
Mitigating churn in P2P storage systems

Leandro Ribeiro
Instituto Superior Técnico, Universidade de Lisboa

Lisboa

ABSTRACT
The exit and entrance of P2P network’s nodes, the churn, is
a widespread problem in this type of networks. P2P storage
systems suffer from this problem because due to the churn
there is data loss and data unavailability, which has led P2P
storage systems being deprecated compared to cloud storage
systems. In order to mitigate the problem of data loss or data
unavailability, we will present a solution that consists of us-
ing an incentive mechanism to reward the nodes based in their
reputation and a reputation system to assess the behavior of
network nodes. With this reputation system we intend to mo-
tivate the nodes to be connected to the network to improve
thier own reputation, give better rewards to those with better
reputation, since they will be contributing to better network
operation. These rewards will go through more storage on the
network. Given that the network intends to offer more storage
for its nodes, then it is necessary to efficiently use the storage
available on the network, so we will use data compression
methods to minimize the storage occupied by the data on the
network.

INTRODUCTION
Peer-to-peer networks (P2P) have become popular in recent
years due to the fact that they don’t need a centralized server
to work, such as BitTorrent which is a very popular and
widely used for sharing data and digital files P2P network.
In these networks, each user is a node in the network that can
leave and enter relatively frequently, which means that P2P
networks may have some reliability problems, as it is not cer-
tain that a given node in the network is connected at any given
time. The fact that these networks do not need a central server
means that there is a great availability on these networks. The
decentralized organization of P2P networks makes it possi-
ble to distribute the computational load, network traffic and
storage across all the nodes that be part of the network. An
example of a P2P network is the case of distributed registries
based on blockchain which is a network that aims to maintain
secure and non-anonymous transactions over a decentralized
P2P network.

According to Gantz el al.[5] there has been an exponential
increase in data over the past few years, which means that
there is a greater need to store data produced remotely, due to
a greater number of mobile devices and their mobility. Data
must be accessible from anywhere around the globe so that
data is always available when needed. Data storage services
(DSS) are systems that allow us to store data remotely. The
DSS come to solve the problems mentioned above regarding
the increase in the number of mobile devices and their mo-
bility, in order to access data from any device anywhere in
the world. Cloud DSS(cloud storage) are georeplicated DSS
(spread across the globe) where physical servers with stored
and replicated data are present to allow us to access them
whenever we need with a high degree of assurance that our
data is available when we need them. As a rule, the provider
of this type of service charges us a fee for the service. DSS on
P2P networks are systems that allow us to access data on any
device anywhere in the world, such as cloud storage, but in-
stead of using physical servers from a cloud service provider
(cloud provider), each node of a given P2P network provides
a portion of the storage of your device in order to be able
to store data from other nodes. In order to make this possi-
ble, it is necessary that the nodes are connected to the network
whenever its possible, to allow that when the data is accessed,
it is available.

Due to the feature of P2P networks, there is no need for a
central server so there is no guarantee that there will be a
permanently contactable device. In P2P storage networks,
each node provides a fraction of its storage to the P2P net-
work where it will store data from other network users, and
in exchange expects that its data stored on the network will
be available when it needs them. In P2P networks, the entry
and exit of network nodes happen relatively frequently, which
leads to instability in the network and consequently can lead
to the problem of a given node having data from others and
suddenly leaving the network. This can lead to a user who
had the data saved on the network losing his data, as another
who had his data saved ceased to belong to the network.

There is a lot of diversity of nodes connected to P2P networks.
Some of these nodes have a better connection to the Internet
or faster Internet than others, while some may spend more
time connected to the network. The quality of network ac-
cess, the time that a node spends connected to the network
and the number of inputs and outputs of the network node
are features linked to the churn, while the speed, quality and
storage space that a node offers to the network, are features
linked to storage.



On the one hand, given that there is churn in storage systems,
we need replication for availability. On the other hand, the
effects associated with churn disturb the total available space,
and it would be important to know which network nodes leave
and enter this network with some frequency, in order to de-
crease their guarantees and storage space. The process of
identifying nodes with a high degree of churn can be done
using a reputation system that allows nodes to know if other
nodes are reliable regarding their stability in the network, the
churn. The reputation system will allow us to evaluate the
behavior of other nodes in the network so that the network
knows the behavior of a given node. To assist the reputation
system there will be an incentive system that will offer better
rewards depending on the better reputation of a given node,
so that the nodes will be motivated to have a better reputation
in order to obtain better rewards and thus the nodes end up
for reducing your churn so that the network can trust more on
these nodes, while nodes with worse reputation will have less
storage space on the network.

In this thesis a protocol was developed for DSS’s P2P that
mitigates churn and its impact on the data stored in the sys-
tem, both in terms of unavailability and in terms of the data
being kept in the system and not being lost. In the evaluation
of the protocol, a P2P DSS was implemented with this pro-
tocol, then simulations were developed that explored mech-
anisms of churn and other configurable data that can simu-
late the behavior of users. Using the incentive and reputation
mechanism, incentives are offered to nodes and they are eval-
uated and data compression techniques are used in order to
reduce their size to obtain better efficiency in storing them
and an adequate quality of service on the network.

Document Structure
The document is organized as follows. Section 2 presents
the related work, in Section 3 the incentive and reputation
mechanism, in Section 4 the evaluation methodology and the
evaluation of the proposed system and Section 5 presents the
conclusions and future work.

RELATED WORK
A P2P network is a distributed network where all its partici-
pants share part of their hardware resources. These shared re-
sources are accessible by all nodes in the network without go-
ing through intermediate entities, Schollmeier et al.[8]. P2P
networks are different from Client/Server networks mainly
because there is no central entity, since in P2P networks there
is the concept of Servent, in other words, each node in the
network acts as a server and client at the same time.

A P2P storage system has the objective of making the nodes
of a given P2P network provide their own storage for the net-
work. The network in its turn shares this storage available to
all its participants.

According to Dabek et al.[4], a P2P storage system aims to
make the nodes of a given P2P network available storage for
the network. In order for all participants to have storage for
their data, the network in its turn shares that storage available
to all its participants.

Chord [9] is a distributed search protocol that solves the prob-
lem of efficiently locating a network node that has a particular
object. This protocol supports a single operation: given a key,
it maps the key to a node. Depending on the application that
uses this protocol, that node may be responsible for storing a
value associated with that key. Chord simplifies the design of
applications and P2P systems based on its protocol, address-
ing the following difficulties:

• Load balancing

• Decentralization

• Scalability

• Availability

• Flexible Naming

Eyo - Device-Transparent Protocol [10] is a P2P personal
storage system that aims to provide transparency to the user in
the face of disconnected devices. Eyo synchronizes updates
between all devices. Eyo divide metadata from the content
of the object and replicates the metadata across all devices so
that each device has the ability to manage each object even
without having its content. In order to search for a particu-
lar object, Eyo supports a query system (queries) in order to
search for objects using metadata. Eyo supports automatic
conflict resolution, for that there is a version history mecha-
nism allowing for when the devices synchronize a given ob-
ject and different versions appear, it’s possible to check which
version overlaps the others.

WheelFS [11] is a distributed storage system to help appli-
cations share data and achieve fault tolerance. WheelFS is
resistant to Byzantine failures. This system provides pri-
mary/backup file replication, keeping a copy on others servers
in case the primary fails or is unavailable at the desired time.
WheelFS also allows customers to cache so that other cus-
tomers can directly access other customers’ cache to retrieve
some file.

PRACTI [3] is a solution for large scale replication, it pro-
vides 3 properties to the applications that use it. These prop-
erties are the following:

• Partial replication that consists of the system allowing to
replicate part of the data or metadata on any node in the
system.

• Arbitrary consistency that allows applications to choose
whether to use strong or weak consistency.

• Independent topology which allows any node to exchange
updates with any node as in other existing P2P systems.

PRACTI has a log which is where all modifications made to
the local node are kept and then updated in Checkpoint in or-
der to support the partial replication policy. It is in Check-
point that changes are stored in order to ensure consistent
causal view of system data. Thus allowing each node to store
any data set locally and change at any time.



SYSTEM
The objective of this dissertation is to develop a DSS P2P that
mitigates churn and its impact on the data stored in the sys-
tem, in terms of unavailability and in terms of data persistence
in the system. For this, we will use mechanisms of incen-
tive and reputation to evaluate the nodes of the system and
to combine with these mechanisms, data compression tech-
niques in order to reduce the size of the data to obtain better
efficiency in the storage of these. In this system, each user
will be able to store data on the network and, in return, each
participant will offer storage to the network so that there is
storage available so its possible for others to store their data.
In the system, participants can perform some operations such
as storing objects (writes), obtaining their objects (reads) and
removing their objects (removes).

The reputation and incentives mechanism presented have the
goal to motivate users to spend more time connected to the
network and so mitigate churn and, consequently, its effects,
such as data unavailability and definitive loss of these. In
order to motivate the participants to not leave the system, their
permanence in the system will be measured, as well as the
operations carried out successfully and offering more storage
space to the nodes that better cooperate in the storage service.
To use these mechanisms in a given system, it is necessary
that this system is implemented in a P2P network and that
it is a data storage system. This system must allow perform
writes, reads and removes in the network. To improve the
efficiency of the network and the proposed mechanisms, it is
advisable to use data compression in order to reduce the size
of the objects for a better efficiency in their storage.

The fault model considered is the crash model. In this model,
the nodes can fail due to stop, it’s no longer possible to con-
tact them through the network or the nodes themselves can
no longer contact other nodes through the network. These
failures can be permanent if a node fails and never recovers
from the failure or may be temporary, that is, the node eventu-
ally recovers from the failure and returns to the network. We
assume that all participants in the system don’t suffer from
Byzantine faults.

Incentive and reputation mechanism
In order to reduce the churn we want to encourage partici-
pants to spend more time connected to the network. For this
we will offer incentives for them to spend more time con-
nected to the network. In this subsection we will present the
proposed mechanism of reputation and incentives.

The storage system is based on contributions from the partic-
ipants as the total network space is the space offered by all
nodes in the system, it’s necessary to use the storage space
efficiently. For this reason, the reputation system is comple-
mented with data compression techniques in order to make
storage efficient.

One node, when it joins the network, commits to store and
supply a particular object when requested by its owner and,
in return, also expects it to be able to store objects on the
network and get them back when it needs them. The opera-
tions performed by the network nodes can be completed suc-

cessfully or they can fail. In the case of a writes, it can be
successfully completed if the object is stored or it can fail if
the object is not stored. In the case of reads, it is success-
fully completed if the desired object is returned, or it fails
if no object is returned. The results of these operations can
be measured according to their success and thus evaluate the
behavior of their participants.

In order to evaluate the reputation of a node, a reputation al-
gorithm is used, based on the Eigentrust[6]. In the Eigen-
trust algorithm, positive and negative transactions between
all nodes in the system are counted, while in the proposed
algorithm, the time spent by a node connected to the net-
work and the time its absent from the network are counted.
This adaptation is made because it is intended to evaluate the
availability of nodes in the system instead of the transactions
made between them. This is accounted by a ping mechanism,
where each node periodically communicates with one node
or a group of nodes that are responsible to calculate the rep-
utation (could be the entire network) in order to show that it
is connected and present on the network. After a set of pings
fails, the node is assumed to have failed. These nodes that is
responsible to calculate reputation store the pings of the node
i successfully made suc(i, j) and the pings that weren’t made
are called unsuccessful insuc(i, j). As in the algorithm iden-
tified above, the value s ij defines the differences between
successes and failures and is defined by:

sij = suc(i, j)− insuc(i, j) (1)

In order to aggregate the local confidence values, as suggested
in the algorithm, it is necessary to normalize these values.
The normalized values are called normalized confidence val-
ues and are given by the following formula:

cij =
max(sij , 0)∑
j max(sij , 0)

(2)

The sum of all cij of a j is 1. Periodically each node does rep-
utation calculations based on the cij values. The reputation
value is always a positive value. To calculate reputation, it is
necessary to calculate the mean (x̄) and the standard deviation
(σ) of the values of cij . The reputation value of the node i, ri,
is given by the following formula:

ri =
max(cij − x, 0)

σ
∗ 100 (3)

The reputation values are stored by the respective node that
performed the calculation. Reputation values are values
greater or equal than zero. Incentives are offered to those
with a better reputation. These incentives include the amount
of storage offered to each node. This amount of storage of-
fered to each node is relative to the storage it offered to the
network. The Table 1 returns the amount of relative storage
given the node reputation. There are no negative reputation
values due to the Formula 3. In the Table 1 the left column



represents the possible reputation values that the nodes can
take while the right column represents the rewards they will
obtain according to their reputation.

The pings made by the nodes are sent to any node that is
responsible to calculate the reputation. These, in their turn,
share with each other node that are responsabile to calcu-
late the reputation the pings received in order to ensure that
the values are consistent with each node. After aggregating
the received values of pings, each calculates the reputation
value of each node. Since the values will all be synchronized,
the participant’s reputation values will be the same among all
nodes that are responsible to calculate reputation.

Reputation Rewards
0 50%

0-25 75%
25-50 100%
50-100 125%

100 - 150 150%
150 - 200 175%

200+ 200%
Table 1. Reputation/Rewards table

According to Piatek et al.[7], incentives discourage free-
riding behavior. So with the use of incentives, users tend to
improve their behavior and thus lead to a reduction in their
churn and the effects it caused.

For more efficient storage of data in DSS P2P, it’s recom-
mended to use data compression in order to achieve a better
use of the available space and thus a better quality of the ser-
vice provided.

EVALUATION
In this chapter we will present the evaluation of the proposed
mechanisms to reduce churn. The purpose of this evalua-
tion is to show the proposed mechanisms are able to moti-
vate users to reduce churn and consequently mitigate its im-
pact. For the evaluation of the system we will perform some
simulations using data that simulate the behavior of users of
P2P networks to produce access patterns to the storage sys-
tems. In Section 4.1 we describe the data we use in the sim-
ulations and, in Section 4.2, we present a single simulation
performed without the support of the reputation protocol that
serves for present the system and show some of the results
obtained. In Section 4.3 we evaluate the system using the
reputation and incentives protocol against a system without
these mechanisms. In Section 4.4 we evaluate the system us-
ing the incentive and reputation protocol, this time without
using data compression and comparing the system without
using this mechanism. In Section 4.5 we conclude this chap-
ter with the results from the evaluation performed.

Simulations description
To perform the simulations, we use Corten simulator in or-
der to obtain results that allow conclusions to be drawn about
the performance of the proposed mechanisms. To carry out

Figure 1. Time between the entry of nodes in P2P networks

Figure 2. Node’s session lenght in P2P networks

the simulations, the system described in Chapter 3 was de-
signed using the Rust language. The simulations use param-
eters taken from real studies that observed the behavior of
users of file systems.

To fit the network entries with real data, each node enters the
network after another node with a time interval taken from a
Weibull distribution where the shape parameter is k = 0.62.
Fig. 1 shows data taken from a study by Stutzbach et al.[12]
where the time between the entry of nodes in the network
corresponds to the referred distribution.

The session sizes of the nodes connected to the P2P network
are also obtained from the same study and are taken from a
Weibull distribution with k = 0.59, lam = 41.9, shown graph-
ically in Fig. 2, as shown in [12].

Fig. 3, taken from the study by Stutzbach et al.[12], shows
the time that the nodes are out the network. In the simula-
tions performed, values from this table are used so that the
simulation has this approximation to the study referred.

In the simulations that were carried out, each node has an
amount of storage available for storage on the network. When
a node enters the network, it defines the amount of storage.

Figure 3. Time that’s a node is absent from P2P networks



Figure 4. Number of active nodes in the simulation

This value is taken from a log-normal distribution where the
value µ is 16.9 and the value σ is 1.0 which leads to an av-
erage storage of 36GB offered by each node in the system as
suggested by the study by Anderson et al.[2].

A study realized over 5 years on file systems by Agrawal et
al.[1] shows that the file size increases on average 15% per
year. In 2004, the year of the study, the average file size was
189KB. At the date of the simulations, taking into account
the evolution proposed by Agrawal et al.[1], the average file
size will be approximately 1769KB. In the simulations per-
formed, the objects created and stored by the system’s nodes
are removed from a log-normal distribution where the value
µ is 6.98 and the value σ is 1.0. This distribution average that
the files created have an average of 1769KB.

System simulation
In this section we are going to present a simulation in order
to show the system and the results.

In the simulation presented in this section, 10 nodes are used
in the network. During the course of this simulation, 9550
objects were written to the network. Fig. 4 shows the number
of nodes that are alive at any given moment. We can observe
the general behavior of the network nodes during the course
of the simulation, and we can observe some instability in the
network with some outputs and inputs of the nodes which
can lead to loss or unavailability of data, which ends up not
happening in this simulation because it is a short simulation
with few nodes. In Fig. 5 we can observe the initial phase of
the network while the nodes are entering for the first time and
that while some nodes are still entering the network, others
have already left and re-entered.

Simulations between systems and results comparison
In this section we will present the results of the simulations
of a P2P storage system based on the Chord protocol as well
as the same system with the addition of the proposed incen-
tives and reputation mechanisms. Both systems use the same
simulation, that is, the nodes in the system have exactly the
same behavior, each node leaves and enters the network at

Figure 5. Node’s entry at the start of the simulation

exactly the same time in both simulations. Ahead, the sys-
tem without a reputation and incentives mechanism will be
called System1 while the system with a reputation and incen-
tives mechanism will be called System2. The simulation with
System1 will be called Simulation1 while the simulation with
System2 will be called Simulation2. Due to a problem pre-
sented by the simulator used that failed when the number of
events is very high, it is not possible to perform simulations
with more events than the simulations presented here, as it
presents a failure if the simulations are very extensive and if
it simulate a high number of nodes.

In the simulations in this section, the time between the node
entrances in the network was reduced, the Weibull distribu-
tion was used as explained above but with a smaller entrance
interval to allow simulations to be performed with a larger
number of nodes in the time that is possible before the simu-
lator fails. The reduction of this interval between the entry of
nodes in the network can lead to the existence of some errors
in the reading of objects due to the rate of entry of the nodes in
the network, which may lead to the Chord taking some time
to stabilize the ring and consequently objects are still being
transferred between nodes. This problem can occur mainly
in the initial phase of the simulations, which is when there is
a greater number of nodes compared to the nodes in the net-
work. This problem can be solved by redoing the request to
read the same object after a short time.

In both simulations performed, 6333 nodes entered the net-
work. Fig. 6 shows the number of nodes that are in the net-
work during the simulation. In this graph we can see that the
nodes enter the network as the simulations advance in time
and they can leave and return to the network, this behavior is
in accordance with that described in Section 4.1, at the final
moment of the simulation they are approximately 70 % active
nodes in the network.

During both simulations, all nodes perform an operation ev-
ery 10 seconds. This operation can be either a write or a
read of any object, where a write have the same probability to
ocurr than a read. The idea of these simulations is to saturate



Figure 6. Number of active nodes in Simulation1 and Simulation2

Figure 7. Writes errors occurred during Simulation1 and Simulation2

the network with objects and we can quickly fill the network,
therefrom no object removes are made by the nodes.

During Simulation1, nodes attempted to write 6 466 046 ob-
jects, where approximately 79.96% of these were success-
fully performed. During Simulation2, nodes attempted to
write 6 296 083 objects, where approximately 92.20% of
these were successfully performed. Fig. 7 shows the graph
with the evolution of the number of write errors that occurred
during Simulation1 and Simulation2. In this graph we can see
that there is a smaller number of write errors in Simulation2
compared to Simulation1, this is mainly due to the smaller
space occupied by the discs in Simulation2 that is obtained
due to the compression of the objects used.

During Simulation1, nodes attempt to read 5,743,644 objects
on the network, where approximately 99.95% were success-
ful. During Simulation2, nodes attempt to read 5 827 433 ob-
jects on the network, where approximately 99.96% were suc-
cessful. Fig. 8 shows the graph with the number of read errors
that occurred during Simalation 1 and Simulation2. Some of
these errors can happen due to the change in node objects that
occurs after the entry or exit of nodes in the network. This

Figure 8. Reads errors occurred during Simulation1 and Simulation2

problem can be mitigated if the same read request is made af-
ter a period of time. However, there may also be cases where
objects are permanently lost or are effectively unavailable, if
the 3 replicas that keep copies of a given object are absent
from the network and it is not possible to move those copies
to other nodes or create additional copies. The difference be-
tween the number of errors is almost none. This is due to
the fact that replication factor 3 was used, that is, in addition
to the original copy of the object, two additional replicas are
stored. Due to the use of this replication factor, there is more
storage used by the network to store the object, but on the
other hand, the probability of an object being permanently
lost or that there is a temporary loss is relatively less.

Simulations between systems without compression and
comparison of results
In this section we will present the results from the simulations
of a P2P storage system based on the Chord protocol and the
results of the simulations of the same system with the addition
of incentive and reputation mechanisms, this time without the
use of data compression. As in the previous section, both sys-
tems use the same simulation or, in other words, the nodes in
the system have exactly the same behavior, leaving and en-
tering the network at the same time of the simulation. In this
section, the system using the reputation incentive mechanism
is called System3, while the system without using this mecha-
nism is called System4. In turn, the simulation with System3
is called Simulation3 while the simulation with System4 is
called Simulation4.

In the simulations presented in this section, 3000 nodes were
used. During the execution of the simulations in this section,
the time between the entrances of the nodes in the network
was reduced, the Weibull distribution was used as explained
above, but with smaller input intervals, this time 50 times
smaller, in order to distinguish the input phase nodes to the
phase where the nodes are already in the network. Due to the
shortened entry time, we can observe a large initial entry rate
up to the peak of the number of nodes. After this moment dur-
ing the simulation, the number of active nodes in the network
will tend to a number around 2000 active nodes, which would



Figure 9. Number of active nodes in Simulation3 and Simulation4

be the same number that would be tended if this shortening
was not used.

As in the simulations in the previous section, during both sim-
ulations all nodes perform an operation every 10 seconds.
This operation can be either a write or a read of any ob-
ject, with both having the same probability of occurring. The
idea of these simulations is to saturate the network with ob-
jects and thus quickly fill the network, therefrom no object
removes are made by the nodes.

During Simulation3, nodes attempted to read 4,711,189 ob-
jects in the network, where approximately 99.91% were suc-
cessful. In Simulation4 there were 4,091,759 attempts to read
objects where 99.87% were successful. In Fig. 10 we have
the number of read errors per hour that occurred in Simula-
tion3 and, in Simulation4, it is represented graphically. In
this simulation, a replication factor 2 was used, that is, in ad-
dition to the original stored object, an extra copy of the ob-
ject was stored. We can see that there was a higher rate of
reading errors in the simulations in this section (Simulation3
and Simulation4) compared to the simulations in the previ-
ous section (Simulation1 and Simulation2). But despite this
slight increase in the number of errors, less space is consumed
to store objects and their replicas, which frees up extra stor-
age on the network so that it can be used by network nodes to
store more objects.

During Simulation3, nodes attempted to write 5 120 896 ob-
jects in the network, where approximately 69.69% were suc-
cessful. In Simulation4, nodes attempt to write 5 438 844
objects in the network, where 63.34% were successful. In
Fig 11 are represented graphically the writing errors that oc-
curred during the execution of simulation3 and Simulation4.
We can observe a lower error rate and a smaller number of
errors in Simulation3. This is due to the fact the nodes with
less reputation have less storage available which leads to a
smaller total number of written objects.

In Fig. 12 we have represented graphically each of the levels
of the reputation and incentives in the Table 1 and the number
of nodes that are at each level throughout the Simulation3.

Figure 10. Reads errors occurred during in Simulation3 and Simula-
tion4

Figure 11. Write errors occurred during in Simulation3 and Simula-
tion4

Figure 12. Graph with the distribution of nodes by the levels of reputa-
tion/reward



Results discussion
Piatek et al.[7] concludes that incentives discourage the be-
havior of free-riding by the nodes of the P2P networks. With
the results obtained in this chapter we can prove that the use
of the proposed mechanism helps to reduce the effects caused
by the churn. Which leads us to believe that the use of this
mechanism leads the nodes to reduce their churn. Since in all
simulations performed with the same data from real studies
that observed the behavior of users of file systems were used,
it wasn’t possible to evaluate the behavior of users. But a real
implementation of these mechanisms would benefit network
users.

The use of the data compression mechanism is beneficial for
the system since with data compression it’s possible to reduce
the size of the data on the network and so offer more incen-
tives to users which could further motivate them to reduce the
churn.

CONCLUSION
P2P networks are seriously affected by the churn and DSS
P2P networks are no exception. In these systems, due to the
churn, the permanent or temporary exit of nodes leads to data
loss or temporary data unavailability.

In P2P networks there is a behavior called free-riding, which
is when users consume system resources without contributing
to it. We saw that we can mitigate this behavior by offering
incentives to those who have better behavior. For this, users
try to behave better and then reduce their churn and mitigate
free-riding.

In this work, a protocol was designed to mitigate churn and its
effects. This protocol aims to offer incentives to mitigate the
churn. For this, the nodes belonging to the network are evalu-
ated according to their connection to the network or, in other
words, how long they spend connected to the network. In
this way it’s possible to know which nodes have the best be-
havior. Next, better rewards are offered depending on node’s
reputation. For a better operation of the proposed protocol it
is recommended to use a data compression mechanism sys-
tem in order to take advantage of the available storage on the
network more efficiently.

The protocol was evaluated through simulations. To perform
the simulations a P2P simulator was used. In order to evaluate
the protocol, it was implemented in an DSS that followed the
structure of the Chord[9], so, the entire internal organization
of the nodes, dissemination of messages, entry of nodes in
the network, distribution of data by network is in accordance
with the Chord.

Future work
As a future work, the protocol can be improved in order to as-
sess, depending on the behavior of users, to be able to vary the
reputation/benefit table in order to adjust the rewards with the
general behavior of the network, so that it will be possible to
offer a good quality of service to users and offer even better
rewards to further motivate users to improve their behavior.
Another interesting feature that can be developed for the pro-
tocol is to allow that through the reputation of the nodes, the

protocol can estimate how many replicas of an object must
be created according to the reputation of the nodes that store
copies of the object, so that object isn’t lost permanently or
is unavailable for a period of time due to the nodes that store
replicas of a given object have left the network (permanently
or temporarily). In this way it is possible to free up even more
storage for the network and then increase the rewards offered
to users, while continuing to offer a good quality of service.

In addition, a future version of the protocol should allow the
protocol to support Byzantine failures of the nodes belonging
to the network, no longer supporting, exclusively, crash type
failures.

REFERENCES
1. Agrawal, N., Bolosky, W. J., Douceur, J. R., and Lorch,

J. R. A five-year study of file-system metadata. ACM
Transactions on Storage (TOS) 3, 3 (2007).

2. Anderson, D. P., and Fedak, G. The computational and
storage potential of volunteer computing. In Sixth IEEE
International Symposium on Cluster Computing and the
Grid (CCGRID’06), vol. 1, IEEE (2006), 73–80.

3. Belaramani, N. M., Dahlin, M., Gao, L., Nayate, A.,
Venkataramani, A., Yalagandula, P., and Zheng, J.
PRACTI Replication. In NSDI, vol. 6 (2006), 5–5.

4. Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and
Stoica, I. Wide-area cooperative storage with CFS. In
ACM SIGOPS Operating Systems Review, vol. 35, ACM
(2001), 202–215.

5. Gantz, J., and Reinsel, D. The digital universe in 2020:
Big data, bigger digital shadows, and biggest growth in
the far east. IDC iView: IDC Analyze the future 2007,
2012 (2012), 1–16.

6. Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H.
The Eigentrust algorithm for reputation management in
P2P networks. In Proceedings of the 12th international
conference on World Wide Web, ACM (2003), 640–651.

7. Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A.,
and Venkataramani, A. Do incentives build robustness in
BitTorrent. In Proc. of NSDI, vol. 7 (2007).

8. Schollmeier, R. A definition of Peer-to-Peer networking
for the classification of Peer-to-Peer architectures and
applications. In Proceedings First International
Conference on Peer-to-Peer Computing, IEEE (2001),
101–102.

9. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and
Balakrishnan, H. Chord: A scalable Peer-to-Peer lookup
service for internet applications. ACM SIGCOMM
Computer Communication Review 31, 4 (2001),
149–160.

10. Strauss, J., Paluska, J. M., Lesniewski-Laas, C., Ford,
B., Morris, R. T., and Kaashoek, M. F. EYO:
Device-Transparent Personal Storage. In USENIX
Annual Technical Conference (2011).



11. Stribling, J., Sovran, Y., Zhang, I., Pretzer, X., Li, J.,
Kaashoek, M. F., and Morris, R. T. Flexible, Wide-Area
Storage for Distributed Systems with WheelFS. In
NSDI, vol. 9 (2009), 43–58.

12. Stutzbach, D., and Rejaie, R. Understanding churn in
Peer-to-Peer networks. In Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, ACM
(2006), 189–202.


	Introduction
	Document Structure

	Related Work
	System
	Incentive and reputation mechanism

	Evaluation
	Simulations description
	System simulation
	Simulations between systems and results comparison
	Simulations between systems without compression and comparison of results
	Results discussion

	Conclusion
	Future work

	REFERENCES 

