Publishing and Viewing Data with a Mediawiki
Solution and MVC Architecture

Tiago José Ribeiro Teixeira

Instituto Superior Técnico de Lisboa, Portugal

Keywords: Music - Musicians - Musical Art - Information Systems - Ontologies
- Web

Abstract. This project aims to develop an information system that al-
lows to manage all the information about musicians and professionals
of this type of art, who lived in Portugal, between 1750 and 1985. Cur-
rently, this information is spread over several digital platforms and also
handwritten ones, which does not turn easy the user’s access to it. For
this reason, the primary goal of this project is to create an information
system on the Web that aggregates all the available dataset but preserv-
ing all the existing information in its original shape. In order to create
this information system, an ontology will be built using Wikibase and
Mediawiki technologies. While creating and defining the ontology, two
web applications will be developed, one of which will be assigned to the
management of the ontology and the other to view the data, the task
that will be developed by me as the main focus of my dissertation.

1 Introduction

The historical context of music in Portugal focuses particularly on the pieces
created and developed by portuguese or foreign composers who passed through
Portugal, at some point in their lives. However, there is an evident gap in the
general knowledge regarding musical institutions and the musicians themselves,
both in terms of their personal life and in the way that this personal context
may be related to Portugal. In concrete terms, the motivation for this project
represents a continuous collection over time of a collection of both existing and
new data, about people who had music as their main activity or profession,
in Portugal between the years 1750 and 1985. Such system will bring enormous
social and cultural advantages as it will converge all the dispersed information in
one location only. It will also allow self-correction (the biggest public exposure
will allow a greater and more accurate way of crossing information) and the
creation of a more complete profile for each element, since each database may
contain different and complementary information about the same person.

2 Tiago José Ribeiro Teixeira
2 Related Work

2.1 Wikidata,Wikimedia and Mediawiki

Mediawiki! will be the basis technology of our project. It is a free technology
prepared to install on an online server and to receive millions of accesses per
day. It was developed by the Wikimedia Foundation?. Uses PHP? technology to
process and display data stored in its MySQL* database. Mediawiki has been
optimized to efficiently handle large-scale projects in the order of terabytes and
with hundreds of thousands of accesses per second. This technology is available
in more than 300 languages, with more than 900 different configuration settings
and with the possibility of incorporating more than 1900 extensions that allows
the activation of new functions as also some changes to the existing functions.
One of the extensions that we will use in our project will be Wikidata®. Wiki-
data is essentially characterized by items, each of which is described with a label,
description and one or more alternative names. Statements describe the charac-
teristics of an element through a property and a value. For example, a person
can add a property to indicate where he was educated and set as value the place
where he was educated. In relation to a phsyical location, it’s possible to create
properties for the geographic coordinates, specifying the values of longitude and
latitude. In the domain of our project, we can define a “date of birth” property
that will have as value the date of birth of the musician in question. A property
that links to an external database is called an identifier.

2.2 Mediawiki API

When MediaWiki is installed, it has a REST API that allows managing infor-
mation from the repository through several endpoints. For the development of
the data visualization interface, the API will assume one of the most important
roles in the system, being responsible for all types of information extraction. The
client’s side makes a request for information to the server using the HT'TP pro-
tocol and receives the response in a standard format, usually in JSON® format.
An order consists of an endpoint and a set of parameters that will be used to
filter the information. There are two types of orders that can be placed: GET
and POST. For a GET request, a parameter would be a query string present
in the URL. For a POST order, the parameters are formatted in JSON format
and included in the order. In the query string present in the URL, the ”action”
parameter is added. This parameter tells the API which action to take. The most
popular action is the query (the URL must then contain action = query), which
allows you to extract data from a wiki system. At last, the format parameter is

! https://www.mediawiki.org/

2 https://www.wikimedia.org

3 https://www.php.net

4 https://www.mysqgl.com

® https://www.wikidata.org/

5 https://www.json.org/json-en.html

Ser Musico em Portugal 3

included, which informs the API in which format we want to obtain the results.
The recommended format is JSON.

Controller

Fig. 1. MVC Architecture model diagram

2.3 Django: Web Development framework

Django is a framework for web development using the python programming
language and was created in order to accelerate the development of websites
based on databases. As mentioned in the previous section, ”inside” Django is
the MVC architecture and a set of open source and python programmed libraries.
The motto of this technology is ”Don’t repeat yourself”. Like Python, Django
focuses on inefficiency, allowing the programmer to do almost all the tasks with
minimal code effort. In addition to the advantages already mentioned, Django
is also scalable, robust and fast growing because of the large community of
developers and a robust set of integrated components. You can either access or
create JSON and / or XML data files and handle relational database systems
such as Oracle, MySQL, SQLite and PostgreSQL.[1] In a traditional website, a
web application waits for HT'TP requests from the browser or another ”client”.
When a request is received, the application calculates what needs to be done
based on the URL and, possibly, the information present in the POST or GET
data. Depending on what is needed, the application can read or write information
from a database or perform other tasks to respond to the request. The application
will then return a response to the browser, usually dynamically creating an
HTML page for the browser to display, inserting the data generated in the right
tags of the HTML page.

2.4 Data Management Application

As referred in the previous sections, a data management application was devel-
oped by other student also in his thesis. This aplication aimed to allow to manage

4 Tiago José Ribeiro Teixeira

HTTP URLS
Request > (urls.py)

[
Forward request to
appropriate view

Model read/write View HTTP Response
(models.py) data (views.py) N (HTML)

Template
(<filename=>_html|

Fig. 2. Django application architecture

the ontology information (Mediawiki). As it was an application developed in the
same project, there was an obvious collaboration between us. In the end, this
application could: - Create account and login; - Import item set; - Export item
set; - Create normalized form; - Create View; - Export view; - Manage items
(Delete, Restore and Edit);

3 Problem Analysis and Conceptual Solution

3.1 Requirements

The application will mostly be used by users with few technical skills, so all of
its operations must have a low level of difficulty and complexity to be executed.
After conversations with the researchers involved in the project, they showed
interest in the application projecting the data in attractive graphic elements
such as dynamic geographic maps where all the information with geographic
references can be shown, dynamic tables where the information shown can be
chosen, timelines where dates corresponding to the selected properties can be
shown, and other dynamic ways of visualizing the data. We then assumed that
the application would have to provide enormous versatility with regard to the
visual and aesthetic configuration of the final interface for viewing the views.

Ser Musico em Portugal 5

4 Constraints

The application will extract all the information through the Mediawiki API,
which represents some difficulties since the referring documentation is not the
most complete and some theoretically simple operations represent more com-
plex solutions. The most effective solution for extracting information would be
through a queries execution system directly in our repository, something that is
possible, for example, in the repository that supports Wikipedia 7, but to config-
ure in a local repository like ours there is no concrete documentation on how to
do it. As such, we are limited to the capabilities and operations available through
the API. For operations to which the API cannot correspond, alternative and
more complex solutions, naturally slower and less efficient, had to be developed.

5 Conceptual Solution

A view is a subset of all the objects in the system, where each object is made up
of a set of properties and their values. For example, we can consider as property
”Date of Birth” and its respective value a date that represents the date of birth
of the corresponding object. Views can be created and managed by users of the
system, plus they can be published meaning that each view will have its own
website, which can be shared with anyone. So, if a user wants a website with all
the Italian musicians who arrived in Portugal in a certain period of time, they
can create a View with all the items that match that criterion and then publish
it. When the "owner” of a view decides to publish it, he can define a number of
options regarding its aesthetic presentation on the site, selecting a wide range
of options that ultimately result in the view’s "official site”. The developed
application aims precisely to serve the configuration of the view publication by
defining a visual interface for viewing it. The chosen and idealized solution would
have to correspond to the requirements indicated by the users implementing the
identified use cases. Considering that the total configurability of the application
was a central necessity, the entire solution was developed around this aspect. As
mentioned in the previous chapters, the data is stored in a Mediawiki repository
and all operations and interactions with the data are performed through the
APT built into this system. The creation of ”views”, for later publication, is
done in another application also developed within the scope of this project. It
is also in this data management application that the ”connection” to the view
visualization application is made. Given the level of technical skills of users, this
process must be as easy and accessible as possible.

6 Use Cases

With the specified requirements, the following relevant study cases were defined
for further implementation in the application. All of them are focused on data

" https: // www. wikipedia.org

6 Tiago José Ribeiro Teixeira

visualization elements and their flexibility. They will be accessible to the admin-
istrators of their sub datasets (views).

— Edit names, titles and sub-titles: The view administrator can edit the
title of the view, the sub-title and also the titles of each of the information
sections (Information, Table, Map and Time Graph).

— Choose the properties to be displayed in the table: One of the ap-
plication’s sections is a table where the various properties related to each
object are represented, where each line represents the information related to
an object. The administrator has the possibility to define what properties
he wants to see in the table.

— Edit the display information order: The view administrator can define
the order in which visual elements can appear. For example, you can define
that the table should appear first than the time graph and first than the
map.

— Choose the geographical properties to be projected on a map: Out
of all the properties that are able to be projected on the map, the adminis-
trator can choose the ones that are visible on the map.

— Choose the objects to be projected on the map: Out of all objects
with properties that can be projected on the map, this definition allows you
to choose which ones will actually be shown.

— Choose the color of the geograpgic marker corresponding to each
geographic property of a specific object: From the properties that the
administrator chose to project on the map, he can for each object define a
marker with a different color for each one.

— Choose the objects to be shown on the timeline: This definition allows
you to choose the objects whose related dates will be able to be consulted
in the timeline.

7 Architecture

In our architecture, the Object Controller is made by an implementation of
Mediawiki that will manage and support the Object Repository. All kinds of
additional information such as the views elements or the aesthetic definitions of
each view will be saved in a SQLite database. These elements are coordinated by
the Application Controller. This controller is a Django application that connects
to Mediawiki via HTTP and to the database via an internal API. The application
Controller is also responsible for the interface shown to the user through an
Apache 8 web server.

7.1 Application Controller

The application controller contains all the application logic for both front-end
and back-end. It also contains the graphical interface with which users will in-
teract. This interface is generated dynamically using the information stored in

8 https://www.apache.org

Ser Musico em Portugal 7

2]

Repositério de objetos
(Wikibase)

(]\ APl Interna

2]

Controlo de objetos
(Mediawiki)

?HTI'P
cHl cHl cHl

Controlo de aplicagcéo Servidor Web o) Navegador Web
(Django) O) (Apache) (HTML, CSS, JS)

Sistema de Ficheiros HTTP
$ AP! interna

T

Base de Dados
(SQLite)

2]

Fig. 3. Application Conceptual Architecture

the database and using the Mediawiki repository to extract information about
the view objects.

7.2 Database

The SQLite database is linked to Application Controller via an internal API
and stores all the information about views, from the objects of each view, to the
aesthetic settings of each view. In Django, a model is a Python class where each
column in the database is represented as an attribute of the class. We opted for
the SQLite technology as it is a lightweight database and represented through a
single file, which allows mobility.

7.3 Object Controller and Object Repository

The Object Controller represents a Mediawiki implementation and it’s where
all the properties and values of all the objects are stored. It also allows data
management, but in a more complex way from the user’s perspective. In this
way, this type of management will be more suitable for a system administrator
and not so much for the average user. The main way of interacting with the object

8 Tiago José Ribeiro Teixeira

repository is through the Mediawiki API which provides a set of endpoints to
filter the extracted information.

8 Implementation

In this section, will be described the entire application implementation process.
The main components to be addressed will be the views configuration and the
final interface construction for viewing the views.

8.1 Views configuration

When a user creates a view in the data management application, he is automat-
ically the administrator of the view. Being an administrator, allows the user to
publish the view. When publishing is done, the administrator can define a wide
range of visual options. To store all the information about the style of the view,
a new table was created in the database called ViewStyle in which each column
represents an aesthetic field of the view visualization. As mentioned earlier, in
the Django architecture each table in the database is represented by a class
Model in which its attributes represent the columns of the database. After the
publication, the administrator face a series of choices that he can make in order
to configure the view. He can immediately configure the titles and sub-titles for
both the view and each section of the page.

8.2 Interface Construction

For the construction of the final view visualization interface, the Application
Controller extracts from the database all the settings saved by the administrator,
and applies them to the base HTML page, which serves as the basis for all views.
As a web framework, Django needs a convenient way to generate HTML code
dynamically. The most common approach depends on templates. A template
contains the static parts of the desired HTML output, as well as some special
syntax that describes how dynamic content will be inserted. A Django template
is a text document or Python string marked using Django template language.
Some constructs are recognized and interpreted by the templates mechanism.
The main ones are variables and tags. A model is rendered with a context, in
the form of a Python dictionary, which contains the information that will replace
the variables present in the template with the values due. The first step taken
by the application to build the interface, starts by extracting an array from the
database with the id’s of the objects belonging to the view in question. After
extracting the id’s, the application will make a request HTTP to the Mediawiki
APT and receive a response in JSON format that contains all the properties and
the respectives values, as well as possible qualifiers if they exist. The next step
is to iterate the JSON response and for each object keep the values of each main
property in Python dictionaries and if there are qualifiers, they are also saved
in the same way. In the process of creating the dictionaries, there is a special

Ser Musico em Portugal 9

filtering if the data is a date or a geographical coordinate. For these two types
of data, the set <Property >: <Value >is stored in a separate structure so that
later in the template these two dictionaries are displayed in specific structures
as they are a map and a time graph.

MAPA

57 g TN f Y Gandra
s \Sao Mamede, 2 ! \

+ /ﬁ o,
\ -, = ; Valongo
o o Sl Senhora da delifeswod } fal \ \
- 7 { / N \
| Morada (coordenadas): Anténio Fernandes da Silva Rio'Tinto N 2N
\ Passos Y A\(heemee <2
\ 4 \
7 AGoar = Ramatts ~ e () * serade X
e S S b ¢ Fanzeres Santausta N
Nevogilde b AN
g i b] N2 157 ~m—
g] 3
f ¥ Eha
lmge\uuu Cedofeita Gampinna o Recar
uro Bonfim
> o %o gorim 4 Sia b
p: S, -) X da Cova
N $30 Pedro = cenyro Metorico) 4 o
da Afurada. ek 7 J Gondomar WA
/ 4, Valbom X i
Vila NGva de 7 6
]
> Gaia Agiar de Sousa
Canidelo.) =
ER 108
I
(I s Gens
Loe® Mafamude Jovim
[=
Madalenay Vilar do Paraiso Avintes

\ 3 Vilar de Andorinho, Covelo 15
5 : Foz do Sousa

Gulpilhares
| Leaflet | © OpenStreetiap contributors,

Fig. 4. Example of the map in the application.

8.3 MediaWiki and Wikibase Integration

To communicate with the Mediawiki API we mostly used the Python library
Wikibase-api ?. By default this library makes requests to Wikidata’s endpoint
but allows us to indicate the URL of our repository as a default. For each type of
information, there is a specific format in Wikibase systems. Through the official
documentation, it was possible to understand which formats the Wikibase system
supports, mainly in the more abstract data types such as dates and geographical
coordinates. Ordinary strings do not need any special treatment.

9 Stabilization of the Data Management Application

I will present in this section the fixes that were made in the data management
application.

9 https://wikibase-api.readthedocs.io/ /downloads/en/latest /pdf/

10 Tiago José Ribeiro Teixeira

lPréximo

Fig. 5. Example of the timeline in the application.

9.1 Exporting data by any kind of form

One of the features that was implemented was the option for users to be able
to export data using any form that already exists in the system. Until now they
could only export using the same standard format that the system allowed, with
no flexibility for the user to export using another form (preferably imported by
you) present in the system.

9.2 Fixing data import action

In the first attempts to import real data, some errors prevented the right im-
portation to succeed. All errors were associated with the type of data present
in the xlsx file. If a column in the table referred to a date, excel automatically
changed the data type of that column to ”date” and with integer numbers the
same thing happened, but in this case it changed to the type "number”. All data
that was not in "text” or ”general” format, the application could not read them,
resulting in the application malfunctioning. Bearing in mind that excel assumes
these types of data automatically, it did not make sense to instill in users the
responsibility of constantly checking the types of data present in the file, for
each column. Thus, the changes to be made would have to be at the application
level so that the import process was as robust as possible. In this sense, after
a complex analysis of the functional code responsible for importing the data,
and after several debugs, it was possible to make this process independent of the
type of data imported and, consequently, it was possible to import a first block
of the actual data provided.

Ser Musico em Portugal 11

10 Evaluation

10.1 Methodology

The tests consisted of the following steps: Introduction - In this step, users
were explained the purpose of the session and in what context it was inserted;
Performing tasks - In this step, users performed the tasks described in the
form and also answer three simple questions about the task they just completed;
General Appreciation - In this step, after the execution of all the tasks, the
users were invited to write a general appreciation about the application.

10.2 Results

In this section, the results of the tests with the users will be presented. The
evaluation had 7 users, mostly people involved in the Profmus project. At the
end of each task, each user replied if he completed the task successfully and
indicated the level of difficulty in executing the task where: 1 — Extremely Hard,
2 - Hard, 3 — Relatively Hard, 4 - Moderate, 5 — Relatively Easy, 6 - Easy and
7 - Extremely Easy. The following table will show, for each user, the level of
difficulty they reported for each task.

Table 1. User evaluation for each task

T1 |T2| T3 |T4|T5|T6| T7 | T8 | T9 |T10/T11|T12|T13
User1 | 7 |7 |7 |7|7\7| 7 |7 |7 |7 |7 /|7/|7
User2 | 7 |7 |7 |7|7|7| 7|7 |7 |7 |7|7|7
User3| 7 |77 |7|7|7| 7|6 |6|7]|5 |67
User4| 6 |76 |7|7|7] 6|6 |6 |5 |7 |47
User 5| 7 |7 |7 |7|7|7| 7|7 |7 |7 |7|7|7
User6 | 7 |77 |7|7\7| 7 |7 |7 |7 |7 |7/|7
Average|6.83| 7 (6.83| 7 | 7| 7 [6.83]6.66/6.66(6.66(6.66|6.33| 7

10.3 Discussion

Analyzing the results, it is easily noticeable that in general users performed all
tasks easily. Tasks 8,9,10,11 and 12 were the ones that offered the less easiest
execution in the users’ perspective. The others were globally identified as ex-
tremely easy to execute. Next, the general comments made by all users at the
end of the test sessions will be presented. Each of these comments includes opin-
ions and suggestions about each task. It also includes a general opinion on the
application and recommendations for the future. In general, the results of the
tests were quite positive, resulting only in a few suggestions that aim to further

12 Tiago José Ribeiro Teixeira

improve the functionality of the application. It is important to report that none
of the users suggested significant changes to the application manual. Overall,
everyone found the application very intuitive and easy to use, and some of the
difficulties that arose were quickly mitigated with a quick consultation of the
user manual.

11 Conclusions

Being part of the Profmus project allows a real perception of the void that exists
in the search and maintenance of the historical domain of music in Portugal. At
the same time that we realize the cultural wealth that our country contains,
we also realize that this wealth is not always well used and esteemed. The ideal
solution was to group all the information collected in a single information system.
The first steps were taken with the collaboration of another student, in the
elaboration of his final master’s thesis. He was responsible for coordinating the
collection of information even though this process is progressive over time and
for developing an application responsible for managing the information collected.
At the end of his thesis, the application he developed was responsible for all
direct actions on the data, such as importing, exporting, deleting, etc. One of
the actions also available is the creation and management of views, which are
subgroups of information. For example, a user can create a view that contains all
the musicians who were born in 1800. The final objective of these views is their
publication, which involves creating a website for viewing the data contained in
it. One of the requirements initially defined is that the administrator of a view
(who created it) can define the visual and graphic characteristics of the ”site”
of his view. This thesis focuses precisely on the development of the application
responsible for publishing these elements. During a first stable version of the
application, several tests were done with some of the project researchers, where
they performed a set of tasks and in the end were able to give a general opinion
of the application, giving (or not) suggestions for improving the application. The
users feedback was very positive. All tasks were performed successfully and in
general most tasks were considered ”easy” or "very easy” to do. The application
was also considered intuitive and simple to handle. Of all the comments made in
the scope of the tests, I highlight the importance of two in specific, made by two of
the main coordinators of the Profmus project. The compliments and suggestions
included in these two comments, conveyed a great degree of satisfaction and a
sense of accomplishment.

References

1. Indonesian Association for Pattern Recognition. International Conference (1st : 2018
: Tangerang, 1., Universitas Bina Nusantara, Institute of Electrical and Electronics
Engineers. Indonesia Section., Institute of Electrical and Electronics Engineers. In-
donesia Section. Computer Society Chapter., Institute of Electrical and Electronics
Engineers: The 1st 2018 Indonesian Association for Pattern Recognition Interna-
tional Conference (INAPR) (1), 218-222 (2018)

