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Abstract—As blockchain technologies have taken the stage,
they are being introduced into a multitude of industries in
mission-critical applications. This surge in interest has led to
the development of Hyperledger Fabric, an extensible blockchain
system for distributed applications, which features modular con-
sensus protocols and components. While consensus components
have been developed for Fabric, none of the existing components
is able to scale with the number of nodes participating in the
consensus protocol. This document analyzes existing work in
the area of blockchain technologies and consensus mechanisms,
along with where they fall short, and proposes a new algorithm,
TBO. This algorithm can be used as the consensus mechanism
for Hyperledger Fabric, with the goal of being able to scale in
both the number of transactions and the number of nodes by
leveraging weaker correctness guarantees.
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I. INTRODUCTION

With the advent of cryptocurrencies, blockchain technolo-
gies have taken the stage and are being introduced into a
multitude of industries, replacing trust-based systems with
others that operate on a trustless model [1]. Unfortunately,
due to the high-latency consensus algorithms used by most
blockchains, their throughput is often low. For these tech-
nologies to replace existing large-scale trust-based systems
(such as those found in the financial industry) with their
trustless counterparts, scalability needs to be ensured without
compromising the network’s throughput, as it would otherwise
lead to a degradation of service quality.

This is not an easy balance to achieve, as it is the very nature
of these systems that leads them to exhibit these characteristics
and, in particular, it is their nature that constrains their
scalability, be it in transactions or in the number of nodes. To
be able to fully grasp the problem, the defining characteristics
of these technologies, as well as their limitations, need to be
understood.

Permissionless blockchains, due to their permissionless na-
ture, need to be able to operate under the assumption that
attackers can generate identities at nearly no cost, and thus are
able to subvert algorithms that rely on voting [2]. Solutions for
scalable permissionless consensus therefore need to abstract
themselves from participants’ identities, relying instead on
resources that cannot be forged such as a machine’s resources
or assets provided by the network.

The first widely adopted cryptocurrency, Bitcoin [3], solved
the issue of scalable permissionless consensus through Proof-
of-Work (PoW), whereby participants in the network reach

consensus by participating in a lottery based on computational
power, but it is not the only one. Alternative solutions to
this consensus problem exist, such as Proof-of-Stake (PoS)
[4]-[7], Delegated Proof-of-Stake (DPoS) [8]-[11], Proof-of-
Space (PoSpace) [12], and Proof-of-Capacity (PoC) [13].

All these solutions have one aspect in common: since
attackers can generate identities, the network needs to be
secured through unforgeable resources.

With the introduction of permissioned blockchains, attackers
become unable to generate additional identities as the identity
associated with each peer has to be authorized before it is
allowed to participate in the network.

This allows for consensus algorithms to once again rely on
the identities of participants, leading to the removal of now-
unnecessary expensive operations (in PoW/PoSpace/PoCapac-
ity) or of complex systems and constraints (in PoS/DPoS).
However, the scalability in number of nodes of permissioned
blockchains remains limited by the consensus algorithm being
used, which may need to be able to scale to at least hundreds
or thousands of network participants for the replacement of
existing systems to be possible.

Permissioned blockchains are of particular interest for sys-
tems where all participants can be easily identified, or for
whom an identity is emitted by a few trusted entities. A prime
example of such a system would be an European Union (EU)
permissioned blockchain, where all citizens have an identity
associated with their nation’s identity card, emitted by said
nation’s government, in the form of an asymmetric key pair.

The motivation for the scale requirement immediately
comes from the number of citizens that could be actively
participating in the network, having over 500 million citizens
spread across the EU [14]. With each nation participating in
the cooperative project, it is not untenable that nations would
want to run their own nodes to participate in the consensus
algorithm. However, state-of-the-art consensus algorithms in
permissioned blockchains [15], [16] are unable to scale in the
number of nodes. This poor scalability in the number of nodes
is a direct limitation on the degree to which the system can
be decentralized, even if the number of users could scale.

The motivation for requiring Byzantine fault tolerance
comes from the lack of trust in users, and the partial trust
between the nations that would operate the system. Trust
between nodes (or nations) would only be required when it
comes to the emission of identities, but a system to do so
is already in place today. Such a network would also be
inherently more resistant to attacks as a single node (or even



an entire nation) being compromised would not lead to a
catastrophic failure scenario.

To aid in the collaborative development of an open source
enterprise grade distributed ledger framework, the Linux Foun-
dation created the Hyperledger umbrella project [17], of which
the Hyperledger Fabric project . The implementation discussed
throughout this work was initially designed to take place on the
Hyperledger Fabric project [18], a permissioned blockchain
system and one of the many projects under the Hyperledger
umbrella.

While Hyperledger Fabric is capable of scaling in terms of
transactions, and also in terms of network participants, current
implementations of ordering services that operate with the
presence of Byzantine failures do not scale in the number
of ordering nodes [15]. This need for a more scalable yet
Byzantine Fault Tolerant (BFT) ordering component was the
main motivation behind the development of TBO, a total order
algorithm that seeks to scale in number of nodes, while not
compromising the scalability in the number of transactions.
Initially tailored only to Hyperledger, it is usable in any
permissioned network.

The main contribution being made is the development of
this new BFT total order algorithm usable on Hyperledger
Fabric, TBO, based on EpTO [19], an epidemic total-order
algorithm. TBO should enable scalability to a potentially
arbitrary number of ordering nodes, by leveraging weaker
correctness guarantees that do not compromise the integrity
of the solution in realistic scenarios.

II. BACKGROUND

In this chapter we will begin by discussing blockchains,
specifically permissioned blockchains, and then smart-contract
platforms. Following that, we will discuss EpTO, the most
relevant algorithm for Total Order in the context of the work
that was done.

A. Blockchains

A blockchain is, as the name suggests, a chain of blocks,
with each block containing application-specific data:

e In the case of cryptocurrencies such as Bitcoin [3],
the information being persisted is usually a transaction
ledger, containing the transactions that have been made
between participants on the network;

o In the case of smart contract platforms such as Ethereum
[20], [21], the information being persisted is generally
also a transaction ledger, with transactions that may be
coupled with data representing function calls or other
operations to be executed.

The key principle in any blockchain is not each individual
block, but rather how these blocks are linked: by having
future blocks containing references to previous blocks, usually
by including the hash of the previous block within the new
block as in Figure 1, a tamper-proof blockchain is created. A
blockchain built in this way is tamper-proof as the hash of
block n becomes part of block n + 1, and modifying block n
will therefore require modifying block n + 1 to change this

hash, which would in turn require modifying block n + 2.
Therefore, to modify block n, it is necessary to modify every
block appended after it.
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Figure 1: Example of a simple blockchain, with blocks con-
taining only transactions, a nonce, and a hash of the previous
block.
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This allows for a blockchain to guarantee that blocks, once
old enough, are virtually immutable. This assumption can be
used to secure information on a blockchain, the most common
being financial transactions, by using the blockchain as the
foundation for a distributed ledger: network participants can
continuously generate new transactions that get included into
blocks, with the guarantee that once a transaction has been
included in a block, and that block reaches a certain age (or
depth in the blockchain), it is essentially irreversible.

It is necessary to allow for a certain age or depth due to the
possibility of forks', which can be briefly described as valid
chains that may or may not be the longest. When reading
from the blockchain, network participants will read from the
longest valid chain, as that will be the one that is most up-to-
date. Should there be two forks of equal length, and one of
them appends a block before the other (becoming the longest),
then every peer will suddenly switch over to the longest chain.
Since different forks may contain different transactions, it
is entirely possible that the peers who switched had read a
transaction in their previous fork that is not present in the
longest fork, making it, in essence, a reverted transaction.

1) Permissioned Blockchains: In contrast with permission-
less blockchains, permissioned blockchains give each node and
client?® an identity that can be verified, and that cannot be
generated without going through some procedure that requires
agreement from the network, or from some trusted entity.

The main advantage that comes from the presence of these
identities is that, as every client and node is securely identi-
fiable, it becomes possible to use standard BFT algorithms to
achieve consensus®. This allows for consensus to be reached
without relying on any of the previously mentioned algorithms
that are independent from network identities, out of necessity.

This does not allow for Sybil attacks [2] as identities need
to be authorized in some way before they can be used, and
cannot be generated at will by attackers.

IThe notions of soft and hard forks will be disregarded, as the focus will
be solely on forks that occur during normal operation.

2Clients are the network participants that emit and read transactions, while
nodes participate in the protocol by propagating and/or validating transactions
and/or creating blocks with them

31t is also possible, if the environment is appropriate and some degree of
trust exists, to ditch BFT entirely and use a fail-stop failure model, but this
use-case will not be discussed in this work.



The use of these algorithms does come with a disadvantage:
while scalability in the number of transactions is generally
better, the scalability in the number of nodes is generally
worse [8], [22]-[24]. This poor scalability in number of
nodes is, first and foremost, due to an increased number of
messages required to reach consensus. In a great number of
BFT algorithms, such as the ones outlined above, the number
of messages grows superlinearly with the number of nodes,
limiting the maximum number of nodes, at the very least
due to limitations in bandwidth. In addition to this, unlike
the consensus algorithms used in permissionless blockchains
that only require 51%* of nodes to be correct, most other BFT
algorithms require 2/3 of the nodes to be correct.

This poor scalability in the number of nodes is a direct limi-
tation on the degree to which the system can be decentralized,
even if the number of clients could scale. In an ecosystem
where dozens of organizations may be participating it is not
absurd to expect each organization to want to run its own
node, even if only to not be dependent on its competitors.
If hundreds of organizations participate, as in the case of a
financial network for banks, then the lack of scalability in the
number of nodes quickly becomes a limiting factor, and will
negatively impact the performance or even the functionality of
the entire system.

Permissioned blockchains, by nature, require an underlying
membership or identity management system to be present,
which can be either managed separately from the blockchain or
integrated with it, by embedding memberships and permissions
in the blockchain. This membership system serves to manage
the identities of network participants, and the permissions
associated with said identities, in other to restrict the actions
that can be performed.

Generally speaking, the only requirement that needs to be
met by this membership system is that participants need to
be able to authenticate themselves when performing certain
actions, and that participants can authenticate and authorize
one another (if given permission to do so). An example of
these requirements playing out would be a miner having to be
authenticated when submitting a block to other nodes, which
could accept or reject said block depending on whether the
miner was authorized to mine.

2) Blockchains as Smart Contract Platforms: Using
blockchains to create cryptocurrencies is the most common
model, but it is possible to generalize it, allowing for execution
of arbitrary code in a distributed manner. This model is based
on smart contracts: blockchains are used to record operations
on programs, referred to as smart contracts, which execute on
a virtual environment.

An important aspect of most blockchains used for smart
contracts is that they follow an order-execute architecture
such as the one in Figure 2; transactions (which represent
operations) are submitted and are ordered by being included
in blocks prior to being executed, which reduces performance

“4Depending on the blockchain this percentage may be higher, due to attacks
taking advantage of propagation delays.
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Figure 2: Order-execute architecture, as taken from [18].

as every operation needs to be executed on every node. But
another limitation is also introduced: since they are ordered
before being executed, it is necessary that, from the same
ordering, the output be the same, otherwise the state would
naturally diverge. In essence, all operations under an order-
execute architecture need to be deterministic.

While at first this may not seem like a significant limitation,
most general-purpose programming languages provide non-
deterministic operations as part of their core functionality, or
are implemented in a non-deterministic manner, limiting which
programming languages can be used. To ensure determinism,
these platforms often use a specialized deterministic instruc-
tion set, and use domain-specific programming languages that
can be compiled to this specific instruction set.

By having every smart contract converted into deterministic
operations, contracts can be modelled as state machines. Since
they are state machines, it also means that state (other than
the initial one) does not need to be kept: to reach the final
state, all that needs to be done is to execute all deterministic
operations in the correct sequence. The current state is usu-
ally kept for performance reasons, just like in conventional
cryptocurrencies, but it is not strictly necessary.

B. EpTO [19]

EpTO is an epidemic total order algorithm designed for
large-scale systems. As such, it provides scalability in both the
number of processes and the number of transactions (events
in EpTO terminology). However, unlike most other algorithms
being discussed in this section, it does not operate under
the presence of Byzantine faults, and instead operates only
under a fail-stop failure model. In addition to that, it does not
provide agreement, only probabilistic agreement: “If a correct
process decides to EpTO—Deliver an event e, then with high
probability all correct processes eventually EpTO—Deliver e”.

The EpTO algorithm is composed of two separate but
interconnected components: the dissemination component and
the ordering component. The dissemination component is
responsible for satisfying the probabilistic agreement property
by disseminating events to every correct process, while the
ordering component is responsible for ensuring total order
is satisfied. Each process executes each component indepen-
dently from other processes, communicating only through sets
of events, referred to as balls.

The dissemination component, which is found in full in
Algorithm 5, operates in a round-based fashion: every ¢ units
of time a function, execute_every_delta, is executed. A ball,
next_ball, contains the events that are to be relayed during
the next round.



Upon receiving a ball, the events within it are iterated by the
process receiving it: if the event has not yet been disseminated
enough times, as indicated by its ¢tl (time to live), it is
added to the ball for the next round. If an identical event is
already in next_ball, then the one with the highest ¢t/ is kept,
to minimize excessive retransmissions. Once every event has
been iterated, the internal clock is updated.

Once 0 units of time have elapsed, the execute_every_delta
function is called. It iterates over all events in next_ball
and increases their t¢tl, before selecting a random subset of
correct processes and relaying next_ball to those processes.
Afterwards, the ordering component is called, and next_ball
is reset.

The ordering component, keeps track of two sets, received
and delivered, containing the received and delivered events
respectively. To keep track of the last timestamp to be deliv-
ered, another variable, last_delivered_ts , is used.

The ordering component, presented in full in Algorithm 6
begins by incrementing the t¢tl of every event in received.
Then, it iterates over every event in next_ball : if the event has
not been delivered, and neither has another event with a higher
(more recent) timestamp, then it is added to the received set.
If it is already present in the set, the event with the highest
ttl is kept.

The received set is then iterated over, and every event that
no longer needs to be disseminated (as given by its ttl) are
considered deliverable and added to a deliverable set. Af-
terwards, events in the deliverable set that have a timestamp
higher (more recent) than the lowest (oldest) timestamp among
undeliverable events, are removed.

Events that remain in the deliverable set are then ordered
based on their timestamp, removed from the received set,
added to the delivered set, and delivered to the application.

Through the above algorithm the probabilistic agreement
property and the total order property are ensured. Combining
these two properties, then with high probability every correct
process eventually delivers the same events, and does so in
the same order.

III. ALGORITHM

In this chapter we will be going over the main contribution:
a Byzantine Fault Tolerant (BFT) Total Order algorithm,
based on an existing epidemic algorithm, EpTO [19], initially
introduced in Section II-B, which we will refer to as TBO. We
will begin by looking at the properties that we seek to ensure,
followed by EpTO and, by making modifications in order to
mitigate certain attacks, we will arrive at TBO. Afterwards,
we will look at how TBO might be attacked, and demonstrate
that these attacks, in very strict conditions, are possible.

A. Properties

Before delving into the algorithm, we will how first look at
the properties that we seek to ensure:

1) Integrity: For any event e, previously TBO—Broadcast

by a correct process, every correct process will
TBO—Deliver e at most once.

2) Probabilistic Validity: If an event e is TBO—Broadcast
by a correct process p, then p will eventually
TBO—Deliver e with high probability.

3) Total Order: If correct processes p and ¢ both
TBO—Deliver events e and €/, then p will TBO—Deliver
e before ¢’ if and only if ¢ will also TBO—Deliver e
before €.

4) Probabilistic Agreement: If a correct process decides to
TBO—Deliver an event e, then with high probability all
correct processes eventually TBO—Deliver e.

It is important to stress the difference between more tra-
ditional Total Order algorithms in regards to the validity and
agreement properties: the agreement and validity offered by
TBO are probabilistic in nature. In terms of properties ensured,
TBO is strictly weaker than EpTO, as EpTO seeks to ensure
validity rather than probabilistic validity, but they both seek
to ensure probabilistic agreement.

B. EpTO

EpTO, as presented here, is unchanged from the original
[19], which was explained in some depth in Section II-B.

As a brief summary, the algorithm is layered into two
components, and their guarantees are roughly as follows:

1) Dissemination (Algorithm 5): ensures that an event that
is disseminated by at least one correct process is seen
by every correct process within a certain period of time,
helping satisfy the probabilistic agreement property;

2) Ordering (Algorithm 6): ensures that every correct pro-
cess delivers the events they have seen in the same order,
and within a certain period of time, satisfying the total
order property.

Events are disseminated in an epidemic manner, being
broadcast to a random subset of the processes periodically.
The stopping condition for this periodic broadcast is based on
the ttl of each event, and events are eligible for delivery once
said ¢tl reaches a certain threshold.

EpTO is however not suitable for operation in environments
subject to Byzantine faults, as it is designed with solely fail-
stop in mind. For that reason, to make it suitable to be used
in the environments being discussed, it needs to be adapted.

C. Adapting EpTO

While not a functional standalone algorithm, this will serve
as a stepping stone to building TBO, by strengthening EpTO
for operation in an environment subject to Byzantine Faults.
This will be done by taking a look at some ways processes
could exhibit faulty behavior that would violate some of
EpTO’s properties.

1) Preventing shortening dissemination: An attack that
would violate EpTO’s guarantees, specifically probabilistic
agreement, is to have a faulty process disseminate an event
with a high ¢tl, one that would be high enough to ensure not
every correct process will receive it before dissemination stops,
e.g. TTL or TTL — 1. As it would not reach every process
prior to ending dissemination, only some correct processes
would deliver it, violating the probabilistic agreement property.



This attack relies on two key conditions: dissemination stops
before being seen by every correct process, and the correct pro-
cesses deliver the event regardless of dissemination outcome.
Since an event sent with a tampered ¢t/ is indistinguishable
from an event only seen after 77 L — 1 rounds, stopping
the delivery of the event could lead to incorrect outcomes
and is not feasible. The solution, therefore, is to ensure the
dissemination never stops before being seen by every correct
process.

There are two scenarios where a correct process may be
misled into stopping dissemination due to input from a faulty
process:

1) The correct process is observing the event for the first
time, and therefore disseminates the incremented ttl,
which may have been set by an attacker.

2) It observed the event twice in the current round, and uses
the highest tt/, which may have been set by an attacker,
to decide the ttl for the disseminated event.

Both of these scenarios occur due to lines 13-17 of Al-
gorithm 5. To mitigate this attack, the aforementioned lines
would need to be replaced by the lines described in Algo-
rithm 1.

Algorithm 1: Preventing shortening dissemination

1 if event ¢ event_cutoff then
2 event_cutoff[event] + 1
3 | eventttl 1

4 if event.ttl < TTL then

5 if event.id € next_ball then

6 if next_ball[event.id].ttl > event.ttl then
7 | next_ball[event.id].ttl < event.tl

8 else

9 L next_ball[event.id] < event

Doing so will make this attack impossible by tackling the
two situations described above:

1) When the event is being observed for the first time, the
condition present in line 1 of Algorithm 1 will be true.
Therefore, ttl will be set to 1 in line 3, which will always
be either lower or equal to the received ¢t/, making a
faulty process incapable of shortening the dissemination
in this situation.

2) When the event is being observed twice in the same
round, with a higher ¢¢/ than it is supposed to have,
the issue is mitigated by instead choosing the lowest
received ttl instead of the highest as the ¢tl to be used
in the next dissemination, in lines 6-7.

These changes are trivially shown to be sufficient, in that
they seek to make any faulty dissemination better than no
dissemination, by always resulting in either no impact if
being received concurrently, or in an additional dissemination
otherwise.

However, while dissemination may no longer be stoppable,
delivery may still be anticipated by propagating the event with

a high ttl. When this is done, as the decision of whether a
given event is deliverable or not is made based on whether
the ¢tl is equal to or greater than TT'L, it may be delivered
early. In a vacuum, a single event being delivered early cannot
lead to issues (as long as dissemination is unhindered), but if
other events are also being disseminated at the same time, this
early delivery will make all preceding events undeliverable.
This vulnerability is present due to lines 8-14 of Algorithm 6
in conjunction with lines 3-4 of Algorithm 7. To mitigate this
attack, the aforementioned lines of Algorithm 6 would need
to be amended, to be as the lines presented in Algorithm 2.

Algorithm 2: Preventing early delivery

1 foreach event € ball do

2 if event.id ¢ delivered and event.id ¢ received then
3 if event.ts > last_delivered then
4 L received[event.id] < event

As the ttl of a given event was reset to 1 the first time it was
seen, which will also be the first time it reaches the ordering
component, an event will only become deliverable when T7T'L
or more rounds have elapsed since the event was first seen.

This way, regardless of any changes to the ¢t/ of a given
event made by a faulty process, events will never be delivered
early.

2) Preventing infinite dissemination: This attack is not
damaging to the correctness of the algorithm, but it would
make it open to an extremely simple denial of service, where
correctness of the dissemination component would ensure
amplification to at least the size of the network.

This attack would unfold by continuously resetting the ¢l of
a given event to the minimum whenever it was received, before
re-disseminating it. As the correctness of the dissemination
ensures, with high probability, that the event will be seen
by every correct process before 77 L rounds have elapsed,
a single change by a faulty process therefore leads to a high
amount of network traffic.

This attack is possible due to the way we mitigated the
vulnerability described in Section III-C1, in Algorithm 1. In
order to make this attack impossible, lines 4-5 were added in
Algorithm 3.

These added lines will make the minimum ¢t increase
as event_cutof f increases. However, we have not specified
how is event_cutoff incremented. That can be done by
altering our periodic task so that it also increments the cutoffs.
Concretely, it can be done by replacing line 19 with the lines
found in Algorithm 4.

3) Preventing delayed dissemination: There is one last
vulnerability that cannot be fixed with just changes to existing
components in the variation of EpTO being presented: the or-
dering component relies on a timestamp to determine ordering,
but there is no mechanism to ensure the event’s dissemination
has not been delayed or the timestamp been tampered with.

This creates a vulnerability similar to the one described in
Section III-C1, trying not to stop the dissemination but instead



Algorithm 3: Preventing infinite dissemination

1 if event ¢ event_cutoff then
2 L event_cutoff[event] «— 1
3

event.ttl < 1
4 if event.ttl < event_cutofffevent] then
5 L event.ttl <— event_cutoff|event]
6 if event.ttl < TTL then
7 if event.id € next_ball then

8 if next_ball[event.id].ttl > event.ttl then
9 L next_ball[event.id].ttl < event.ttl
10 else

11 | next_ball[event.id] < event

Algorithm 4: Preventing infinite dissemination

1 run task every ¢ units of time
2 L foreach event € next_ball do
3

| event.ttl < event.orl + 1

making it start far too late for the ordering component to
behave correctly. The dissemination component will ensure
that every correct process eventually observes an event, E’, if
any correct process observes it, but this delayed dissemination
will create a window during which E’ may be delivered before
a preceding event, F, has been observed. As a consequence,
some correct processes may deliver F, but others, by already
having delivered E’, will not, violating the probabilistic agree-
ment property.

An exploit of this vulnerability is illustrated in Figure 3. In
that example, an event E’ was being disseminated throughout
the network, and had been seen by both P; and Ps, and is
nearing delivery eligibility. However, P», a faulty process,
creates a second event, F, with a timestamp older than that
of E’. What can happen at this point is that P, begins
dissemination of E towards P, but given the reduced amount
of time left until E’ is delivered by P3, P5 delivers E’ without
being aware of E.

E, E'

Figure 3: Exemplified attack, with an attacker (P2) using
delayed dissemination (circle) of an event (E), leading to
incorrect delivery (rhombus) order for processes that only see
it after delivery of a future event (E’).

As a consequence of this delivery, we have reached a state in
which the probabilistic agreement property failed: at least one
correct process has delivered E, but not all correct processes
will eventually deliver E, as they have already delivered F’.
If attempting to respect the probabilistic agreement property
P5 then decided to deliver F, it would instead violate the total

order property, as P, and Ps, both correct processes, would
have inconsistent delivery orders for E and E’.

Do note, however, that there is no way for P; to know that
the decision to deliver £ would lead to this outcome, as it
is impossible for P; to determine that E was forged and/or
its dissemination delayed by a faulty process. To P;, F was
an event that it had not yet seen, indistinct from any other. It
does not even need to begin dissemination particularly late: it
just needs to be late enough that, with the remaining number
of rounds before the delivery of E’, not every correct process
will be made aware of E before E’ is delivered.

This vulnerability has two ways in which it can be exploited:
through a forged timestamp, in which an event is created with
a timestamp that no correct process would produce at the
time, and through delayed dissemination, in which an event
is created with a correct timestamp but its dissemination is
delayed. To a correct process these look exactly alike but they
are distinct in that simply ensuring events are created with
a valid timestamp, such as could be done by the use of an
RFC3161 [25] compliant service, would not be sufficient, as a
faulty process could then delay the dissemination of the event
with a guaranteed-valid timestamp.

D. TBO

The proposed solution to the problems presented in Sec-
tion II-C3 is the introduction of a third component: the
endorsement component. It specifically seeks to ensure that
the two described vulnerabilities are mitigated by ensuring the
following:

1) If an event, e, has a timestamp that precedes that of
any other event which will be deliverable before e is
observed by every correct process, then e must not
obtain sufficient endorsements;

2) If any process obtains sufficient endorsements to begin
dissemination, then at least one correct process has also
obtained sufficient endorsements to begin dissemination.

This new component is introduced in Algorithm 8, and it
follows the simplest implementation that offers the guarantees
required.

The chosen implementation, despite its high overhead due
to a very high number of messages (at most n? messages, with
n being the number of endorsers), is a double-broadcast. From
a high level perspective, the behavior is as follows:

1) When an event is seeking endorsements, an endorsement
request is broadcast to every endorser;

2) Upon receiving an endorsement request or an endorse-
ment, if the event is valid and being received for the
first time, an endorsement is generated, stored, and all
endorsements for that event received so far are broadcast
to every endorser;

3) Upon receiving an endorsement, in addition to the
previous point, it is also stored;

4) When an event has received minimum_endorsements
endorsements, the process(es) that have seen sufficient
endorsements begin dissemination.



This high level overview glosses over some important
aspects that need to be considered, regarding how endorsers
are chosen, when are events considered valid, and when are
enough endorsements received.

An endorser is a process on the network tasked with
approving a given event prior to dissemination can begin. The
method through which they are chosen is not defined, but it
does need to be, most crucially, deterministic. An approach
that would satisfy these requirements is to use rendezvous
(HRW) hashing [26] or a special case of rendezvous hashing,
consistent hashing [27].

Whichever the chosen approach, the goal is the same: ensure
that a certain event can be mapped to a certain group of
processes, which will become its endorsers, in a deterministic
manner. To generate an endorsement, all that needs to be done
is that an endorser digitally signs the event, and by confirming
that the signature is valid and the endorser is in the list of
endorsers for that event, the endorsement is considered valid.

The number of endorsers, the variable endorsers, is a
configurable value largely dependent on the desired security
level of the network: the higher the number of endorsers, the
more secure, but at the same time the higher the network
bandwidth required for the endorsement. There are however
diminishing returns, and having more than 250 endorsers has
a negligible impact on security while massively increasing
overhead due to the quadratic increase in number of messages.

Another critical aspect is that of how are events deter-
mined to be valid, specifically in respect to their times-
tamp. For this determination there are two key parameters:
hard_timestamp_margin and soft_timestamp_margin,
which I will refer to as the hard and soft margins respectively.

The hard margin is the simplest of the two, with its
only goal being to make sure timestamps need to be
within a given margin for them to be endorsable, in or-
der to ensure the first property of the endorsement com-
ponent. More concretely the timestamp needs to be in
the interval |clock — hard_timestamp_margin;clock +
hard_timestamp_margin| for the event’s endorsement to
even be considered.

The soft margin is more complex, and it seeks to ensure
the second property (and indirectly the first), by attempting
to mitigate an attack that would invalidate it. Similarly to the
attack described in Section III-C3 and shown in Figure 3, in
the absence of the soft margin, a faulty endorser could simply
request endorsements from minimum_endorsements—1 en-
dorsers, but this time right before the hard margin cut off future
endorsements. The result is that minimum_endorsements —
1 would be generated, but no future endorsements would
be made by correct processes, meaning the event would
not reach the required threshold. However, since the faulty
process is also an endorser, they could afterwards generate
an endorsement, putting the total number above the required
threshold. This would replicate the aforementioned attack,
bypassing the endorsement component, and putting a fully-
endorsed event under control of a faulty process that could
begin its dissemination whenever it would like.

The solution to this problem is the introduction of a soft
margin. Since this vulnerability would be exploited by request-
ing endorsements right before the hard margin, the soft margin
exists to make behavior during this vulnerable period unpre-
dictable. Rather than always endorsing (or never endorsing),
while within the soft margin, processes have a probability to
endorse. Whenever put in a situation where they would be
endorsing an event, they instead generate a random number
between 0 and 1, and if smaller than soft_accept_probability
they will endorse, but will do nothing otherwise. If 10 different
endorsers request an endorsement, then this probability will
be rolled for 10 times, meaning even if a low probability is
used, once a certain critical mass of endorsers is reached, a
cascading effect occurs and all or nearly all correct endorsers
eventually endorse.

The last important factor is how many endorsers are required
to endorse a given event, which is a configuration parameter,
manimum_endorsements. Looking at the extremes, it is
trivial that neither a single endorser, nor all endorsers, are
valid options: with 1 endorser required then neither property
can be ensured, and with all endorsers required then the second
property cannot be guaranteed, as any faulty endorser will be
able to control when dissemination begins by only endorsing
at that time.

A threshold of 50% may initially seem like it is optimal, as
it is the farthest between the two failure scenarios described.
However, due to the attacks described in Section III-E, the
soft margin also comes into play and is crucial in deciding
the ideal threshold.

As previously mentioned, the soft-margin helps introduce
a cascading effect where all or nearly all correct processes
endorse once a critical mass of them do. The threshold
therefore needs to be higher than this critical mass, but at
the same time lower than the number of correct processes to
avoid the other edge cases in which endorsement may fail. This
precise threshold will be largely dependent on the number of
endorsers and the expected percentage of faulty processes, and
needs to be calculated depending on these parameters, with a
universal optimal value not existing.

The dissemination component, Algorithm 9, incorporates
the changes outlined in Section III-C, in addition to lines 12-
13 which seek solely to ensure that the event has gone through
the endorsement component and has been validated by it.

The ordering component, Algorithm 10, also incorporates
the changes outlined in Section III-C. An additional change
that was not described elsewhere is the renaming of ¢tl, solely
in the ordering component, into age, to have a name more
fitting to its purpose.

E. Known attack vectors

The attacker being considered is one that is fully aware of
the latency of every point-to-point connection on the network
and the state of each processes’ internal clock, being able
to send messages that will be delivered precisely when the
attacker determines they should be. However, this attacker
is unable to subvert cryptographic primitives, e.g. calculate



hash collisions, as an attacker able to do so could defeat any
mechanism that relies on digital signatures.

Every known attack that this attacker can perform revolves
around attempting to compromise the endorsement component
(Algorithm 8), violating its provided guarantees, therefore
invalidating the guarantees offered by the dissemination com-
ponent (Algorithm 9) and subsequently the ones ensured by
the ordering component (Algorithm 10).

The guarantee that the attacker would want to violate is that
if any process has collected the required amount of endorse-
ments, then at least one correct process will also collect the
required amount of endorsements in time for dissemination.

To show that violating this guarantee is sufficient, suppose,
by contradiction, that an attacker managed to violate this
property. In that case, the attacker is in control of an endorsed
event’ (E) that no other correct process has seen along with its
endorsements. The attacker can then delay the dissemination of
this event, beginning its dissemination precisely when a later
event (E’) would delivered by TBO—Deliver. By waiting until
this critical moment, certain correct processes will deliver E’
prior to seeing E, whereas other correct processes will deliver
E and only then will they deliver E’. A simplified example of
this attack is shown in Figure 3 when motivating the need for
an ordering component.

1) Crafting an attack: Any successful attack will need to
be attacking the endorsement component (Algorithm 8). The
reason this is true is because the only other component subject
to attack is the dissemination component® (Algorithm 9), yet
any valid message the attacker sends in that situation will only
help further disseminate events, which is undesirable towards
the goal of violating agreement.

Therefore, we need to consider all the possible attacks that
attempt to compromise the endorsement component. The goal
of these attacks will always be to reach the end of the endorse-
ment stage in a vulnerable situation: not enough processes
have endorsed the event but, should the attacker decide to
endorse it (and not necessarily broadcast said endorsement),
then the required number of endorsements will be reached.
Since the attacker is then in control of the endorsement, the
dissemination can be delayed, compromising the algorithm.

Looking at the endorsement component, the first step would
be the creation of the event. It should be clear that if an
attacker is the one creating the event, then the system is
more vulnerable than with a correct process creating it. An
event created by any correct process will always be correctly
endorsed regardless of what the attacker does’, and is not
subject to attack.

The attacker therefore has to be the event creator. In addition
to that, an attacker not sending out endorsement requests, or
only sending them after the hard margin, leads to a failed

5An event with sufficient endorsements to be disseminated.

The ordering component (Algorithm 10) handles no communication, and
fully relies on the other components to ensure its correctness, not being subject
to direct attacks.

"The only exception is when the attacker controls enough endorsers to make
the transaction unendorsable.

attack as the event will not be endorsed. However, if the
attacker sends out endorsement requests in the beginning of
the endorsement, then this request will be re-broadcast and
every correct endorser will endorse it, with the attack failing
as well.

The attacker must therefore send requests only right before
the soft margin, so that any re-broadcast will arrive after the
soft margin, and/or after it but before the hard margin. The
instant(s) in which to make such requests, or their receiver(s),
are determined by the attacker.

The exact combination of attack parameters (i.e. when and
who to send endorsement requests or endorsements to) that
would lead to the strongest attack is not easily determinable,
as that would depend on parameters such as the number of
endorsers. However, it can be concluded that the strongest
attack will be as follows:

1) Create an event and do not broadcast endorsement
requests;

2) As the soft margin approaches, possibly send out an
endorsement request to one or more correct endorsers,
such that their own endorsement requests will not reach
other correct endorsers prior to the soft margin;

3) While between the soft margin and the hard margin, in
any given instant, do one of the following: noitemsep

a) Do nothing;
b) Send out one or more endorsements to one or more
correct processes;

Soft
Margin

=P
&L
=

Figure 4: A successful attack with a 3-endorsement threshold
where the attacker (B), who is both the creator and an
endorser, sends a precisely timed endorsement request (but not
endorsement), resulting in the attacker being the only process
to have collected 3 endorsements.

One such attack is shown in Figure 4, in that case being suc-
cessful, as the attacker has gained control of the endorsement
process by becoming the endorser capable of determining the
success or failure of the endorsement, being able to delay the
endorsement and therefore dissemination. Do note however
that the attack was only successful because the attacker was
lucky, and neither D nor E randomly endorsed after seeing A
and C’s endorsements.



While this attack may sound overly generic, which it is,
a competent attacker is able to calculate all possible attack
parameters, and perform the attack using the combination
of parameters most likely to lead to a successful attack.
Therefore, we need to calculate the likelihood of success of
such an attack to understand how vulnerable the algorithm as
described is. This analysis is done in Appendix B.

IV. EVALUATION

In this chapter we will be going over the main contribution:
a BFT Total Order algorithm, based on an existing epidemic
algorithm, EpTO [19], introduced in Section II-B. We will
begin by looking at the properties that we seek to ensure,
followed by EpTO and, by making modifications in order to
mitigate certain attacks, we will arrive at TBO. After that, we
will look at how TBO might be attacked, and demonstrate that
these attacks, in very strict conditions, are possible.

A. Theoretical evaluation

The theoretical evaluation is based on the analysis presented
in Appendix B, with the goal of understanding whether a
feasible attack on the endorsement component could be found
in every or nearly every parameter configuration.

The process through which this was evaluated is borderline
bruteforce: for a wide range algorithm parameters all possible
attacks were calculated. Then, for every possible attack, the
analysis in Appendix B was calculated with a 1 000 decimal
unit precision, and the probability of that attack succeeding
was determined.

When carrying out this testing, the system parameters were
fixed at 45 correct processes and 5 faulty processes, for a
faulty percentage of 10%. In total, 41 266 combinations of
algorithm parameters were tested, each against 5 632 067
possible attacks.

The results were, however, not favorable, despite the low
number of faulty processes.

In every tested algorithm parameter combination, an attack
was always found that had a probability of success greater
or equal to 0,1%, at which point we stopped testing further
attacks.

However, this doesn’t necessarily mean TBO is unsafe,
but it does mean future work needs to be done to ascertain
how easily can TBO be attacked in real-world scenarios. The
motivation behind this claim is that the environment in which
the theoretical analysis is done is unrealistically strong for the
attacker: being able to exploit vulnerabilities that rely on very
precise knowledge of the network latency and internal clocks
of all network participants is unrealistic.

It is, however, not known exactly how much of this infor-
mation is actually required to launch a successful attack, and
whether a weaker scenario would only make the attack harder
but feasible or whether it would make it nearly impossible.

B. Experimental evaluation

The experimental evaluation is based on simulating the
execution of the TBO algorithm, as presented in Algorithm 8§,

Algorithm 9, Algorithm 10, and Algorithm 11, and gathering
statistics about its runtime operation.

The simulation was performed on Corten [28], an event-
based simulator written in Rust. The simulator does not have
a set unit of time, but the values used were similar to those
expected of a real world scenario if they were in milliseconds
(ms), and that unit will be used throughout this section.

The simulator was configured to have the network latency
set to 100ms, and network jitter being given by a log-
normal distribution with a standard deviation of 10ms. The
internal clocks of processes exhibited some drift, with this drift
being randomly and uniformly distributed between -2.5ms and
+2.5ms, applied whenever any call was made. The periodic
task executed by each process is executed every 200ms.

The faulty processes did not exhibit any Byzantine behav-
ior, instead behaving as crash-fault by not transmitting any
messages, but no correct process was ever made aware of this
crash.

In the graphs being presented only a single variable is
changed, with the others remaining constant: 10 000 processes,
100 endorsers, 10% faulty processes, 60% endorsement thresh-
old, and 1% packet loss.

On the first instant after simulation begins, one (and
only one) correct process creates an event and executes the
TBO—Broadcast function. The simulation then unfolds until
every correct process delivers the event. This simulation was
repeated at least 33 times with different seeds (0-32) for every
test case, with some simulations being repeated up to 1 000
times. In none of the simulations did any correct process fail
to deliver the event, even in the worst conditions tested (8%
packet loss and 40% faulty processes).

When varying solely the number of processes between 100,
1 000, 10 000, and 100 000, there are significant differences in
the average number of messages being sent by each process,
as shown in Table I. The number of endorsers is fixed at 50
for this comparison, throughout all sizes.

While at first the increase in the average number of mes-
sages amounts to almost doubling, this increase is logarithmic
despite the network size increasing tenfold. This property is
inherited from EpTO, with the average number of messages
growing logarithmically with the number of processes.

Table I: How the average number of messages changes as the
number of processes changes.

Processes  Avg. Messages Sent
100 697.96
1,000 1,200.37
10,000 1,839.04
1-10° 2,598.95

Another important set of metrics to observe are the time
until first observation and the time until delivery, as the number
of processes varies. These two metrics are shown in Figure 5a
and Figure 5b, presented as cumulative distribution functions,
with the percentage of correct processes that have observed



or delivered the event (depending on the graph) up until that
point represented in the Y-axis, and the time represented in
the X-axis.

CDF for the distribution of time until first observation by each process CDF for the distribution of time until delivery by each process
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(a) Time until first observation. (b) Time until delivery.

Figure 5: How the time until the event is first observed and
delivered change as the number of processes varies.

The increase in time until first observation is expected and
largely due to the additional number of processes leading to
another round (i.e. another execution of the periodic task)
being required for as many processes to have observed the
event. The fanout varies between 20 and 26 depending on
the number of processes, and as the network size increases
tenfold, this mismatch means that a round later (200ms) the
percentage of processes that have endorsed is slightly higher,
but the larger jumps are nonetheless offset by a single round.

The increase in time until first delivery is however due to
an entirely different reason: an increase in the number of
processes requires a matching increase in the 7T7TL, due to
the equations specified for EpTO to determine fanout and
TTL. A tenfold increase in the number of processes leads
to, approximately, an increase of 20 in the 77'L, meaning
an additional 4 000ms until delivery, which is what can be
observed.

Another effect that can be observed, and that has a very
significant impact on the latency of TBO, is the gap between
first observation of a given event and delivery of said event.
While the gap between first and last observations grew from
approximately 0.4s to approximately 1s when going from 100
processes to 100 000 processes, the time until delivery grew
from approximately 9s to nearly 22s.

This suggests that the the formula giving the upper bound
for the TTL are largely overestimating it, and it could likely
be significantly reduced without an impact on correctness, but
future work is required to confirm this possibility.

Varying the number of endorsers has a negligible impact
on the average number of messages which remains largely
unchanged. A slightly larger percentage of processes both
observe (Figure 6a) and deliver (Figure 6b) the event earlier,
explained by the fact that a larger number of endorsers means
a larger number of processes begins dissemination earlier in
the process.

As the percentage of faulty processes changes, the average
number of messages is completely unchanged. The effects
present in the time until first observation (Figure 7a) and on
the time until delivery (Figure 7b) are however noticeable,

10
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(a) Time until first observation. (b) Time until delivery.

Figure 6: How the time until the event is first observed and
delivered change as the number of endorsers varies.

but not unexpected, as a higher percentage of faulty processes
essentially means a larger percentage of messages are dropped,
as they are sent to processes that will do nothing with
them. The effects of varying the packet loss and varying the
percentage of faulty processes is largely the same.

CDF for the distribution of time until first observation by each process CDF for the distribution of time until delivery by each process
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(a) Time until first observation. (b) Time until delivery.

Figure 7: How the time until the event is first observed and
delivered change as the percentage of faulty processes varies.

V. CONCLUSION

The introduction of blockchain technologies, coupled with
the surge in interest in them, has lead to significant develop-
ments in the field of distributed ledgers. As more and more
industries adopt blockchain technologies for mission-critical
applications, significant developments were made towards
providing common frameworks for blockchain applications.

EpTO, an epidemic total order algorithm, presents desirable
characteristics for use in Fabric, specifically high scalability in
both the number of transactions that can be processed, and the
number of nodes that can participate in the protocol. However,
EpTO does not withstand the presence of Byzantine faults,
operating only under a fail-stop failure model.

For that reason TBO was developed, seeking to maintain all
the advantageous qualities of EpTO but adding Byzantine fault
tolerance. While our short theoretical analysis did not support
any assertions about the strength of the algorithm, specifically
about its endorsement component, our experimental analysis
showed very promising results in regards to its scalability,
with a logarithmic increase in the number of messages as the
number of nodes, in contrast with every other Byzantine Fault
Tolerant algorithm discussed which presented a super-linear
(often quadratic) increase.
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APPENDIX

APPENDIX A
ALGORITHMS

Algorithm 5: EpTO Dissemination Component

1 initially

2

wm

e e

11
12
13
14
15

16
17

18

19
20
21

22
23
24
25

26
27

view <— ... // system parameter: set of uniformly
random correct peers

K < ... // system parameter: fanout

TTL < ... // system parameter: number of rounds

next_ball <— & // set of events to be relayed in the next
round

procedure DISSEMINATE(event)

event.ttl < 0
event.ts < GETCLOCK()

L next_ball[event.id] < event

upon receive Ball : ball

foreach event € ball do
if event.ttl < TTL then
if event.id € next_ball then
if next_ball[event.id].ttl < event.ttl then
L | next_ball[event.id].ttl < event.tl

else
L next_ball[event.id] < event

UPDATECLOCK (event.ts)

run task every § units of time

foreach event € next_ball do
L event.ttl < event.ttl + 1

if #next_ball > 0 then
peers <— RANDOM(view, K)
foreach peer € peers do
L send Ball : next_ball to peer

ORDEREVENTS(next_ball)
next_ball <+ @

Algorithm 6: EpTO Ordering Component

1 initially

2 received <— @ // Map of event id — event

3 delivered <— @ // Set of delivered events

4 | last_delivered < 0

5 procedure ORDEREVENTS(ball)

6 foreach event € received do

7 L received[event.id].ttl <— received[event.id].ttl + 1

8 foreach event € ball do

9 if event.id ¢ delivered and event.ts > last_delivered

then

10 if event.id € received then

11 if received[event.id].ttl < event.ttl then

12 L received[event.id].ttl < event.ttl

13 else

14 L received[event.id] < event

15 min_queued <— oo // Oldest non-deliverable event

16 deliverable < @

17 foreach event € received do

18 if ISDELIVERABLE(event) then

19 deliverable < deliverable U {event} //
Preliminarily deliverable

20 else if event.ts < min_queued then

21 L min_queued < event.ts

22 foreach event € deliverable do

23 if event.ts > min_queued then

24 | deliverable < deliverable \ {event}

25 else

26 received <— received \ {event} // Will be
delivered

27 foreach event € SORT(deliverable) do

28 delivered < delivered U {event}

29 last_delivered <— event.ts

30 | EPTO-DELIVER(event)

Algorithm 7: EpTO Utilities

initially
| clock <0

procedure ISDELIVERABLE(event)
L return event.ttl > TTL

clock «— clock + 1
return clock

1

2

3

4

5 procedure GETCLOCK()
6

7

8 procedure UPDATECLOCK(timestamp)
9 L if timestamp > clock then

10 | clock < timestamp

12



Algorithm 8: TBO Endorsement Component

1 initially

2
3

10
11

12
13

14

15

16

17

18

19

20
21
22
23
24
25
26

27

28
29

uj

endorsers <— ... // parameter: number of endorsers

minimum_endorsements <— ... // parameter: number of
endorsements required before acceptance

hard_timestamp_margin <— ... // parameter: hard
margin, always rejected if crossed

soft_timestamp_margin < ... // parameter: soft margin,
randomly rejected if crossed

soft_accept_probability <— ... // parameter: probability
to reject once soft margin is crossed

received_endorsements <— & // map of events —
received endorsements

rocedure TBO-BROADCAST(event)
event.ts <~ GETCLOCK()
foreach position, endorser € GETENDORSERS(event) do
send EndorsementRequest : event, position to
L endorser

pon receive EndorsementRequest : event, position
if position ¢ received_endorsements and
GETENDORSERS(event)[position] = self then
if event.ts > GETCLOCK() -
hard_timestamp_margin and event.ts <
GETCLOCK() + hard_timestamp_margin then
if event.ts > GETCLOCK() -
soft_timestamp_margin or GETRANDOM(0, 1)
< soft_accept_probability then
endorsement <—
CREATEENDORSEMENT (event, position)
received_endorsements|event][position] <
endorsement
foreach pos, endorser €
GETENDORSERS(event) do
send Endorsement : event, pos,
received_endorsements[event] to
endorser

pon receive Endorsement : event, position, endorsements
send EndorsementRequest : event, position to self
foreach endorsement € endorsements do
event < endorsement.event
position < endorsement.position
if VALIDATEENDORSEMENTS(/endorsement]) then
received_endorsements[event][position] <—
L endorsement

if #received_endorsements[event] >
minimum_endorsements then
event.endorsements <— received_endorsements|event]
DISSEMINATE(event)

Algorithm 9: TBO Dissemination Component

1 initially

2

£

view <— ... // system parameter: set of uniformly
random peers

K < ... // system parameter: fanout

TTL <« ... // system parameter: number of rounds

next_ball <— & // set of events to be relayed in the next
round

event_cutoff <— & // map of events — minimum TTL
expected

7 procedure DISSEMINATE(event)

10
11
12

13

14
15
16

18

19
20
21
22

23
24

25

26
27
28

29
30

31
32
33
34

35

event.ttl <~ GETCLOCK()
L next_ball[event.id] < event

upon receive Ball : ball

foreach event € ball do

if #event.endorsements < minimum_endorsements or
not
VALIDATEENDORSEMENTS(event.endorsements)
then
| continue// skip event

if event ¢ event_cutoff then
event_cutoff[event] + 1
event.ttl < 1

if event.ttl < event_cutoff{event] then
L event.ttl <— event_cutoff[event]

if event.ttl < TTL then
if event.id € next_ball then
if next_ball[event.id].ttl > event.ttl then
L L next_ball[event.id].ttl < event.ttl

else
| next_ball[event.id] < event

UPDATECLOCK((event.ts)

run task every ¢ units of time
foreach event € next_ball do
| event.ttl < event.rtl + 1

foreach event € event_cutoff do
L event_cutoft[event] <— event_cutoff[event] + 1

if #next_ball > O then
peers <— RANDOM(view, K)
foreach peer € peers do
L send Ball : next_ball to peer

ORDEREVENTS(next_ball)
L next_ball < @
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Algorithm 10: TBO Ordering Component

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17

18
19

20
21
22

23
24

25
26
27
28

initially

received <— @ // Map of event id — event

delivered <— @ // Set of delivered events
last_delivered < 0

rocedure ORDEREVENTS(ball)
foreach event € received do
L received[event.id].age <— received[event.id].age + 1

=

foreach event € ball do
if event.id ¢ delivered and event.id ¢ received then
if event.ts > last_delivered then
event.age < 1
L received[event.id] < event

min_queued <— oo // Oldest non-deliverable event
deliverable <— @
foreach event € received do
if ISDELIVERABLE(event) then
deliverable < deliverable U {event} I/
Preliminarily deliverable

else if event.ts < min_queued then
L min_queued < event.ts

foreach event € deliverable do
if event.ts > min_queued then
| deliverable < deliverable \ {event}

else
received < received \ {event} // Will be
delivered

foreach event € SORT(deliverable) do
delivered < delivered U {event}
last_delivered < event.ts
TBO-DELIVER(event)

Algorithm 11: TBO Utilities

1
2

3
4

5
6

7
8
9

initially
| clock <=0

procedure ISDELIVERABLE(event)
| return event.age > TTL

procedure GETCLOCK()
L return clock

procedure UPDATECLOCK(timestamp)
if timestamp > clock then
| clock < timestamp
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APPENDIX B
ANALYSIS

The purpose of this appendix is to understand how the
system evolves as an attack as described in Section III-El
takes place. As the system is dynamic, not only will certain
probabilities change, but so will the way in which they are
calculated.

The following are the symbols that will be most frequently
used throughout this appendix:

noitemsep

e N <+ endorsers, regardless of whether they have endorsed
or not

C + correct endorsers, regardless of whether they have
endorsed or not

fu < faulty endorsers who have not sent any endorse-
ment to any correct process

fE < faulty endorsers who have sent an endorsement to
one or more correct processes

#T < required number of endorsements before event is
considered endorsed

P(E;) «+ probability of a given correct endorser endors-
ing after seeing one endorsement request

P(Ey) < probability of a given correct endorser endors-
ing

NDM < correct endorser that receives an endorsement
request from the attacker, before the soft margin

SM < correct endorser that receives an endorsement
from the attacker, between the soft and hard margins
P(A) + probability of the attack being successful

The attack is successful if, at the end of the endorsement,
H#EN+H#fr < #T and #EN +#f5+#fuv > #7T. In other
words the attack is successful if and only if an insufficient
number of correct processes have endorsed the event, but the
endorsement by all faulty processes would push the number
of endorsements above the threshold.

In addition to the above symbols, there are some probabil-
ities that will appear that are trivially solved:

noitemsep

e P(E1INM) =1 = P(EN|NM) =1, as before the
soft margin correct processes will always endorse after
receiving an endorsement request.

« NM N SM 0 = P(NM|SM)
P(SM|NM) =0, since NM and SM are disjoint.

At the beginning of the endorsement stage, the attacker
will request endorsements from as many endorsers as it
desires, including possibly none. These endorsement requests
will be sent such that they are received precisely before the
soft margin, with the intent that any following endorsement
requests will reach other processes only after the soft margin.
If this were not true, and those endorsement requests arrived
before the soft margin, then the event would be endorsed by
all correct processes and the attack would fail.

The probability of any correct process having endorsed the
event after the attacker has sent out its endorsement requests
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is therefore given by the probability of having been chosen to
receive these endorsement requests:

P(Ey) = P(Ex|NM) x P(NM)

= P(NM) )

As the system is partially synchronous, requiring a known
upper limit to network latency but no clock synchronization,
correct processes may be executing out of step. As such, we
will randomly group our processes into S sub-groups, with
messages delivered to the network having their effects delayed,
such that subgroup s + 1 will execute after subgroup s. The
notation Cs will be used to represent the correct processes
in subgroup s, and P(X), will be used to represent the
probability of X within subgroup s.

If any correct process endorses the event, it will also send
out an endorsement request. Since every correct process will
be in the soft margin, their probability of endorsing following
the reception of any endorsement request can be given by
the complimentary of the probability of not endorsing, which
is the probability of not endorsing after seeing one request,
P(—E1|-NM), to the power of the number of endorsers
so far, (Y2p_ #Ck * P(EN)i) + # 5. The probability of
endorsement for these correct processes can therefore be given
by:

P(EN|~NM), = 1—P(=E; |[~NM)Ei=0 #CsxP(Ex)e)+#15

2

However, the attacker may also send out n endorsement

requests to some of the processes. The probability of these

processes endorsing the event after observing these endorse-
ment requests follows the same thought process, and is:

P(Ex|SM) =1 — P(=Ey|~-NM)" 3)

As a requirement for sending endorsement requests within
the soft margin is to also send an endorsement, n processes
have gone from being in fi; to being in fg, and so:

#fe=#fe+n @
#fv=#fv—n
The probability of receiving one such request is

P(SM|-EN) = 1, as once an endorsement is sent, every
correct process will eventually see it. The probability of
endorsing if the process was not among the ones who received
the request prior to the soft margin is redefined as:

P(En|~NM), = P(Ex|-NM),+

L P(Ex|SM) % P(SM|=Ex) + P(<Ex|-NM), )

This endorsement probability is only applicable to correct
processes seeing the event after the soft margin, as every
correct process that has seen it before the soft margin will
have endorsed it, as P(Ex|NM) = 1. The probability of
correct processes endorsing can therefore be given by:



P(En)s = P(Ex|NM), « P(NM)+
+P(Ex|=NM),* P(-NM)  (6)
= P(NM) + P(Ex|~-NM), * P(~NM)

Throughout the endorsement, new correct endorsers will
broadcast additional endorsement requests whenever they
themselves also endorse, and the attacker may also send
endorsement requests to as many correct processes as it desires
at any moment, and so Equations (2) to (6) need to be
recalculated iteratively, and recalculated for each subgroup s
in each of those iterations.

Finally, we can calculate the value of P(Ey), with each
subgroup contributing proportionally to its size:

s
P(Ey) =Y P(Ey)s* (#Cs/#C) (7)
s=0

As the system will evolve over a bounded period of time we
need to calculate P(F) after a certain number of iterations,
and not the value for which all equations are true, which would
represent P(Ey) after a boundless period of time. The number
of iterations should be approximately the difference between
the soft margin and the hard margin, divided by the average
latency on the network.

After the iterations, the correct processes will enter the hard
margin and all further endorsement requests will be rejected,
and so the number of correct endorsers will have stabilized.
The probability of the attack being possible, P(A), is the
probability of the number of correct endorsers being within
the interval in which the endorsement is vulnerable.

The minimum number of correct endorsers that have en-
dorsed the event for the attack to be possible is:

#Emin = maz(#1 — # fu,0) ®)

And the maximum number is:

#E e = min(#T — #fe — 1, #C) 9

As a process either endorses or does not, a binomial
distribution is applicable, and the probability of the attack
being successful is the probability of the number of endorsers
being between # FE,,;, and # F,, 4., Which is:

#Emaz O

PA) = > # ) « P(En)* + (1 — P(Ey))#7*
k=#Emin K

(10)
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