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ABSTRACT
Stale Synchronous Parallel (SSP) is a synchronization model pro-
posed to speed up iterative convergent Machine Learning algo-
rithms in distributed settings. In this model, synchronization among
workers is reduced by allowing workers to see different intermedi-
ate solutions that can be a bounded number of iterations out of date
(bounded staleness). With the advent of Remote Direct Memory
Access (RDMA), one-sided communication has become a popular
alternative to two-sided communication in asynchronous environ-
ments. Although SSP is inherently asynchronous, to the best of our
knowledge no SSP solutions are using one-sided communication.

The goal of this thesis is to create a solution to SSP that takes
advantage of RDMA’s support for one-sided communication and
to provide it to application programmers through a new weakly
consistent collective abstraction developed using the GASPI API.
To this end, we designed and implemented two different solutions
ranging from directly adapting an existing synchronous allreduce
algorithm to support SSP, to using the ideas behind a Parameter
Server architecture, and running the Parameter Server shards di-
rectly on the nodes performing the collective.

Our solutions were evaluated on the MareNostrum4 supercom-
puter, using up to 64 nodes, and evaluated under two implemen-
tations of the Matrix Factorization algorithm, one being our own,
and the other a real-world implementation. Using our proposed
collective we were able to reduce the collective execution time by
up to 2.5x when compared to MPI’s allreduce, while having minimal
impact on the convergence rate of the algorithms tested.
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1 INTRODUCTION
Machine Learning (ML) is rapidly becoming one of the most im-
portant building blocks of new applications and services. With ML,
we are able to extract useful information from large-scale data,
across a variety of domains. Examples of ML techniques of growing
importance include: recommender systems; image, video and text
classification; topic modeling; etc.

From the collection of ML algorithms, we will focus on algorith-
mic approaches that can be classified as iterative and convergent
(e.g., matrix factorization and topic modeling). These algorithms
start with an initial guess of the solution and improve on this guess
over several iterations. This process is repeated until sufficient con-
vergence has been reached, or after a given number of iterations
has been completed. These algorithms were often envisioned to run
sequentially on a single machine. However, for these algorithms to
have good results, they require the analysis of large amounts of data,

which in turn requires a lot of computational power. Therefore, the
algorithms need to be brought to a distributed setting.

Distributed implementations normally shard the input data (e.g.,
user-movie ratings or news documents) across the available work-
ers, and follow the BSP model [4]. According to this model, all
the workers share the same intermediate solution, and, in each
iteration, each worker is in charge of computing adjustments to
the current solution using its assigned input data and the current
intermediate solution. At the end of each iteration, workers apply
their adjustments to the shared solution and wait for each other,
ensuring that in the next iteration all workers see the same, now
improved, intermediate solution.

However, this solution has the shortcoming of leading to pos-
sibly long wait times, where fast workers are sitting idle waiting
for the current iteration to end due to slow workers. To address
this problem, a recently proposed model called SSP [4] focuses
on using a weak consistency model called bounded staleness for
the shared algorithm state. In this model, workers are allowed to
see a stale intermediate solutions that can be a bounded number
iterations out-of-date. Because of this extra flexibility, instead of
synchronizing at the end of each iteration like BSP, SSP allows the
fastest worker to be a bounded amount of iterations ahead of the
slowest worker. By tuning this bound value, SSP, is able to reduce
the synchronization delays (less waiting for slow workers) and
communication costs (less communication), which, in turn, despite
requiring more iterations to achieve convergence, speeds up the
overall convergence speed of the algorithm.

Very often, distributed ML systems are deployed on high perfor-
mance computing (HPC) clusters, which normally support several
state of the art network technologies, most notably RDMA. In an
RDMA network, we can create the idea of a PGAS, where we can
read, write and allocate memory regions across multiple computers
as if we were doing so in a local memory device. Furthermore, in
an RDMA setting, we can perform fast one sided communication,
meaning that the requesting node can read/write to the destination
node by reading/writing directly from/to memory without the in-
tervention of destination node. By doing so, the destination node
does not need to use CPU cycles to answer the request and there
is no need to insert synchronization points between processes on
different machines in order to achieve inter-node communication.
To abstract the low level API offered by RDMA, several libraries
have been developed. Among them we find the GPI-21 library, an
implementation of the standard GASPI (Global Address Space Pro-
gramming Interface) [14] API.

Several implementations of the SSP model have been proposed
[4, 7]. In these approaches, communication is performed using the
two-sided communication paradigm. With the advent of Remote

1Found in their website http://www.gpi-site.com/



Direct Memory Access (RDMA), one-sided communication has
become a popular alternative to two-sided communication in asyn-
chronous environments. Although SSP is inherently asynchronous,
to the best of our knowledge no SSP solutions are using one-sided
communication.

Still in the world of HPC, the available programming models
commonly offer a set of abstractions called collectives. Through
collectives we can efficiently perform communication among a
group of nodes to exchange information. These could be used, for
example, between workers to exchange updates to the global solu-
tion by using the allreduce collective. In an allreduce, the data from
each worker is combined, for example, by adding all the updates
together, and then the final result is obtained in each of the partic-
ipating nodes. The allreduce collective requires the participation
of all nodes involved. In case some of the nodes are slow and take
longer to contribute, the collective can take too long to finish. In
these situations, if the application tolerates some sort of staleness,
nodes could be allowed to finish the collective before all nodes have
contributed, by using staler versions of missing contributions. SSP
is a model that defines limits to this relaxed behavior. However, to
the best of our knowledge, there are no allreduce collectives based
on SSP.

Observing these two research opportunities, we created a solu-
tion based on SSP through a new weakly consistent collective built
upon the GASPI API to take advantage of RDMA technology. In this
setting, we define a weakly consistent collective as a collective that,
even though it involves data from all nodes, may compute based on
slightly stale versions of that data. Therefore, our proposed primi-
tive has the potential to require a much shorter synchronization
time, and even, in many cases, no synchronization at all.

The main contributions of this thesis are as follows: (1) we de-
velop a simple to use collective that is able to abstract the syn-
chronization model of SSP; (2) we propose two alternative designs
for this collective, both of which take advantage of asynchronous
execution of SSP by using one-sided communication; (3) we imple-
ment these two variants of the new collective, and evaluate their
effectiveness by applying them to several iterative and convergent
computations, including a real-world use case in the area of drug
discovery. Using our proposed collective we were able to reduce
the collective execution time by up to 2.5x when compared to MPI’s
allreduce, while having minimal impact on the convergence rate of
the algorithms that were tested. Section 4

The rest of the document is organized as follows: Section 2 pro-
vides an overview of existing work related to the use of staleness in
ML as well as the use of RDMA in common approaches to commu-
nicate worker updates. In Section 3 we explore the two alternative
designs for this collective, and present its API. Section 4 presents
the evaluation methodology, details the applications used, and an-
alyzes a set of experimental results. Finally, Section 5 provides a
brief conclusion overviewing the contributions of this work and
highlights possible directions for future work.

2 RELATEDWORK
The use of staleness in ML is a widely used practice [3–5, 7–11].
In these systems, several synchronization models were proposed
to reduce the convergence time of iterative convergent algorithms.

One synchronization model is the aforementioned SSP [4], where
workers are allowed to be a bounded number of iterations apart.
Other models [5, 9–11], discard the need for synchronization en-
tirely and instead allow workers to work independently from each
other. The lack of synchronization between workers is appealing
and has been proven to converge under certain scenarios [10];
however, more synchronous models such as SSP have been shown
to converge faster than fully asynchronous systems due to more
accurate worker updates [4, 7].

In order to communicate updates, these systems usually resort
to using an architecture referred to as Parameter Server (PS) [3–
5, 7–9]. In this architecture, one or more specialized nodes hold
the current state of the model and are in charge of receiving and
applying worker updates to the current state of the model, as well
as sharing the current model with the workers.

Other approaches use the widely studied, allreduce collective
[12, 13] to perform the exchange of updates directly between the
workers. In this approach, the current state of the model is not
stored in a central location. Because of this, instead of communi-
cating the new contribution, workers communicate the history of
all contributions they computed as a single contribution (corre-
sponding to the reduction of all contributions in the history). By
reducing the history of contributions from all workers, we obtain
the updated model.

From these two approaches to communicate updates, we have
only seen SSP used in conjunction with the PS architecture. All
implementations of allreduce seem to follow the synchronous ap-
proach of waiting for a new contribution from each worker before
returning, as opposed to using stale data when a wait was required.

Regarding the use of RDMA, to the best of our knowledge,
there are no PS implementations following the SSP synchroniza-
tion model and using one-sided communication. Instead, these
approaches use the more common two-sided communication. Con-
sidering allreduce collectives, traditional implementations also use
two-sided communication; however, more recent work proposes
algorithms that are able to take advantage of one-sided communi-
cation to speed up collective operations. One of these papers [2]
proposes a novel approach to collectives by extending GASPI’s
notification system enabling all processes participating in a shared
window (shared memory) to observe the entire notified communi-
cation at the window. With this extension, the authors implement
the Allreduce and Allgather(V) collectives and achieve 2x-4x per-
formance improvements compared to the best performing MPI
implementations for various data distributions. Another approach
can be seen in [6] where they propose an algorithm that takes
advantage of GASPI’s split-phase collectives using n-way dissemi-
nation. They are referred to as split-phase because from every call
to the collective you can specify that you only want it to progress
to the next step (or phase) of the algorithm. This approach was able
to outperform the best MPI implementations while reducing the
number of communication rounds.

3 SSP_ALLREDUCE
In this section we will describe our weakly consistent collective,
which we named ssp_allreduce. To create ssp_allreduce, we explored



solutions that ranged from directly adapting an existing synchro-
nous allreduce algorithm to support SSP to creating a new collective
based on the ideas of the Parameter Server (PS) Architecture.

We propose two possible implementations of an allreduce col-
lective using SSP. Our goal in providing these two solutions is to
explore different points in the design space.
• Hypercube-SSP. The first solution is based on the Hyper-
cube allreduce algorithm. This solution is intended to be
aligned with existing synchronous allreduce collective de-
sign.
• Sharded-SSP. The second solution uses the ideas behind
the PS architecture in a collective by sharding the PS and
running PS shards on top of the workers. This is the approach
that is normally used with SSP [4, 7, 8].

In the next subsection, we will describe our proposed API. Fol-
lowing that, we describe the two main solutions in more detail.

Throughout the description of these solutions, we will use the
following definitions proposed by prior work [4, 7]:
Clock - progress of workers is measured in clocks, where in each
clock a certain amount of work is performed (e.g., one iteration).
Age of data - workers produce 1 contribution per clock. The age
of that data is defined to be the clock at which that contribution
was computed on. When reducing contributions together, the age
of the data becomes the smallest age of any of the contributions
involved.
Slack - allowed maximum age difference between contributions
used when performing a reduction.

3.1 ssp_allreduce API
When designing our API, our goal was to keep it similar to existing
synchronous allreduce APIs by only performing specific adjust-
ments to the SSP setting.

One of the adjustments consisted of adding a parameter allowing
the programmer to select the desired slack. Another adjustment
was the removal of several parameters that cannot change between
calls. These correspond to the number of elements in the reduction
vector, the size of each element, and the reduction operation to use.
Instead, these parameters are passed to an initialization function,
which takes care of setting up important data structures to support
SSP. The final adjustment was made to allow multiple collectives
to execute at once. This was done by adding another parameter to
the collective representing the ID associated with the reduction we
wish to target. This ID is passed to the initialization function and
corresponds to a GASPI segment ID that is created and used by that
reduction.

After initialization, the collective can be called iteratively with
the function:
ssp_allreduce( reduction_result, new_contribution,

reduce_segment_id, slack )

- reduction_result: vector that will receive the result of the re-
duction;

- new_contribution: vector containing a new contribution to be
added to the reduction;

- reduce_segment_id: segment id identifying the reduction to be
targeted;

- slack: desired slack;
Having described the API, we will now describe our solution in

more detail, beginning with Hypercube-SSP.

3.2 Hypercube-SSP
For our first solution, we propose Hypercube-SSP. To understand
the modification we made to the regular hypercube allreduce al-
gorithm, let us start by taking a closer look at each step of the
reduction process. The left hand side of Figure 1 details the commu-
nication pattern for the hypercube algorithm using 8 workers. The
grid on the left of the figure is composed of several squares, each
representing a worker. The y-axis of the grid corresponds to the
rank of the worker, and the x-axis to the step of the algorithm. At
each step, workers connected by an edge exchange contributions,
and reduce the received contribution with the contribution they
have sent, resulting in a partial reduction to be sent in the next step.
We refer to it as partial as it does not contain all contributions. After
doing this process for enough steps, the final reduction produces
the reduction result.

To adapt this algorithm to support SSP, workers will remember
the contributions received at each step, and provided that these
contributions are not too stale, use them instead of waiting for fresh
contributions.

In our designs, we are considering solutions based on one-sided
communication. This allows for workers to send data to another
worker, without requiring the receiving worker to call a receive
primitive. Instead, the worker wanting to send the data can write
directly to a remote segment of that worker, which we will call
Received data. Later, the receiving worker, will read from that
segment, and check for new data received, which can be done in
GASPI using notifications. In algorithm .1, we present the pseudo
code for this adaptation.

Algorithm .1: Hypercube-SSP
// Algorithm in a hypercube with 𝑘 dimensions
Input :new_contribution, slack
Output : reduction_result

begin
𝑐𝑙𝑜𝑐𝑘 ←− 𝑐𝑙𝑜𝑐𝑘 + 1
𝑚𝑖𝑛_𝑐𝑙𝑜𝑐𝑘_𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 = 𝑐𝑙𝑜𝑐𝑘 − 𝑠𝑙𝑎𝑐𝑘
𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ←− 𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

for 0 ≤ 𝑘 < 𝑑 do
𝑐𝑜𝑚𝑚_𝑤𝑜𝑟𝑘𝑒𝑟 ←− 𝑔𝑒𝑡_𝑐𝑜𝑚𝑚_𝑤𝑜𝑟𝑘𝑒𝑟 (𝑘)
// Send partial reduction

𝑠𝑒𝑛𝑑 (𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 𝑐𝑙𝑜𝑐𝑘, 𝑐𝑜𝑚𝑚_𝑤𝑜𝑟𝑘𝑒𝑟 )
𝑟𝑒𝑐𝑣_𝑑𝑎𝑡𝑎 ←− 𝑟𝑒𝑐𝑣_𝑑𝑎𝑡𝑎_𝑣𝑒𝑐 [𝑐𝑜𝑚𝑚_𝑤𝑜𝑟𝑘𝑒𝑟 ]
if 𝑟𝑒𝑐𝑣_𝑑𝑎𝑡𝑎.𝑐𝑙𝑜𝑐𝑘 < 𝑚𝑖𝑛_𝑐𝑙𝑜𝑐𝑘_𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 then

𝑤𝑎𝑖𝑡_𝑓 𝑜𝑟_𝑢𝑝𝑑𝑎𝑡𝑒 (𝑐𝑜𝑚𝑚_𝑤𝑜𝑟𝑘𝑒𝑟 )

𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ←−
𝑟𝑒𝑑𝑢𝑐𝑒 (𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑐𝑣_𝑑𝑎𝑡𝑎)

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 ←− 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛



To explain it in an accessible way, we next present an example
of its execution. The example can be found in the middle of figure
Figure 1. In the example, we are looking at worker 0, currently with
clock 3 in a scenario where slack is set to 1. Slack being 1 means
that the worker can use data from the current clock, in this case,
clock 3, but it can also use data from the previous clock, clock 2. In
the first step, the worker sees that it already received data from the
communicating process, and uses it to move on to the second step.
At the second step, the worker now finds received data that is stale
at clock 2, but still fresh enough to be used in order to move on to
the next step. Once it reaches the last step, it finds that the current
received data is too stale too be used. In this case, and only in this
case, the worker waits until receiving a new update for the current
step.

3.3 Sharded-SSP
The next solution is based on the Parameter Server Architecture.
Previous work has used the combination of SSP with a PS archi-
tecture, [4, 7]. However, because our implementations are based
around the use of collectives, we cannot have parameter servers
running on dedicated servers. Instead, the work of the PS will be
handled directly by the workers. More precisely, the Parameter
Server is sharded into as many shards as there are workers, and
each of those shards is assigned to a worker. For this solution, we
use a different reduction paradigm than in our previous solution.
Following the approach used in Parameter Servers, we now expect
to receive contributions that can be directly reduced with a current
reduction state. We will refer to this solution as Sharded-SSP, and
also simply as Sharded.

To start off this section, let us take a look at how we handle
communication. In this solution, workers exchange information by
communicating through the PS shards in the following way: work-
ers communicate a new contribution by sharding the contribution
into contribution shards, and sending them to the corresponding
PS shard; The PS shards, upon receiving parameter updates, apply
them to the current reduction state. Then, whenever a shard has
received one update from each worker, it sends the new reduction
state for that shard, to all workers.

To support this communication scheme, we require some utility
memory segments. Both workers and PS shards require 2 memory
segments each: one from which they push information, and another
segment always ready to receive information. Worker memory
segments:
• Missed contributions: contains worker contributions not
yet sent to the PS shards. This segment is split into shards
according to the sharding of the reduction vector.
• Local Reduction: contains reduction updates received from
the PS shards. Similarly to the above segment, this segment
is split into shards according to the sharding of the reduction
vector.

Parameter server shard memory segments:
• Reduction state: contains the most up-to-date reduction
for the assigned shard of the reduction vector.
• Worker contributions: contains the last contribution shard
received from each worker. This segment has dedicated mem-
ory to receive contribution shards from each worker.

In the SSP solutions wemention, workers replace their last contri-
bution directly from the memory of the receiving PS shard. Because
of this, it is possible for a worker to replace the last contribution
when the receiving PS shard has not yet used it. If a contribution
is replaced with a new one before being reduced with the current
reduction state, we will effectively lose the previous contribution.
While, for most iterative convergent applications, missing contri-
butions is acceptable, we note that our goal with this collective is
to broaden its applicability, and because of that we want to support
algorithms that cannot afford losing contributions.

In order to address the problem ofmissing contributions, wewere
inspired by an idea presented in DOGWILD [11], where workers
only communicate with a master (which essentially takes the role
of a Parameter server) upon receiving reduction updates from the
master. Based on this idea, we decided to create a cyclic dependency
between workers and PS Shards, which prevents the loss of updates
from workers at the PS shards. In this scheme, workers only send
contributions to the PS Shards when they receive reduction updates,
and Parameter Server Shards only send reduction updates to a given
worker after it has used the latest contribution from that worker.
This cycle is illustrated in Figure 2 using arrows.

Because workers are not always sending their latest computed
contribution, we need to store them in someway so that they can be
sent later, when the PS shards are ready to receive them. We do this
as follows: at the start of the call to ssp_allreduce, the worker
begins by reducing the new contribution with any previously not
sent contributions. The result of this reduction corresponds to a new
contribution that has the information of both the new contribution
and the contributions not yet sent to the PS shards. We will refer to
this new contribution as missed contributions. With this idea, when
the worker wants to push a new contribution to the PS shards, it
will send the missed contributions.

The final issue we had to tackle was how to synchronize the con-
tributions received by the PS shards. We have achieved this through
our push policy, i.e., the conditions required to push updates, and
an extra memory buffer. First, we will explain the push policy. Here
is how the mechanism works: when a worker has contributions to
push, it only pushes the contribution after knowing that all shards
are ready to receive the new contributions; On the PS shard side,
the shard only sends updates after processing a new contribution
from each worker. From the combination of these two conditions,
we ensure that the reduction update sent by each shard to a given
worker results from the same set of contributions. However, this
does not mean that all reduction updates reach the worker at the
same time, so it would still be possible for a worker to see some
shards with a previous update and others having new reduction
updates. To address this issue, we have an extra memory segment,
which we will call stable_local_reduction. This segment is up-
dated by the worker once it receives an update from all PS shards,
and the worker will only use that memory segment to perform local
reductions.

To finish the design we will describe how we integrated the PS
shard execution with the execution of the worker, inside the exe-
cution of the collective. A possible approach would be to run the
parameter server as a separate thread inside the worker, and thus
mimic as if the parameter server shard was running on a dedicated



Figure 1: On the left hand side of the figure we see the communication pattern in hypercube using 8 processes. And at the
right hand side we have an example of Hypercube SSP.

Figure 2: Communication pattern on Sharded SSP in a setup with 2 Workers. Given this configuration, the reduction vector
is split in two shards, shard 0 and shard 1, each assigned to a PS shard. In the figure, we focus on shard 0. On the left of the
figure, we see Workers pushing their missed contributions regarding shard 0 to their assigned memory on PS shard 0. On the
right-hand side of the figure, we see the PS shard 0 pushing an updated reduction state, for the shard it is handling, to all
workers.

server. However, in order to be able to have a more fair compari-
son between our approach and existing allreduce algorithms, we
decided to avoid threads in the presented solution, and benefit
from threads in a variation of this solution which we describe in
subsection 3.4.

To avoid using threads in this design, we decided to interleave
the operations of the worker with the operations of the Parameter
Server as follows:

(1) Worker push contribution – Worker starts by reducing the
new contribution with any previously missed contributions,
updating the missed contributions. After this, the worker
checks for received updates from all PS shards. If the pro-
cess received one update from each PS shard, it pushes the
unseen contributions to the PS shards. Otherwise, the push
is skipped.

(2) PS shard reduce – PS shard (associated with the worker)
reduces received contribution shards with the current reduc-
tion state of the shard. Then, it waits for more updates if

continuing means we enter a deadlock. After that, it checks
if the current reduction state received one update from each
worker, since the last push. If it did, it pushes the current
state of the reduction to all workers. Otherwise, the push is
skipped.

(3) Worker update local reduction – Worker checks for received
reduction updates from PS shards. If an update was received
from each PS shard, replace the current stable local reduction,
stable_local_reduction, with the updated reductions received.
If the current stable_local_reduction is staler than slack, wait
for reduction updates before continuing. Finally, reduce the
stable_local_reduction with any unsent contributions, and
return the result to the user.

Having mentioned the particulars of the design, in algorithm .2,
we describe the pseudo code for the algorithm.



Algorithm .2: Sharded-Sync-SSP
Input :new_contribution, slack
Output : reduction_result

begin
𝑐𝑙𝑜𝑐𝑘 ←− 𝑐𝑙𝑜𝑐𝑘 + 1
𝑚𝑖𝑛_𝑐𝑙𝑜𝑐𝑘_𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 = 𝑐𝑙𝑜𝑐𝑘 − 𝑠𝑙𝑎𝑐𝑘
// 1 - Worker Push contribution
𝑚𝑖𝑠𝑠𝑒𝑑_𝑐𝑜𝑛𝑡𝑟 ←−
𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑚𝑖𝑠𝑠𝑒𝑑_𝑐𝑜𝑛𝑡𝑟, 𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)
if 𝑐𝑎𝑛_𝑝𝑢𝑠ℎ_𝑡𝑜_𝑠ℎ𝑎𝑟𝑑𝑠 then

𝑝𝑢𝑠ℎ(𝑚𝑖𝑠𝑠𝑒𝑑_𝑐𝑜𝑛𝑡𝑟, 𝑐𝑙𝑜𝑐𝑘)

// 2 - PS shard reduce

𝑐ℎ𝑒𝑐𝑘_𝑤𝑜𝑟𝑘𝑒𝑟_𝑢𝑝𝑑𝑎𝑡𝑒𝑠 ()
if 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒.𝑐𝑙𝑜𝑐𝑘 < 𝑚𝑖𝑛_𝑐𝑙𝑜𝑐𝑘_𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 then

𝑤𝑎𝑖𝑡_𝑓 𝑜𝑟_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑤𝑜𝑟𝑘𝑒𝑟_𝑢𝑝𝑑𝑎𝑡𝑒𝑠 ()

if 𝑟𝑒𝑐𝑣_𝑢𝑝𝑑𝑎𝑡𝑒𝑠_𝑓 𝑟𝑜𝑚_𝑎𝑙𝑙_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 then
𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒 ←− 𝑎𝑝𝑝𝑙𝑦_𝑤𝑜𝑟𝑘𝑒𝑟_𝑢𝑝𝑑𝑎𝑡𝑒𝑠 ()
𝑝𝑢𝑠ℎ_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑡𝑜_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 (𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒)

// 3 - Worker update local reduction state

𝑐ℎ𝑒𝑐𝑘_𝑝𝑠_𝑠ℎ𝑎𝑟𝑑_𝑢𝑝𝑑𝑎𝑡𝑒𝑠 ()
if 𝑠𝑡𝑎𝑏𝑙𝑒_𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛.𝑐𝑙𝑜𝑐𝑘 < 𝑚𝑖𝑛_𝑐𝑙𝑜𝑐𝑘_𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑
then
𝑤𝑎𝑖𝑡_𝑓 𝑜𝑟_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑝𝑠_𝑠ℎ𝑎𝑟𝑑_𝑢𝑝𝑑𝑎𝑡𝑒𝑠 ()

if 𝑟𝑒𝑐𝑣_𝑢𝑝𝑑𝑎𝑡𝑒𝑠_𝑓 𝑟𝑜𝑚_𝑎𝑙𝑙_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 then
𝑠𝑡𝑎𝑏𝑙𝑒_𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ←−
𝑐𝑜𝑝𝑦_𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛()

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 ←−
𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑠𝑡𝑎𝑏𝑙𝑒_𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑚𝑖𝑠𝑠𝑒𝑑_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠)

3.4 Sharded-SSP Variants
In this section we propose two variants to the base algorithm. In
the first variant workers are allowed to use local reductions where
different shards can hold different contributions between them.
In other words, local reduction shards are no longer required to
be synchronized so that they always have the same contributions.
Note that, in order to respect SSP guarantees we still enforce that
each local shard is not too stale. Given this relaxation of the syn-
chronization requirements, we propose the following algorithm,
which we call Sharded-Async.

This new algorithm takes advantage of three benefits allowed by
the weaker set of synchronization assumptions. One of the benefits
is that it now allows the worker to use reduction updates directly
from the local reduction segment. In other words, it does not need
to use the previous stable_local_reduction segment, where all
shards have the same contributions.

The second benefit is the fact that we can increase the push
frequency at the worker, enabling contributions to reach PS shards
faster. Previously, the worker had to wait to receive a reduction
update from all PS shards before being able to push. To avoid this
unnecessary wait, PS shards can communicate with each worker

directly, in order to inform the workers that they have processed
the last contribution that was sent, and are ready to receive a new
one.

The final benefit is the possibility to increase the push frequency
at the PS shard, allowing reduction updates to reach workers faster.
With this added flexibility, we decided to have the PS shard push
reduction updates whenever the age of the reduction state increased,
as this corresponds to the minimum change to the reduction state
required to prevent a worker from waiting for fresh data.

Another variant we implemented concerned the possibility of
using multiple threads per worker process. Multithreading is a
natural fit for this design because it enables the PS shard to execute
in parallel with the worker. This mimics the effects of having the
PS shard being executed on a dedicated server, which is co-located
on the same machine as the worker.

We will refer to these variants as "Threaded", and will append the
label "Thread" to the name of their base solutions, thus adding the
following two designs to our space of solutions: Sharded-Thread,
and Sharded-Async-Thread.

4 EXPERIMENTAL EVALUATION
In this chapter we evaluate both Hypercube-SSP and Sharded-SSP,
as well as its variants. During the evaluation we will focus on
different properties of the solutions, namely: execution time of the
collective; average age of contributions used in reductions; time
waiting for fresh contributions; and finally, the impact of slack on
all the previous properties.

To evaluate our collective, we will be using two Matrix Factor-
ization (MF) implementations. One of them is our own implementa-
tion of Matrix Factorization using Stochastic Gradient Descent. The
other implementation corresponds to the implementation made
by Vander Aa et al. [1], where they use Bayesian Probabilistic Ma-
trix Factorization (BPMF), in the context of an algorithm for drug
discovery.

The evaluation is split into three parts. In the first part, we make
a side by side comparison of the two solutions we developed. In
this part, we will be determining which of these solutions performs
best, both in terms of the collective execution speed, as well as the
ability to use (on average) fresher data. For these experiments we
will be running our implementations on a relatively small workload,
running 200 iterations on our own MF implementation (and not
until convergence, since that is not the main point of comparison
for this first part). Once we compare the two solutions, we fix
the best-performing implementation, and, in the second part, we
analyse how the use of slack affects the quality of the solution
reached by running the same experiments, but, this time, until
the solution converges. Finally in the third part, we use our best
collective implementation in the BPMF implementation, to obtain
preliminary results of the use of our collective in a real-world
application.

Next, we discuss the baselines to which we will compare our
collective. There will be two classes of baselines. One of them
corresponds to the performance of our collective when we consider
the BSP synchronization model, or in other words, use slack equal
to zero. In addition to this more direct comparison to the same
codebase with a particular parameterization, we also compare to



two other, existing allreduce implementations: Intel’s MPI Library
(impi/2018.4) and an implementation of the segmented pipeline ring
on top of GPI-2 (which we will refer to as Ring GPI-2), developed
by a member of the project in which this thesis takes place.

To conduct our experiments we used the Marenostrum4 cluster2.
Nodes are interconnected through Intel OmniPath HFI Silicon. This
network supports RDMA technology and allows for 100 Gbit/s of
bandwidth between each pair of nodes. Except otherwise stated,
we will be running experiments using 32 nodes, each with 48 cores,
and assign one gaspi process per node. Both our applications have
thread support and we assigned 1 thread for each available core.

4.1 Hypercube-SSP

Figure 3: Evaluation of the Hypercube-SSP solution

In Figure 3, on the left plot, we see the collective execution time
for the Hypercube-SSP solution. From the plot, we can see that
this solution performs significantly worse than both MPI and the
Ring GPI-2 implementation. In fact, even in the configuration for
the slack value with the lowest execution time, this solution is
still around 1.75x worse than our baseline synchronous collectives.
This was expected, considering that the Hypercube communication
pattern is best suited for small vectors, and in this evaluation, we
were using a vector of considerable size. On the other hand, we see
better performance on both Ring GPI-2 and MPI that use allreduce
algorithms suited for large vectors. Regardless of the absolute per-
formance, we see the collective benefiting from higher values of
slack by being able to reduce, and even completely eliminate, the
time waiting for fresh updates (as shown in the right plot).

As we mentioned, we did not expect this solution to have stellar
performance. Instead, we designed it as a first attempt at adapting
an existing step based allreduce algorithm to use SSP and determine
if SSP would reduce their execution time (which we confirmed).
For this reason, in the rest of the evaluation, we focus on the best
performing Sharded solution and its variants.

4.2 Sharded-SSP
On the left plot of Figure 4, we find the execution time for the
Sharded-SSP solution and its variants. From this plot, we can see
that all of our variants are able to reduce the collective execution
time below the execution time of both MPI and Ring GPI-2. If we
now take a look at the plot on the right, we see that, similarly to
the previous solution, as we increase the value of slack the time
2https://www.bsc.es/marenostrum/marenostrum

waiting for fresh updates decreases, and this is even completely
removed at max slack.

Let us now take a closer look at the performance of each variant.
First, we will analyse the collectives that do not rely on running the
PS as a separate thread – Sharded and Sharded_Async. Beginning
with slack equal to 0 we see that both variations starts off requiring
more time than both of our baselines. however after a certain slack,
they are both able to surpass our baselines. In the figure we see this
happening at slack 8 for Sharded, and slack 255 for Sharded_Async.

Next, we analyze the variants of the previous solutions where
the PS shard is executed as a thread – Sharded_Thread and
Sharded_Async_Thread. These variants produced interesting re-
sults: not only did they achieve execution times that are much lower
than the previous variants (for all values of slack), but they were
also able to achieve lower execution times than MPI and Ring GPI-2
in a synchronous environment – corresponding to the case where
slack is zero.

At their lowest execution time, Sharded_Thread and
Sharded_Async_Thread are, respectively, 57.9% and 59.3%
faster than MPI’s allreduce, and 55,5% and 56.9% faster than Ring
GPI-2. We attribute these improvements to two main factors: first,
and contrary to most synchronous collectives, the Sharded solution
does not enforce a specific order of reduction for contributions,
and, instead, contributions are applied in the order they arrive;
second, because the PS shard is always running in the background,
newly received contributions can be applied to the reduction state
even before the associated worker has called the collective.

From this experiment, we have seen that the "Threaded" variants
are our fastest implementations. Knowing this, we now attempt
to get a better understanding of the age of the data used by each
of these two variants. To this end, we will analyze how the age of
local reductions at workers evolves during this execution.

4.3 Age of data used
In this subsection, we introduce the term age difference to quantify
the staleness of reductions used by a worker. As an example, if a
worker is at clock 3 and uses a local reduction with clock 2, we say
that the reduction used has age difference of 3 − 2 = 1.

Figure 5 depicts how the average age difference evolves with the
number of iterations for the "Threaded" variants. Note that the plot
regarding Sharded_Async_Thread describes the age difference per
shard. Considering the fact that we have 32 workers, this implies
that we have 32 shards, and so for each iteration we get 32 different
age differences. Sincewe have 200 iterationswe have 200×32 ≈ 6400
entries in the plot.

By construction, Sharded_Async_Thread can push reduction
updates faster than Sharded_Thread. That means that, at the time
the collective is called, workers can use reduction updates that are
fresher when compared to Sharded_Thread. We can see this is the
case by comparing the slopes of both solutions for the same slack
value. In general, the lines for Sharded_Thread has a steeper slope
than Sharded_Async_Thread, meaning that Sharded_Thread
reaches a given age difference faster than Sharded_Async_Thread.
Considering a slack value of 8, Sharded_Thread reaches max slack
at around the 35th iteration, whereas for Sharded_Async_Thread
this is reached at around the 3, 000𝑡ℎ ⟨shard,iteration⟩ or 3000/32 ≈



Figure 4: Evaluation of the Sharded-SSP solution and its variations using 48 cores per process.

Figure 5: Age difference of contributions used in ”Threaded” variation of Sharded-SSP using 48 cores per worker.

93th iteration. Similarly, for a slack value of 255, we see that
Sharded_Async_Thread reaches an age difference of 20 at the
5500/32 ≈ 172th iteration, while Sharded_Thread reaches it at
the 125th iteration.

From these plots, we can also see an interesting point that we
have not emphasized yet. When using slack, we can reduce the time
waiting for fresh updates; however, if a given worker is constantly
slower than the others, other workers will iterate faster, and, even-
tually, will be slack clocks away from the slowest worker. After this
point, slack is not beneficial, because it cannot further reduce the
time waiting for updates. In other words, this means that we enter
an execution resembling an execution with slack 0. However, until
reaching that point the collective already benefited from being able
to do the previous iterations much faster.

This is actually what is happening in our experiment. If we look
at the time waiting for fresh updates in this experiment using slack
0, we can see that some outliers barely wait for data. This tells us
that there are workers that are so late to the collective, that all
other workers are waiting for it. We can clearly see this effect in
the executions using slack 2 and slack 8, where after some time, the
slack is reached and the delay stays at this value until the end of
the execution.

From this initial analysis, we concluded that the "Threaded"
variants are the fastest of the Sharded solutions and that both
"Threaded" variants reach similar execution times. However,
Sharded_Async_Thread can use fresher data. For this reason, we
take Sharded_Async_Thread to be our best solution, and in the
next section, we will focus on this variant and study its impact on
convergence.

4.4 Impact of slack on time to reach
convergence

From the previous experiments, we have seen that we were able to
progress through our iterations faster by using stale data. However,
because we are using stale data, we may require more iterations to
reach a certain error. In this section, we will evaluate the impact
of slack on the time required for our own MF to converge. For
these experiments, we say that the model converges when its error
reaches the error valuemeasured after 3, 000 iterations, using a slack
of 0. The results from our experiments can be found in Figure 6.

From our experiment, we can see that with slack 255, we are able
to reach the same error as slack 0 using approximately 75 fewer
seconds, which corresponds to being 10% faster. We can also see
the effect that we highlighted in subsection 4.3, namely that, at a
certain point, max slack is reached, and after that, the collective



Figure 6: Evaluation of the impact of slack on time to reach convergence using Sharded_Async_Thread.

behaves as if it was synchronous. However, at that point it already
benefited from being able to do the previous iterations much faster.
We can see this point for the execution using a slack of 255 on the
right plot. This point occurs at around 610 seconds, where, after
that point, we can see the rate of iterations becoming parallel to
the rate of iterations of slack 0, indicating that it progresses as fast
as a synchronous collective.

Another thing to point out is the fact that not only have we
reached a similar error in less time, but also the execution with
slack 255 only required 5 additional iterations when compared to
slack 0. This result may seem surprising because we are using very
stale contributions. However, the iteration effectiveness, or the
improvement of the error per iteration, does not seem to be partic-
ularly affected. We believe this is happening because, in between
iterations, the age difference between the worker and the contri-
butions that are used increases relatively smoothly and slowly. We
can see that this is the case by looking at how the age difference
evolves over time in the left plot of Figure 5 for the first 200 iter-
ations of this execution. As such, even though the age difference
of contributions is rather high, the age used in one iteration is not
too different from the previous one. This translates into the fact
that, in between iterations, workers do not observe their previous
reduction state change significantly due to the use of stale data.

4.5 BPMF
In this final sectionwewill evaluate BPMF using the Sharded_Thread
variant and using different values of slack. We choose this variant
because, BPMF does not support using a reduction result where
different shards are comprised of different contributions.

For this experiment, we tried to use the same slack values as
before. However, we quickly realized that the algorithm was not
converging when we tried slack values higher than 2. For this
reason our evaluation now only experiments with slack 0, 1 and 2.

In this solution, we required 2 reductions which we will call L,
R. In Figure 7, we can see the collective execution time for each of
the reductions.

From these results we can conclude that, in general, the collective
execution time decreases with slack, and that at max slack tested,
slack equal to 2, the collective reaches execution times lower than

Figure 7: Evaluation of Sharded_Thread on the BPMF appli-
cation.

both baselines. We can also see that, regardless of the slack value,
our solution is below the Ring GPI-2 baseline.

From this preliminary analysis, we believe that, there is potential
benefit from incorporating SSP with BPMF, but further analysis is
required.

5 CONCLUSIONS AND FUTUREWORK
This thesis proposed a new weakly consistent collective abstrac-
tion that follows the SSP synchronization model. To implement
this collective we explored two alternative designs, Hypercube-SSP
and Sharded-SSP, both of which take advantage of the asynchro-
nous execution of SSP by using one-sided communication. In the
Hypercube-SSP design, we directly adapted an existing synchro-
nous allreduce algorithm to support SSP. For the Sharded-SSP
design, we used the ideas behind the PS architecture in a collective
by sharding the PS and running PS shards directly on the nodes
calling the collective. Besides designing these two variants, we were
involved in the design of an adaptation to the BPMF algorithm to
support the use of an allreduce collective, allowing us to test our
collective in this algorithm. We implemented these variants of the
new collective using the GASPI API, and ran experiments on the
MareNostrum4 supercomputer, and evaluated under two imple-
mentations of the Matrix Factorization algorithm, one being our
own, and the other a real-world implementation. In these experi-
ments we focused on different properties of the solutions, namely:
execution time of the collective; average age of contributions used



in reductions; time waiting for fresh contributions; and finally, the
impact of slack on all the previous properties. Using our proposed
collective we were able to reduce the execution time by up to 2.5x
when compared to MPI’s allreduce, while having minimal impact
on the convergence rate of the algorithms tested.

Despite the interesting and promising results, there are many
ideas for future work. For instance, we are interested in knowing
the performance of our proposed collectives in other real world
applications such as in Deep Learning. A second idea is to further
optimize our implementation of the Sharded solution. From our
experiments, we saw that the "Threaded" variants of Sharded were
able to outperform MPI’s allreduce, even in a setting using slack 0.
However, our implementation had some unnecessary computation
to support SSP that could be removed, allowing the collective to
reach even lower execution times. Another possible improvement is
to take advantage of threads during the processing of shards at the
worker. This happens both at the start of the call to the collective,
when computing the updated state for missed contributions, and
also when the worker is computing the final reduction result. All
of these computations happen on a single shard at a time, and they
can all be done in parallel.

Another route would be to adapt other existing synchronous
allreduce collectives such as the segmented-ring to work in the SSP
model. Our solution uses an all-to-all communication and, as we
increase the number of nodes, the strain in the network increases.
The segmented-ring however was proved to be bandwidth optimal.
For a very large number of nodes, this adaptation could perform
better than the best solution we presented.

Another possible future work avenue is applying the SSP syn-
chronization model to collectives other than the allreduce. Some
interesting collectives worth considering are: reduce, broadcast and
allgather.
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