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Abstract

Hadronic jets provide us with a rich framework for the exploration of the physics of strong interactions

at multiple scales. Their evolution from an highly energetic (colored) quark or gluon to an ensemble

of (color-neutral) hadrons is usually formulated in momentum space, without making reference to the

space-time picture that emerges from it. However, in heavy-ion collisions, a space-time reference frame

is introduced by the interaction of jets with the Quark-Gluon Plasma, the hot and dense medium existing

in the first instants of our Universe’s lifetime. Motivated by that, this work is an investigation of the

space-time structure of QCD jets that propagate in vacuum.

By approximating a jet’s development by a clustering history, the timescales (formation times) involved

are calculated and an absolute time order of the splittings is presented. Formation times are shown to

span multiple orders of magnitude. It is verified not only that they are exactly ordered along the branches

of a history assigned by the τ reclustering algorithm, but also that they are logarithmically separated.

Furthermore, one makes explicit that different reclustering algorithms result in different space-time

structures for the same jet. The first splitting’s timescale, however, is shown to be independent of the

choice of algorithm. Additionally, one presents a simple strategy to estimate this particular formation time

through experimentally measurable quantities.

Keywords: Quantum Chromodynamics; Jet; Branching history; Formation time; Space-time struc-

ture.

1 Introduction

1.1 Motivation and Overview

Over the past few decades, we have witnessed

numerous ultra-relativistic hadronic collision exper-

iments with increasing energy, whether it be be-

tween proton beams (pp) or heavy nuclei beams.

These experiments, carried out most recently by

the Large Hadron Collider (LHC) and the Relativis-

tic Heavy-Ion Collider (RHIC), allow us to study,

among a wide range of aspects of particle physics,

the theory of the strong interaction, namely Quan-

tum Chromodynamics (QCD).

The analytical equations governing the evolution

of QCD systems and usual parton shower Monte

Carlos are formulated in momentum space. This is

usually studied without ever detailing what the ac-

tual space-time evolution is. Where and when does

the first particle emission happen after a quark or a

gluon has been produced in the hard scattering of a

collision event? Is this question relevant for a QCD

jet propagating freely in vacuum? No. Is it relevant

for a QCD jet produced in heavy-ion collisions? Ab-

solutely. In such events, a background medium is

produced - theQuark-Gluon Plasma (QGP) - which

introduces a space-time reference frame in which

jets propagate. Let us introduce this complex QCD

state of matter for the purpose of motivating the

study of the space-time structure of QCD jets.

Figure 1: Pictoric overview of an example of an heavy-ion col-

lision’s components (QGP + back-to-back jets) [1].

In a typical heavy-ion collision, two nuclei col-

lide at ultra-relativistic energies and, aside from

the hard perturbative scatterings which give rise to

hadronic jets, the majority of these interactions will

involve little transverse momentum transfer. These

are called ”soft” processes and they are the main

reason why both the energy and particle densities

rise abruptly shortly after (∼ 1 fm/c) the collision

[2] - the QGP is created (Fig. 1). This deconfined,
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hot and dense state of matter, with energy densities

of about 20 times those inside typical hadrons [2],

has been thoroughly investigated in distinct experi-

ments and it is supported by unequivocal evidence

(see, e.g., [3]). Being the state of matter that per-

meated our Universe in its first few µs of existence,
it is only natural that one is interested in studying it.

The QGP holds its distinct properties until the

local energy density falls below that of a typical

hadron, which happens on a timescale of∼ 10 fm/c.

Jets, which have to plough through themedium, will

then suffer a wide range of modifications by scat-

tering off its constituents - jet quenching [4]. The

degree to which a jet is modified is a great footprint

of what happened inside the QGP’s during its life-

time. In practice, by comparing jets with and with-

out the presence of the medium (e.g. pp collisions),
one can infer information about its properties.

If, in particular, one wishes to access the spatio-

temporal evolution of the QGP, then one needs to

be sensitive to its characteristic timescales. Mod-

ified in-medium jets may provide insights on the

relevant space-time regions for jet-plasma inter-

actions. To leverage this information and extract

knowledge about the QGP’s spatial and temporal

profiles, it is imperative that one attributes a space-

time meaning to each of the jet’s emissions.

The probing of the temporal evolution of the

QGP has already been approached in a number

of works. For instance, motivated by experimental

evidence of unchanged fragmentation patterns of

in-medium jets, Casalderrey-Solana et al [5] con-

cluded that roughly 70% of the relevant branching

process will always occur outside the medium. In

a more recent work, Apolinário et al [6] worked on

using the top quark to extract meaningful informa-

tion about the QGP’s time structure. Lastly, re-

cent efforts were carried out by [7], where the au-

thors introduce the τ algorithm and conclude, us-

ing the first emission’s formation time as a met-

ric, that it maximizes the correlation between the

reclustered branching history and the correspond-

ing Monte Carlo parton shower information.

1.2 Objectives

The main aim of this thesis is to explore the

timescales involved in the transition from a single

hard parton to amulti-parton ensemble. The frame-

work for this study is the production of QCD jets -

multi-particle final states which are footprints of this

quantum evolution - in high-energy proton-proton

(pp) collisions, i.e., vacuum jets. One formulates

this evolution in a simplistic manner and solely by

resorting to final state information, i.e., the jet’s con-

stituents. First, one assigns a branching history to

each jet and then quantifies the relevant timescales

through the calculation of formation times of inter-

mediate virtual states. The result is a space and

time meaning to the parton shower interpretation of

multiple parton emissions. The space-time struc-

ture that is obtained from this process is often put

into perspective by having the lifetime of theQuark-

Gluon Plasma as a reference timescale.

2 Theoretical Background

In this section, one will introduce key concepts

which form the basis for the remaining of the work,

detailing the two centerpiece concepts - assign-

ment of a branching history and the parton forma-

tion time.

2.1 QCD Basics

Quantum Chromodynamics (QCD) is the theory

that describes the strong interaction between

the constituents of the subatomic particles called

hadrons, e.g., protons and neutrons, the compo-

nents of atomic nuclei. These constituents, quarks

and gluons, are defined by their transformation

properties under representations of SU(3), i.e., the

theory is non-Abelian, which, by introduction of

the color quantum number, implies that the gluon

self-interacts. Among other repercurssions, this

causes QCD to possesse the feature of asymptotic

freedom - strength of the interaction decreases

with increasing momentum and with corresponding

decreasing distance. This in opposition to QED,

where the charge screening effect dominates. This

anti-screening effect is made explicit by QCD’s

running of the coupling:

αs(Q
2) =

αs(µ
2)

1 + b0αs(µ2) ln(Q2/µ2)
(1)

with b0 =
11Nc−2nf

12π and µ the renormalization scale.

Often, one writes Eq. (1) in terms of a mass scale

which is generated as a consequence of renormal-

ization - the QCD scale ΛQCD ≈ 200 MeV, suffi-

ciently above which, i.e., in high energy processes,

one can use perturbative QCD (pQCD). Another

consequence of Eq. (1) is that, at large distances,

QCD is strongly interacting, with quarks and glu-

ons bounded within hadrons, leading to color con-

finement - only color-singlet particles, i.e., hadrons,

are detected.

2.2 Jets and Parton Showers

Jets are produced in collision events and are de-

tected as relatively isolated bunches of energy in

the form of collimated sprays of hadrons. They

can be thought of as footprints of the theory’s col-

ored degrees of freedom produced in rare short-

distance (hard) interactions, carrying information

about physics at multiple scales.

The process of their evolution, whereby one goes
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from a single parton being produced off the hard

collision at large angles to a multitude of hadrons

being detected, can be phrased as a conjuga-

tion of higher order (perturbative) corrections to

the hard process - the emission of an arbitrary

number of partons - and of an hadronization (non-

perturbative) phase - the conversion of the final par-

tons into hadrons. Themultiple emission of partons

is usually seen at the light of the parton-shower

representation - a probabilistic interpretation of a

jet’s evolution as a sequence of 1 → 2 factorized

collinear emissions and which one simulates via

Monte Carlo methods by choosing an appropriate

ordering variable.

The starting point for the simulation of a par-

ton shower is the single emission probability. This

probability, in the collinear limit, for massless par-

tons and to first order in αs is given by:

dSi←j =
αs

2π
P̂

(0)
i←j(z)dz

dQ2

Q2

dφ

2π
(2)

where the functions P̂
(0)
i←j(z) are the unregularized,

leading-order (LO) splitting functions. This expres-

sion turns explicit the non-integrable double-log di-

vergences common to most pQCD calculations.

One has a soft divergence z → 0 contained in

the splitting function and a collinear divergence

present in dQ2/Q2.

A single collinear emission is usually generalized

to multiple collinear emissions by the Sudakov form

factor, where one rather approaches the problem

through the no-emission probability. The Sudakov

represents the no-emission probability off parton

species j between Q2 and Q2
0:

∆i(Q
2, Q2

0) =

exp

−∑
j

∫ Q2

Q2
0

dQ′2

Q′2

∫
dz

αs(Q
′2)

2π
P̂

(0)
j←i(z)

 (3)

where the azimuthal angle φ was integrated out.

The Sudakov factor, in conjugation with the DGLAP

(Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

equations, the QCD evolution equations, provides

a picture of multiple collinear emissions as an

evolution process, whether it is the evolution of

an initially colliding parton - Initial State Radiation

(ISR) - or the evolution of a hard-scattered parton

- Final State Radiation (FSR).

2.3 Jet Reconstruction and Branching Histories

Jet finding in an event is performed via jet algo-

rithm - a set of rules to cluster the particles’ four-

momenta into jets. In addition to the algorithm and

its parameters, like the jet radius R ∼ 1, one needs
to specify a recombination scheme, which dictates

how to add the 4-momentum of the two combined

particles. Together, these two form a jet defini-

tion, i.e., a connection between what can be cal-

culated and what is measured. In this work, we

focus on sequential recombination algorithms with

the E-scheme. These algorithms look pairwise at

the 4-momenta of all particles in an event and com-

bine them according to a certain distance metric. In

particular, we will use the generalized-kt algorithms

[8], whose distance metric is:

dij = min(p2pt,i, p
2p
t,j)∆R2

ij , diB = p2pt,iR
2

(4)

The anti-kt algorithm [9] (p = −1), which is cur-

rently the standard algorithm used at the LHC ex-

periments for jet finding, is the one used for that

purpose in this work. The main reason for this is

that it is practically insensitive to extra soft radia-

tion.

Interestingly enough, this algorithmic process

may be taken outside the context of jet finding and

be used to assign a clustering sequence to a jet,

which can be a representation of a jet’s internal

evolution - its fragmentation history. This task boils

down to building a hierarchy of 1 → 2 emissions

- from a set of final-state particles which belong to

a reconstructed jet, sequentially cluster them un-

til there is only one resultant particle. This is often

called a reclustering procedure, where each merg-

ing step is seen as a splitting, and each cluster’s

4-momentum is identified with a virtual particle.

For this purpose, one will use generalized-kt al-
gorithms for p = 0, 1/2, 1 and, also, the Jade

algorithm [10]. Their respective distance metrics

are small whenever the QCD branching process is

kinematically enhanced. For p = 1, one obtains

the kt-algorithm [11], which is particularly useful for

dividing jets into a number of hard subjets. For

p = 0, one obtains the C/A algorithm [12], which

resolves a jet based on its angular structure, re-

sulting in a tree structure which mimics an angular-

ordered shower. Finally, for p = 1/2, one has the

τ algorithm (see, e.g., [7]) whose distance metric,

as we shall in Section 4.4, is proportional to the in-

verse of an approximation of the parton formation

time introduced in Section 2.4. As such, a resulting

branching tree which is ordered in formation time.

The four reclustering algorithms are said to be LL

equivalent. Although a brief comparison between

them is drawn in Section 4.3, one will focus mainly

on the τ algorithm for the remaining of the analysis.

2.4 From Parton Formation Time to Jet Space-Time

Structure

It can be said that a virtual parton, i.e. an off mass-

shell parton emerging from some process, lives for

a certain amount of time before it radiates another

parton. One can think of this quantity as how long
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it takes for a parton to become an independent col-

ored object, i.e., a source of further colored par-

ticles [13]. Throughout this work, one shall refer

to this lifetime as the formation time of the subse-

quent pair of states a virtual state evolves into. A

naive estimate of it can be made by resorting to the

Heisenberg’s uncertainty principle [13] trestm ∼ 1
and Lorentz boosting the result to the laboratory

frame:

τ ∼ E

m2
≡ τ0 (5)

where one is working in natural units, i.e, h̄ = c = 1.
One shall refer to this formation time as the exact

estimate for the remaining of this work.

With a branching history assigned to a jet and a

formation time associated with each of the splittings

in it, one can further calculate a space-time struc-

ture. In this work, two ways of ordering splitting are

taken into account - the reclustering order (inverse

sequence by which partons were recombined) and

the increasing absolute time order, which imposes

an absolute time scale (denoted by Στ in Section

4.5.1) to the fragmentation history. It does so by re-

cursively summing formation times along the tree

- (Στ)i =
∑i

j τ
j , where the j index is a symbol

for every parton that comes before parton i in the

branch it belongs to.

3 Simulation and Reconstruction Setup

In this work, we chose to study QCD vacuum jets in

pp collisions, generating events with Pythia 8.2.35

[14] (Tune 4C). We simulate 106 events at a CM

energy of 5 TeV. The sequential recombination al-

gorithms Section 2.3 used in both clustering and

reclustering procedures, along with any extracted

jet kinematical information, are dealt with by resort-

ing to Fastjet 3.3.2 [8]. We’ll be focusing on events

of the type Z+jet (Fig. 2). The process is gener-

ated with pure Z contributons, i.e., there is no in-

terference term between photon and Z production.

Furthermore, the Z boson’s decay is turned off. In

terms of kinematic cuts, the products of the hard

scattering are forced to have a transversemomenta

above 90GeV and the events are only accepted for

Z bosons with transverse momenta pZt ≥ 100 GeV
and rapidities |yZ |≤ 2. Furthermore, one reweights

events through PhaseSpace:bias2SelectionPow
= 6.3. For jet reconstruction, one uses the anti-kt
algorithm and the jet radius R ∼ 1. With regard

to kinematical acceptance criteria, the final partons

are filtered according to ppartont ≥ 0.5 GeV and

|yparton|≤ 3.5 and we’ll be working with jets with

transverse momenta pjett ≥ 20 GeV and rapidities

|yjet|≤ 2.5. The reconstructed jet and the Z boson

should be separated azimuthally by ∆φ = 7π/8.
The jet reclustering radius is necessarily larger than

the clustering one.

~p = (pt, pL)

~pZ = (pZt , p
Z
L)

q

g q

q Z

Figure 2: Example of an hard interaction diagrams for a Z+jet

event type, along with kinematics of the hard scattered particles.

Becausewe assume the initial partonic collision carries no trans-

verse momentum, we necessarily have pt = pZt . Hence, in this

work, an idealized jet reconstruction would have pjett /pZt = 1.

4 Results Analysis

An exposition of this work’s main results is made in

the following sections.

4.1 Reconstruction efficiency and ISR

In our work, the aim is to capture most FSR, i.e.,

an optimal reconstruction of the hard scattered par-

ton’s 4-momentum (Fig. 2). A smaller radius may

reconstruct a ”fat” jet as two smaller jets and a

larger radius would cause more ISR to contami-

nate our ideally reconstructed jet. Hence, there is

a need for a trade-off between capturing FSR and

supressing the impact of ISR.

One can quantify the efficiency, i.e., how much

of the FSR we include, by evaluating the ratio the

jet and the Z’s pt. In Fig. 3a and 3b, one shows

how this ratio changes when we open up our jet’s

radius. Although not represented here, jet radii

R < 1 do not perform optimally in reconstruction

- they miss out on a significant portion of the FSR

shower’s content - and R = 1.75 is, as expected,

the one which better reconstructs FSR. In spite of

this, adding ISR causes a significant increase of the

distribution’s tail for ratios above 1 when going from
R = 1 (Fig. 3a) to R = 1.75 (Fig. 3b). This sug-

gests that using the larger radius (R = 1.75) causes
ISR to take over the jet’s radiation content. Hence,

reconstruction radii in the range R ∈ (1, 1.75) seem
to be the best compromise.

4.2 First splitting’s formation time

The parton formation time derived in Section 2.4

(Eq. (5)) only depends on the 4-momentum of the

parton we are considering. This implies, in particu-

lar, that the parton leading to the first splitting (the

”seed” parton), has an algorithm independent for-

mation time. It depends, however on what one cap-

tures inside the jet.

Because we are using the E-scheme, the seed

parton’s 4-momentum is exactly equal to the re-

constructed jet’s, making the first splitting’s forma-

tion time uniquely dependent on the experimentally
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Figure 3: Ratios p
jet
t /pZt for two jet radii a) R = 1 and b) R = 1.75, with Initial State Radiation. First splitting’s formation time

distributions for events of c) FSR and d) FSR+ISR, with jet radius R = 1. All distributions are normalized to unit integrals.

measurable jet kinematic variables:

τ seed0 =
E jet

(mjet)2
=

pjett

√
1 + (mjet/pjett )2 cosh yjet

(mjet)2

(6)

The relevance of this conclusion is that this quan-

tity, as one shall see in Section 4.5.1, is a proxy for

the shortest timescale inside a jet whose branching

history is calculated with the τ algorithm [7].

4.2.1 Sensitivity to ISR

In Fig. 3d one presents the distribution of the first

splitting formation time (Fig. 3c) when adding ISR.

This causes an overall downshift of the distribution

and a decrease in the mean value. If we consider

that this radiation is mainly soft then, considering

Eq. (6), an increase in jet mass is responsible for

such effect. Althought not shown here, a similar ef-

fect seems to happens when adding hadronization,

with the difference that the bulk of the distribution

is squeezed into a smaller range of values. Over-

all, both modules seem to cause a suppression of

larger formation times. For the remaining sections

of this work one will focus on jets reconstructed with

radius R = 1.

4.2.2 Correlation with Jet Mass

An interesting follow-up question is whether one

can reduce the kinematic dependences in Eq. (6) to

a single experimentally measurable quantity, taking

the remaining dependences into account through a

dispersion measure. Judging by Eq. (6), the jet

massmjet seems a reasonable choice, with disper-

sion taken into account by the energy spectrum.

Looking at Fig. 4a, where the mean values follow

an almost straight line, one concludes that, approx-

imately for all jets masses, one has στ/〈τ〉 ∼ 0.5. A
more accurate prediction of the seed formation time

demands a cut in the jet’s phase space. In Fig. 4b,

one plots the same quantities of Fig. 4a, but for 4

distinct pt cosh y bins with the same 100 GeV width.

For the pt cosh y bin that results in the largest dis-

persion (the red markers), one can expect the seed

formation time to be within a relative interval of no

more than ∼ 20% around the mean value.

4.3 Reclustering algorithm comparison

In Fig. 5, one compares the ratios of average for-

mation times of each splitting between jet histories

calculated with the 4 different algorithms (Section

2.3), having the τ algorithm as reference. Look-

ing at both plots one concludes that, with or without

ISR and hadronization, the τ space-time structure

attributes, on average, larger formation times than

the remaining algorthims. One can further con-

clude that the most striking differences are seen

in earlier splittings and this is amplified when one

includes ISR and works at hadron-level (Fig. 5b).

Nonetheless, the mean formation times of each

branching tree are of the same order for every split-

ting and differ, at most, by ∼ 25%.
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Figure 4: a) Average first splitting formation time for each jet mass in the range 1 GeV < mjet < 200 GeV, along with the standard

deviation calculated for each mass bin. b) Same result for various pt cosh y bins. All results are parton-level.

4.4 Formation Time Estimates and Kinematical De-

pendences

Let us focus on parton-level FSR showers and

branching histories calculated with the τ algorithm

from now on.

4.4.1 Local Approach

Consider the calculation of the parton formation

time introduced in Eq. (5) by taking into account

the kinematics of the two subsequent partons. The

virtuality m2 of the parent parton can be written as:

m2 =
∑
i

m2
i + 2pt,1pt,2(

√
1 +m2

1/p
2
t,1×√

1 +m2
2/p

2
t,2 cosh(∆y12)− cos(∆φ12))

(7)

where ∆y12 = y1 − y2, ∆φ12 = φ1 − φ2 and one

used the 4-momentum in terms of collider variables

pµ = (mt cosh y, pt cosφ, pt sinφ,mt sinh y). From

Eq. (7), one concludes that even if a particle splits

into two almost collinear particles, its formation time

is not necessarily large because the subsequent

particles may have a non-negligible virtualities.

Expressing the energy of the initial parton as

E = E1 + E2, the formation time in Eq. (5) can be

written in terms of collider variables and the chil-

dren partons virtualities. One can then work with

various kinematic limits (Eq. (8). By ignoring the

parton virtualities m2
i in the denominator one ob-

tains τ1 and, by neglecting the remaining virtuality

terms m2
i /p

2
t,i, one obtains τ2. Then, τ3 and τ4 are

the collinear and soft limits, applied on τ2. The esti-
mate τ4 is exactly the inverse of the distance metric

of the τ clustering algorithm (Section 2.3) multiplied

by cosh y, motivating Section 4.5.1.

A comparison between τi (cumulative) and τ i
(isolated) is shown in Fig. 7a and 7b, where the

ratios with respect to the exact estimate τ0 were

calculated. The central conclusions concern virtu-

alities. When we look at the ratio of τ1 in Fig. 7b, we

confirm that ignoring the m2
i ’s altogether is the the

most impactful approximation. Then, in comparing

Fig. 7a and 7b, it is made clear that the approx-

imations are not independent of each other. For

instance, one has that τ2 ∼ 2τ2.

4.4.2 Global Approach

Now consider the parton formation time calcula-

tion solely from final-state partons. Because we

are working with the E-scheme, every parton’s 4-

momentum is simply the sum of the 4-momenta of

a subset of all the final partons. Hence, the virtual-

ity of the parton is:

m2 =

(∑
i

pi

)2

=
∑
i

∑
j

pt,ipt,j(
√

1 +m2
i /p

2
t,i×√

1 +m2
j/p

2
t,j cosh(∆yij)− cos(∆φij))

(10)

where∆yij = yi− yj , ∆φij = φi−φj and the i and
j indices run over a subset of all the final partons -

those belonging to branches which go through the

parton we are considering. To calculate the forma-

tion time one would divide the sum of the relevant

energies E =
∑

i Ei by Eq. (10). Consequently,

the formation time of a given parton does not de-

pend on its subsequent branching history but sim-

ply on what final partons emerge from it, confirming

that the first splitting’s formation time is indepen-

dent of the reclustering algorithm. One can now

work with the similar kinematic limits of Eq. (8), but

now we are not restricted to pairs of clustered par-

tons (Eq. 9). All approximations are analogs of the

local approach applied to final partons, with the soft

limit (τg4 ) being framed as a final parton which is

much more energetic than all the other partons in

the relevant subset, h being its index in Eq. (9).

In Fig. (7c and 7d), one shows a comparison be-

tween τgi (cumulative) and τgi (isolated). First of all,
ignoring all terms containing masses is still not a
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Figure 5: Ratios of the mean formation times of each splitting, ordering them according to their absolute time and having the τ
algorithm as a reference. Results are presented for the remaining algorithms, for the first 10 splittings and for events of a) FSR

and b) FSR+ISR+hadronization.

reasonable approximation (τg2 in Fig. 7c). Solely

ignoring m2
i /p

2
t,i implies only minor deviations (τg2

in Fig. 7d), smaller than what we observed for the

local approach in (τ2 in Fig. 7b). Neglecting m2
i

with respect to every pj ·pk (τg1 ) is the most impact-

ful approximation.

4.5 Space-Time Structure Analysis

The assignment of a space-time structure to a jet

prompts basic questions such as ”what are the or-

ders of magnitude of the timescales involved in a

jet’s development?” and ”are the splittings of each

branch well separated in time?”.

4.5.1 Formation Time Orderings

In Section 2.3, one mentioned that τ a branching

history would be ordered in formation times. The

motivation for this assertion is the expression for τ4
in Eq. (8) - τ4 = cosh y/dτij . In fact, one verified

this to be true for the majority of cases, with only

very few where the ordering is spoiled by the term

cosh y - only about 0.02% of the splittings. Interest-

ingly enough, one also found that, for τ0 = E/m2,

this ordering is exact (Fig. 8a). Additionally, as can

be seen in Fig. 8a, the formation times are loga-

rithmically separated inside each branch, with an

average factor of order 10 between them.

Despite this exact ordering along branches, τ0 is
not necessarily ordered along the reclustering se-

quence - most likely a consequence of branch alter-

nation in the sequence. This is in agreement with

usual parton shower generators where, although

each branching is ordered according to a given

quantity, distinct branches have their own logarith-

mic separation between consecutive splittings.

A question one could then ask is if the splitting or-

der resulting from calculating absolute times is ex-

actly the same as the one resulting from the reclus-

tering procedure. In Fig. 8b, the distribution of the

ratios (Στ0)
i/(Στ0)

i−1 for consecutive reclustering

steps is presented. It is clear that the answer is

negative - there are plenty of cases, about 17%,

where the ordering is not verified. Nevertheless,

this is still true on average.

4.5.2 Formation Time Distribution

The distribution of formation times along the split-

tings of a jet (Fig. 8c) allows one to have differ-

ent ”representations” of the same jet at different

frames of its temporal development - particularly

τ1 ≡ E

m2 −
∑

i m
2
i

τ2 ≡ pt,1 cosh y1 + pt,2 cosh y2
2pt,1pt,2 (cosh(y1 − y2)− cos(φ1 − φ2))

τ3 ≡ (pt,1 + pt,2) cosh y

pt,1pt,2∆R2

τ4 ≡ cosh y

min(pt,1, pt,2)∆R2

(8)

τg1 ≡=
E

m2 −
∑

i m
2
i

τg2 ≡
∑

i pt,i cosh yi∑
i

∑
j 6=i pt,ipt,j (cosh(∆yij)− cos(∆φij))

τg3 ≡
2
∑

i pt,i cosh y
jet∑

i

∑
j 6=i pt,ipt,j∆R2

ij

τg4 ≡ 2pt,h cosh y
jet∑

i

∑
j 6=i pt,ipt,j∆R2

ij

(9)

7



1 2 3 4 5 6 7 8 9 10
Splitting

0.5

1

1.5

2

2.5

3
>

0τ
>

 / 
<

iτ<

0τ / 2τ

0τ / 4τ

, Accumulated approximations
0

τFormation Time Ratios with respect to the exact value 

(a)

1 2 3 4 5 6 7 8 9 10
Splitting

0.6

0.8

1

1.2

1.4

1.6

>
0τ

>
/ <

iτ<

0τ / 1τ
0τ / 2τ
0τ / 3τ
0τ / 4τ

, Isolated approximations0τFormation Time Ratios with respect to the exact value 

(b)

1 2 3 4 5 6 7 8 9 10
Splitting

0.5

1

1.5

2

2.5

3

>
0τ

>
 / 

<
ig τ<

0τ / 2
gτ

0τ / 4
gτ

, Accumulated approximations
0

τFormation Time Ratios with respect to the exact value 

(c)

1 2 3 4 5 6 7 8 9 10
Splitting

0.6

0.8

1

1.2

1.4

1.6

>
0τ

>
 / 

<
ig τ<

0τ / 1
gτ

0τ / 2

g
τ

0τ / 3

g
τ

0τ / 4

g
τ

, Isolated approximations
0

τFormation Time Ratios with respect to the exact value 

(d)

Figure 7: Ratio of the average formation times, with respect to the exact estimate τ0, for a) τ2 and τ4, defined in Eq. (8), b) τ i,
c) τg2 and τg4 , as defined in Eq. (9) and d) τgi . All results are parton-level and the formation times τ i and τgi are defined as those

which contain a single approximation, with i corresponding to the numbers in Eqs. (8) and (9). For instance, τ2 results from only

neglecting terms m2
i /p

2
t,i while keeping the remaining terms intact, like the m2

i in the denominator and τg4 results from simply

taking the energy as that of the hardest final parton.

useful when studying the QGP. However, we face

ourselves with a startling result: formation times in-

side a jet span approximately 12 orders of mag-

nitude in fm/c. Nonetheless, at least for the first

∼ 20 splittings, peak formation times are well de-

fined and most of the distribution is contained in a

smaller span of orders of magnitude. What remains

of the dispersion in the distribution’s bulk is proba-

bly caused by the inclusive nature of the plot.

The span of multiple orders of magnitude is not,

however, so puzzling if we examine the depen-

dences on τ0 = E/m2 for internal partons of the

branching history - the transverse momentum (pt ≈
E/cosh y) covers about 3 orders of magnitudes and

the virtualities range from about ∼ 102 GeV to al-

most real partons (m ≈ 0 GeV). These partons

with negligible virtuality result from recombining a

pair of massless and almost collinear final partons,

thus resulting in disparately large formation times

- see Eq. (7). This is supported by the right hand

side plot in Fig. 8d, where one can clearly sees

that formation times above 104 are only found for

partons separated by ∆R < 10−2, which repre-

sents about 0.01% of the distribution. This im-

plies that most very large formation times are not

even detected in usual calorimeters, which have

a finite angular resolution. Not only this, but, for

QGP studies, any intra-jet activity occurring after

10 fm/c does not influence the plasma-jet interac-

tion. Note that this cut is also neglecting splittings

with τ0 < 10 fm/c, as can be seen in Fig. 8d.

However, such splitting’s subsequent partons, be-

ing collinear, would presumably not be resolved as

separate color charges by the medium (see, e.g.,

minimum resolution length in ([15]).

Moreover, fixing the number of jet splittings (Fig.

9, 10 splittings), reveals that the later splittings are

the ones causing most of the dispersion. In spite

of the clear decrease in dispersion, there is still a

span of about 3 or 4 orders of magnitude which,

presumably, is a consequence of the probabilistic

nature of parton shower generation. Hence, cal-

culations which depend on parton formation times

will always have this associated dispersion. This is

specially relevant in splittings whose distributions

have relevant tails at values of order 10 fm/c, if one
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Figure 8: Ratio of a) the formation times τ0 of partons i and i+1 in each branch, b) absolute times Στ0 of consecutive reclustering
steps i and i−1. The plots are normalized to unit integrals and resulted from data of all generated events. c) Scattering plot for the

formation time of each splitting according to their order in absolute time. d) Scattering plot of the formation time of each splitting

and corresponding ∆R of the subsequent partons.

is working with jet-quenching models with a depen-

dence on parton formation time (e.g. [5]). A very

important observation to make from the plots in Fig.

10 is how the whole line of average formation times

decreases when one increases the jet particle mul-

tiplicity. This suggests that one should select jets

with higher multiplicities in order to be more sensi-

tive to the medium’s initial instants.
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Figure 9: Scattering plot for the formation time of each splitting

according to their absolute time, for a jet with 10 splittings. The

result is parton-level.

5 Main Achievements

In this work, we set out to understand the rele-

vant timescales involved in the space-time evolu-

tion of a jet. The obtained results can be repro-

duced by generating events in the working condi-

tions described in Section 3.

First, one understood that there must be a com-

promise between efficiently capturing most of the

FSR and avoiding to reconstruct ISR in a jet. Con-

sequently, the jet reconstruction radius should not

be increased recklessly. This is particularly impor-

tant because the formation times are sensitive to

the presence of this additional, mostly soft radia-

tion. The usage of grooming techniques would be

relevant in the future.

Following this, we concluded that the seed for-

mation time is the shortest timescale for a jet with

a τ branching history and that it is independent of

the algorithm chosen for reclustering. It is depen-

dent on the efficiency which one captures FSR. We

saw, with parton-level FSR, that by selecting a nar-

rower region of the jet’s pt cosh y while making a

single experimental measurement - the jet’s mass

- one can determine the first splitting’s formation

time with a relative dispersion of, at most, 20% in

our working conditions. Future relevant work may

include studying how first splitting’s formation time

relates to the findings in [7].

We then verified that different reclustering algo-

rithms generate different space-time structures for
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Figure 10: a),b) Average of formation time for each splitting, with errors given by the standard error of the mean (SEM). The jet

multiplicity is fixed in each plot at a) 9 and b) 10 splittings. All results are parton-level.

the same jet. The dissimilarities are most signifi-

cant in early splittings, where the jet’s activity mat-

ters the most with respect to the QGP. It would

be relevant to explore the phase space differences

between algorithms so as to make the space-time

structure algorithm-invariant.

As for the formation time’s kinematic depen-

dences, it was made clear, for the local approach,

that ignoringm2
i results in an overestimation which

can go up to orders of magnitude in a few specific

cases. In the global approach, one turned explicit

that a branching tree’s formation time can be cal-

culated solely through final-state information. Ad-

ditionally, one concluded that it only matters what

final partons belong to the subjet emerging from an

”internal” parton.

Following this, one verified that not only are for-

mation times (τ0 = E/m2) exactly ordered along

the branches of the jet’s tree, but the consecutive

formation times are logarithmically separated. Ad-

ditionally, one concluded that, much like in parton

shower generation, different branches have differ-

ent logarithmic orderings. Finally, we understood

that, because of the large available phase space

for the substructure constituents, formation times

inside a jet span about 12 orders of magnitude.

This dispersion is mostly caused by large forma-

tion times coming from the last splittings in a jet,

which, for the most part, are not detected. Fur-

thermore, the bulk (90%) of the distribution lies in,

approximately, 5 orders of magnitude, a reflection

of the inclusive nature of the results. Fixing the

jet’s multiplicity revealed a very well defined trend

of the mean formation times. Most importantly,

one found, that jets with higher multiplicity tend to

have a greater sensitivity to the medium’s initial

timescales.
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