emergency Group (subdi-
vided into two groups of 6 technicians: Group E1
and Group E2). The Central Group is in charge of
the elective exams that come mainly from appoint-
ments, while the emergency group is in charge of
unpredictable situations that appear in the Emer-
gency Room. Groups differ in shift types: on the
one hand the E1 group works until 1 a.m. at the
most, while E2 are in charge of night shifts. Here
there is a greater offer of shifts, and they are divided
in morning, afternoon, all-day and night. There are
morning and afternoon shifts of 6 and 8 hours, while
the all-day shifts have a duration of 10 hours.

The technicians scheduling task takes almost two
days to complete and it is performed by two techni-
cians, who lose valuable time, which represents an
extra-cost for the hospital and a decrease of effec-
tiveness. The technicians’ preferences are reported
by e-mail and by phone, often during the process,
which implies excessive and spread information, po-
tentiating inaccuracies. The service schedule is
made in a Excel file and the three units are in
the same sheet, thus it is necessary to be always
scrolling it when building the clinics schedule. The
file counts the number of hours and the shifts as-
signed, in order to compare them and perceive if
the needs are achieved.

3. Literature Review

The literature on staff scheduling in healthcare has
increased in the last years, due to the impact this
can have from the operating costs in hospitals and
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the quality of services provided to the workers life
[1, 5]. Over time, the approach has changed, in par-
ticular, the importance of staff satisfaction, prefer-
ences and flexible work hours has grown [3].

Due to the uncertainties, demand may face un-
balanced distributions over time. This is usually
an input parameter that can be deterministic or
stochastic, depending on whether it is a known or
an uncertain value, respectively. In the literature,
the majority approaches demand in a determinis-
tic way [1]. The flexible modelling of shifts can be
used to overcome this obstacle, i.e. the start time
and the duration of each shift are flexible as long
as work regulations are satisfied [1, 6]. [7] relied
on flexible shifts in order to better provide demand
coverage and minimize the cost of hiring physicians.
On the other hand, several studies deal with differ-
ent level skills. A cross-trained workforce, despite
having specific skills, is allowed to perform tasks
that usually are performed by other workers. This
increases flexibility and allows to cover unexpected
demand peaks, avoiding the hiring of new expensive
workers or even layoffs. [8] concluded that the flexi-
bility that results from this type of workers is better
than having perfect information regarding demand.

Regarding objectives, they are mainly divided
into financial or non-financial. In order to achieve
their financial goals, [9] used cost as their measure,
since it depends on the day of the week – in off-days
(e.g. weekends) costs are higher – and highly-skilled
personnel demands higher spending. [7, 10] had as
a main objective to minimize staffing costs related
to hiring physicians with different experience levels,
that are needed to provide the demanded coverage.
Alternatively, [11, 12]’s goal was to minimize the
overtime working hours that are paid out. Although
financial goals are important, they do not appear
regularly in the literature. The non-financial objec-
tives mainly focus on individual aspects from both
patients and personnel. [13] concentrated on as-
pects with respect to well-being and patients’ qual-
ity of life, in particular, on minimizing the num-
ber of hand-offs. On the other hand, [14] chose
to minimize the average total patient waiting times
in an Emergency Department. Waiting times are
strongly influenced by the number of staff present
in the unit.

Concerning individual preferences, they can vary
greatly from person to person – e.g. there may
be employees willing to work on weekend or night
shifts, in order to receive extra money, while others
prefer evenings or nights off [15]. Therefore, these
preferences may include the staff requests, such as
preferred days-off, duties, daytimes and so on [1].

The fairness aspects are often addressed in
scheduling problems and its definition has varied
greatly. [16] interpreted fairness as the equal dis-

tribution of preference fulfilment among schedule
personnel. Their model ensured that the preferred
solution is one in which several nurses have a small
number of violated preferences, rather than a single
nurse suffering a considerable amount of violations.
Often the greatest concern is to maximize overall
quality of the schedule, however this can lead to un-
fair individual schedules. In order to overcome this
problem [17] minimizes the difference between max-
imum and minimum individual penalties from soft
constraint violations. On the other hand, [5] tackled
a re-scheduling problem where the main objective
was to minimize the overall penalty costs, which
derived from fairness violations. [15] proposed a
model using a satisfaction-based preference weight,
where each physician has a satisfaction indicator,
which measures a physician’s satisfaction according
to the preferences fulfilled in the roster. They also
used previous planning horizons to track fairness
measures. Both [5] and [15] concluded that, us-
ing previous periods, the fairness level of schedules
improves, and unfair fulfilment of preferences accu-
mulated over time is avoided. Nevertheless, fairness
does not consist only in maximizing or minimizing
a particular goal, but rather about trying to find
a balance for all parties, considering not only the
balanced distribution of the workload, but also tak-
ing into account the individual preferences as well
as particularities for each day (e.g. working on a
Sunday is not the same as working on a Monday).
Fairness aspects are significantly improved by auto-
mated scheduling, as demonstrated by [18].

Many studies do not pursue a single goal, but
rather try to consider multi-objective functions. Al-
though the main goal of [12] was to minimize the
operating costs, which incurred due to overtime, the
authors also include employee preferences, fairness
aspects and consistent workloads. On the other
hand, [19] did not only want to maximize total
revenue, but also to minimize all scheduling prefer-
ences discrepancies, in order to maximize the overall
workload fairness. [20] had a bi-objective function:
maximize the number of assigned shifts while min-
imizing the number of assigned inconvenient shifts,
in order to provide fairness. [21] created a multi-
objective model for a nurse scheduling problem by
highlighting human factors, such as skills, prefer-
ences and compatibility between nurses; besides the
goal of minimizing the total cost related to staff,
it also intended to minimize incompatibilities and
maximize overall satisfaction. Lastly, [18] used a
multi-criteria objective function which maximizes
the number of assignments according to labor reg-
ulations and internal department rules, and mini-
mizes costs for violating fairness goals.

The current work accounts for a multi-objective
approach for healthcare staff scheduling that meets
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the needs of the hospital, considering different skills,
satisfying preferences, and incorporating fairness
aspects. In addition, it will be applied to different
health professionals, namely physicians and techni-
cians, however not simultaneously. This work uses
real data from the hospital.

4. Methodology

A NSGA-II – a metaheuristic method –, based on
[22], is adapted to each case study. This is a GA
applied to multi-objective problems. It uses the
usual genetic operators, namely the chromosome, a
two-point crossover, mutation and tournament se-
lection, as well as multi-objective genetic operators
such as non-dominated sorting and crowding dis-
tance. This algorithm is based on three important
features: (i) it considers elitism property, this is,
it preserves the best solutions of a generation and
takes them to the next one; (ii) through crowding
distance is possible to preserve diversity; and (iii)
it highlights non-dominated solutions.

The chromosome represents the set of variables
that define a proposed solution. In this case it is a
[i× j] matrix, where i denotes the total number of
staff, and j the days that are intended to be sched-
uled. Each entry of the matrix indicates the shift
assigned to a worker during a day (see Figure 1).

The two-point crossover is applied in the pro-
posed algorithm, as represented in Figure 1a. Two
points are chosen at random, between 1 and j − 1.
Afterwards, the first columns from the parent P0

to the first cutting point will pass to the child C0,
the portion between the cutting points will be in-
herited from the parent P1, and the remainder from
the second point to the end (j) will come from the
first parent.

The mutation operator inserts small changes in
the chromosome. In this case, for each column j,
two rows are chosen at random, i1 and i2. If the
entries corresponding to these choices (i1j and i2j)
are different, they are exchanged. Otherwise, a new
choice is made. This process is repeated for all
columns of the chromosome (see Figure 1b).

Tournament selection is used, where sets of T in-
dividual are randomly chosen. The selection takes
place as often as necessary until the desired number
of individuals (r) is reached and the value of T can
vary.

The Algorithm 1 provides a pseudo-code of the
main steps of the algorithm. As defined in line 6,
there are two stopping criteria: (i) maximum num-
ber of generations desired; and (ii) based on how
long the algorithm should run, stopping after the
defined time limit.

4.1. Algorithm Overview

In both services, the algorithm receives several com-
mon data as input, such as the size of the staff to

Algorithm 1 NSGA-II algorithm.

1: Initialize random Population
2: Evaluate Individual Fitness (fm)
3: Non-dominated sorting
4: Calculate Crowding Distance
5: Tournament Selection to select P0

6: while generation number < maximum genera-
tion or timer < defined time do

7: Generate Children Population (Qt)
8: for i < Parents size do
9: Crossover

10: Mutation
11: end for
12: Rt = Pt ∪Qt

13: F = Non-Dominated sort (Rt)
14: Crowding Distance
15: Select N individuals
16: end while

be scheduled, the year, the month, the employees on
vacation or sick leave during the month, and other
restrictions. Furthermore, the algorithm receives
the needs for the scheduled period, which may vary
for each day of the week. There is also the pos-
sibility of receiving previous schedules or informa-
tion from these. This is important to know the
shifts worked by each employee so hard constraints
are not violated. For instance, assigning a morning
shift on the first day of the month to whom worked
one night on the last day of the previous month,
it should be avoided. In addition, GA specific pa-
rameters are also required, such as the population
size, mutation probability, the number of chromo-
somes in the Tournament Selection T , the number
of parents desired r and the number of generations.

The algorithm aims to start the population with
feasible solutions, for this is required to satisfy the
hard constraints. It is able to distinguish weekends
from weekdays in every month under construction,
and the Portuguese national holidays, both fixed
and those that vary every year (like Easter Sun-
day), are also included. This is important to adjust
the needs correctly, since these days are considered
differently from the general working days.

The flowchart of the algorithm is similar for both
cases under study. Initially a random population
is generated, then each individual is evaluated and
distributed across the different Pareto fronts, where
the non-dominated solutions are on the first front.
Afterwards a tournament selection is performed to
choose the parents that will cross over and origi-
nate offspring, which may or may not mutate. The
parents and children are combined in a large pool
from which N individuals are chosen, its number
being equal to the population size defined as input,
according to the front they belong to. Crowding
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Figure 1: Chromosome representation: [i× j] matrix; (a) Crossover operator and (b) Mutation operator.

distance is used if it is necessary to choose individ-
uals from the same front. This process is repeated
as many times as needed until the defined stop cri-
terion is reached.

The last step of the algorithm consists in deter-
mining the final list of non-dominated solutions, as
a subset of the first Pareto-front (F1) of all gener-
ations. In each generation, the list with chromo-
somes belonging to the front of non-dominated so-
lutions is kept. In the end, they all come together
and non-dominant sorting is applied as they may
no longer be all non-dominated. Then, the du-
plicates are removed and the best solution can be
obtained from the different alternatives. For this
purpose, the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) method, a
multi-criteria decision method, is applied. Here, it
is necessary to highlight and distinguish two terms:
alternatives and criteria. Alternatives are the dif-
ferent options which need to be evaluated in order
to select the best one or, in other words, alterna-
tives are the different chromosomes that result in
schedules. Meanwhile the criteria, also known as
attributes, will impact the selection of alternatives.
Three characteristics must be ensured: complete-
ness - to guarantee that all the important crite-
ria are included -; exclusiveness - to avoid redun-
dant criteria - and operationality - each alternative
should include all the criteria, for the alternatives
to be confronted with each other according to each
criterion [23].

4.2. ICU

ICU’s planning is done for an entire month. For
each shift in the day, an ideal number of physicians
to be allocated is defined. However, in this case, it is
not always possible to meet those needs, because the
lack of physicians is a recognized problem. Thus, an
ideal limit is defined – that is, the ideal number of

physicians that must be assigned in each shift –,
and a minimum limit that needs to be reached.

There are some conditions that should not be vio-
lated – i.e. hard constraints –, namely if a physician
was assigned to a night shift, he/she cannot be as-
signed to the morning, prolongation or night shift
the next day, and the minimum coverage limit con-
sidered for the number of physicians in each shift
must be satisfied. Although the initial population
is created randomly, these conditions are repaired
in the end if they are violated, to start with feasi-
ble solutions. On the other hand, it is possible to
assign the same physician to more than one shift in
a day, as long as they are not simultaneous. For in-
stance, someone assigned to a morning shift can be
assigned to the night shift in the same day, which
is equivalent to a 24-hour shift. Nonetheless, this
is a condition less desired by the majority, so this
occurrence should be penalized. The same happens
if two consecutive prolongation shifts are assigned.
Another soft constraint is that shifts may not be
filled in an ideal way due to the lack of physicians.

In this case, the Decision Maker (DM) is one of
the physicians, who knows the needs of the physi-
cians and has experience in the task of decision
making. One of the objectives is to minimize the
penalties resulting from fairness deviations between
physicians. In this case, a cumulative scoring sys-
tem is created. These scores provide an overview of
the physicians most affected over time, through the
evaluation of the total number of hours, number of
nights, weekends and 24-hour shifts worked. These
scores are assigned to each physician as follows: first
they are organized in descending order in relation
to each of the parameters. A score equal to the po-
sition of the physician is given. The procedure is
repeated for each of the parameters, however, the
penalty is different for each of the shifts (night shift:
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score × 1.50; weekend shift: score × 2; and 24-hour
shift: score × 1.75)

Thus, to evaluate the solutions a first fitness func-
tion will evaluate the following factors: (i) the dif-
ference in absolute value between the hours worked
by each physician and the average hours worked,
where the penalty cost is equal to the sum of dif-
ferences; (ii) the same is applied for number of 24-
hour shifts, weekends, and nights, only with a dif-
ferent weight; (iii) the previously described cumu-
lative score, where the penalty score is equal to the
sum of differences; and (iv) maximum number of
hours worked: in order not to overload physicians,
the penalty cost is equal to the difference of number
of hours worked and 180 hours times 50.

The other objective tries to meet the individual
preferences of each physician as much as possible.
To evaluate this objective the next factors are eval-
uated by a second fitness function: (i) the num-
ber of consecutive prolongation shifts, for which the
penalty is the proper value; (ii) count the number
of shifts ideally filled, for which the penalty cost is
that value unless the limit coverage is not fulfilled,
meaning a hard constraint would be violated, so the
penalty cost is the number of shifts times 1000; (iii)
the team affinity (the physicians with more affinity
should be together), the penalty cost being equal
to the number of shifts where there are no team
affinity; (iv) the individual preferences satisfaction,
the penalty cost being equal to the number of pref-
erences not satisfied; and (v) the average number
of days-off after a 24-hour shift – in this case, the
lower the average number of days-off the higher is
the penalty cost.

For both fitness functions, the objective is to
minimize the values resulting from the penalty costs
assigned. Through the objective functions, it is
now possible to calculate non-dominated solutions.
The next step is to find the best solution using the
TOPSIS method. For this, it is necessary to de-
fine criteria and weights, as is described followingly.

Survey Results

A study was carried out through a survey. This
had as main goal to understand which criteria gives
rise to a good solution and the degree of importance
for each one of the physicians, in order to assign
them the right weights or, at least, to rank them
accordingly. Two alternatives were given (plus the
indifferent option) so that the preferred option was
chosen. Through the choices it is possible to eval-
uate the criteria and understand the degree of im-
portance of each one concerning the others. For
this purpose, the Condorcet method is used to ad-
equately assess this pairwise comparison.

Figure 2 represents the preferences matrix re-
garding pairwise confrontation. This shows an elec-

Figure 2: Preference matrix with 8 voters, high-
lighting the Condorcet Winner and Condorcet
Loser.

tion with 8 voters. There are three numbers in each
cell according to the vote options (For, Against, and
Neutral), and these are always related to the candi-
date on the left column when confronted with the
candidate in the top row. To illustrate it better,
four physicians preferred C1 over C2, three vot-
ers preferred C2 over C1, and one physician had
no preference between the two. Note that Cx rep-
resents the different criterion: C1 is the absolute
value difference in the number of hours worked be-
tween physicians; C2 is the absolute value difference
of weekends number; C3 is the absolute value dif-
ference of cumulative scores; C4 is related to prefer-
ences and C5 to the number of shifts ideally filled.
From the very beginning it is possible to identify
the Condorcet winner and loser, identified in Fig-
ure 2. Criterion C3 was always chosen over others,
so it is the preferred among all confrontations, hav-
ing won them all. On the other hand, criterion C5

is never chosen in relation to others, having lost all
confrontations. Therefore, the first and last places
in the ranking are already known. There is a tie
between criteria C1 and C4. In this way, the rank,
which satisfied the greatest number of physicians,
obtained through the survey is: 1st balance between
physicians (C3), 2nd difference in absolute value be-
tween hours worked and preferences (C1 and C4),
3rd difference in absolute value between weekends
worked (C2) and lastly the filling of shifts ideally
(C5).

Once the rank has been determined, it is possi-
ble to assign the weights according to the relative
importance of each criterion. In this case, the ap-
proach applied is one of the ranking methods, in
particular the rank sum. In this approach weights
are computed from the individual ranks. The nor-
malized weight can be expressed as:

wj =
n− pj + 1∑n
k=1 n− pk + 1

(1)

where n is the number of criteria (n = 5) and pj is
the rank of the j − th criterion [24]. Table 1 pro-
vides the weights obtained according to the ranking
defined through the Condorcet method.
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Table 1: Computing the weights using the Ranking
method.

Rank Weight (n-pj+1) Normalized Weight

C1 3 3 0.21
C2 4 2 0.15
C3 1 5 0.36
C4 3 3 0.21
C5 5 1 0.07

Sum 14 1

Once the criteria are ranked and computed, one
can choose the best solution. For this purpose, the
TOPSIS method is used.

4.3. IS

The IS’s scheduling horizon spans over an entire
calendar month, starting on the first day and ending
on the last one. On each day and for each shift there
are specific needs that should, whenever possible,
be met. Usually, week needs are the same for the
whole month, with slight differences in cases where
equipment is under maintenance. Weekends have
fewer needs than weekdays.

In this case the hard constraints are: (i) a tech-
nician cannot be assigned to more than one shift
within a day; (ii) if a technician is in breastfeeding
period she must take shifts of 6 hours; (iii) the hos-
pital needs should be satisfied; (iv) according to leg-
islation, a technician cannot work more than 6 con-
secutive days and (v) if a technician was assigned to
a night shift, he/she cannot be assigned to a morn-
ing or an afternoon shift in the next day. Concern-
ing soft constraints, a technician should not work
more than 10 consecutive hours; on their birthday
they are entitled to a day-off; the most part of tech-
nicians have a certain functional area or skills, so
they should be assigned to those; and ideally, the
technician should do just a day in a weekend during
the entire month. They intend to maintain the pre-
set rotations. In the case of the central group, they
work mornings for one week and afternoon shifts for
the next.

As in the case of the ICU, there is also a DM
here that supports the definition of the fitness func-
tions. In this case, the DM is one of the technicians
responsible for building the schedule every month.
Unfortunately, there was no opportunity to gather
more opinions, as happened at the ICU. After some
conversations with the DM, it was realized that the
needs and preferences of the hospital and the indi-
vidual preferences of each technician are the main
objectives.

To evaluate the fitness function concerning hos-
pital’s preferences, penalty costs are attributed to
following factors: (i) to meet the needs in relation
to each technician functional area; (ii) the hospital

needs regarding the number of technicians needed in
each shift; (iii) the number of hours worked by each
technician, which should not be less than 40 hours a
week, except in special cases, such as breastfeeding
period or weeks with holidays.

For (i) if all needs are met (even if there are more
than supposed), no penalty cost is assigned. Oth-
erwise, it is assigned a penalty cost equal to the
number of unfilled functional areas times 7.5. In
(ii) if a need is not met, one of the hard constraints
is violated so a high cost is assigned, in particular,
one thousand times the number of needs not met.
Also, it is evaluated the average difference in the
absolute value of needs for each day. Finally, for
(iii) a penalty cost is not assigned if all technicians
work the minimum number of hours. Otherwise,
the penalty cost is equal to the difference in abso-
lute value between the minimum number of hours
which are supposed to be worked and the number
of hours worked times 15.

On the other hand, the fitness evaluation con-
cerning technicians preferences is carried through
the following factors: (i) pairs of days-off; (ii) the
number of M6 shifts compared to the number of
10-hour shifts; (iii) comparison between number of
days-off and weekend shifts; (iv) individual prefer-
ences and (v) rotation desired.

In (i) and (iii) if the number of pairs of days-off
is equal to the number of weekends, no penalty cost
is assigned. Otherwise, the penalty cost is equal to
30 times the difference in absolute value between
the number of weekends and the number of pairs.
In order to maintain fairness, the sum of differences
between technicians regarding pairs is also evalu-
ated. In (ii) if the number of M6 shifts is equal to
the number of S/I10 shifts worked, no penalty is
assigned. Otherwise, the penalty cost is the differ-
ence in absolute value between both numbers times
10. For (iv) will be evaluated if a technician works
an extra shift and does not desire it, in this case,
the penalty score is equal to the number of extra
shifts times 50. Finally, for (v) if the rotation is not
maintained the penalty cost is equal to the number
of rotations not respected times 100.

In contrast to what happened in ICU case, in the
IS there was no opportunity to collect information
from different technicians. However the weights and
criteria were defined with the DM, as follow: (i)
30% for the skills; (ii) 25% for the average number of
pairs; (iii) 15% for the sum of differences concerning
pairs; (iv) 25% for the minimum number of hours
worked and (v) 5% for the individual preferences.

5. Computational Experiments

The algorithm was tested using real instances. The
algorithm is coded in Python. The tests were per-
formed on a computer with an Intel Core i7-8565U
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processor (4 cores/8 threads each with a base fre-
quency of 1.80 GHz) and 8 GB of RAM.

Through some preliminary experiments it was
found the best combination of parameters, which
will be used throughout the computational experi-
ments. These are the following: (i) population size,
N = 160; (ii) number of individuals participating
in the Tournament Selection, T = 4; (iii) number of
the parents resulting from the Tournament, r = 80;
and (iv) mutation probability, pm = 0.08.

5.1. Fitness Function over Time
First, an analysis of the values of the fitness func-
tion over time was made. In this one the Decem-
ber conditions were considered as input, but with-
out considering the historical data available. Under
these conditions different times were used as stop
criteria. It was noticed that the values of fitness 2
stabilize faster than those of fitness 1. Fitness 2 val-
ues remain more or less constant after 25 minutes,
while fitness 1 values only stabilize after 60 minutes
have passed. Nevertheless, the values of fitness 1
decrease much slowly after the second 30 minutes
than in the first. This allows to conclude that using
30 minutes as stopping criterion is enough to obtain
good solutions. Therefore, this was the stopping
criterion used for the remaining experiments.

5.2. Evaluating the impact of Historical Records
The ICU service provided a historical record with
information on all schedules, number of hours, ab-
sences and holidays for the year 2020. In this way,
computational experiments were conducted to un-
derstand the influence of these records in the re-
sults. For this purpose, three scenarios were used:
(scenario 0 + 12) where schedules for all months of
the year were created through the algorithm; (sce-
nario 6 + 6) where historical information provided
by the ICU in the first half of the year was used,
and the remaining months were generated by the
algorithm; and (scenario 1 + 11) where historical
records of the first eleven months are used and the
last month of the year was created through the al-
gorithm. The solutions used throughout the anal-
ysis are those that were selected by the TOPSIS
method. In all three scenarios all other conditions
used were the same. Here, the difference in cumu-
lative scores (which represents the number of hours
and weekend, night and 24-hour shifts), the average
number of hours in each month and the number of
shifts ideally completed were evaluated.

The results show that the variability between
physicians tends to be lower when using the algo-
rithm, which is synonymous with fairer results (see
Figure 3). On the other hand, the results of scenario
0 + 12 concerning the average number of hours show
the algorithm starts with higher average values but,
in total, it presents a smaller variation and thus, a

Table 2: Weights’ range for which the current rank
does not change.

Current
Rank

Current
Weight

Weights’ range for which the
current rank does not change

C1 3 0.210 [0.000, 0.299]
C2 4 0.140 [0.100, 0.729]
C3 1 0.360 [0.000, 0.909]
C4 3 0.210 [0.111, 0.849]
C5 5 0.070 [0.065, 0.159]

better balance among the physicians. The high-
est points are observed, for the three situations, in
months that register the greatest number of physi-
cians on vacation. The high number of hours is jus-
tified with the number of shifts ideally filled, since
the algorithm was always closer to the ideal num-
ber of shifts than in reality. This shows that there
is a tendency to satisfy this need of the hospital
but that, despite this, there is not an exaggerated
number of hours worked on average. This said, it is
possible to state that the algorithm tries to find the
best balance between the number of hours, the ideal
filling of shifts and the fairness within the schedule.

Through all the described above, it is possible to
notice that the algorithm always tends to stabilize,
increasing the number of shifts ideally completed
but without compromising the average number of
hours. In addition, it is still possible to validate
that the algorithm adapts to all months of the year,
identifying holidays and weekends, adapting to a
variable number of physicians, both internal and
external.

5.3. TOPSIS sensitivity Analysis

Any decision support model that depends on per-
sonal and qualitative judgments may be subject to
uncertainty due to the inherent subjectivity. The
goal is to evaluate how changes in the weight of
criteria would interfere with the solution resulting
from TOPSIS. The criteria and respective weights
were described in Section 4. Once the best non-
dominated individuals were selected, TOPSIS is ap-
plied to choose the best solution. In total, 25 non-
dominated solutions were obtained, and one of them
was considered the best according to the previously
defined weights. Table 2 presents the ranges of cri-
terion weights that do not change the best solution.
For each criterion the weight is varied until a new
solution was obtained. Based on the results pre-
sented in Table 2, one can notice that even small
variations of the weights may give rise to different
solutions. For example, for C5 only a 0.005 decrease
or a 0.09 increase in weight already results in a dif-
ferent solution. This shows that the defined ranking
is not very stable. On the other hand, the criterion
C3 presents a large range where no changes are ver-
ified, a large variation is necessary to obtain a new
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Figure 3: Result of the sum of the cumulative scores differences for the three scenarios and real case.

solution. Moreover, no matter how much the weight
is reduced, it will not find a new best solution. Cri-
terion C5 is the most sensitive, because it is the one
that has a smaller weight range for changes to oc-
cur, followed by C1. The remaining criteria present
the same solution for a longer interval, so they are
less susceptible to changes.

5.4. Validation with HLL

A potential proposal for the December 2020 sched-
ule was presented to HLL. It was possible to sus-
tain that the algorithm is capable of generating ad-
missible solutions respecting all hard constraints,
and tries whenever possible to reduce penalties as-
sociated with the lack of achievement of soft con-
straints. Additionally, it did so in a very short time,
contrary to what happens in reality. The algorithm
presented worse values regarding the average num-
ber of hours worked, however this can be explained
through the number of shifts ideally filled, which is
about 20% higher than in the schedule built in the
unit. Even so, the average number of hours is ac-
ceptable and within the limit defined of 180 hours,
as mentioned above. Table 3 presents a compari-
son between real schedule and algorithm schedule
results.

Overall, the DM is satisfied with the solutions
presented and the feedback was positive. According
to him/her, the proposed solution is already suffi-
ciently balanced between elements. He/she high-
lights the fact that it takes into account not only
the month under construction, but also the previ-
ous ones. He/she considers this is a very important
aspect, as it contributes to long-term fairness and
allows to compensate less benefited physicians in
previous schedules. More importantly, in addition
to these aspects, the algorithm can present good
solutions within a reasonable time.

The main aspect to consider is the construction of
a method that allows the schedule to be generated
by a user other than the programmer.

6. Conclusions

This work addressed a scheduling problem in a hos-
pital context, focused mainly on the ICU of HLL,
although it has also been implemented for the IS.
The main goal was to develop, propose and validate
an algorithm able to optimize the staff scheduling in
a timely manner, without inconsistencies, respect-
ing all constraints and incorporating the main ob-
jectives of each service. In the case of the ICU these
were to find a balance in fairness and satisfaction
of preferences, while in the IS the biggest focus was
the preference satisfaction, both individual and the
hospital’s. A decision support algorithm, based on
NSGA-II, was developed. For this purpose, the cri-
teria and needs of each service were identified. The
algorithm was able to respect the needs and hard
constraints and shows a tendency to decrease the vi-
olation of soft constraints. It is capable of present-
ing several non-dominated solutions and choosing
one according to the defined ranking. In the ICU
this was achieved through the results of a survey
made to the physicians.

Overall, the solutions generated for the ICU by
the algorithm show better results for most crite-
ria, except for the average number of hours worked,

Table 3: Comparison between real schedule and al-
gorithm schedule.

Real Schedule Algorithm Schedule

Ideal Shifts Filled 79.00% 90.16%
Team affinity 6 9
Average number of hours 138.40 160.93
Cumulative Score 1076.00 987.33
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however this can be justified by the increase in the
number of shifts ideally filled, and the values found
are not higher than those considered admissible. In
addition, it is still possible to validate that the al-
gorithm adapts to all months of the year, identify-
ing holidays and weekends, adjusting its results to
a variable number of physicians, both internal and
external. Through the results it was possible to con-
clude that regardless of using information from the
past or not, the algorithm tends to find a balance
between physicians concerning the previous months
and the number of hours and types of shifts worked
among them. This is a very relevant factor because
it can contribute to increased satisfaction.

The feedback and validation from the HLL was
positive, both strengths and weaknesses were high-
lighted. The most appreciated contribution is to
reduce the time of a task that took two days to a
few minutes and still improve some results, incor-
porating fairness and preferences. There are still
aspects to improve, however they can be overcome.

As for future work, the implementation of a
proper user interface will bring added value. At
the moment the algorithm is able to produce good
solutions but the programmer is required. In par-
ticular, the input concerning vacations, availability
restrictions, etc., is done by hand, and a way to do
this through the import of files would greatly im-
prove the usability of the solution proposed.
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