
SCALEET: A Scalable and Performant
Permissionless Blockchain

João Campos
Instituto Superior Técnico, Universidade de Lisboa

Lisbon, Portugal
joao.costa.campos@tecnico.ulisboa.pt

Abstract—Blockchains, which initially gained attention in
2008 as the underlying technology of Bitcoin, have become one
of the most disruptive technologies of our days, by solving the
problem of transferring the trust originally held by a single
third-party, to a decentralized model where this trust is split
among numerous entities. However, to maintain the disruption
and growth of blockchains, these systems need to ensure the
ability to securely scale out to thousands of participants in an
open-membership setting. The design of the existing deployed
blockchains encodes an implicit dichotomy on the key aspect
of deciding on a total order of the transactions that form
the blockchain: existing deployments have either permissionless
designs that are based on Proof-of-Work (PoW) schemes, or
permissioned designs based on Byzantine Fault Tolerance (BFT)
consensus. In this thesis, we intend to deconstruct this dichotomy
in a principled way. To this end, we present a novel blockchain
design called SCALEET. SCALEET still allows for using PoW,
but leverages representative committees, sharding, and BFT
consensus to move PoW out from the critical path. SCALEET
exhibits high levels of modularity, allowing an easy integration
of newer and more performant BFT algorithms that can be used
as a drop-in replacement. Finally, SCALEET also introduces a
novel and fairer approach for assigning rewards. An evaluation
of our experimental prototype shows that SCALEET can scale
linearly in the number of participants, enabling a throughput
on the order of thousands of Transactions Per Second (tps) and
confirming transactions in a few seconds.

Index Terms—Blockchain, Consensus, Byzantine Fault Toler-
ance, Scalability, Permissionless Setting, Committees, Sharding

I. INTRODUCTION

A blockchain is a decentralized, immutable, replicated,
tamper-evident and tamper-resistant digital log. At its es-
sential level, it provides a set of users with the ability to
record transactions in it. With no centralized or controlling
authority, blockchains have the potential to eliminate inter-
mediaries by replacing them with cryptographically secure
protocols, which results in a peer-to-peer network that guaran-
tees security, transparency and immutability. Thus, this class
of systems, which first gained attention as the underlying
technology of Bitcoin [1], is being increasingly used in favor
of centralized systems that need to rely on a single authority
entity to properly work. Nowadays, Blockchains have a huge
set of applications beyond cryptocurrencies, expanding into
different areas such as voting [2], social media [3] and
government records [4].

One of the key design aspects of any blockchain design is
the mechanism that is used to determine what is the sequence
of transactions (or blocks of transactions) that forms the

blockchain, or, more precisely, the protocols that allow for
incrementally and securely appending a new block to the
end of this chain. In this context, the design of the protocols
that implement this aspect of the system specification needs
to employ a set of mechanisms that are secure against
participants that do not follow the prescribed protocols, and
work even in an open and large-scale environment like the
Internet.

The design of the blockchains that are deployed today
encodes an implicit dichotomy on the above mentioned design
aspect. In particular, existing blockchain deployments can be
split into two groups.

The first group, including systems such as Bitcoin [1],
Repucoin [5] and Btcoin-NG [6], assumes an open mem-
bership (or permissionless) deployment, and uses a design
based on Proof-of-Work (PoW), where all participants can
concurrently attempt to solve cryptographic puzzles in a race
to append transactions. Such schemes are able to cope with
Sybil attacks [7] and offer an easy way to determine which
is the current (longest) blockchain, but suffer from wasting
a lot of energy, having very low throughput and giving
weak guarantees regarding termination. (A recent variant is
a research proposal of using Proof-of-Stake (PoS) [8], but
this suffers from the drawback that the probability of the
richest stakeholders controlling the system can become very
significant.)

The alternative choice in this dichotomy is geared towards
systems with a closed system membership (permissioned
deployments), where it is possible to enforce some form
of access control to the system membership. The deployed
systems of this type resort to Byzantine Fault Tolerance
(BFT) consensus protocols [9], which are the basis for BFT
state machine replication [10], which in turn allows for
implementing arbitrary deterministic services (including the
blockchain specification) in a way that tolerates arbitrary
faults from a subset of the protocol participants. However,
consensus protocols are very complex, involving communi-
cation among all the participating nodes, which makes them
difficult to scale to a large system membership. In addition,
these protocols are normally designed under the assumption
of a static membership, which is not the case in an open
Internet deployment. Finally, this sort of design would not
work in a permissionless setting, since it raises the possibility
of Sybil attacks, where a single entity can have multiple
identities in order to gain control over the system [7].



The goal of this paper is to deconstruct this dichotomy
by demonstrating, in a principled way, that is possible to
build a highly scalable, secure, and performant blockchain
for permissionless deployments. In particular, this is achieved
through an approach that takes existing building blocks from
the security and distributed systems literature, and assembles
them in a judicious and novel way. One of the key insights
behind this design is the fact that it is possible to use both
PoW and BFT consensus, but it is crucial to carefully separate
their use so that PoW is not in critical path of appending
new transactions to the chain, but is still employed in a way
that allows us to extract its key benefits of controlling the
amount of power that each individual machine can have over
the system, and providing a strong cryptographic proof over
the current state of the system.

To achieve this, we propose a novel blockchain system
called SCALEET. SCALEET combines these building blocks in
a novel way, namely by leveraging the use of representatives
committees and sharding, and proposing a reallocation of
PoW, moving it out from the critical path, which allows us to
achieve high performance. Furthermore, given the high level
of modularity in the design of SCALEET, it allows for an easy
integration of newer and more performant BFT algorithms
that can be used as a drop-in replacement. SCALEET also
introduces a novel and fairer approach for assigning rewards.
The experimental evaluation of the prototype of SCALEET
shows that it can achieve much better performance than tradi-
tional PoW-based schemes, measured in terms of throughput
and latency for executing transactions, graceful scalability as
the number of system nodes increases, while also retaining the
benefits of PoW that make it well-suited for open membership
settings.

II. RELATED WORK

Several practical solutions have been proposed over the
years to address the security and scalability issues of
blockchains. We structure our state-of-the-art survey into
two simple but critical components that are common to all
blockchain systems: membership management and the con-
sensus protocol. For each of these, we present the approaches
and techniques chosen by existing systems.

A. Membership Management

The membership management component determines the
set of nodes that participates in each consensus run. We focus
this discussion on permissionless blockchains, given that it is
there that SCALEET wants to fit in. The biggest threat for
selecting the membership under such assumption are Sybil
Attacks [7], where an attacker generates multiple identities,
enhancing the probability of controlling the consensus. To
address this problem, in most cryptocurrencies, incentives
(e.g., some currency) are given to the node(s) that are selected
to manage the consensus run, therefore encouraging the
communities of participants to cooperate and create the value
that will ensure the success of the network.

1) Proof-of-Work: Proof-of-Work (PoW) is a mechanism
that uses the process of solving a puzzle to express the
membership selection. If a node wants to participate in the
consensus run, it must find a solution to a puzzle specific
for that run. This solution should be probabilistically difficult
to discover, but has to be easily verifiable by others. The
nodes that are accepted to participate are not limited as long
as they have provided a correct solution. Bitcoin [1] was
the first blockchain system to adapt and incorporate PoW
in its system, followed later by several other designs [6],
[11]–[13], which makes PoW-based membership selection the
most widely used and known method. In Bitcoin and its
variants, the process of solving a puzzle is called mining
and it is done by special nodes that are called miners. When
a miner decides to make a new proposal, it takes up a
set of transactions that it has received, validates them and
assembles them in a block. Then, the puzzle that it has to
solve succeeds by finding a nonce such that, when the nonce is
concatenated with the block’s bytes, its hash satisfies a given
pre-defined criteria. The properties of cryptographic hashes
make it impossible to speed up the process. An extension to
standard PoW is the one used by J.Yu et al. in RepuCoin,
named Proof-of-Reputation [5]. This type of membership
selection allays the risks associated with the miners ability
to rapidly gain computational power. Therefore, rather than
considering sheer instantaneous mining power, it considers
what the authors called the node’s integrated power. This
new metric is calculated taking into account the total amount
of valid work that the miner has contributed to the system
until that moment as well as its regularity. So, if an attacker
joins the network at time t, even if it has a very strong mining
ability, it would have no integrated power at time t, or even
shortly after, since it did not contribute to the system before t.
Moreover, when a miner deviates from the system’s expected
behavior its reputation will be penalized and hence so will its
integrated power.

2) Proof-of-Stake: Proof-of-Stake replaces the mining
power selection with the node’s capacity of investment, such
as the amount of currency held in the blockchain. The main
idea is that a node that wants to be selected must prove
its share of participation in the system by staking some of
its assets. Therefore, this scheme assigns a weight (seen
as voting power or probability of being chosen) to each
possible participant that is proportional to the currency held
by that node. Safety is guaranteed as long as a weighted
fraction of nodes, 2/3, is honest. With such schemes, the
way of punishing a node, if it is caught misbehaving, is
by withdrawing its stake. There are several variants, namely
deposit based [8] where miners express their willingness to
participate by ”locking” a certain amount of currency that
they possess, which they cannot spend for the duration of their
participation and balance based schemes [14] which are very
similar to deposit based solutions, but the stake is calculated
based on the node’s current account balance.

3) Proof-of-Capacity: In Proof-of-Capacity, the node’s
selection is weighted by their capacity to allocate a non-trivial
amount of disk space, which acts as a proof that a node is



valid. Thus, to increase the probability of being selected, a
node may increase the amount of storage it allocates to the
blockchain system, which entails an assumed cost.

4) Trusted Execution Environment Based: A Trusted Exe-
cution Environment [15] is a secure and isolated environment
of a main processor in which it is guaranteed that code and
data loaded to it are protected with respect to confidentiality
and integrity. In other words, it guarantees that code that is
executed inside it will honestly follow the pre-defined specifi-
cation. TEE-based membership selection relies on hardware to
prove validity and engagement with the network. This validity
through hardware possession is called Proof-of-Ownership.
Members are selected based on the output of a random
function that is run inside its TEE. Therefore, rather than
using hardware to leverage the probability of being selected
by wasting CPU or storage, TEE-based ones place trust on
hardware to randomly determine whether a node is selected.

B. Byzantine Consensus Protocols

The consensus protocol is the component that is responsible
for deciding the next block to be appended to the chain
among a competing set of proposals. Byzantine consensus
is a subject that has been studied for decades and, yet, there
is still an ongoing effort for techniques that can scale it (to
a large extent, driven by the application of this problem to
blockchains). Existing solutions can be divided into two major
groups: the ones following Nakamoto’s consensus and the
ones following classic BFT consensus.

1) Nakamoto’s consensus: Introduced in Bitcoin [1],
Nakamoto’s consensus protocol was the first consensus to be
applied in permissionless blockchains. The main idea behind
it is called the longest chain rule, which is used to solve
transient forks that may happen. This rule states that the
chosen chain must be the longest one, since it is believed
to have the most ”work” performed and hence complying
with the principle that the strict majority of the network is
honest. The concept of Nakamoto’s consensus is commonly
used interchangeably with PoW, because they were proposed
and are typically coupled together, but they do not mean the
same. The latter is a way of choosing the set of nodes that can
append blocks at a given height. Therefore, if PoW were used
alone, there would be no mechanisms for deciding between
blocks in case of concurrent proposals. In fact, Nakamoto’s
consensus can be paired with other selecting membership
algorithms. Nakamoto’s consensus only operates correctly
under a synchronous network, since it requires all nodes to
learn about the latest blocks in order to correctly extend
the main chain. As such, it only provides a probabilistic
consensus when the expected time bounds are exceeded.
This can affect either termination or agreement as there is
a possibility of unseen chains after a certain amount of time
has elapsed. Therefore, it never reaches consensus finality, i.e.
a point in time when one can be sure that consensus has been
achieved. All that can be done is to estimate the probability
that a block is in the final chain. As a result, Nakamoto’s
consensus only guarantees eventual consistency, i.e., during
periods where there are no blocks being proposed, all nodes

will eventually be aware of the updated chain. Otherwise,
during periods where the chain experiences transient forks,
consistency could not be met.

Solutions based on Nakamoto’s consensus exhibit high
latency and low throughput, but can scale well with the
number of nodes in an open Internet environment, since they
only require nodes to choose the longest chain locally to
reach an agreement. As an example, when paired with PoW,
just like what happens with Bitcoin, Nakamoto’s consensus
achieves a planetary scale, but with a transaction throughput
that is currently processing up to 7 tps. In contrast, centralized
payment systems, like Visa and MasterCard are reporting
1, 200 to 56, 000 tps [16], which is three to four orders of
magnitude higher than the one obtained by Bitcoin.

2) Classic Byzantine Fault Tolerance Consensus: An at-
tractive alternative to Nakamoto’s consensus are classic
BFT protocols, which provide strong consistency guarantees.
Strong consistency offers two major benefits to blockchain
systems. First, it ensures near-instantaneous block finality,
which leads to the second advantage, which is that clients
do not need to wait for extend periods of time to be sure that
a submitted transaction was indeed committed. Consequently,
blockchains based on classic BFT protocols are being increas-
ingly adopted.

BFT solutions can achieve higher throughput and lower
latency than schemes based on Nakamoto’s consensus, which
is in conformity with current centralized payment systems.
However, they can have scalability problems when consid-
ered in a permissionless setting. Firstly, the set of eligible
participants that collaborate in blockchain systems is not
fixed, nor predefined. Therefore, the set of replicas and
quorum size that is required for agreement is not constant.
Another main factor that negatively affects scalability is the
typical quadratic number of messages. The first concern is
generally solved by applying one of the membership selection
techniques presented in Section II-A. Regarding scalability,
when the number of participants increases, the proposals
rely on optimizing the standard and well-known Practical
Byzantine Fault Tolerance (PBFT) [17] on a well-defined set
of axes:

• Communication topology: Improving the pattern of com-
munication and distributing the communication load as
evenly as possible makes bottlenecks less likely to appear.
To address this, recent designs use mainly three techniques:
- Rearrange the communication topology in a balanced tree
[13], [18], where the leader is at the root position and
non leaf nodes forward messages to their children. The
reply process is initiated by the leaf nodes in a bottom-
up approach. However, this improved topology can cause
the loss of liveness, since an adversary might control
one or more internal nodes, making the nodes below the
overpowered ones (subtrees) biased. For circumventing this
issue, upon detecting a faulty node, these systems fall-back
to the typical communication pattern (flat communication).
Another approach is taken by Motor [19], which uses a star
of stars to bound the number of retries upon the detection
of a faulty node.



- Relieve the communication effort taken by the leader by
disseminating the messages using gossip [20]. The leader
initiates the sending process by randomly choosing some
of its neighbors to receive the message. At each hop, each
node does the same. However, since this technique makes
use of randomness, it is not guaranteed that, when the nodes
stop the gossip process, all of the nodes needed to receive
the message (i.e., all correct ones) had received it. Thus,
this technique only provides probabilistic guarantees.
- Another probabilistic approach, which was heavily in-
spired by gossip mechanisms, is the use of leaderless
communication. The idea behind it is similar to leader
based gossip communication, but instead of the protocol
being guided by a leader, it is assumed that, at a given
round, the correct nodes have already converged to the same
correct value.

• Cryptographic primitives: Cryptographic Primitives play
a key role on scaling BFT and can be very important in
enabling the efficient functioning of different patterns of
communication, namely Collective Signatures [13], Thresh-
old Encryption [21] and Verifiable random functions [20].

• Representative Committees: Another key idea to scale
consensus is the use of a representative committee. By
choosing a representative committee, we avoid saturating
the network with extra and unnecessary messages [18].

• Parallelization of transactions: If instead of one represen-
tative committee, several were selected, it would be possible
to employ sharding. Sharding is an approach in which
the overall system state is partitioned across committees,
and therefore this leverages the possibility of parallelizing
transactions within and across shards [18].

• Trusted hardware components: Finally, another idea is to
move some costs from the critical path of the protocol to a
trusted hardware. This idea can both be used in membership
selection by providing an unforgeable uniqueness within
the network to counter Sybil attacks and in the consensus
protocol as used in [22]–[24], by providing an efficient way
to conduct several aspects of the protocols by leveraging
hardware support from the TEE.

III. DESIGN

This Section presents the design of our system, laying out
the main goals, the system model and the building blocks that
make up SCALEET.

A. Design Goals

The goal of SCALEET is to show that we can incorporate
classical consensus algorithms in the design of a secure per-
missionless blockchain that can output similar performance
to classical centralized payment systems, such as Visa, while
still supporting existing techniques to contain the power that
a single entity may have over the system, namely PoW and
PoS, and also ensuring that these techniques do not signifi-
cantly interfere with the scalability of the system. Therefore,
SCALEET aims to present the necessary building blocks to
strike a good balance between scalability, open membership
and security.

B. Overall assumptions and model

Next, we present the system model. We divide the set of
assumptions underlying this model according to the different
components of the system.

1) Overall Distributed System Model: A SCALEET deploy-
ment is composed of n nodes that can confirm transactions,
called validators, and by m relay nodes that forward transac-
tions and learn the state of the blockchain from the validators.
There are also c committees which can be seen as a decision
group that agree on a set of commands by running a BFT
consensus-based state machine replication algorithm. All the
validators belong, in a given moment, to a single committee.
Each node is assigned a public/private key pair which is
denoted by (PK,PK−1). Therefore, a node i has been set
up with the pair (PKi, PK−1

i ) and is uniquely identified by
PKi. To enable us to focus on the essential design features
and ease the evaluation of the initial prototype, we made some
simplifying assumptions regarding how system parameters
vary throughout the system lifespan, namely that the number
of committees, the size of each committee and the interval
between committee reconfiguration is fixed throughout the
execution of the system. These assumptions are common [13],
[18] and relatively easy to lift.

2) Cryptography Model: SCALEET rests on the common
cryptographic assumptions, namely that every adversary is
computationally bounded and that cryptographic primitives
such as public-key signatures and hash functions are compu-
tationally secure.

3) Threat Model: SCALEET considers a Byzantine adver-
sary, where Byazantine-faulty nodes can not only simply
crash, but also behave arbitrarily and collude with other
Byzantine nodes to attack the system, i.e., they could ar-
bitrarily delay, insert, drop, re-order and forge messages.
All the non-faulty nodes are considered honest and do not
deviate from the protocol. Our system design includes groups
of cs validators, where we assume the presence of at most
f Byzantine faults, where cs = 3f + 1. Furthermore, we
need to classify the adaptivity of the adversary, which is the
ability of the adversary to corrupt nodes dynamically based
on information that he learns during the system’s lifespan. In
that regard, we assume a mildly era adaptive adversary [18],
which can choose which nodes to corrupt at the start of
each era. This type of adversary is aware of all the decisions
made in all the previous eras and can take actions from that
information. However, once the era begins, the set of actions
are fixed.

4) Network Model: Regarding the underlying network,
SCALEET assumes that all the honest nodes are well con-
nected and can send and receive messages to other honest
nodes. More precisely, we assume that honest nodes are con-
nected through perfect links, which guarantee the properties of
reliable delivery, no duplication and no creation [25]. More-
over, our protocol can keep safety under an asynchronous
network, and as a way to circumvent the FLP impossibility,
we guarantee liveness if the network has partial synchrony,
which is a common assumption.



C. Membership Management

Our design is based on a separation between membership
management and transaction processing, which allows us to
use PoW (or any other Sybil-resistant mechanism) on the
membership management part, thus removing this expensive
component from the performance-sensitive path of transaction
processing. We start our explanation of the system design by
presenting how the system manages its membership. Once
we define a set of abstractions offered by the membership
component, it will become easier to design a set of transaction
processing protocols that build upon those abstractions.

Firstly, it is important to clarify what is meant by member-
ship. Given the system’s permissionless nature, any node can
freely join and leave the network; however, they initially join
the network as relay nodes. In order to be designated as val-
idators and, consequently, distributed among the committees,
relay nodes have to show engagement towards the network.
At each moment in the system execution, the membership
corresponds to all the designated validators at the time.

The system’s lifespan is divided into eras, which span the
time between reconfigurations. The system bootstraps with
a given set of predefined validators, and from then on this
set will change in every reconfiguration. These validators
are also assigned to one of several committees of different
types, namely a single membership committee and a set of
transaction committees. Transaction committees are responsi-
ble for receiving transactions, validating them and appending
them as a part of transaction blocks to their local transaction
chains. In turn, the membership committee is responsible for
receiving membership commitment proofs from relay nodes,
validating them and appending them to a globally shared
chain, called the membership chain. Therefore, during each
era and until the next reconfiguration, SCALEET performs two
parallel jobs: handling registrations for the next era issued
by relay nodes (performed by the membership committee)
and validating transactions (performed by the transaction
committees). By doing such jobs separately and in parallel,
SCALEET achieves one of its main goals, which is decoupling
membership management from transaction validation. This
way, the performance of transaction validation is not affected
by the Sybil resistance technique that is employed.

The membership management can then be divided into
three main phases: the submission of membership commitment
proofs, the creation of membership blocks, and the recon-
figuration of committees. The first two happen in parallel
throughout each era, while the latter happens between eras.

1) Membership commitment proof submission: The mem-
bership commitment proof is the mechanism employed by
SCALEET as a Sybil resistance technique, i.e., it uses com-
mitment proofs to narrow down the probabilities of such
attacks. The commitment proof mechanism leverages PoW
for requiring work from a node during the era previous to the
one it wants to participate in. Per era, a relay node can issue
as many proofs as he desires, with the prospect of increasing
the probability of being chosen. When a node wants to submit
a new proof, it fetches the hash of the latest block from the
membership chain and uses it as seed for PoW. When the

solution is found, the node sends it to the network. Note
that a node cannot predict the PoW seed and, consequently,
cannot perform work ahead of time. This is because the PoW
seed is the hash of the latest membership block appended
to the chain, and therefore, in addition to being random and
unpredictable given the properties of hash functions, it only
becomes known from the moment that block is created and
appended.

2) Creation of membership blocks: When the membership
commitment proof is created and sent to the network, it is
relayed until it reaches the membership committee. Upon
receiving the proof, the committee is responsible for vali-
dating it, packaging it into a block and appending it to the
membership chain. For each received proof, a BFT run among
the committee members is triggered to check if this proof
is valid, i.e., if it took into account the hash of the latest
membership block and if it presents the proper difficulty.
There are two possible paths: either this new block still
belongs to the current era or it is a reconfiguration block. The
actions taken in case of a reconfiguration block are explained
in the next section. Regarding the latter option, this new block
only updates the score of the member that has submitted
the proof. Note that, the members with the highest scores
at the time of the reconfiguration block will be designated as
validators.

3) Membership reconfiguration: In the case where the
new block is a reconfiguration block, it represents a marker
between eras: from this block on, a new era begins. New
validators for the following era will be chosen from the
ones registered in the current era and will be randomly
distributed across the committees, replacing some of the old
validators. In this block the scores are reset and the new
constitution of committees is presented. Both the distribution
of the new validators across the committees and the old
validators that are replaced need to be random, unbiased,
unpredictable and to provide third-party verifiability in order
to make it impossible for a node to choose an assignment that
fits his agenda better. If such properties were not held, one
could control the assignment and increase the probabilities of
overpowering a committee with multiple entities.

To provide those properties, our solution leverages the
randomness of the membership commitment proof itself.
More specifically, we use the hash of the latest membership
block in the chain as seed for the reconfiguration, which
provides the properties that we require, in particular:

• Random: One of the characteristics of hash functions is
their pseudo random nature.

• Unpredictable: Since hash functions are deterministic, we
have to guarantee that the input used is unpredictable. In
our case, the input used for the hash function is the set
of properties of the block being hashed, which include a
membership commitment proof that originates that block.
This previous proof cannot be easily predicted, since it is
a result of a PoW run and furthermore it would be difficult
for the leader to somehow influence this by ignoring
some recently completed proof, since the BFT consensus
protocols include mechanisms, namely a leader change after



Fig. 1: Membership blocks and transaction blocks with com-
mittees.

a timeout, to prevent a situation where a pending operation
does not execute for a long period of time.

• Third-party verifiable: This hash is public and shared
among all the committee members and all the remaining
system nodes.
When a new validator is selected to start at the next epoch,

it needs to find a committee that it will join and an existing
validator from that committee that it will replace. For picking
these, we also leverage the randomness of the membership
commitment proof by using it as seed. In order to find the new
committee for that member the following operation is made:
H(seed‖PK) mod c, where c is the number of committees
and PK the public key of the new validator. The final result
is an integer between 0 and c − 1 that corresponds to the
identification of the committee to which the new validator
will be assigned. The process to find the member to leave is
identical, i.e., instead of computing a value modulo c, we use
modulo cc, where cc is the number of committee members
of that committee. The result is an integer between 0 and
cc−1 and it represents the index of the validator that will be
removed.

After this reconfiguration block has been validated by the
membership committee members, it is relayed across the
network. Upon receiving, validating and appending the new
block to the membership chain, each node updates its state
accordingly.

D. Transaction Validation

The state of the transaction chain is sharded across a
set of multiple transaction committees, which in fact means
that there are multiple transaction chains where each one
accommodates a portion of state. In SCALEET, the state
is partitioned by accounts, i.e., each transaction committee
manages a set of accounts (addresses). Given this, a special
case arises when a transaction is issued from an address
another address that is out of scope of the committee that
handles the source address. In such cases, the transaction
is called an inter-committee transaction (and intra-committee
otherwise). Note that, by doing such partitioning, three im-
portant design features and optimizations are enabled. First,
each possible inter-committee transaction can span, at most,
two shards: the shard that is responsible for the address of
the sender and the shard responsible for the address of the

receiver. This allows for a simplified protocol to ensure the
atomicity of the operation across committees, as detailed
subsequently. Second, this brings in the ability to apply
clustering algorithms, to try to co-locate accounts (i.e., into
the same shards) that have issued more transactions between
each other. Lastly, we can move the responsibility of inter-
committee transaction processing to the committee in charge
of the address of the sender, without the need for a distributed
two-phase-commit, since the validation of the transaction can
be done in the originating shard, as will also become apparent
later. As a result of the use of committees and sharding,
Figure 1 represents both chains. The membership chain is
learned by all the nodes in the system and managed by the
membership committee and then there are multiple transaction
chains that are only learned by the members of the committee
that manage each chain. We next detail the protocol for each
type of transaction.

1) Intra-committee transactions: Every time a given trans-
action is issued, the network has the job to relay it until
it reaches the committee that is responsible for the source
address. The responsible committee for each address can
be found by doing the operation: 1 + (H(sourceaddress)
mod tc). This operation outputs a committee identification
between 1 and tc, where tc is the number of transaction
committees. Recall that the committee identification 0 is
assigned to the membership committee. When the committee
leader receives a request to process a new transaction, it
buffers the request until it reaches a parameter corresponding
to the batch size, i.e., the predefined number of transactions
that each block will accommodate, it creates a new transaction
block with that set of transactions and triggers a BFT run
with this block. After the block is validated by the committee
members, the block becomes final and it is appended to the
committee’s transaction chain.

2) Inter-committee transactions: In the case of inter-
committee transactions, the previous protocol does not suffice,
since, after appending the block, the SCALEETS (SCALEET
cryptocurrency name) will be debited from the source ac-
count, but the committee itself does not have the required
information to credit the destination account. To bridge this
gap, we introduce an inter-committee protocol, which solves
the aforementioned issue in a simple and efficient way. The
algorithm can be divided into two stages: the first in the
coordinator committee (responsible for the source address),
and the second in the target committee (responsible for the
destination address).
In the coordinator committee, upon each transaction block
confirmation, the committee will collectively assemble a proof
in the form of a special transaction for each inter-committee
transaction present in the set of transactions of that block.This
special transaction will be signed by the members of the
source committee, for the target committees to be sure that
the SCALEETS were indeed debited from the source accounts
in the coordinator committee, and can be credited into the
accounts on the corresponding target committee. Finally, each
of the new special transactions is relayed through the network
until it reaches the corresponding target committee. These



special transactions will be eventually received by the target
committees and will be handled as normal transactions. The
only difference is the confirmations needed to be performed
– for a transaction to be valid it just has to have a set of valid
signatures, which assert that it was validated correctly at the
coordinator committee.
This protocol can be categorized as a lazy update protocol
since, for a given inter-committee transaction, there is a
moment when the SCALEETS were already debited from the
source account and not credited to the destination account,
i.e., it is not atomic. In SCALEET, this does not represent a
problem since, from the moment the original transaction is
validated in the coordinator committee, i.e, the SCALEETS
are debited from the source account, the matching special
transaction is on its way to the target committee and will
ensure that these funds will eventually be credited in the
destination account. This way, we avoid freezing the BFT run
on the coordinator committee each time an inter-committee
transaction is validated, which implies that this incurs in
a very small overhead on the performance of the system.
Semantically, this behavior is acceptable since, even though
the concept of atomicity does not apply, the system will
eventually converge to a correct state.

E. Reward Assignment

Until now, we have been assuming that all the transactions
are issued by clients. However, this is not the case when
we consider reward transactions. These rewards can be seen
as an incentive given to validators in order to promote their
commitment to the system and make them continue to behave
honestly towards the network. Issuing rewards becomes an
interesting problem to analyze when each block is validated
by multiple validators, which implies the reward to be splitted
among a set of members, as is the case in SCALEET. Along
this line, SCALEET presents a novel reward assignment mech-
anism that seeks to only reward the committee members that
actually participated in the protocol, and thus avoid rewarding
replicas of the BFT consensus protocol that did not contribute
to the success of the operation.

We therefore have to address the challenge of identifying
who has participated in a block validation. Moreover, even if
we know the nodes that had participated in a given block val-
idation, this information is only acquired a posteriori, which
disallows the possibility of proposing the reward transactions
along with the block proposal to which those rewards refer
to. As a consequence, the reward transactions corresponding
to a given block validation are only going to be validated,
and subsequently assigned to the validators, after the block
they refer to is validated and appended to the chain. The
way that SCALEET addresses this challenge is by having
each committee appending one extra block per era, called a
reward block, as last block of that era. This block will contain
all the reward transactions (one transaction per validator)
corresponding to all block’s validation during the era. The
reward of each block validation is equally divided across all
the validators that have contributed to that validation, which
results in a given share per validator. The total amount of each

reward transaction is calculated by summing up all the shares
earned by a given validator during the era. Note that the goal
of the reward block is to agree on the reward transactions to
be created and not applying the transaction directly since the
destination accounts of reward transactions can be managed
by other committees. Therefore, after this block is agreed and
appended, the transactions present in it are relayed to their
corresponding target committees, where they will be handled
as normal transactions.

Next, we need a way to correctly infer the set of nodes
that deserve a reward in each era. It is clear that we could
not let the committee leader choose the members that receive
rewards (or, for that matter, any other committee member
on its own). However, since most BFT protocols are leader-
driven, we can therefore allow the leader to propose a set
of rewards, provided that this proposal is vouched for by
a sufficient number of other replicas of the BFT protocol.
Thus, we have to find a way to allow this decision to be
verified by the members of the committee. To this end, for
each validated block in an era, each committee member will
create a proof, called reward proof, where it packages the
first 2f + 1 signatures it receives for each phase of the BFT
protocol, then sign it, and send it to the leader. At the end
of an era, the leader has, for each validated block, at least
2f + 1 proofs (3f + 1 minus f possible faulty or slow
nodes), where each proof contains at least 2f +1 signatures.
The rewarded members for each block will then be the
members whose signatures are present in at least f+1 proofs.
Furthermore, since it is the membership chain that controls the
era changes, we require the membership committee to notify
all the committees to produce the reward block, whenever a
reconfiguration initiates. The membership change described in
the reconfiguration block only takes effect on each committee
after that committee has appended the reward block for the
previous era.

Finally, we note that the process described in this Section
can also be applied to assign transaction fees.

F. BFT Protocol
As we explained in the previous Sections, each com-

mittee uses a BFT algorithm to make decisions, namely
to agree whether a block is valid or not. Specifically, we
have implemented in SCALEET a well-known BFT algorithm:
Practical Byzantine Fault Tolerance (PBFT) [17]. Essentially,
it starts with a block proposal from the committee leader and
ends with that block being considered valid or not. If it is
considered valid, a set of valid signatures that prove that the
block was validated is appended to the final protocol message,
making this validation possible to be verified by anyone in
the future. Our choice of using PBFT was not because of
its performance or scalability, since there are other protocols
that appeared as a follow-up to PBFT improving it in that
regard [19]. We chose PBFT because it is a well-studied
representative of the family of BFT consensus protocol. In
fact, SCALEET is developed in a way that it is very easy
to change the algorithm used in favor of others with better
performance or scalability, since all the other components of
the design do not depend on the BFT algorithm.



IV. IMPLEMENTATION

We implemented a SCALEET prototype in Java 8, consisting
of approximately 7, 500 lines of code and, as detailed in the
next section, a baseline implementation equivalent to bitcoin
was also implemented, consisting of approximately 3, 000
lines of code. The SCALEET prototype was developed from
scratch, since the set of modifications needed to be performed
to build SCALEET on top of other known blockchain systems,
such as Bitcoin [1] or Ethereum [11], would be substantial as
they represent a significant departure from their design. This
would complicate a direct experimental comparison to these
systems.

Each node runs as a Spring application1 and can be seen
as a web service that provides a set of publicly accessible
services. The various system nodes communicate and access
each other’s services through REST with the use of the
HTTP stack of suitable actions, mainly with GET and POST
requests. An IP book is currently provided to each node,
listing the IP address and port number for each node’s
public key. In a real deployment, each node could sign this
information and gossip it throughout the network. Regarding
the communication pattern, there are two cases: (1) inside
each committee, it follows an all-to-all pattern, and (2) for
other protocol aspects, each node connects to five random
random other nodes and forwards the message to each of
them. All of this code is publicly available on Github 2.

V. EVALUATION

This Section evaluates our prototype. The main high-level
goal of our evaluation is to measure the performance and
scalability of SCALEET. In this context, scalability can be
measured by varying the number of nodes, whereas perfor-
mance is measured by the throughput (in tps) and latency. In
addition, we will also evaluate some of the system overheads,
namely in terms of its resource consumption (CPU, storage
and bandwidth). Furthermore, it is important to understand
how the answer to these questions varies as we change other
parameters,like the block length, number of committees, size
of committees and the percentage of inter-committee trans-
actions. Finally, we also want to evaluate how the previous
metrics are affected by events outside the common case,
namely a system reconfiguration.

A. Experimental Setup

To gauge the practicality of our design, the prototype
was deployed on our local cluster at INESC-ID/Instituto
Superior Técnico. The cluster consists of 21 machines, each
of which has the following specifications: Intel(R) Xeon(R)
CPU E5506 @ 2.13GHz CPU with 8 cores, 40GB of RAM
and up to 1 Gbps of network throughput. As means of
having more control over the processes and measure the
performance of SCALEET with as many nodes as possible,
a Virtual Machine (VM) with 16 docker containers was
deployed in each machine, totaling a maximum of 336 nodes
when using the entire capacity of the cluster (each docker

1https://spring.io
2https://github.com/jpcc1997/blockchain

container is a node). All the experiments and results presented
throughout this Section are the average of the measurements
taken by all the nodes through 3 runs and based on the
results of the first 1, 000 blocks generated. Each transaction
block contains 2, 000 transactions and in all the remaining
experiments, except in Section V-C the percentage of inter-
committee transitions is fixed to 50%.

B. Number of Validators

Evaluating SCALEET when the the number of validators
increases can be done either by increasing the number of
committees or the size of each committee. Therefore, this
analysis is split into those two alternatives.

0 40 80 120 160 200 240 280 320 360
0

2,000

4,000

6,000

8,000

Number of Validators
T

hr
ou

gh
pu

t
[t

ps
]

SCALEET

0 40 80 120 160 200 240 280 320 360
0

4

8

12

16

20

24

Number of Validators

L
at

en
cy

[s
]

Without Queuing
With Queuing

Fig. 2: Throughput and latency when increasing the number
of committees.

1) Number of Committees: As we can observe in Figure
2, the throughput increases almost linearly with the number
of committees. These results were expected considering that,
in our solution, increasing the number of committees does
not increase much the work done by each committee and
therefore the throughput is expected to double when the
number of committees is doubled. That said, given the way
SCALEET shards the state, when one increases the number
of committees, the number inter-committee transactions will
naturally grow since there are fewer accounts per committee.
This might raise the issue that, by increasing the number of
committees, the communication performed by each commit-
tee also increases; however, as we stated in the beginning of
this Section, we enforce the percentage of inter-committee
transactions to stay the same. Moreover, as we will see, the
presence of more inter-committee transactions does not affect
throughput.

Regarding latency, as we can also observe in Figure 2,
it stays practically constant when increasing the number of
validators and committees. This is related to the way that
we measured latency, since, as we stated earlier, we issue
transactions in batches (with the exact size of each block) only
after the previous block was appended. After this event, we
repeat this test and measure the latency with some transactions
in the queue. This time, we can observe a small decrease in
the latency, most likely due to the increase of sharding. In
other words, if we increase the number of committees, each
committee will hold fewer accounts, and therefore the number
of transactions in the queue for each committee will decrease,
and so will the time for them to be validated (latency).

Note that the reason for the first latency measurement to
be slightly lower when compared with the following ones is



the absence of inter-committee transactions when only one
transaction committee is used.

0 40 80 120 160 200 240 280 320 360
0

1,000

2,000

3,000

4,000

5,000

Number of Validators

T
hr

ou
gh

pu
t

[t
ps

]

SCALEET

0 40 80 120 160 200 240 280 320 360
0

5

10

15

20

25

30

35

40

Number of Validators
L

at
en

cy
[s

]

SCALEET

Fig. 3: Throughput and latency when increasing the commit-
tees’ size.

2) Size of Committees: In this experiment, we fixed the
number of committees while increasing both the number of
validators and the size of each committee. Moreover, note that
the number of tolerated faults increases in each experiment
with the size of each committee, since the protocol requires
that n = 3f + 1, where n is the size of each committee. In
other words, if we have a committee of size n = 7, 16, 25, 40
we can have f possible faulty nodes with f = 2, 5, 8, 13,
respectively.

As we can observe in Figure 3, the latency increases when
we increase the size of each committee. This is related with
the number of messages needed to be exchanged between the
members in each phase of PBFT, specifically the number of
correct messages needed to be received to proceed in each
phase. In each PBFT phase of the protocol each node needs
to wait for 2f +1 messages from correct nodes; therefore, if
f increases, the latency is also expected to increase. Another
relevant aspect worth mentioning, although barely noticeable,
is the progressive decrease of the slope of the line that
joins each pair of consecutive dots. Our explanation for this
effect is that it reflects the progressive decrease, as f goes
up, between the number messages needed to be received
to complete the operation and the total of nodes, i.e., the
proportion between 2f+1 and 3f+1, which has a monotone
decreasing convergence towards 2/3 as f increases.

The decrease in throughput shown also in Figure 3 is a
consequence of what we previously explained: the time to
agree in each new block is higher and since we do not have
concurrent block confirmations (given that the primary replica
of PBFT serializes the request execution) the throughput
decreases.

C. Percentage of Inter-Committee Transactions

In this experiment, we vary the percentage of transaction
that span more than one committee. As depicted in Figure 4,
the results show that throughput has only a small degradation.
The throughput was expected to remain almost constant
since the protocol that handles the communication between
committees when validating inter-committee transactions is
lazy and therefore not on the critical path, i.e., it does not
use lock-and-confirm techniques. This small degradation can
then be explained by the extra work on computing digital
signatures, which need to be performed by the members of

0 10 20 30 40 50 60 70 80 90 100
4,000

4,500

5,000

5,500

6,000

6,500

7,000

Inter-Committee Transactions [%]

T
hr

ou
gh

pu
t

[t
ps

]

SCALEET

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Inter-Committee Transactions [%]

L
at

en
cy

[s
]

SCALEET

Fig. 4: Throughput and latency when increasing the percent-
age of inter-committee transactions.

0 7 16 25 40
0

5

10

15

20

25

30

Size of the Membership Committee

L
at

en
cy

[s
]

25 New Members
50 New Members
75 New Members

Fig. 5: Latency when increasing the size of the committee of
membership, number of committees and size of committees.

the source committees in order to make these transactions
verifiable by the target committees.

Regarding latency, we can also observe in Figure 4 that it
increases when the percentage of inter-committee transactions
increases. This can be explained by the way that inter-
committee transactions are confirmed, namely that they are
confirmed twice, first in the source committee and then in
the target committee.

D. Impact of Reconfiguration

In this experiment, we measure the cost of moving from
an epoch e to an epoch e + 1. First, recall that this process
is not on the critical path, i.e., it occurs concurrently with
the epoch e, and therefore the latency and throughput on
the transaction committees are not affected. In any case, this
experiment measures how long this process takes.

The two factors that can influence the cost of this tran-
sition are the number of new members to distribute across
the committees and the size of the membership committee.
The former happens because the higher the number of new
members, the higher the number of calculations and signa-
tures performed, and the latter because of the same reasons
presented when we discussed the effects of increasing the
committee size in Section V-B2. The results presented in
Figure 5 support the previous arguments, namely since they
show an increase of the latency both when the size of the
membership committee increases and the number of new
members increases.

E. Resource Consumption

1) CPU Usage: The CPU cost of running the SCALEET
prototype is modest, normally within the interval of 30−40%
per machine when running 16 nodes on it.



2) Bandwidth: The size of each block is highly dependent
on the number of transactions and the number of addresses
created in the network (recall that a snapshot of the balances
and nonces for each account is present in each block).
Regarding the transactions, we fixed this number to 2, 000
transactions per block. In terms of the number of accounts
present in each block, each account has an overhead of
0.00077 MBytes. Considering that our setup has 10, 000
accounts, this implies that a block would have 10.5 MBytes.
With a block size of 10.5 MBytes and considering committees
of size 40 (the maximum we tested), each node uses at most
29.11 Mbps. This bandwidth is computed as the total amount
of data sent, divided by the duration of the experiment.

3) Storage Cost: Regarding storage costs, the largest frac-
tion is taken by the blocks themselves: in the example of the
previous paragraph, this is around 10.5 MBytes each. The
unconfirmed transactions that a given node is aware of can
also represent a significant cost in terms of storage, namely
around 0.0014 MBytes per transaction. The remaining costs
are split across the neighbor information and other auxiliary
structures, and they are negligible when compared with the
confirmed and unconfirmed transaction cost.

VI. FUTURE WORK

SCALEET showed promising results; however, it is still an
initial prototype that can be improved in many aspects. We
highlight as important directions for the future the following
points:

• Incorporate parallel transaction validation inside each com-
mittee. This would require the nonces of consecutive trans-
actions from the same account to not be incremental but,
e.g., random. This way we could counter double spending
and enable parallel processing.

• Apply clustering algorithms periodically to approximate
“highly” connected accounts into the same committee.

• Apply techniques to guarantee anti-censorship at the time
of new proposals in each committee.

• Reason about techniques to punish and exclude misbehav-
ing nodes and incorporate them into the design.

VII. CONCLUSIONS

This work presents a novel blockchain design called
SCALEET. SCALEET stands out by presenting high levels
of modularity, thus enabling an easy integration of newer
and more performant BFT algorithms that can be used as a
drop-in replacement. Furthermore, we still enable the use of
PoW, while also avoiding its main negative aspects, namely
by ensuring the absence of forks in both chains. SCALEET
also presents a novel inter-committee transaction protocol
that relaxes atomicity in order to boost performance, while
offering the same transaction properties as other systems.
Finally, SCALEET also introduces a novel and fairer approach
for assigning rewards. Finally, the evaluation shows that
SCALEET can scale-out linearly in the number of validators,
enabling a throughput in the order of thousands of tps and
confirm transactions in the magnitude of seconds.

REFERENCES

[1] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
Journal for General Philosophy of Science, 2008.

[2] Friorik P. Hjalmarsson, Gunnlaugur K. Hreioarsson, Mohammad Ham-
daqa, and Gisli Hjalmtysson. Blockchain-Based E-Voting System. In
IEEE International Conference on Cloud Computing, CLOUD, pages
983–986, 2018.

[3] Steem. https://steem.io.
[4] The Economist. Governments may be big backers of the blockchain.

https://www.economist.com/business/2017/06/01/governments-may-be-
big-backers-of-the-blockchain, 2017.

[5] Jiangshan Yu, David Kozhaya, Jeremie Decouchant, and Paulo Esteves-
Verissimo. RepuCoin: Your Reputation Is Your Power. IEEE Transac-
tions on Computers, 68(8):1225–1237, 2019.

[6] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Robbert Van
Renesse. Bitcoin-ng: A scalable blockchain protocol. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16), pages 45–59, 2016.

[7] John R. Douceur. The sybil attack. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), pages 251–260, 2002.

[8] Jae Kwon. Tendermint : Consensus without mining. 2014.
[9] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine

Generals Problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(3):382–401, 1982.

[10] Fred B. Schneider. Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial. ACM Computing Surveys (CSUR),
22(4):299–319, 1990.

[11] Gavin Wood. Ethereum: a secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper, 151(1):1–32, 2014.

[12] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth
Gilbert, and Prateek Saxena. A secure sharding protocol for open
blockchains. In Proceedings of the ACM Conference on Computer
and Communications Security, pages 17–30, 2016.

[13] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail
Khoffi, Linus Gasser, and Bryan Ford. Enhancing Bitcoin Security
and Performance with Strong Consistency via Collective Signing. 25th
USENIX Security Symposium (USENIX Security 16)., pages 279–296,
2016.

[14] Aggelos Kiayias. PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-
Stake. Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security - CCS’16, 19:1–27, 2017.

[15] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR
Cryptology ePrint Archive, 2016:86, 2016.

[16] Bitcoin. Bitcoin Scalability. https://en.bitcoin.it/wiki/Scalability, 2019.
[17] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance.

Proceedings of the Symposium on Operating System Design and
Implementation, 99:173–186, 1999.

[18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. OmniLedger: A Secure, Scale-Out,
Decentralized Ledger via Sharding. In Proceedings - IEEE Symposium
on Security and Privacy, pages 19–34, 2018.

[19] Eleftherios Kokoris-Kogias. Robust and scalable consensus for sharded
distributed ledgers. Cryptology ePrint Archive, Report 2019/676, 2019.

[20] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and
Nickolai Zeldovich. Algorand: Scaling Byzantine Agreements for
Cryptocurrencies. In SOSP 2017 - Proceedings of the 26th ACM
Symposium on Operating Systems Principles, pages 51–68, 2017.

[21] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song.
The honey badger of bft protocols. pages 31–42, 10 2016.

[22] Hyperledger sawtooth. Hyperledger Sawtooth.
https://Sawtooth.Hyperledger.Org, 2019.

[23] Giuliana Veronese, Miguel Correia, Alysson Bessani, Lau Lung, and
Paulo Verı́ssimo. Efficient byzantine fault-tolerance. Computers, IEEE
Transactions on, 62:16–30, 01 2013.

[24] Rüdiger Kapitza, Johannes Behl, Seyed Vahid Mohammadi, Christian
Cachin, Tobias Distler, Simon Kuhnle, Wolfgang Schröder-Preikschat,
and Klaus Stengel. CheapBFT: Resource-efficient Byzantine fault tol-
erance. In EuroSys’12 - Proceedings of the EuroSys 2012 Conference,
pages 295–308, 2012.

[25] Rachid Guerraoui and André Schiper. The generic consensus service.
IEEE Transactions on Software Engineering, 27:29–41, 2001.


	Introduction
	Related Work
	Membership Management
	Proof-of-Work
	Proof-of-Stake
	Proof-of-Capacity
	Trusted Execution Environment Based

	Byzantine Consensus Protocols
	Nakamoto's consensus
	Classic Byzantine Fault Tolerance Consensus


	Design
	Design Goals
	Overall assumptions and model
	Overall Distributed System Model
	Cryptography Model
	Threat Model
	Network Model

	Membership Management
	Membership commitment proof submission
	Creation of membership blocks
	Membership reconfiguration

	Transaction Validation
	Intra-committee transactions
	Inter-committee transactions

	Reward Assignment
	BFT Protocol

	Implementation
	Evaluation
	Experimental Setup
	Number of Validators
	Number of Committees
	Size of Committees

	Percentage of Inter-Committee Transactions
	Impact of Reconfiguration
	Resource Consumption
	CPU Usage
	Bandwidth
	Storage Cost


	Future Work
	Conclusions
	References

