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Abstract

In the first part of this thesis, we present a brief introduction to quantum information geometry. We start
with a discussion of classical information geometry and derive the Fisher-Rao metric. We then proceed to
generalize the theory to the quantum setting and derive the Fubini-Study metric. We show how normalized
quantum states gain a deeper geometrical meaning through their gauge ambiguity and how this property
leads to a phase known as the Berry phase, induced by the Berry connection. Finally, we generalize these
results to the mixed state case, deriving the mixed state metric – the Bures metric. In the second part of this
thesis, we provide a natural generalization of a Riemannian structure, i.e., a metric, recently introduced by
Sjöqvist for the space of non degenerate density matrices, to the degenerate case, i.e., in which the eigenspaces
have dimension greater or equal to one. We present a physical interpretation of the metric in terms of an
interferometric measurement. We study this metric, physically interpreted as an interferometric susceptibility,
to the study of topological phase transitions at finite temperatures for band insulators. We compare the
behaviors of this susceptibility and the one coming from the well-known Bures metric, showing them to be
dramatically different. While both infer zero temperature phase transitions, only the former predicts finite
temperature phase transitions as well. The difference in behaviors can be traced back to a symmetry breaking
mechanism, akin to Landau-Ginzburg theory, by which the Uhlmann gauge group is broken down to a subgroup
determined by the type of system’s density matrix (i.e., the ranks of its spectral projectors).

Keywords: information geometry; geometric phases; phase transitions; susceptibility; interferometric
metric.

1. Introduction

Geometry and physics go hand in hand and quantum
mechanics is no exception. In the beginning of the
20th century, information geometry was originally mo-
tivated by providing a structure to statistical models
in order to use geometrical tools and arguments to
study and geometrize mathematical statistics. Harold
Hotelling [1] was the first to relate the Fisher Infor-
mation Matrix to a Riemannian metric tensor g and
interpreted the parameter space of the probability dis-
tribution as a Riemannian manifold (M, g). Nowa-
days, the induced Riemannian metric in the space
of parametrized probability distributions is called the
Fisher-Rao metric. Now, quantum mechanics is an in-
trinsically probabilistic theory, hence one can ask if the
same treatment can be applied for the case of quantum
states. This has been in fact demonstrated: quantum
states may be described by genuine probability distri-
butions [2]. The methods used in classical statistical
theory can then be translated into the quantum lan-
guage when dealing with quantum states. This geomet-
rical picture of quantum mechanics is called quantum
information geometry.

Recent advances in the area have provided new
methods for studying quantum matter and describing

macroscopic critical phenomena based on quantum ef-
fects. Topological phases of matter are described in
terms of global topological invariants that are robust
against continuous perturbations of the system. An
example of these invariants is the Thouless-Kohmoto-
Nightingale-den Nihjs (TKNN) invariant, mathemati-
cally a Chern number associated to the vector bundle
of occupied Bloch states over the Brillouin zone. This
invariant captures topological phases of matter that
could not be understood previously, such as the case of
the anomalous Hall insulator [3], which falls into the
class of Chern insulators. The classification of topolog-
ical phases of gapped free fermions is encoded in the
so-called periodic table of topological insulators and
superconductors [4]. However, by now we know that
these phases of matter were just the tip of the iceberg,
see [5–8]. The theory underlying topological phases
constitutes a change of paradigm with respect to the
Landau theory of phase transitions [9]. The latter is
described by means of a local order parameter, within
the framework of the symmetry-breaking mechanism.

One can study phases of matter and the associ-
ated phase transitions (in particular topological ones)
through a Riemannian metric on the space of quantum
states. One such commonly used structure is based
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on the notion of fidelity, which is an information the-
oretical quantity that measures the distinguishability
between quantum states. It has been widely used in
the study of phase transitions [10–20], since its non-
analytic behaviour signals phase transitions.

Note that the mentioned topological invariants, be-
ing functions of the Hamiltonian only and not the tem-
perature, characterize topological features at zero tem-
perature. Therefore, it is crucial to understand the
effect of temperature on topological phase transitions,
specially with regards to applications to quantum com-
puters, such as those involving Majorana modes in
topological superconductors [21]. To approach this
problem, the fidelity and the associated Bures met-
ric and, in addition, the Uhlmann connection, the
generalization of the Berry connection to the case of
mixed states, have been probed for systems that ex-
hibit zero temperature symmetry protected topological
phases [22–26].

Within the context of dynamical phase transitions,
occurring when one performs a quench on a system, the
information geometric methods based on state distin-
guishability were applied [27]. In particular, for finite
temperature studies, besides the standard notion of fi-
delity induced Loschmidt echo, a notion of interfer-
ometric Loschmidt echo based on the interferometric
phase introduced by Sjöqvist et al. in [28], was also
considered. With regards to the associated infinitesi-
mal counterparts, i.e., Riemannian metrics, their be-
haviour is significantly different.

For two-band Chern insulators the fidelity suscep-
tibility, one of the components of the Bures metric,
was considered in detail in Ref. [24]. In particular,
it was rigorously proven that the thermodynamic and
zero temperature limits do not commute — the Bures
metric is regular in the thermodynamic limit as one
approaches the zero temperature limit.

2. Introduction to quantum information geom-
etry

2.1. Classical information geometry

Let
√
p = (

√
p1,
√
p2, ...,

√
pn) and

√
q =

(
√
q1,
√
q2, ...,

√
qn) be two vectors representing two

probability distributions, such that ‖√p‖ = ‖√q‖ = 1,
where the norm is induced by the standard scalar prod-
uct in Rn, with n ∈ N. Fidelity is an information theo-
retical quantity that measures the degree of similarity
between probability distributions, given by the scalar
product between the two probability distribution vec-
tors, i.e.,

F (p, q) =
√
p ·√q =

∑
i

√
piqi . (1)

It is easy to see that if two states are the same (in
other words, indistinguishable), their scalar product
is 1 due to the normalization of probability distribu-
tions, hence fidelity is 1. If two states are orthogo-

nal, scalar product gives us, by definition, 0 fidelity.
Through the mapping: (p1, ..., pn) 7→ (

√
p1, ...,

√
pn),

the constraint
∑n
i pi = 1 defines a portion of the

(n − 1) − sphere , {(p1, p2, ..., pn) ∈ Rn :
∑
i(
√
pi)

2 =
1 and pi ≥ 0}. This means that we can use the induced
Fisher-Rao distance, which reads:

dFisher-Rao = ‖√p−√q‖ =
√

2(1− F (p, q)). (2)

The respective infinitesimal version is

ds2Fisher-Rao =
1

4

n∑
i=1

dp2i
pi
. (3)

2.2. Pure state geometry

In the context of quantum mechanics, the probability
vectors introduced in the previous section are replaced
by quantum states: complex vectors that correspond to
probability amplitudes. In this context, the fidelity be-
tween pure quantum states in an n dimensional Hilbert
space is given by

F (|ψ〉, |φ〉) = |〈ψ|φ〉|, (4)

where |ψ〉 and |φ〉 are normalized vectors in H = Cn.
The notion of a distance can be defined as

d2(|ψ〉, |φ〉) = 2 (1− |〈ψ|φ〉|) . (5)

This is known as the Fubini-Study distance between
states |ψ〉 and |φ〉. States in quantum mechanics are
rays, that is, any state |ψ〉 represents the same physi-
cal state as |φ〉 = λ|ψ〉, with λ ∈ C \ {0}, which forms
an equivalence class of states [|ψ〉] = {λ|ψ〉 : λ ∈ C}.
Therefore, the space of states of a given quantum sys-
tem is the space of rays in H

P(H) = {[|ψ〉] : |ψ〉 ∈ H} (6)

known as the projective Hilbert space. Usually, one re-
stricts themselves to normalized states, i.e., S(H) =
{|ψ〉 ∈ H : 〈ψ|ψ〉 = 1}. Under this restriction,
the equivalence relation is simply multiplication by a
phase. Hence, from a physical standpoint, two states
are equivalent if they differ by a phase λ = eiφ. In other
words, normalized states have a U(1)-gauge freedom
and the projective Hilbert space is P(H) = S(H)/U(1).
When H = CN , the space is also known as the complex
projective space CPn ∼= S2n+1/U(1), where S2n+1 is
the (2n + 1)-sphere. We can then define a projection
π : S(H) 7→ P(H) explicitly realized as

π : |ψ〉 7−→ Pψ = |ψ〉〈ψ| = eiφ|ψ〉〈ψ| e−iφ. (7)

Note that, unlike the vector representatives of quan-
tum states, the orthogonal projector is gauge invari-
ant, i.e., there is no phase ambiguity in its defini-
tion. So there is, indeed, a one-to-one correspondence
[|ψ〉]↔ Pψ = |ψ〉〈ψ|. This construction defines a prin-
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(a) (b)

Figure 1: (a) Representation of a fiber: There is an
equivalence class of states separated by a phase eiφ

that all project onto the same projector Pψ. (b) Rep-
resentation of a fiber bundle: there is a fiber for each
point in the space of projectors P(H). This construc-
tion, along with the projection π defines a fiber bundle
over the base space P(H)

cipal bundle over P(H), which, for each projector Pψ,
has a collection of equivalent states that differ by a
phase – the fiber. The principal bundle space can then
be split into two subspaces: a vertical subspace at-
tributed to variations along the fiber and a horizontal
subspace which we define as the orthogonal comple-
ment of the vertical space. The unitary gauge ambigu-
ity in specifying a state leads to a gauge field given by
the 1-form

A = 〈ψ|d|ψ〉. (8)

This is known as the Berry connection.

Taking a curve in the space of quantum states and
computing the distance between two infinitesimally
close points yields the Fubini-Study metric

d2(Pψ(t), Pψ(t+δt)) = ds2FS = 〈ψ̇|
(
1− |ψ〉〈ψ|

)
|ψ̇〉δt2,

(9)
where |ψ̇〉 is the first order time derivative of |ψ〉. In
terms of more general parameters θµ(t) one can write

ds2FS = 〈∂µψ| (I − |ψ〉〈ψ|) |∂νψ〉dθµdθν , (10)

where Qµν = 〈∂µψ| (I − |ψ〉〈ψ|) |∂νψ〉 is the Hermitian
quantum geometric tensor.

2.3. Mixed state geometry

Mixed state systems are fully characterized by their
density matrix ρ which contains the full information
about the ensemble. A mixed quantum state is a prob-
abilistic mixture of ` pure states |ϕj〉 weighed by the
relative proportions qj > 0. With this in mind, the op-
erator that fully describes this mixture is the density

operator ρ ∈ Cn×n defined by

ρ =
∑̀
j=1

qj |ϕj〉〈ϕj |. (11)

Their degree of mixture is directly correlated with the
entropy of the system, which, as formulated by von
Neumann, is given by

S = −Tr (ρ ln ρ) . (12)

Note that ρ is a trace 1, Hermitian operator, hence, it
can be written as

ρ =

k∑
i=1

piPi, (13)

where pi > 0 with i = 1, ..., k ≤ ` satisfying∑k
i=1 piri = 1, with the ri’s being the ranks of the

orthogonal projectors Pi’s. The total rank of ρ is then
r =

∑k
i=1 ri.

Considering that the space of pure states is Cn, one
can introduced matrices w called amplitudes of ρ, with
w ∈ Cn×r, such that we can restate the density matrix
as

ρ = ww†. (14)

In order to define a distance, an Hermitian form can
be defined by the formula

〈w, v〉 := Re Tr
(
w†v

)
, (15)

where v is the amplitude associated with density ma-
trix σ, such that σ = vv†. We can define a notion of
distance between states ρ and σ as

d2B (ρ, σ) = inf
{w,v}

||w − v||2 = 2− sup
{w,v}

Tr
[
w†v + v†w

]
,

(16)

where || · || is the Hilbert Schmidt scalar product on the
space Cn×r. By choosing amplitudes given by w =

√
ρ

and v =
√
σ, we have

d2B (ρ, σ) = 2 (1− F (ρ, σ)) , (17)

where we have defined a mixed state fidelity counter-
part, given by

F (ρ, σ) = Tr
√√

ρ σ
√
ρ, (18)

and F (ρ, σ) = TrF(ρ, σ). Eq.(17) is the mixed state
counterpart of the Fubini-Study distance in Eq. (5).
Consider now the space B of rank r density matrices.
Then, the corresponding amplitudes w belong to Cn×r.
We can define a projection from the space of ampli-
tudes w to the space of density matrices ρ, denoted
PUlh, by

π : PUlh → B

w 7→ ρ = ww†.
(19)
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We must remind ourselves that each amplitude has an
U(r) gauge freedom, so that (π, PUlh, B, U(r)) define a
principal U(r)-bundle. Once again, we define horizon-
tal tangent directions orthogonal to the vertical, i.e.,
gauge transformation geometry directions and hence
find a geometry for mixed states. In this case, the con-
nection is defined again by the horizontality condition,
given by

〈ẇ, ẇ′〉 = 0, (20)

where ẇ is a tangent vector under consideration and
ẇ′ is an arbitrary vertical tangent vector.

The metric can also be stated in terms of tangent
vectors as g(ṽ, ṽ) = 〈ṽH , ṽH〉 and we claim that a hor-
izontal vector can be written as ṽH = Gw, where G is
Hermitian. Through this, the metric can be shown to
give

g(v, v) = Tr ρG2. (21)

This is the so-called Bures metric for quantum mixed
states. A more useful formula can be reached by taking
a diagonalization of ρ =

∑
i pi|i〉〈i|. This leads to the

explicit form of the Bures metric

gρ =
1

4

∑
i

dp2i
pi

+
∑
i 6=j

pi
(pi − pj)2

(pi + pj)2
|〈i|dj〉|2. (22)

It can be shown that this metric reduces to the Fubini-
Study metric when considering a single state.

2.4. The geometry of the Sjöqvist metric

In Ref. [29], Sjövist considers a smooth path t 7→ ρ(t) of
non-degenerate density operators with a fixed rank N
and respective elements of the principal bundle given
by

{
√
pj(t)e

ifj(t)|nj(t)〉}Nj=1, (23)

that project to the density matrix through π, i.e.,

π

(√
pj(t)e

ifj(t)|nj(t)〉
)

=

N∑
j=1

√
pj(t)

√
pj(t)

eifj(t)|nj(t)〉〈nj(t)|e−ifj(t)

=

N∑
j=1

pj |nj(t)〉〈nj(t)|. (24)

Computing the minimum of the distance between two
infinitesimally close elements of the principal bundle
yields the Sjöqvist metric for a non-degenerate density
matrix

ds2 =
1

4

∑
k

dp2k
pk

+
∑
k

pk〈dnk| (1− |nk〉〈nk|) |dnk〉.

(25)

This metric has a special property, not featured in the
Bures case. From Eq. (25) we see that the Sjöqvist

metric can be separated into the classical Fisher-Rao
metric of Eq. (3) and a quantum contribution. This
quantum part paints quite the intuitive picture differ-
ent from the Bures metric case: it is itself segmented
into Fubini-Study metrics for each state |nk〉 of the
non-degenerate density matrix ρ, such that the mixed
system contribution is really the sum of the metrics of
pure quantum states weighed by their respetive prob-
abilities pk.

The aim of this thesis is to generalize this result to
accomodate degenerate density matrices into the the-
ory.

3. Interferometric geometry from symmetry-
broken Uhlmann gauge group and applica-
tions to topological phase transitions

3.1. The geometry of the Sjöqvist metric and natural
generalisations to degenerate cases

Consider a quantum system with the corresponding n-
dimensional Hilbert space H. Its general mixed state
(density matrix) ρ can be, using the spectral decompo-
sition, written as

ρ =

k∑
i=0

piPi, (26)

where the real eigenvalues satisfy p0 = 0 and (i 6=
j ⇒ pi 6= pj), while the orthogonal projectors satisfy

(i > 0 ⇒ TrPi ≡ ri > 0), and
∑k
i=1 ri = r. We call

r ∈ {1, . . . , n} the rank of the state. Note that we do
not require for the kernel of ρ to be nontrivial (i.e., r0 ≡
TrP0 ≥ 0), while all other eigenspaces, Hi, are at least
one-dimensional (such that H = ⊕ki=0Hi). We call the
k-tuple τ ≡ (r1, r2, . . . rk) ∈ T , with k ∈ {1, . . . , n}
and (1 ≤ r1 ≤ r2 ≤ · · · ≤ rk), the type of the state ρ,
where T is the set of all possible types. Note that as
a consequence of the normalization of density matrices
we have the additional constraint

k∑
i=1

ripi = 1. (27)

Consider the set of all density operators of type τ ,
denoted by Bτ . The union, over the types τ ∈ T , of all
sets Bτ forms the set of all possible states of a given
system,

B =
⋃
τ∈T

Bτ

= {ρ ∈ H ⊗H∗ : ρ† = ρ and ρ ≥ 0 and Tr ρ = 1}.
(28)

We would like to analyse the geometry of the Bτ ’s,
and see whether it is possible to induce a Riemannian
metric on them along the lines of the metric introduced
by Sjöqvist [29], for the case of type τ = (1, 1, ..., 1),
for some r = k. We will do so by introducing gauge
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invariant Riemannian metrics and associated Ehres-
mann connections in suitably chosen principal bun-
dles Pτ with corresponding base spaces Bτ . Observe
that every state ρ is completely specified in terms of
its “classical part”, the vector of probabilities

√
p =

(
√
p1,
√
p2, . . . ,

√
pk) satisfying the normalization con-

straint (27), and its “quantum part”, the mutually or-
thogonal projectors P1, P2, . . . , Pk (note that P0 is then

determined unambiguously, P0 = I −
∑k
i=1 Pi), which

we compactly denote by P = (P1, P2, . . . , Pk). We will
explore a particular gauge degree of freedom in describ-
ing the quantum part in our construction. Namely,
each eigenspace projector Pi is uniquely specified by
an orthonormal basis βi = {|ei,j〉 : j = 1, . . . ri}. How-
ever, the basis βi itself is not uniquely determined by
Pi. Indeed, every basis Uβi = {U |ei,j〉 : j = 1, ..., ri}
with U a unitary that acts non-trivially only on the
image of Pi, the subspace Hi, defines the same projec-
tor Pi.

We then define (the total space of ) a principal
bundle Pτ as the set of all k-tuples of pairs pτ =(
(pi, βi)

)k
i=1

, such that (
√
p,P) give rise to well-defined

type τ density operators (observe that pi 6= pj for all
i 6= j). This space comes equipped with an obvious
projection to the base space Bτ is given by

πτ (pτ ) ≡
k∑
i=1

piPi = ρ, (29)

with the fibers being isomorphic to the product of the
corresponding unitary groups in the type τ ,

Gτ ≡
k∏
i=1

U(ri). (30)

The group Gτ acts on the right in the obvious way, for

Ui ∈ U(ri), we write Ui = [(Ui)
j′

j ]1≤j,j′≤ri ∈ U(ri) and
then βi · Ui is given by

|ei,j〉 7→
ri∑
j′=1

|ei,j′〉(Ui)j
′

j , j = 1, ..., ri. (31)

By introducing generalized amplitudes wi ∈ Cn×ri
as matrices whose columns are vectors |ei,j〉 ∈ Cn, j =
1, ..., ri, i.e., wi ≡

(
|ei,1〉 |ei,2〉 . . . |ei,ri〉

)
, i = 1, ..., k,

we can see Pτ as

Pτ ={
(
(pi, wi)

)k
i=1

:

k∑
i=1

pi wiw
†
i ∈ Bτ

and w†iwi = Iri , for all i = 1, ..., k, (32)

and pi 6= pj , for all i 6= j},

and the right action of the gauge group is given by
wi 7→ wi · Ui, with Ui ∈ U(ri). With this notation,
we finally introduce a suitable “Hermitian form” (note
that it is not a scalar product, as Pτ is not a linear

space), that will define Horizontal subspaces, by the
formula

〈pτ , p′τ 〉τ ≡
k∑
i=1

√
pip′i Tr(w†iw

′
i)

=

k∑
i=1

Tr[(
√
piw
†
i )(
√
p′iw
′
i)]. (33)

Observe that it is clear that this pairing arises from
the restriction of the usual Hermitian inner product in⊕k

i=1 Cn×ri ∼= Cn×r.
Additionally, this allows for a convenient comparison

with the Uhlmann principal bundle

PUh
r ={w ∈ Cn×r : π(w) ≡ ww† = ρ ∈ B,

with rank(ρ) = r}, (34)

where the typical fibre is U(r) ⊂ Cr×r, whose elements
act from the right (w 7→ w · U), and the Hermitian
form, induced by the Hilbert-Schmidt scalar product
on the space of linear operators from Cr×r, is

〈w,w′〉 = Tr(w†w′). (35)

Note that the base space for the Uhlmann bundle is the
set of density matrices with rank r, which is the union
of all Bτ sharing the same rank. Observe that for one
such τ , Pτ can be identified as a subset of PUhlmann

r .
This follows from the map

Pτ 3 ((pi, wi))
k
i=1 7→ (

√
p1w1, ....,

√
pkwk) ∈

k⊕
i=1

Cn×ri ,

(36)

being an embedding of Pτ . Moreover, once we iden-
tify

⊕k
i=1 Cn×ri ∼= Cn×r, the image sits precisely in

PUhl. In other words Pτ ⊂ PUhl and also πτ equals
the restriction of the projection of the Uhlmann bun-
dle to Pτ (pi 6= pj , for all i 6= j, guarantees this), the
image being precisely Bτ . We remark that the gauge
group of the Uhlmann bundle is far larger than the
one for the principal bundle Pτ → Bτ . By passing to
a preferred type, we performed a symmetry breaking
operation from U(r) to Gτ =

∏k
i=1 U(ri) ⊂ U(r). This

is another way to see why interferometric-like quan-
tities, like the interferometric Loschmidt echo, in cer-
tain applications develop non-analyticities, while the
ones based on the fidelity do not (see for example [30]
and the references therein): the former have smaller
space to “go through”, while the latter can, follow-
ing the “broader” Uhlmann connection, instead of the
interferometric ones, avoid possible sources of non-
analyticities.

3.2. Distance measures and Riemannian metrics

Consider now two points, pτ = ((pi, wi))
k
i=1 and qτ =

((qi, vi))
k
i=1 ∈ Pτ . By making use of Eq. (33) one can
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define a distance between elements pτ and qτ in the
total space of the principal bundle given by

d2τ (pτ , qτ ) = 2
(

1− Re (〈pτ , qτ 〉τ )
)

= 2

(
1−

k∑
i=1

√
piqi Re

(
Tr(w†i vi)

))
. (37)

The fact that dτ is a distance follows from the fact that
it is the restriction of the usual distance in ⊕ki=1Cn×ri ,
where we see Pτ as a subset of this space through the
map of Eq. (36). One can use this distance to define a
distance on Bτ , through the formula:

d2I(ρ, σ) = inf{d2τ (pτ , qτ ) : π(pτ ) = ρ (38)

and π(qτ ) = σ, for pτ , qτ ∈ Pτ}.

The associated infinitesimal counterparts of the dis-
tances defined above are Riemannian metrics on Pτ
and Bτ , respectively. The Riemannian metric on Pτ ,
which is gauge invariant, allows for the definition of
what is called an Ehresmann connection over Pτ and
this, in turn, defines a metric downstairs over the base
space Bτ .

Another way to see that d2τ (pτ , qτ ) is indeed a met-
ric is through what we call “generalised purifications”.
Let us introduce “ancilla” amplitudes wi ∈ Ck×1, with
i = 1, 2, . . . k, such that wiw

†
i = Pi ∈ Cn×n are fixed

orthogonal projectors of rank 1 (i.,e., Pi do not depend
on the choice of the state), satisfying PiPj = δijIk and∑k
i=1 Pi = Ik. Define a generalised purification of state

ρ, associated to the corresponding pτ , as

|pτ 〉 =

k∑
i=1

√
piwi ⊗ wi. (39)

Then, we have that the scalar product between |pτ 〉 and
|qτ 〉, induced by the Hilbert-Schmidt scalar product in
the corresponding factor spaces, is

〈pτ , qτ 〉 =

k∑
i,j=1

√
piqj〈wi, vj〉〈wi,wj〉

=

k∑
i=1

√
piqi〈wi, vi〉

=

k∑
i=1

√
piqi Tr(w†i vi)

= 〈pτ , qτ 〉τ ,

(40)

where the second equality is because wi and wj are
orthogonal for i 6= j. Thus, the distance dτ (pτ , qτ )
is nothing but the standard Hilbert-Schmidt distance
between the generalised purifications |pτ 〉 and |qτ 〉.

As in Eq. (32), if we take the wi’s as (row) vec-

tors |wi〉 =

[
|ei,1〉 |ei,2〉 . . . |ei,ri〉

]
whose entries are

(column) vectors |ei,j〉, one can by analogy generalise
the quantum part of the metric for the non-degenerate
case, the so-called “interferometric metric”, which has
ri = 1, i = 1, ..., k,

gQI =

k∑
i=1

pi〈dwi|(In − wiw†i )|dwi〉

=

k∑
i=1

pi〈dei,1|(In − |ei,1〉〈ei,1|)|dei,1〉,
(41)

to the degenerate case, in which U(1) degree of freedom
of each wi = |ei〉 is replaced by the U(ri) degree of

freedom of each wi =

[
|ei,1〉 |ei,2〉 . . . |ei1,ri〉

]
,

gQI =

k∑
i=1

pi〈dwi|
(
In − wiw†i

)
|dwi〉

=

k∑
i=1

pi〈dwi|
[
In −

( ri∑
j=1

|ei,j〉〈ei,j |
)]
|dei〉

=

k∑
i=1

pi〈dwi|
(
In − Pi

)
|dwi〉,

(42)

with |dwi〉 =

[
|dei,1〉 |dei,2〉 . . . |dei,ri〉

]
, i = 1, ..., k.

Figure 2: Interferometric measurement to probe the
generalised metric gI .

3.3. Interferometric measurement interpretation

Consider the following experiment depicted in FIG 2.
A particle is entering the Mach-Zehnder interferometer
from the input arm 0, given by the state |0〉, with its
internal degree of freedom in a mixed state ρ. Both
the input and the output beam-splitters are balanced,
described by the same unitary matrix, say, the one
given by |0〉 → (|0〉 + i|1〉)/

√
2. In arm 0 a unitary

V =
∑k
i=0 PiV Pi is applied to the internal degree of

freedom, i.e., V is the most general unitary that com-
mutes with ρ. In arm 1 a unitary U = U(δt) ∈ U(n)
is applied for a time period δt, changing the state of
the internal degree of freedom to ρ′ = UρU†. The
particle is detected at detectors D0 and D1, with the
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corresponding probabilities pr0 and pr1. In our case,
we have that pr1 ≤ pr0, and for U = V we have full
constructive interference at the output arm 0, giving
pr0 = 1. In general, we have that

prmax
1 = max

{Vi}
(pr1) = 1− 1

4
d2I(ρ, ρ+ δρ), (43)

where d2I(ρ, ρ+ δρ) ≈ gI(ρ̇, ρ̇)δt2 is the “infinitesimal”
distance between ρ and ρ′ = ρ + δρ, where δρ = ρ̇δt.
Note that in the case of the Hadamard matrix, given
by |`〉 → (|0〉+ (−1)`|1〉)/

√
2, with ` ∈ {0, 1}, the roles

of arms 0 and 1 are exchanged.

3.4. Interferometric metric in the context of band in-
sulators

Suppose we have a family of band insulators with two
bands described by the Hamiltonian

H(M) =

∫
BZd

ddk

(2π)d
ψ†kd

µ(k;M)σµψk, (44)

parametrized by M (M can be some intrinsic param-
eter, such as the hopping), where σµ, µ = 1, 2, 3, are
the Pauli matrices, k is the crystalline momentum in a
d-dimensional Brillouin zone BZd, with d = 1, 2, 3, and
Ψ†k is an array of 2 creation operators for fermions at
momentum k. We assume that the system is gapped
for generic values of M , meaning that the vector d =
(d1, d2, d3) is non-vanishing as a function of k. For a
certain value of Mc, we assume that the vector has iso-
lated zeroes. This assumption is generically correct for
the d = 1, 2 momenta coordinates plus the mass M , as
one needs to tune three parameters for an Hermitian
matrix to have two eigenvalues cross.

The pullback of the interferometric metric that we
have desribed in Sec. 3.2,

g =
1

4

∑
i

ri
dp2i
pi

+
∑
i

pi Tr (PidPidPi) , (45)

with ρ =
∑
i piPi and TrPi = ri, by the map induced

by the Gibbs state

M 7→ ρ(M) = Z−1 exp(−βH(M)), (46)

where Z is the partition function, is given by

ds2 =
1

4

∫
BZd

ddk

(2π)d

[ 1

cosh(βE) + 1
(47)

×

(
β2

(
∂E

∂M

)2

+ cosh(βE)δµν
∂nµ

∂M

∂nν

∂M

)]
dM2,

where we omitted the obvious dependence on k and
M of the quantities E and nµ. This result should be
compared to the pullback of the Bures metric for d = 2,

which yields (see Ref. [24])

gBures =
1

4

∫
BZd

ddk

(2π)d

[ 1

cosh(βE) + 1
β2

(
∂E

∂M

)2

(48)

+
cosh(βE)− 1

cosh(βE)
δµν

∂nµ

∂M

∂nν

∂M

]
dM2.

The two expressions have dramatically different be-
haviours, when it comes to taking the zero temperature
limit.

Naively, one would say that both yield the pullback
of the Fubini-Study metric, which is the pure-state
metric,

g0 =
1

4

∫
BZd

ddk

(2π)d
δµν

∂nµ

∂M

∂nν

∂M
dM2. (49)

Note that for gapless points the vector n is not defined
and the expression for g0 becomes (potentially) singu-
lar. However, due to the gapless points, the integrands
must be carefully analysed in the neighbourhoods of
these points, as the singularities can be avoided in some
cases. In fact, it was shown that if the gapless points
are isolated in momentum space, then an expansion
near these points of the integrand function yields a
regular result [24]. Namely, because of the inequality

1

2

1

cosh(x)
<

1

cosh(x) + 1

1

cosh(x)
, for all x ∈ R, (50)

we can write,

1

cosh(βE) + 1
β2

(
∂E

∂M

)2

+
cosh(βE)− 1

cosh(βE)
δµν

∂nµ

∂M

∂nν

∂M

(51)

<
1

cosh(βE)

[
β2

(
∂E

∂M

)2

+ (cosh(βE)− 1)) δµν
∂nµ

∂M

∂nν

∂M

]
.

Expansion for small βE yields that up to O
(
(βE)4

)
the integrand is upper bounded by

β2

cosh(βE)
δµν

∂dµ

∂M

∂dν

∂M
, (52)

which is regular in the limit β → ∞. Hence, the po-
tential singularities arising from the gapless region are
regularized by the Bures prescription. However, in the
case of the interferometric metric, considering the in-
tegrand

1

cosh(βE) + 1

(
β2

(
∂E

∂M

)2

+ cosh(βE)δµν
∂nµ

∂M

∂nν

∂M

)
,

(53)

near E = 0 gives us

1

cosh(βE) + 1

[
β2

(
∂E

∂M

)2

+ (1 +
1

2
β2E2)δµν

∂nµ

∂M

∂nν

∂M

+ O
(
(βE)4

) ]
. (54)
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In this case, we cannot get rid of the singular factor

δµν
∂nµ

∂M

∂nν

∂M
, (55)

which appears once in the second term without the
regularizing coefficient β2E2 which above allowed for
the identification of the regular quantity

β2

(
∂E

∂M

)2

+ β2E2δµν
∂nµ

∂M

∂nν

∂M
= β2δµν

∂dµ

∂M

∂dν

∂M
.

(56)

This implies that the limit β → ∞ yields singular be-
haviour for g, provided the same happens with g0. But
not the other way around, i.e., singular behaviour on
the finite temperature metric does not imply zero tem-
perature singular behaviour. In other words, while in
the case of the Bures metric the thermodynamic and
the zero temperature limits did not commute, in the
interferometric case they do, because the singular be-
haviour of the gapless points is recovered, as one con-
siders a small neighbourhood of these points and takes
the zero temperature limit. In the following, we will
consider the massive Dirac model to illustrate the dif-
ferent behaviours of the two metrics.

4. Results

4.1. Massive Dirac model

We consider the massive Dirac model, a band insulator
in two spatial dimensions, described by Eq. (44), with

d(k;M) = (sin(kx), sin(ky),M − cos(kx)− cos(ky)) ,
(57)

where k = (kx, ky) is the quasi-momentum in the two-
dimensional Brillouin zone BZ2 and M is a real pa-
rameter. The model exhibits topological phase transi-
tions [31]. We will focus at the one occurring at M = 0,
where the Chern number goes from +1, for M → 0−,
to −1, for M → 0+. The following two figures de-
scribe the inteferometric metric (Fig. 3(a)) and the Bu-
res metric (Fig. 3(b)) in the thermodynamic limit.

As argued above, the Bures metric is regular if one
considers the thermodynamic limit and then the zero
temperature limit. The same does not hold for the
interferometric metric. In fact, we can see that the in-
terferometric metric knows about the quantum phase
transition taking place at T = 0 even at finite tem-
peratures. The reason is that in passing from one
metric to the other the symmetry was broken, namely
U(r) →

∏k
i=1 U(ri), and, therefore, there is enhanced

distinguishability. Indeed, in the interferometric case,
whenever the gap closes, we expect a phase transition,
even at finite temperatures, because then there are
states which according to a Boltzmann-Gibbs distribu-
tion become degenerate in probability, hence the gap
closing changes the type of the density matrix involved.
Whether such singular begavior of the interferometric

(a)

(b)

Figure 3: (a) Interferometric metric for the massive
Dirac model — the topological phase transition is cap-
tured for all temperatures. (b) Bures metric for the
massive Dirac model — the topological phase transi-
tion is captured only at zero temperature. The figures
illustrate the different behaviour of the metrics with
temperature T and the parameter M driving the topo-
logical phase transition.

metric is indeed observable for macroscopic many-body
systems is an open question. While the straightforward
implementation of the interferometric experiment de-
scribed in Sec. 3.3 seems to be, at least technologically,
infeasible, as it would require maintaining Schrödinger
cat-like macroscopic states, possible variations are ar-
gued to be able to reveal the singular behaviour of
the interferometric metric at finite temperatures (see
Sec. V of Ref. [32]).

5. Conclusions

5.1. Conluding remarks

In this work, we have generalized Sjöqvist’s interfer-
ometric metric introduced in [29], to the degenerate
case. For this purpose, we have introduced generalized
amplitudes and purifications. We have analysed an
interpretation of the metric in terms of a suitably gen-
eralized interferometric measurement, accommodating
for the non-Abelian character of our gauge group, as
opposed to the Abelian gauge group used in the non
degenerate case. We have applied the induced Rie-
mannian structure, physically interpreted as a suscep-
tibility, to the study of topological phase transitions
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at finite temperatures for band insulators. To the
best of our knowledge, this is the first study of finite-
temperature equilibrium phase transitions using inter-
ferometric geometry. The inferred critical behaviour is
very different from that of the Bures metric. The in-
terferometric metric is more sensitive to the change of
parameters than the Bures one, and unlike the latter,
in addition to zero temperature phase transitions, in-
fers finite temperature phase transitions as well. This
sensitivity can be traced back to a symmetry break-
ing mechanism, much in the same spirit of Landau-
Ginzburg theory. In our case, by fixing the type of
the density matrix considered, a gauge group is broken
down to a subgroup.

5.2. Future work

It would be very interesting to analyse the inteferomet-
ric curvature, an analogue of the usual Berry curvature,
generalized to this mixed setting, associated with the
Ehresmann connection presented in this manuscript.
Since the curvature is intrinsically related to topo-
logical phenomena, this analysis might very well un-
ravel new symmetry protected topological phases in
the mixed state case and potentially help refining the
classification of topological matter. It would be also in-
teresting to compare the critical behaviour of different
many-body systems in terms of interferometric met-
rics corresponding to different types of density matri-
ces. Recent study of the fidelity susceptibility indicated
that its singular behaviour around regions of criticality
has preferred directions on the parameter space [33].
Performing a similar analysis for the interferometric
critical geometry is another possible line of future re-
search. Finally, probing experimentally the introduced
interferometric metrics is a relevant topic of future in-
vestigation.
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