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Abstract
With the growth of cloud computing, data centers are increasingly being used to host applications and

data of external companies. As such, data center companies must guarantee that the services hosted

in their data centers are available most of the time with minimum latency. Nonetheless, failures in the

services offered by data centers lead to the loss of revenue of clients and consequent reimbursements

from data center companies. We studied how a data center network with hundreds of thousands of

servers can be built to minimize the impact of link failures and, at the same time, its cost.

We assumed data centers use folded Clos topologies and implement the Border Gateway Protocol.

We identified the characteristics of the different switches used in data center networks and estimated

their cost with the main goal of comparing the acquisition cost of switches of different topologies. We

analyzed, through mathematical expressions and algorithmic computations, the impact of link failures

in the connectivity between pairs of servers and between the servers and the Internet. We studied the

cost also considering traffic and the congestion in links in the presence of link failures. To do this, we

assumed traffic patterns of three applications: distributed applications with communications only internal

to the data center, search engines and streaming services. Finally, we were able to provide answers on

how to build the minimum cost network that provides the availability of services offered by data centers.
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Resumo
Com o crescimento da computação na cloud, os centros de dados são cada vez mais escolhidos para

alojar as aplicações e dados de empresas externas. Dado isto, os centros de dados têm de garantir

que os serviços alojados estão disponı́veis a maior parte do tempo e com a mı́nima latência. No

entanto, falhas nos serviços oferecidos por centros de dados levam à perda de rendimentos dos clientes

e, consequentemente, a reembolsos por parte das empresas de centros de dados. Neste trabalho,

estudámos como construir uma rede de centro de dados com centenas de milhares de servidores que

minimize o impacto de falhas nas ligações e, simultaneamente, o custo.

Assumimos que os centros de dados usam topologias de Clos dobradas e implementam o Border

Gateway Protocol. Identificámos as caracterı́sticas dos diferentes comutadores utilizados em redes

de centros de dados e estimámos o seu custo, com o objetivo de comparar custos de aquisição de

comutadores de diferentes topologias. Analisámos, através de expressões matemáticas e computações

algorı́tmicas, o impacto de falhas em ligações na conectividade entre pares de servidores e entre os

servidores e a Internet. Estudámos o custo considerando também o tráfego e a congestão de ligações

quando ocorrem falhas em ligações. Para isto, assumimos padrões de tráfego de três aplicações:

aplicações distribuı́das com comunicação interna ao centro de dados, motores de busca e serviços de

streaming. Finalmente, foi possı́vel retirar conclusões sobre como construir a rede de menor custo que

cumpra os valores de disponibilidade de serviços de um centro de dados.

Palavras Chave

Centro de dados, disponibilidade, custo, topologia de rede
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Chapter 1

Introduction

1.1 Motivation

Data centers comprise hundreds of thousands of servers interconnected by thousands of routers in a

single network [4]. Although data centers may be used to house resources of the owning company, the

data centers we focus on are used to lease resources, in the form of, for example, data storage, virtual

machines and full servers, to external clients. This model is known as cloud computing [5] and it is

used by private costumers and companies. Therefore, each data center may house a large number of

different applications: machine learning models that can take days to train [6], websites of enterprises,

online stores, search engines, streaming services, etc...

There are multiple advantages for companies to choose data centers to host their applications in-

stead of having their own servers. Firstly, building a data center is an investment of millions of dollars [7]

and most companies do not have this much money upfront so it is simpler to monthly, or annually, pay

to have their resources on external data centers. Secondly, the responsibility of hardware management,

which includes not only the server components but also the network, cooling equipment, and also real

estate management, is transferred to data center companies. And finally, when the use of resources

varies greatly, it is easier to scale up and down the resources when using data centers. For example,

if an external company sees a big surge of traffic to its website due to a promotion, it can more easily

scale the number of servers handling the requests when it uses a data center. There is also the model

of “pay as you go” in which a client only pays when resources are effectively being used, such as when

a machine learning model is being trained.

However, when there are failures in data centers, which may result in delays or unavailability, that is,

resources are unreachable, clients that use data centers to host their resources lose revenue. For ex-

ample, a study [8] found that, for Amazon, an increase in latency of 100 ms resulted in a loss revenue of

1%. Google also studied how the increasing loading times of mobile pages is associated with bouncing,

which occurs when people abandon the site before it is fully loaded, and discovered that, for example, if

the loading time of a page grows from 1 s to 5 s, the probability of bouncing increases 90% [9].

In order to protect themselves, clients that use data centers to host their services sign agreements,

called Service-Level Agreements (SLAs), with the owning companies. SLAs define the reimbursements
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made by data center companies as a function of loss of availability and extended delay. When availabil-

ity falls below or delays rise above the thresholds defined in SLAs, data center companies are required

to reimburse clients in, generally, a percentage of what the client paid for the service [10–12]. Since

each service has a different definition of availability and delay, each client signs SLAs in function of the

services it uses. For example, Microsoft Azure guarantees availability for virtual machines, defined by

the percentage of time that these virtual machines can be reached from outside the data center [10].

However, it guarantees not only availability but also a maximum upper bound on processing latency for

the database service Azure Cosmos DB. In this case, availability is defined by the percentage of suc-

cessful Read Requests and the upper bound on processing latency is defined for each type of operation

in the database [11].

Since delays and unavailability can cause a significant loss in revenue, SLAs have demanding char-

acteristics. For example, Azure guarantees that, when there are two instances of a virtual machine in

different data centers, the client can access at least one instance 99.99% of the time in a month. It

should be noted that this value of minimum availability translates to a downtime of, at most, 4 minutes.

If, however, there are failures that result in a bigger downtime, then they will reimburse 10% of what the

client paid by the service [10]. And, if machines are reachable less than 95% of the time, that is, are

unavailable for more than 36 hours in a month, the service is paid back in full. Therefore, when there

are failures in data centers, not only do clients lose money but data center companies lose as well, in

addition to being detrimental to their reputation and make them lose actual and prospective clients. For

example, when failures cause an outage, the number of companies affected is so large that it causes a

disruption on the Internet and raises the attention of the news.

With the growth of cloud computing, new data centers are being constructed [7], especially in

metropolitan areas to minimize latency between the data center and clients, and companies have even

started building multiple data centers in the same metropolitan region, which are all interconnected and

only tens of kilometers apart [13]. Thus, the competitiveness between companies to deliver the most

reliable services to clients at attractive prices is increasing. However, data centers have hundreds of

thousands of routers and there are, consequently, acquisition expenses (Capex) that amount to hun-

dreds of millions of dollars [7] distributed by servers, routers, cabling, infrastructure, power and cooling

equipment, real estate, etc... In addition, there are also operational expenses (Opex), such as mainte-

nance personnel and power usage. Therefore, how can we minimize the cost of data centers while, at

the same time, minimize the impact of failures and consequent violation of SLAs?

In this work, we focus on minimizing the cost of data centers for availabilities usually specified in

SLAs. To do this, we study the topology of the network, that is, how servers are connected to each other

and to the endpoints external to the data center, and the routing protocol, which determines the paths

used to connect endpoints and how the traffic is distributed across these paths.
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In order to minimize the impact of link failures, we want to have many redundant paths between a pair

of endpoints to choose from. Additionally, we also want low latency, that is, the amount of time it takes for

the first packet sent from a server to arrive at the destination, as it has an impact on performance [14].

Therefore, we want a high number of shortest and disjoint paths. In this work, we analyze folded Clos

topologies, which are implemented in many data centers [15,16]. These topologies offer many shortest

and disjoint paths while easing the layout of cable.

After defining the topology of the network, we still need to implement a routing protocol to elect the

shortest paths between a pair of endpoints and, ideally, to distribute the traffic equally through all of the

shortest paths available in order to increase bandwidth usage. Border Gateway Protocol (BGP) is a well-

defined protocol, has been in use for decades and, consequently, is implemented in routers available in

the market and there are people experienced in it, which allows saving money. Additionally, it is already

implemented in data centers [16] and, consequently, we chose it as the routing protocol used in our

work.

We study two different aspects that have an impact on the availability of a network: link failures and

congestion. In the case of link failures, we assume independent failures. Since there is a multitude

of applications running in a data center and, consequently, different types of availability, we analyze

the connectivity between pairs of servers and between the servers and the Internet. The connection

between servers can be of higher importance in, for example, distributed applications, while the connec-

tion to the Internet is more important when accessing virtual machines, web pages, and so on. By doing

this, we are able to have an approximation of the availability in the presence of link failures.

We determine the percentage of pairs of servers that are able to connect with each other and the

percentage of servers that can connect with the Internet in order to obtain an approximated value of

average availability. It should be noted, however, that reimbursement in accordance to the availabilities

defined in SLAs is not linear. For example, having an average availability of 99% because one machine

has 100% of availability and another has 98% is not the same as having two machines with 99% of

availability. If we defined a threshold at 99%, in the first case the data center would have to reimburse

the client of the machine with 98% of availability but would not have to reimburse any clients in the

second case, even though both networks have the same average availability.

In terms of congestion in the links of the network, we assume traffic patterns of three well-known

applications: High-Performance Computing (HPC), characterized by distributed applications with traffic

only between the servers of the data center; search engines, where we assumed 80% of the traffic is

between servers internal to the data center and the remaining 20% between the servers and the Internet;

and finally, a streaming service pattern, in which all the servers send 80% of the traffic to the Internet

and the remaining 20% to other servers of the data center. We assume an equal distribution of traffic

flows by every path.
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1.2 Goals

Our main goal in this work is to give answers to a high-level problem, which is to determine the data

center with the lowest acquisition cost (Capex) and/or operational cost (Opex), given the following inputs:

1. Number of target servers in a data center.

2. Cost of network equipment, which is composed of routers and cables.

3. Link failure model, represented by a probability of a link failure.

4. Availability target of the service provided by data centers, as specified in SLAs, which we represent

by the probability of existence of a non-congestioned path between servers and between servers

and external endpoints.

In this work, we assume that the network topology is a 3-tier folded Clos network and that BGP is the

routing protocol used. Additionally, we provide the following options:

• Exclusive use of shortest paths or additional use of non-shortest paths.

• Exclusive use of simple links or use of parallel links.

In order to fulfill our main goal, we have the following partial goals:

1. Determine the cost of a network in terms of routers. By determining what characteristics, such as

memory size and number of ports, each router should have in the network, we are able to estimate

an acquisition cost of routers in a network.

2. Compute the cost of the best network in terms of number of servers and the capacity of each link

by using a program that generates all topologies.

3. Determine mathematical expressions that provide the probability of connectivity between end-

points, that is, between internal servers or between the data center and the Internet, in terms of

the probability of a link failure. We also aim to identify the critical links in the network, that is, the

type of links that have a larger impact in the availability of the network.

4. Identify how to increase connectivity by determining the topology and routing protocol configuration

that maximizes it, using both mathematical expressions and algorithmic computations.

5. Analyze the congestion of the network in the presence of link failures for assumed traffic patterns

of well-known applications in data centers.
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1.3 Outline

This document is structured as follows:

• In chapter 2, we present the state of the art in data center networks. We begin by describing the

physical structure most commonly used, namely folded Clos topologies, and its characteristics.

Then, we provide a brief explanation of BGP and its configuration in data center networks.

• In chapter 3, we analyze the cost of data center networks without taking into account link failures.

We break down the acquisition and operational cost of routers in data center networks by identify-

ing the cost and power used of the different routers in the network. We calculate the cost of routers

of different topologies and show how the cost of a network varies with the number of servers and

with different link and port capacities. We analyze how parallel links between routers can help

diminish the overall cost of the network.

• In chapter 4, we present mathematical expressions for the probability of connectivity between

endpoints in terms of the probability of link failures. Then, we study the cost of data center networks

in terms of connectivity between servers, and between servers and the Internet, in the presence of

link failures. We determine how the number of paths decreases with the probability of link failures

and present expressions that allow an estimation of the number of entries in the routing tables of

the different routers in the network.

• In chapter 5, we analyze the congestion in the network in the presence of link failures by applying

traffic to different topologies. We assume traffic patterns of three well-known applications in data

centers: HPC, with communication only internal to the data center, search engines, with queries

and replies, and streaming services. We assume that traffic flows are equally distributed by every

shortest path available between a pair of endpoints.

• In chapter 6, we detail an emulation of a small folded Clos topology and the configuration of BGP

to verify some of our results.

• Finally, in chapter 7, we present the main results and proposals for future work.
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Chapter 2

An overview of data center networks
We start with a brief overview of the most common network topology and routing protocol used in data

centers.

2.1 Clos network topology

Most data centers receive requests external to the data center. However, the way these requests are

processed differs greatly with the service provided. For example, search engines, such as Google

Search [17] and Bing [18], are distributed applications that work in the following way: a server receives

a request from a user in the Internet and then, due to the complexity of the task, distributes it by multiple

servers. Afterwards, all of these servers send the relevant data to the first server so that it can, finally,

reply to the user. We can conclude from this example that in distributed applications most of the traffic

occurs inside the data center and, as a consequence, server-to-server connections should be highly

fault tolerant so that, even if a path becomes unavailable because of a link failure, servers are able to

connect through another path.

However, in streaming services, for example, the traffic flow is very different. With platforms such as

Netflix, a single server can handle the request without having to share the load with other servers. In

this case, most of the traffic goes from the data center to the Internet and, consequently, each server

should have many redundant paths to reach the Internet.

In the case of cloud computing, data centers provide services to external companies and private

clients and have to reimburse them, in accordance to the SLAs signed, if there are failures that cause

unavailability, such as when services are unreachable, or an increase in latency. These SLAs have

demanding characteristics. For example, Azure guarantees that, when there are two instances of a

virtual machine, the client can access at least one of them 99.99% of the time in a month [10], which

translates to an unavailability of, at most, 4 minutes. In this case, the reimbursement is of 10% of what

the client paid for the service but, for lower values of availability, such as below 95%, the service is paid

back in full.

Therefore, data center companies want to minimize the risk of unavailability. One way to do this

is, as previously mentioned, to have many redundant paths. So far, Microsoft [19], Google [20], and

Facebook [1] data centers are using extensions of Clos topologies. As we will see further on, Clos
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topologies can be designed to provide a high number of shortest disjoint paths between pairs of servers

and between the data center and external endpoints. Additionally, its modular and repetitive structure

simplifies the physical implementation of the network.

Introduction to Clos networks

A three-stage Clos network can be seen in figure 2.1, with r input routers, m middle routers, and r

output routers. Each input router has n inputs and m outputs and each output router has m inputs and

n outputs. The middle router has one input per input router and one output per output router, for a total

of r inputs and r outputs.

There are two important properties that, depending on the number of input, middle, and output

routers, Clos networks may have, which are:

• A strictly non-blocking network means it is always possible to connect a free input port to a free

output port, no matter the actual state of connections. A Clos network is strictly non-blocking if and

only if m ≥ 2× n− 1.

• A rearrangeable non-blocking network means it is always possible to connect a free input port

to a free output port but there may be the need to “re-arrange”, i.e. change the path, of current

connections. This is the case for Clos networks if and only if m ≥ n.

It should be noted, however, that these properties assume that the load-balancing in the network is

perfect, that is, each traffic flow follows a different path, which may not actually occur.

Figure 2.1: A three-stage Clos network.

Clos networks in data centers

In data centers, we want routers that send information not just in one direction but in both, which happens

in fat-trees. A fat-tree, depicted in figure 2.2, is a tree where each node represents a set of routers
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and, at every node, the number of downlinks is the same as the number of uplinks, and all links are

bidirectional. Consequently, the number of ports used in a node doubles at every level from bottom to

top. In order to obtain, from Clos topologies, a network equivalent to a fat-tree, it is possible to fold them,

resulting in folded Clos topologies. In folded Clos topologies the input routers are also output routers

and, consequently, with bidirectional links, the inputs are the same as the outputs.

Figure 2.2: An example of a fat-tree.

In the simplest form of a folded Clos network, a 2-tier folded Clos network, shown in figure 2.3(a), the

servers mounted inside a rack connect to a router called T0. The T0s of the network make the bottom-tier

of this architecture and every one of them connects to every router in the adjacent top-tier, designated

T1s. T0s are also called Top of Racks (ToRs) due to being placed at the top of rack cabinets, as depicted

in figure 2.3(b). However, to minimize the average cable length connecting servers to the ToR, today

they are more commonly placed in the middle of the cabinet.

(a) A 2-tier folded Clos network. (b) Example of server racks in a Google
data center. Taken from [21].

Figure 2.3: A 2-tier folded Clos network and server racks inside a Google data center.

This network provides redundancy, i.e. there are multiple paths between every pair of servers. For

example, with Tij representing a router in tier i and position j, if a server attached to T01 wants to
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connect to a server in T04, it has multiple paths to choose from: T01 - T11 - T04, and T01 - T12 - T04, etc...

Therefore, if, for example, there is a single link failure, the server will still have an alternative path to

reconnect.

In order to reduce costs, while keeping in mind that not all servers are communicating at the same

time, some companies began using oversubscription in the ToRs. If every port of a router provides the

same capacity, oversubscription occurs when the number of ports connecting to the lower tier (down-

links), which are in this case servers, is bigger than the number of ports connecting to the upper tier

(uplinks), composed of T1s, thus providing different values of bandwidth to the upper and lower tier. The

oversubscription factor represents the relationship, at each router, between the bandwidth available to

the lower tier and to the upper tier and it is common to all routers of the same tier:

oversubscription =
bandwidth available to the lower tier
bandwidth available to the upper tier

. (2.1)

For example, a ToR that has an oversubscription of 5:1 with every link providing 40 Gbps translates

to a maximum of 8 Gbps per server (40 Gbps / 5), if all servers are trying to communicate with servers

of another rack. Equivalently, an oversubscription of 5:1 in ToRs means that each ToR connects to 5

servers for each connection to a T1.

After introducing the definition of oversubscription, it is also important to present a way to evaluate

the bandwidth in the whole network. A metric commonly used is the bisection bandwidth: when we

divide the network in two halves, each one with the same number of servers, the bisection bandwidth is

the minimum bandwidth available between these two halves [7,22].

Returning to the analysis of the 2-tier folded Clos network, we can conclude that it is limited in

terms of scalability. If the number of servers keeps increasing, there will come a time when routers

will have no ports left to connect. For example, even if both T0 and T1 routers have 128 ports, without

oversubscription, each T0 can connect to 128
2 = 64 servers and to 64 T1s. Then, since each T1 has 128

ports, each T1 can connect to 128 T0s and the maximum number of servers supported is 128
2 × 128 =

8192. Even if there is oversubscription, i.e., a T0 connects to a greater number of servers than T1s, the

maximum number of servers supported will still not be big enough for data centers that need hundreds

of thousands of servers.

In order to deal with the aforementioned problem, another tier was added to the network, leading to

the 3-tier folded Clos network, as in figure 2.4. The routers from the bottom tier are, once again, called

T0s and the ones from the second and third tier are designated T1s and T2s, respectively.

In this network, the T0s and T1s are grouped in clusters, and each cluster is, consequently, a 2-tier

folded Clos network in itself, and the T2s provide the connection between clusters, allowing a bigger

number of servers in the data center. The T2s are grouped in spine planes and the first T1 of each

cluster connects to all the T2s of the first spine plane, the second T1 of each cluster connects to all the
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Figure 2.4: A 3-tier folded Clos network.

T2s of the second spine plane, and so on. Thus, servers from a cluster can connect to servers of another

cluster with paths of the form T0 - T1 - T2 - T1 - T0.

Alternatively, we can separate T2s by their position on the spine plane. In this case, the first T2s of

each spine plane are grouped in what is called a spine set and, consequently, there are as many spine

sets as T2s in a spine plane.

The additional tier of the folded Clos network continues to provide redundant paths between servers.

A T0 has many T1s to choose from inside a cluster and each T1 is also connected to many T2s. However,

as we will see in section 4.2, the number of disjoint paths, i.e. paths that do not share any link, is limited

by the lower tier.

A 3-tier folded Clos network scales better than the 2-tier network. Treating clusters as a base unit, if

we want more computing capacity, i.e. servers, we just need to add clusters and, if we need to increase

the inter-cluster capacity, we add more routers in each spine plane. However, the maximum number of

clusters and, consequently, the number of servers, continues to be limited by the number of ports of T2s

since we can only add as many clusters as the number of ports of a T2.

Facebook and folded Clos networks

In 2014, Facebook presented the data center fabric, depicted in figure 2.5(b), that is very similar to a 3-

tier folded Clos network, and uses server pods, figure 2.5(a), as clusters. In the figure 2.5(b), Facebook

refers to T0s or ToRs as rack switches, T1s as fabric switches and T2s as spine switches.

In this architecture, Facebook uses 48 T0s and 4 T1s per cluster. There is no oversubscription in the

T1s, so the bandwidth available to the upper tier is the same as the bandwidth available to the lower tier.

Thus, since links connecting T1s to T0s have the same capacity, of 40 Gbps, as links connecting T1s to

T2s, T1s connect to the same number of T0s and T2s. Since each T1 connects to 48 T0s, then each T1

connects to 48 T2s and there are, consequently, 48 T2s per spine plane. Finally, there is an additional
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(a) A server pod. (b) The full architecture.

Figure 2.5: A Facebook data center fabric. Taken from [1].

tier, composed of 4 edge switches per spine plane, that connects the data center to the Internet.

However, as time went by, the number of users and services of Facebook kept increasing and this

architecture was no longer sufficient. Therefore, in 2019, Facebook presented an update of this network

based on a new modular unit, the F16 [2], depicted in figure 2.6(a).

As we can see, the F16 is a 3-tier folded Clos network and resembles the data center fabric without

the edge switches. The remaining main difference in both architectures is the bandwidth available to

servers and that, instead of only 4 T1s per cluster, there are now 16. They wanted to increase the

bandwidth available to servers so that each ToR had 1.6 Tbps downlink capacity to servers and 1.6

Tbps to T1s. Therefore, instead of having 4 T1s per cluster and each T0-T1 link with a capacity of 400

Gbps, which corresponds to a total of 4 × 400 Gbps = 1.6 Tbps, they chose to use 16 T1s instead, with

links of 100 Gbps, which also results in 16× 100 = 1.6 Tbps.

Finally, in order to build a bigger data center and connect the F16s to the Internet, Facebook inter-

connects F16s with the HGRID, as shown in figure 2.6(b). The HGRID consists of planes of routers that

connect the F16s to each other and to the Internet.

In this work, however, we will only analyze 3-tier Clos networks and, thus, assume that the edge

routers that connect the data center to the Internet are “super nodes” connected to every T2, as depicted

in figure 2.7.
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(a) An F16. (b) The full architecture.

Figure 2.6: A Facebook data center based on a new modular unit, the F16. Taken from [2].

2.2 Border Gateway Protocol (BGP)

Routing protocols and why we chose BGP

After defining the physical structure of a data center network, we still need to make sure servers are

able to communicate with each other and the Internet. Therefore, routers need to know where to send a

packet so that it reaches its destination after receiving it from a server or another router.

Routing tables can be filled manually by telling routers the existing routes using static routing. How-

ever, in the presence of link failures, if a router can no longer ensure a path to a certain destination,

other routers that rely on it will not be aware of this and will keep sending it packets, which will never

reach the destination. Additionally, in networks that support hundreds of thousands of servers and vir-

tual machines, and, consequently, use thousands of routers, static routing is more difficult to manage. If

there is a change in the network, which can be as minimal as a new virtual machine, we do not want to

manually alter the configuration of every router, we want routers to automatically learn about the change

and alter their routing tables. To do this, we need to use a dynamic routing protocol.

Dynamic routing protocols are responsible for electing the best routes, given metrics specific to

each protocol, and advertise these routes to the other routers in the network. Therefore, all routers

automatically learn how to reach each network prefix and, each time the preferred route of a router

changes, the other routers are informed of this change. This way, every alteration in the network is

propagated to all routers. The dynamic routing protocol is also responsible for determining the number

of redundant paths and, if possible, to distribute the traffic by the best paths available.
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Figure 2.7: A folded 3-tier Clos network with a “super node” connecting the data center to the Internet.

Some of the most common dynamic routing protocols are Routing Information Protocol (RIP), Open

Shortest Path First (OSPF) and BGP. In RIP, each router keeps information, for each destination, of the

neighbor router closest to the destination and the distance of the path. Distance in RIP is measured in

terms of hops, i.e., the number of routers the path goes through, and, every time the distance of a path

changes, it needs to be propagated throughout the network. In OSPF, each router keeps information

about every link, with its associated cost, in the network so it can build a graph and run an algorithm

to find the shortest path to every destination. When the cost of a link changes, this information is

broadcasted to the entire network so every router can update its table. In both OSPF and RIP, with

richly connected networks such as folded Clos topologies, changes can lead to thousands of messages

exchanged throughout the network which is something that we want to avoid. Furthermore, RIP does

not support the use of multiple paths to reach a destination.

BGP, Border Gateway Protocol, is the routing protocol used in the Internet [23]. BGP has had many

improvements and extensions since its first version and, currently, the fourth version, BGP4, is the one

used in the Internet. BGP4, which we will refer to from now on as simply BGP, has many stable and

robust implementations and, additionally, supports different extensions [16], such as multi-path [24, 25]

which allows routers to register multiple paths to reach a destination. Additionally, it is implemented in

most routers available in the market and there are people specialized in it. These advantages contributed

to the first implementation of BGP in the data center by Microsoft [16]. Today, it is also chosen by many

other companies that have data centers, such as Facebook [1,16].

Google, however, created their own protocol, Firepath [20], before BGP was being used in data
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centers. Firepath resembles a link-state routing protocol: each router collects the state of its interfaces

and, every time it detects a change, sends this information to a master node that generates a link state

database of the full network. The master node then propagates this information to every router. Finally,

each router computes its routing table using the network topology, which was previously configured in

every router.

Nonetheless, BGP is the more commonly used protocol in data centers [16] so we chose it as our

routing protocol in this work. However, before we detail its implementation in data centers, we give a

brief explanation of its functioning.

Brief overview of BGP

As previously mentioned, BGP is the routing protocol used in the Internet. The Internet is divided

into smaller networks, Autonomous Systems (ASs), and each AS is assigned a unique number, the

Autonomous System Number (ASN). BGP enables the connection between ASs and, consequently,

makes the Internet a globally available network.

BGP connections are of two types: if they connect two routers in different ASs, the session estab-

lished is external BGP (eBGP) and if they connect two routers of the same AS, the session established

is internal BGP (iBGP). When a router learns a new route, it spreads it via iBGP sessions to the other

routers of the AS and via eBGP sessions to routers outside the AS.

BGP is a path vector protocol, i.e., it keeps information about the whole path, in terms of ASs it

passes through, as we will further see, and the path changes as the algorithm progresses. In BGP,

destinations are prefixes that represent one or more subnets. If an AS has a connection to more than

one subnet, it can also announce a prefix corresponding to an aggregation of prefixes [26].

When a router advertises a prefix, it must initialize the mandatory attributes of BGP in order to

correctly implement it. A few of these attributes are [27]:

• Origin - indicates how the prefix was known, if through iBGP, eBGP or none of them, in the case

of static routes.

• AS-PATH - keeps information about the whole path, i.e., list of ASNs that the advertisement has

passed through. Every time a prefix is advertised, the router appends its ASN to the AS-PATH.

The AS-PATH allows the detection of loops in routes because, if an AS receives a prefix and sees

that its own ASN is already in the AS-PATH, it simply discards the route.

• NEXT-HOP - Internet Protocol (IP) address of the interface of the router to which packets should

be sent in order to get them to the destination.

There are also other attributes that allow BGP to define preferences between routes or to provide
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additional information about routes. For example, LOCAL-PREF is used to choose between routes to

the same prefix.

Every route learned to a prefix is stored in the Routing Information Base (RIB). However, out of all the

paths stored in the RIB, only the best ones are used to forward packets. These paths are stored in the

Forwarding Information Base (FIB), which is responsible for the fast lookup of the NEXT-HOPs of each

prefix learned. When a router learns a route to a new prefix, or a better route to a previously learned

prefix, the older route, if it exists, is withdrawn from the FIB and the new route must be advertised. If

the route was learned via an eBGP neighbor, the router advertises it to the other eBGP neighbors, via

eBGP sessions, and to all the routers inside the AS via iBGP sessions. However, in the case of eBGP,

before advertising the route, the router must append its ASN to the AS-PATH and set the NEXT-HOP,

which is its own address by default. This way, routes to prefixes are propagated throughout the Internet

until the algorithm converges.

If a router receives two route advertisements to the same prefix, it chooses the route as follows: if

there is a route with a higher LOCAL-PREF value, this route is chosen; if both routes have the same,

or none, LOCAL-PREF value, then the route with the lowest AS-PATH length is chosen; if both routes

have the same AS-PATH length, the route with the closest NEXT-HOP router, as defined by the routing

protocol implemented inside the AS, is chosen; if this is not enough to produce a single route, the router

uses the BGP identifier, an IP address that identifies the BGP router, to select a route.

To exemplify a route advertisement of a prefix, a simple network is depicted in figure 2.8. This network

has four ASs, each one with multiple routers. As can be seen, all routers inside an AS have iBGP

sessions established between them and some routers have eBGP sessions established with routers

from other ASs. For example, router R4 from AS2 has an eBGP session with router R1 from AS1.

Figure 2.8: Network with four ASs and the BGP sessions established between and within them.

We now present a simplified version of the advertisement of a new prefix to the network to exemplify

15



Table 2.1: eBGP packets sent in the network of figure 2.8 when R1 is advertising a route to all the other routers.

Advertisement Origin AS-PATH NEXT-HOP
1 iBGP AS1 R1

2 eBGP AS1AS3 R7

3 eBGP AS1AS2 R4

4 eBGP AS1AS2AS4 R9

the working of BGP. If router R1 wants to advertise the route for prefix 10.0.1.0/24, for example, it will

broadcast this route to its AS neighbors, AS2 and AS3, via the eBGP sessions established with routers

R4 and R7, respectively. The advertisement sent, advertisement 1, has the attributes defined in table

2.1.

Then, routers R4 and R7 save the route for the prefix, previously unlearned, and append the ASN to

the AS-PATH before propagating the route. They propagate it via iBGP to the routers inside their ASs

and via eBGP to external neighbors, except R1 because the route was learned from this router. In this

case, R4 only advertises the route via iBGP because it has no external neighbors other than R1. Router

R9 learns the route from R7, with advertisement 2 of table 2.1.

When router R5 learns the route via iBGP, it advertises the route via eBGP to its external neighbor

R9 with advertisement 3 of table 2.1. Then, router R9 receives the packet and determines that it already

knows this route. Since there is no LOCAL-PREF attribute and the length of the AS-PATH is the same

as the one of the route already stored, it decides which route to choose via the BGP identifier. In this

example, supposing router R4 has a BGP identifier preferable when compared to R7, router R9 decides

to elect the new route, learned from R4, as the best path. Finally, router R9 advertises this route to

router R7 with advertisement 4 of table 2.1. When router R8 receives this new advertisement, it detects

it already knows a route for the prefix, so it makes a lexicographic comparison of the tuple (LOCAL-

PREF, AS-PATH, BGP identifier ) and keeps the previously saved route in the FIB and stores the new

one in the RIB.

BGP in data centers

In data centers, only eBGP is used since, according to [16], it is simpler to understand and implement

than iBGP and, additionally, it does not have the multi-path limitations that iBGP does. Thus, from now

on we will refer to eBGP as BGP. In order to use BGP as the routing protocol in the data center, it has

to be adapted to the network topology and the requirements of the network manager. In data centers,

BGP configurations should make sure a pair of servers are always connected by the shortest path and,

if possible, traffic should be distributed by all the shortest paths available.

Jayaraman et al. [19] provide, in their work, an example of a BGP adaptation to a folded Clos network

of a Microsoft data center. Given the well-defined structure of a folded Clos network, the shortest paths

16



between servers are known and BGP was implemented to take advantage of this, specifically with the

assignment of ASNs. An ASN is assigned to each router and ASNs used are private so the internal BGP

information is not accidentally leaked to external networks. ASNs are assigned in the following way:

• every T0 has its own ASN.

• all the T1s inside a cluster have the same ASN.

• all the T2s of the data center have the same ASN.

Figure 2.9 is an example of this numbering scheme for a network with 2 clusters and 4 T0s per

cluster.

Figure 2.9: Assignment of ASNs to a folded Clos network.

This numbering scheme implies that, due to the loop detection in BGP through the AS-PATH attribute,

each T0 only keeps the shortest paths in both the RIB and the FIB. The shortest paths are of length 2 to

other T0s of the same cluster and of length 4 to T0s of other clusters. When a T0 advertises a route to

another T0, the T1 that receives it will see that its ASN is already on the AS-PATH and discard the route.

The same happens when a T2 receives an advertisement of a route that has already passed through a

T2. This is advantageous since, given the elevated number of redundant paths in folded Clos topologies,

if every path was advertised, BGP messages would go through the entire network but the elected paths

would not, for the most part, change [16].

Given the ASN assignment in figure 2.9, an example of a path of length 2 between two T0s is 65001

- 65101 - 65002, where 65001 and 65002 identify the first and second T0s of the first cluster, respectively,

and 65101 can be any of the T1s of the first cluster. An example of a path of length 4 between two T0s

of different clusters is 65001 - 65101 - 65500 - 65102 - 65006, where 65101 is any of the T1s of the first

cluster, 65102 is any of the T1s of the second cluster and 65500 is any of the T2s,.
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By using a BGP extension called multi-path [24, 25], it is possible to install many paths of equal

cost in the FIB. In the case of the network in figure 2.9, the cost of each route is determined by the

AS-PATH length and, consequently, routes with the same length have the same cost. Therefore, each

router is able to store every shortest path available for each prefix. Then, multi-path uses Equal-Cost

Multi-Path (ECMP) to distribute the traffic by the routes installed in the FIB, in order to achieve load-

balancing in terms of traffic flows. This way, although a traffic flow is indivisible, different traffic flows

can be distributed among different paths. For example, if there are no link failures, router 65001 can use

every T1 of its cluster to send packets to router 65002. This not only minimizes the load of each link used

but also increases the bandwidth available between the servers. If, however, we want to limit the number

of routes installed in the FIB, in order to diminish the memory needed, it is possible to be configured.
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Chapter 3

Network cost estimation and analysis
We now analyze the cost of a data center network. We can divide the cost in two parts: acquisition,

related to the phase of building the data center, and operational, the cost of running the data center.

3.1 Acquisition cost

The acquisition cost (Capex) is the cost needed to set up the data center so that it can begin to operate.

It comprises the cost of the land, the building, servers, routers, cable links, cooling equipment and other

auxiliary equipment.

In this study, we are only analyzing the cost of the network and, consequently, assume that the

servers, cooling and auxiliary equipment have a fixed cost, proportional to the dimension of the data

center. Thus, we differentiate the acquisition cost of each topology by the cost of the routers and cable

links.

The different characteristics and costs of routers used in data centers

The routers used in data centers have characteristics such as:

• Low latency - latency in routers is the time that it takes for a router to start sending a packet after

receiving it. In the case of data center routers, it should be in the order of nanoseconds.

• High throughput - data center routers have ports of 10, 40, or even 100 Gbps.

• High forwarding capacity - forwarding capacity represents the number of minimum sized Ethernet

packets a router can switch per second. In data centers, it can go as high as billion packets per

second (Bpps).

• High number of ports - in order to support hundreds of thousands of servers, routers used in data

centers can have as many as 200 ports.

With these demanding characteristics, routers used in data centers are expensive and building an

entire data center requires thousands of them. This leads to a very competitive market in which data

center companies try to minimize the cost of acquiring routers and manufacturers compete between
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themselves to provide the best prices. As a consequence, the price of these routers is not, for the most

part, publicly available and it is difficult to find reliable sources that provide the price of a router from

each manufacturer. Some companies, such as Facebook [1], even started building their own routers. In

this study, we use the cost of the Juniper routers provided in [3] to approximate the prices.

The cost of the routers depends on many factors:

• Memory size - the Ternary Content-Addressable Memory (TCAM) is used to store the FIB and

Access Control Lists (ACLs) [28,29]. The FIB is responsible for the fast lookup of the NEXT-HOPs

of each prefix learned and ACLs are rules that tell if packets from specific IP addresses or prefixes

should be forwarded or discarded. The RIB, responsible for saving all paths learned, is stored in

the Dynamic Random-Access Memory (DRAM) [30], which is hundreds of times cheaper than the

TCAM [31].

• Number of and capacity of each port - routers have a set of physical ports with a specific

maximum capacity. However, it is possible to have different port combinations for the same router.

• Forwarding capacity

• Modularity - there are two types of routers in terms of structure: fixed routers, as in figure 3.1(a),

with a fixed number of ports, and modular routers, depicted in figure 3.1(b), which are composed of

a chassis and multiple line cards. The chassis functions as a cabinet that also provides the back-

plane, the power source and the ventilation. The line cards are inserted in the chassis, resembling

drawers, and each one has a set of ports and its own FIB table. The backplane is responsible for

the management of the FIB in each line card, so that they all share the same information, and for

the switching between line cards.

In order to understand which characteristic has a bigger influence in the cost of these routers, we

provide, in table 3.1, the approximated prices of some routers, taken from [3], along with the number

of supported FIB (IPv4) routes and forwarding capacity. In order to simplify the analysis, we compare

only the TCAM, since it is hundreds of times more expensive than the DRAM, size of each router by

comparing the number of FIB (IPv4) routes each router supports. We obtained the number of FIB routes

and the forwarding capacity by analyzing each datasheet of the routers, except for the value of the

forwarding capacity of the QFX10000-30C, which was not provided in the datasheet.

With the information presented in table 3.1, we can conclude that, since routers with different for-

warding capacities and number of ports, but the same number of FIB (IPv4) routes have a similar cost,

the memory is what more influences the cost.
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Table 3.1: Number and capacity of ports, number of IPv4 routes, forwarding capacity and cost of some routers
used in data centers. The number of IPv4 routes and forwarding capacity were taken from datasheets
provided by Juniper and the costs are approximations of the ones presented in [3].

Routers Ports (number x
capacity (Gbps))

FIB (IPv4)
routes

Forwarding
capacity (Bpps)

Price (USD)

QFX5110-48S 48x10 + 4x100 1.32

QFX5110-32Q 32x40
128 000

1.44

20 000
QFX5200-48Y 48x25 + 6x100 2.1

QFX5200-32C 32x100 2.4

QFX5210-64C 64x100 260 000 4.2 30 000

QFX10008 (chassis) - 2 000 000 16 60 000

QFX10000-30C (line card) 30x100 2 000 000 − 90 000

Example of routers used in each tier and price per port

Routers in the two bottom tiers, T0s and T1s, have similar characteristics and are used in clusters, the

base unit of folded Clos topologies. Therefore, these routers are not usually used to scale the network

and are responsible for switching the traffic of a limited number of servers. Consequently, we are using

fixed routers for T0s and T1s, i.e., routers with a fixed number of ports. Usually, a rack stores up to 40

servers [16], but Google also claims having a ”custom made server rack” that supports 80 servers so

we consider T0s and T1s with a maximum of 96 ports.

Due to the fact that routers in the two bottom tiers, T0s and T1s, have similar characteristics, we set

the cost of these routers independently of the number of ports. For port speeds of 10 Gbps, we used

the Juniper QFX5200-32C router, depicted in figure 3.1(a), which has 32 ports of 100 Gbps but can be

configured as a router with 128 ports of 10 Gbps, to set the cost at $20 000. For T0 and T1 routers with

40 Gbps ports, we used the Juniper QFX5210-64C router. This router has 64 ports of 100 Gbps but it

has a possible configuration of 96 ports of 50 Gbps so we used it to set the price of T0 and T1 routers

with 40 Gbps ports at $30 000 each.

However, T2 routers have different and more demanding characteristics when compared to T0s and

T1s. Firstly, since T2s connect the data center to the Internet, they need to know routes imported from all

over the Internet and, consequently, need bigger FIBs. Additionally, since T2s connect clusters to each

other and the Internet, they have a faster backplane, when compared to T0s and T1s, in order to provide

a higher forwarding capacity.
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Due to these characteristics, for T2s we used modular routers, the Juniper chassis QFX10008, that

supports 8 line cards, and QFX10000-30C line cards. These line cards have 30 physical ports and two

possible configurations that interest us, 96 ports of 10 Gbps or 30 ports of 40 Gbps.

(a) A fixed router, Juniper QFX5200-23C.
Taken from [32].

(b) A modular router, Juniper QFX10008,
with 8 line cards. Taken from [33].

Figure 3.1: Example of a fixed router and a modular router.

Therefore, each T2 has the fixed cost of the chassis QFX10008, which is, approximately, $60 000,

and the variable cost of the number of line cards used, at a price of $90 000 per line card. For example,

for a T2 router of 192x10 Gbps ports we only need the chassis and two line cards but, for a 192x40 Gbps

ports we need, in addition to the chassis, 192/30 = 7 line cards.

The prices of routers are summarized in table 3.2. As an example, we can compare the price of

routers with 96 ports of 10 Gbps. In the case of T0s and T1s, the price is $20 000 but, in the case of

T2s, it is 60 000 + 90 000 × 96
96 = 150 000. We can see that, in this case, T2s have a cost more than 7

times higher than T1s and T0s with the same number of ports. This difference derives from the different

characteristics required in both types of routers, as was previously discussed.

In figure 3.2, we present the cost per port of each type of router. We can conclude, by analyzing the

figure, that by setting a fixed cost of T0s and T1s, the cost per port is inversely proportional to the number

of ports. In the case of T2s, the cost per port also diminishes with the number of ports. This is because

the cost has a fixed part, corresponding to the chassis, and a variable cost corresponding to the number

of line cards used, that is, the number of ports. Thus, T2s with a higher number of ports distribute the

cost of the chassis by more ports and, consequently, the cost per port decreases.
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Table 3.2: Price of each router and each cable.

Throughput Cost of each router ($) Price per connection ($)
T0s and T1s T2s Server to T0 T0 to T1 T1 to T2

10 Gbps 20 000 60 000 + 90 000×
⌈
nrofports

96

⌉
140 240 420

40 Gbps 30 000 60 000 + 90 000×
⌈
nrofports

30

⌉
240 390 680

Figure 3.2: Cost per port of each type of router used in the network.

We can also derive that, although 40 Gbps routers have 4 times the capacity per port of 10 Gbps

routers, the difference in the cost is not as high. In T0s and T1s, 40 Gbps routers cost up to 1.5 times

more than 10 Gbps routers. In T2s, routers of 40 Gbps can cost up to 3 times more than routers of 10

Gbps.

Comparison of the cost of routers of different network sizes

In order to analyze the cost of the networks, in terms of routers, with a different number of servers, we

fixed a cluster of approximately a thousand servers. We used T0s of 48 ports and an oversubscription

of 5:1, which results in 40 servers per T0 and 8 T1s per cluster. We used T1s of 48 ports and chose to

have no oversubscription at the T1s so they connect to 24 T0s and 24 T2s. Thus, we started with a single

cluster and 24 T2s and, using the same T2s, we kept adding clusters to find the cost per server of each

network. In figure 3.3(a), we can see that the cost per sever tends to diminish with the increase of the

number of servers. It can be concluded that this tendency is due to the evolution of cost of the T2s with

the number of ports. We also present the total cost of routers of these networks in figure 3.3(b).
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(a) Cost per server. (b) Total cost.

Figure 3.3: Cost of routers as a function of the number of clusters and, consequently, servers, of a network.

When we want to add more servers, which translates, in this case, to adding more clusters, we have

two options, either there are available ports in T2s that we can use, or we have to add a line card to each

T2 in order to accommodate the new cluster. Thus, when we add a line card to each T2, the cost per

server rises abruptly due to the additional cost of the line card. However, as we keep adding clusters to

the free ports of the line card previously inserted, the cost of the T2s gets distributed by a bigger number

of servers, resulting in a lower cost per server. This can be seen in figure 3.3(a), in which the peaks

represent the added cost of acquiring more line cards.

Additionally, it can be seen that, as the network grows, the difference between the cost per server

diminishes and networks with 40 Gbps links are, at most, 2 times more expensive than networks with 10

Gbps links.

Using the same networks of figure 3.3(a), it is possible to analyze the cost per server of each type of

router, T0s, T1s and T2s, and, consequently, determine the importance of each one in the overall cost of

the network. This is depicted in figure 3.4 for networks of 10 Gbps and 40 Gbps.

In figure 3.4, we can observe that, since the clusters are fixed, T0s and T1s have, naturally, a constant

cost per server, and that the T2s follow the tendency of the overall cost of the network represented in

figure 3.3(a), which asserts our conclusions that the T2s are responsible for this tendency. We also verify

that, in small networks, the T2s are responsible for most of the cost of the network and, as the network

grows, the cost of T0s gets more relevant and ends up surpassing the cost of T2s, which can be seen

more clearly in networks of 10 Gbps.
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(a) Networks of 10 Gbps. (b) Networks of 40 Gbps.

Figure 3.4: Cost per server of each type of routers as a function of the number of clusters and, consequently,
servers.

Reducing the cost per server by using parallel links

Nonetheless, it is possible to reduce the number of T2s and, consequently, the total cost of the network,

while maintaining the number of links between routers. We can do this by using fewer T2s and employ-

ing parallel links between the same pair of routers T1s-T2s while maintaining the total number of links

between a T1 and all T2s. For example, if a T1 has a single link to 24 T2s, it may be possible to connect it

to 12 T2s and, instead of a single link per T2, make use of two links in order to maintain the total number

of links between a T1 and T2s. Since, without parallel links, each T2 has one connection per cluster, as

long as it is possible, either by using free ports or by adding line cards, to accommodate 2, 3, or more,

connections per cluster, then we can use parallel links. By using parallel links, we eliminate the fixed

cost of the chassis of the routers that will not be used and it may even be possible to reduce the total

number of line cards used since we may be making use of available ports, and, consequently, the cost

of the network will decrease.

In order to evaluate the savings allowed by using parallel links, we developed a program in python

that generates all topologies. The program has as input arguments the number of servers that the

network must support and the number of ports of each router.

In order to simplify the execution of the algorithm, we generate topologies using routers with a fixed

number of ports. For T0s and T1s the number of ports we use are 24, 48 and 96. For T2s we use 24,

48, 96 and 192 ports. We then generate all the different combinations possible of T0s, T1s and T2s with

these numbers of ports and run algorithm 3.1, which generates all possible topologies for each set of

routers.

To generate a topology, we start with no oversubscription at the T0s, which implies that each T0
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connects to as many servers as T1s. Then, the number of servers that connect to T0s allows us to

calculate the total number of T0s needed to support the number of servers in the network.

Afterwards, we, once again, begin with no oversubscription at the T1s so half of the ports will be

connected to T0s and the other half to T2s. We can now calculate the number of T0s inside a cluster

and, consequently, the number of clusters needed in the network.

Since each T2 has at least one connection to one T1 of each cluster, the number of ports of a T2 has

to be equal or greater than the number of clusters. If this is not possible in the topology being generated,

the network is discarded. However, if T2s still have unused ports, then it may be possible to increase

parallel connections between a T1-T2 pair and decrease the number of spine sets, i.e. the number of

T2s in the topology, while maintaining the number of connections between T1s and T2s. We generate

new topologies by incrementing parallel links as long as there are ports available.

We also generate new topologies by increasing the oversubscription in the T1s, so that they connect

to more T0s than T2s, thus increasing the size of clusters in terms of servers. We also change the

oversubscription of T0s and end up with all the topologies possible, given the set of routers used. It

should be noted that, even though we are using a finite set of routers, we still obtain, for example, more

than 50 000 topologies for networks with a hundred thousand servers.

Finally, when a topology is generated, we obtain the following network characteristics:

• Number of ports of each type of router in the topology

• Number of T0s, T1s, T2s and clusters

• Oversubscription at the T0s and T1s

• Router acquisition cost

• Length of cable needed

We ran the algorithm for networks with 10 000, 50 000, 100 000 and 150 000 servers. Then, in figure

3.5, we compare the cost of the cheapest networks that make, and do not make, use of parallel links.

It should be noted that all networks have the same level of resilience to link failures, calculated using

expressions indicated in chapter 4, so that we can truthfully compare the cost per server.

From figure 3.5, it can be concluded that parallel links allow a larger reduction, in terms of percentage

of cost, in smaller networks. This is due to the fact that, in smaller networks, the cost of a T2 chassis has

a bigger impact in the cost per server due to the fewer number of servers. Hence, networks with parallel

links can cost up to 61% less in small networks of 10 Gbps links and up to 55% less in networks of 40

Gbps links. Nonetheless, even in the biggest networks, with approximately a hundred and fifty thousand

of servers, the cost can be reduced up to 18% in 10 Gbps networks and 6% in 40 Gbps networks.
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Algorithm 3.1: GenerateTopologies(nrServers)
begin

for i← NrPorts(T0)/2 to NrPorts(T0) do

nrServersPerT0←− i
nrT1sPerCluster ←− NrPorts(T0)− nrServersPerT0
nrT0s←− nrServers/nrServersPerT0

for j ← NrPorts(T1)/2 to NrPorts(T1) do

nrT0sPerCluster ←− j
nrClusters←− nrT0s/nrT0sPerCluster
maxLinksT1T2←− NrPorts(T1)− nrT0sPerCluster
if nrClusters > NrPorts(T2) then

continue

nrParallelLinksT1T2←− 1
nrSpineSets←− NrPorts(T1)− nrT0sPerCluster
nrPortsAvailableT1←− maxLinksT1T2
nrPortsAvailableT2←− NrPorts(T2)− nrClusters

while nrPortsAvailableT1 ≥ 0 and nrPortsAvailableT2 ≥ 0 do

PrintTopology(nrServersPerT0, nrT0sPerCluster, nrT1sPerCluster,
nrClusters, nrSpineSets, nrParallelLinks)

nrParallelLinksT1T2←− nrParallelLinksT1T2 + 1
nrSpineSets←− maxLinksT1T2/nrParallelLinksT1T2
nrPortsAvailableT2←− nrPortsAvailableT2− nrClusters
nrPortsAvailableT1←− maxLinksT1T2− nrSpineSets× nrParallelLinksT1T2

Cost of cables

After determining the routers used, we still need to calculate how much it will cost to connect them, and

the servers, using fiber optical cables.

Firstly, we need to know the distance between routers and between servers to T0s. In data centers,

the distance between each tier increases as we go further up the tiers. The length of cable needed to

connect equipments in different tiers is, according to [3], the following:

• Server to T0 - 5 m

• T0 to T1 - 20 m

• T1 to T2 - 50 m

These lengths can, however, differ with the topology. For example, using parallel links may simplify

the cabling and shorten the distance between T1s and T2s.

We also consider two different throughputs, 10 Gbps and 40 Gbps, and the price will be different for

each throughput. In the case of 40 Gbps links, we use approximate prices [3] of QSFP+ cables, which
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Figure 3.5: Cost per server of networks with and without parallel links. NPL - No parallel links. WPL - With parallel
links.

are multimode and active optic cables of 40 Gbps. However, 10 Gbps links usually use SFP+ cables

and the only price mentioned in [3] is of a 5 m length cable. Therefore, we will assume the price of SFP+

cables increases with the distance in the same proportion that QSFP+ cables do, in order to estimate

the price of cable links with 20 m and 50 m.

The price per cable is shown in table 3.2 and, as can be concluded, the cost increases with the

distance between equipments and also with the throughput.

3.2 Operational cost

After setting up a data center, we need to take into account the operational cost (Opex), i.e., the cost of

keeping the data center running. This includes the power used by all the equipment and its maintenance.

Once again, we are analyzing only the operational cost of the network and consider the following

costs as fixed: the cost needed to power anything but the network equipment and the maintenance of

the data center.

Now, we need to define the cost needed to support each topology. Since the cost per power unit

changes with the data center location, we provide the total power used as a measure of cost. To do

this, we calculate the power utilized by the routers and assume that the cooling equipment needed for

the network will use a proportional cost. Thus, even though the cooling power is not fixed, it is sufficient

to calculate the power used by the routers to analyze and evaluate the different networks in terms of

operational cost.
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Determining the power consumed by the routers

To do this, we analyzed the routers previously used to define the acquisition cost. In each router, there

are two power limits, the minimum power is used when the router is idle and the maximum power

consumed occurs when the traffic load is maximum. In [3] it is said that the power used varies linearly

with the number of ports in use and the traffic load. Thus, in our calculations we assumed a traffic load

of 50% with half of the ports in use.

Similarly to what was done in the acquisition cost, we assume that both T0s and T1s consume the

same, 389 W in the case of routers with 10 Gbps per port, and 688.5 W when using routers with 40

Gbps ports. Regarding the T2s, similarly to what was done to calculate their cost, the total power is the

sum of the power consumed by the chassis, 1483 W, and the energy consumption of each line card, 891

W.

The power consumed by the different routers is summarized in table 3.3.

Table 3.3: Power consumed by each type of router.

Throughput Power consumed by router (W)
T0s and T1s T2s

10 Gbps 389 1483 + 891×
⌈
nrofports

96

⌉
40 Gbps 688.5 1483 + 891×

⌈
nrofports

30

⌉

Comparison of power per server of different network sizes

In order to compare the power consumed by networks of different sizes, that is, with a different number

of servers, we executed the same process that resulted in figures 3.3(a) and 3.3(b). The power per

server of the different networks created can be seen in figure 3.6(a) and the total power is depicted in

3.6(b).

Similar conclusions to the ones drawn from figure 3.3(a) can be derived from figure 3.6(a). When

we add more clusters to the network, two different situations occur: if we add them to available ports

then the overall power of the network can be distributed by more servers and, consequently, the power

per server decreases, but, when we need to add more line cards in order to add clusters, the power

by server suddenly increases due to the added power of the new line cards. Additionally, we can also

conclude from the figure that networks with 40 Gbps links only use up to 2 times more power than 10

Gbps networks.
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(a) Power per server. (b) Total power.

Figure 3.6: Power of routers as a function of the number of clusters and, consequently, servers, of a network.

Reducing the power per server by using parallel links

We also compared the power consumed when using parallel links between T1s and T2s. In order to do

this, we modified the program that generates all topologies so that it also outputs the power consumed

by the routers in the network. Once again, we ran the algorithm for networks with 10 000, 50 000, 100

000 and 150 000 servers. Then, we obtained the lowest value of power used by networks with the same

level of resilience to link failures and that make, and do not make, use of parallel links.

The results are depicted in figure 3.7 and, as with the acquisition cost of routers, we can see that

using parallel links enables the saving of power. This is, once again, due to using fewer T2s and,

consequently, eliminating, at least, the power consumed by the chassis of the T2s removed.

The savings go from, approximately, 15% to 58%, in the case of networks with links of 10 Gbps,

and from 7% to 48% in networks with 40 Gbps links. Additionally, the relative savings are, once again,

higher in the smaller networks due to the larger impact that the power consumed by the chassis has

when distributed by fewer servers.

3.3 Conclusions

In this chapter, we identified the main characteristics of the routers that compose a network of a data

center. Specifically, T2 routers need more memory and forwarding capacity than T0s and T1s. In order

to interconnect the clusters and connect them to external endpoints to the data center, T2 routers need

a faster backplane to provide higher forwarding capacities, and bigger RIBs and FIBs in order to install

the routes to prefixes from all over the Internet.
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Figure 3.7: Power per server of networks with and without parallel links. NPL - No parallel links. WPL - With parallel
links.

Then, we determined an estimate of the cost per port of routers and concluded that the cost dimin-

ishes with the increase of the number of ports.

We calculated the cost of routers of different topologies and concluded that the cost per server

diminishes with the increase of the number of servers due to the modularity of T2 routers. By adding

clusters to the networks and, consequently, increasing the number of servers, the fixed cost of the

chassis of T2s is progressively distributed by a bigger number of servers, which leads to a reduction of

the cost per server.

We determined that networks with 40 Gbps links cost up to 2 times more than 10 Gbps networks,

even though the capacity of 40 Gbps networks is 4 times higher. Additionally, we saw that T2s are

responsible for higher percentages of the cost of routers of small networks, up to 50 000 servers in the

case of 10 Gbps networks, but, as the number of servers in a network increases, T0s surpass the cost

of T2s.

We estimated the power used by routers of different topologies and were able to determine that

the power used diminishes with the increase of the number of servers due to, similarly to the cost, the

modularity of T2 routers. In the case of power usage, networks with 40 Gbps links consume up to 2

times more than networks with 10 Gbps links.

We determined that, while maintaining the number of connections between a T1 and T2s, using

parallel links allows the reduction of up to 61% of the overall cost of the network and up to 58% of the

power used.
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Chapter 4

Connectivity Analysis
Data center companies have to reimburse clients if the data center availability falls below a certain

threshold. For example, Azure has to reimburse 10% of the credits of clients when they have access to

a virtual machine less than 99.99% of the time during a single month [34]. It should be noted that, in this

case, 99.99% of availability, or uptime, in a month is approximately four minutes.

Consequently, one of the objectives of data centers is to maximize the redundancy of the network

so that, when a link fails or a server unexpectedly crashes, the network can recover in the shortest time

possible in order to minimize the risk of needing to refund clients.

Additionally, since there are different applications running in data centers, the concept of availability

differs from application to application. For example, in distributed applications, such as the training of a

machine learning model, the availability refers to connections between servers inside the data center.

However, when clients are trying to access virtual machines in the data center, the concept of availability

is applied to connections between the data center servers and the Internet. Therefore, we study the

impact of link failures in three different types of connections: between servers of the same cluster,

between servers of different clusters and between a server and the Internet.

In the networks we study, we do not consider redundancy between servers and T0s so every server

has only one connection to a T0, independently of the network. Therefore, this allows us to focus solely

on the connectivity from and to T0s, since only T0-T1 and T1-T2 links have an impact in the resilience to

link failures of each network.

4.1 Connectivity inside a cluster

As previously mentioned in 2.1, in data centers T0s and T1s only connect to other T1s and T0s, respec-

tively, of the same cluster. A T0 connects to every T1 of the cluster and a T1 connects to all T0s of the

same cluster, as depicted in figure 2.3(a).

If k is the number of routers T0 inside a cluster and m is the number of T1s inside a cluster, we can

conclude that there are m paths, pairwise disjoint and all of length 2, connecting two T0s of the same

cluster.

Thus, to connect 2 T0s of a cluster via a T1, as in green in figure 4.2, both links connecting the T1

to the T0s must be available. Since there are m T1s, it only takes one link failure per T1, either to the
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source or the destination, to disconnect 2 T0s, which totals m failures. Additionally, if x is the probability

of a link failure between a T0 and a T1 and assuming that each failure is independent, the probability of

2 T0s connecting via a single T1 is

P (connectivity between 2 T0s via a single T1) = (1− x)2. (4.1)

Since there are m T1s in each cluster, as long as there is one of the m paths available, we can

connect 2 T0s. Hence, the probability that all paths are unavailable and, consequently, a pair of T0s

cannot connect to each other, is given by

P (no connectivity) = (1− (1− x)2)m. (4.2)

Finally, the probability that 2 T0s can establish a connection is

P (connectivity) = 1− P (no connectivity) = 1− (1− (1− x)2)m. (4.3)

We are now able to approximate the availability that data centers define in SLAs by the probability of

connectivity. In this case, we are studying connectivity between T0s of a cluster, which is more important

in applications that rely on connections between servers, such as distributed applications.

Since data centers aim to have maximum availability and need to refund their clients if it falls below a

threshold as high as 99.99%, we examine how many link failures a network can support while 99.999%,

99.99% and 99.9%, that is, 5x9, 4x9, and 3x9, respectively, of the pairs of T0s are able to connect with

each other. Thus, if we equal equation 4.3 to the different values of availability, we get the maximum

probabilities of failure, for different values of T1s per cluster, m, as represented in figure 4.1.

Increasing the resilience to link failures using valleys

In the fabric design of Facebook [1], there are only 4 T1s per cluster. Thus, if a link has a probability of

failure higher than 2.85%, the connectivity between T0s would fall below 99.999%. Their new design,

with F16s [2], increased the number of T1s per cluster from 4 to 16, which resulted in a higher support

of link failures of 28.37%.

However, instead of upgrading existing networks, it is possible to use valleys as a work around to

increase availability. Valleys are paths with an up-down-up-down shape that use more than a single T1

to connect two T0s, as can be seen in orange in figure 4.2.

It should be noted that, in order to do this, the BGP implementation described in chapter 2 needed to

be modified because, since T1s of a cluster share the same ASN, valley shaped paths were discarded

when reaching the second T1. Therefore, an additional BGP command was added in each T1 so they can

accept routes advertised by T0s that already have the ASN of the T1 in the path. The command inserted,
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Figure 4.1: Maximum probabilities of a T0-T1 link failure that a network supports, for 99.999%, 99.99% and 99.9%
of connectivity between T0s, and for different values of T1s per cluster, m.

Figure 4.2: Example of a 2-tier folded Clos network with two different types of path that connect pairs of ToRs: in
green, a path of length 2, and, in orange, a valley shaped path of length 4.

neighbor <ip-address> allowas-in 1, allows a single valley, so T1s only accept and re-advertise

routes where their ASN appears in the AS-PATH, at maximum, once.

It is also worth mentioning that, when two servers of different clusters communicate with each other,

only valleys inside clusters are permitted, that is, a path is not allowed to go through T2s twice. In figure

4.3, we can see two types of valley shaped paths between T0s of different clusters: in green, an allowed

path of length 8 and, in red, a path of length 6 that is not allowed due to the valley between T1s and T2s.

In order to understand the importance of valleys, we examine now how many link failures it takes for

two T0s of the same cluster to be unable to connect with each other when valleys are allowed.

If we can connect 2 T0s through a single T1, then there is a T1 that has active links to both T0s. Thus,

if all T1s only have a link to the T0 source or the destination, they can no longer connect, unless we use

valleys.
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Figure 4.3: Example of a 3-tier folded Clos network with two different types of path that connect pairs of ToRs in
different clusters: in green, a path of length 8, and, in red, a valley shaped path that is not allowed.

When we use valleys to connect 2 T0s, we connect them through an intermediate T0 that has active

links to at least 2 T1s, one that has an active link to the source and another one that has an active link

to the destination.

Therefore, in order to disconnect 2 T0s, even if the option of valleys is allowed, each intermediate T0

must only be able to either connect to T1s that can only connect to the source, or to T1s that only have

a connection to the destination. Thus, if a T0 can only connect to T1s that only have active links to the

destination, then the T0 is connected to the same T1s that the destination is and, consequently, has the

exact same link failures that the source does.

If the source is a and has x link failures, the destination is b with, consequently, m− x failures, since

there needs to be one failure per T1, and, finally, every remaining T0 has, at least, the same failures that

a or b have, then the minimum number of failures that completely disconnect 2 T0s of the same

cluster is:

m+min (x,m− x)× (k − 2). (4.4)

This expression can take values considerably higher than the m failures it takes to disconnect two T0s

without the use of valleys and, consequently, allowing valleys should reflect an increase in the maximum

probability of link failures that support, for example, 99.999% of connectivity between pairs of T0s.

In order to evaluate the impact of valleys in connectivity between T0s, we developed a C++ program

and implemented algorithm 4.1 to find the shortest paths between 2 nodes, which are, in this case, T0s.

This program takes as input a given network, in order to create a graph that represents it, and

whether or not valleys are allowed. Afterwards, we apply a probability of failure in the network links and

select which type of links can fail, i.e., we can apply a probability of failure only in T0-T1 or T1-T2 links
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or, alternatively, in both. This allows us to examine the impact of failures on the different tiers of the

network.

Then, we run algorithm 4.1 for every ToR of the network. This algorithm starts at the source, s, and

puts its neighbors, which are, in this case, the T1s that it has a connection to, in a first in, first out queue.

Since each link in the network has a unitary cost and we are visiting the neighbor nodes before moving

to further depths of the graph, as in a Breadth-First Search (BFS), every time we put a node in the queue

we determine the shortest path to it and which will never be shorter than the paths to nodes already in

the queue. Consequently, we are able to use a first in, first out queue instead of a priority one. Thus, the

algorithm progressively visits the T1s and afterwards the T0s.

When visiting a node, however, the algorithm must also see if the ASN of each neighbor of the node

is already on the AS-PATH. If the ASN of the neighbor does not appear on the AS-PATH, then it is

inserted in the queue. However, if the ASN is already on the AS-PATH, the algorithm checks if valleys

are allowed or not. If valleys are not allowed, the neighbor is not inserted in the queue. If valleys are

allowed and the node visited is a T0, then the T1 neighbor is inserted if its ASN appears only once on the

AS-PATH. In the end, the program gives us the percentage of pairs of T0s that can no longer establish a

connection after applying link failures.

Algorithm 4.1: FindPath(s, valleys)
begin

for each v do
dist[v]←− +∞
visited[v]←− false
path[v]←− ∅

Q←− s
dist[s]←− 0
visited[s]←− true

while Q 6= ∅ do
select u of Q for which d[u] is smallest
Q←− Q− {u}

for each adjacent node v of u do

if visited[v] 6= true then

if ASNInPath(v, u) = 1 and (valleys 6= true or IsT2(v) = true) or
ASNInPath(v, u) = 2 then

continue

dist[v]←− dist[u] + 1
visited[v]←− true
path[v]←− u
Q←− Q+ {v}
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In order to analyze the connectivity between T0s of a cluster, with and without valleys, we chose a

network composed of a single cluster of 48 T0s and, for each value of m, i.e., T1s per cluster, ran the

algorithm for a given probability of failure of T0-T1 links. Then, we evaluated the average of connectivity

between T0s and kept running the algorithm, increasing the probability of failure, in order to find the

maximum probability of failure that supports 5x9 of connectivity. We did this for a thousand samples for

each probability, in order to increase the degree of confidence. The results are represented in figure 4.4.

Figure 4.4: Comparison between the maximum probabilities of a T0-T1 link failure that a network supports, for
99.999% connectivity between T0s, and for different values of T1s per cluster, m, with and without the
use of valleys.

As can be seen in figure 4.4, the use of valleys increases the resilience to link failures of a

network without needing to upgrade its equipment. It is also especially relevant for low values of the

number of T1s per cluster. For example, for 8 T1s per cluster, the maximum probability of a T0-T1 link

failure increases from 12% to 26% by using valleys.

It could be possible to increase the resilience to link failures by making use of even longer paths and,

consequently, allowing more valleys. However, a single valley already provides a significant number of

paths and allowing more valleys would not be as advantageous. Additionally, using valleys also has

some considerations that must be taken into account. Firstly, in the T1s, the size of the RIB and the FIB

grows, the latter only in the presence of link failures. The size of the RIB of T0s and T2s also increases

with link failures, when valleys are being used. The increase in memory size when using valleys will be

discussed in more detail in section 4.5. Secondly, valley paths are longer and use more routers than

non-valley paths, which results in paths with higher latency. Finally, when using valleys we are no longer

using only disjoint paths and, consequently, when distributing the traffic, the links in common of these

paths may end up with a load higher than their capacity. In section 5.2, we test the option of traffic with
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valleys and discuss it in more detail.

We also decided to test two different modes of link failures using the program, link failure probability

and percentage of links down, which represent different failures in data centers. The probability of link

failure represents failures over time and does not take into account the mean time to repair, that is, the

time between the occurrence of a failure and its repair. Since mean time to repair can be directly related

to the maintenance of the data center and differs from company to company, we opted to test the mode

of percentage of links down. This mode represents an instant in time, that is, the percentage of links

down that the network has simultaneously.

When applying link failure probability, we go through each link and select a random value that tell us

if the link fails or not, according to the probability of failure. With percentage of links down we randomly

select, from the pool of links, the links that will fail, until the number of links down totals the selected

percentage. The values obtained theoretically for the maximum probability of T0-T1 link failure that

supports 99.999% of connectivity and the values given by the algorithm for both modes of link failures

can be compared in figure 4.5.

Figure 4.5: Comparison between the theoretical and simulated values of the maximum T0-T1 link failures that the
network supports, for 99.999% of connectivity between T0s, and different values of T1s per cluster, m.

As can be seen, the different types of simulated values are similar. We can also conclude that, since

we are evaluating large networks, the number of links is sufficiently high for there to be no relevant

difference between the two modes of link failures.
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Relationship between the resilience to T0-T1 link failures and the cost

From figure 4.1, it is possible to conclude that the maximum probability of a T0-T1 link failure increases

more rapidly for a low number of T1s per cluster, especially between 1 and 10, which translates, in the

case of 5x9, from 0% to, approximately, 17% of link failure probability. Past these values, the growth rate

of maximum T0-T1 link failure probabilities that support 99.999% of connectivity between T0s of a cluster

decreases. This leads to the conclusion that, in the beginning of the curve, that is, for low values of link

failure probabilities, adding a T1 to the network has a greater impact in the resilience to link failures than

at the end of the curve. For example, going from 5 T1s to 10 T1s per cluster increases the maximum

probability of T0-T1 link failures from 5% to 17%, an increase of 240%. However, going from 15 T1s to

30 T1s per cluster, which is also doubling the number of routers, only increases the maximum probability

from 26% to 43%, which is an increase of 65%.

This has, naturally, an impact on the cost of the networks, in terms of maximum percentage of T0-T1

links down they can support. By using equation 4.3, we were able to modify the program that generates

all topologies, mentioned in section 3.1, so that it also outputs the maximum probability of a T0-T1 link

failure that a network supports for 99.999%, 99.99%, and 99.9% of connectivity between T0s of a cluster.

Thus, we were able to build the graph in figure 4.6, which presents the cheapest networks of 10 Gbps

links that support 99.999% of connectivity, for different values of maximum T0-T1 link probabilities. It can

be seen, for example, that for a maximum probability of link failure between 5% and 15%, the cost per

server is similar. However, after a probability of link failure of 15%, the cost starts to increase.

Figure 4.6: Cost per sever of networks of 10 Gbps links with different maximum probabilities of T0-T1 link failures
that each network supports for 99.999% of connectivity between servers.
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4.2 Connectivity between clusters

After studying clusters as a unit, we now need to study connectivity between T0s of different clusters. As

previously mentioned in 2.1, clusters are connected via spine planes, as in figure 2.4.

Since each T0 connects to a T1 and each T1 connects to n T2s, we can determine that there are

m × n shortest paths, of length 4, connecting two T0s of different clusters. However, only m of these

paths are pairwise disjoint. Thus, if a link between a T0 and a T1 fails, there are (m − 1) × n paths

left between that T0 and T0s of other clusters. However, if a link between a T1 and a T2 fails, T0s that

connect to that T1 still have m× n− 1 paths to T0s of other clusters.

Link failures between T0s and T1s

Dismissing the option of valleys, if we only consider link failures between T0s and T1s, we only need m

failures to disconnect two T0s of different clusters, given the symmetry of the network. Since the first

T1s of each cluster are exclusively connected to the first spine plane, if a T0 has a link failure to the first

T1, then it cannot connect to T0s of other clusters using the first T1s of any cluster. This can raise the

question if it would be preferable to have a T1 connecting to more than a single spine plane. However,

in our study, we do not consider this option and, therefore, the pattern of failures is exactly the same as

between two T0s of the same cluster except for the fact that, now, there must be a failure in a T1 of each

position, either in the cluster of the source or the destination.

If we assume that there can only be link failures between T0s and T1s and, consequently, links

between T1s and T2s are perfect, then, given the symmetry of the network, the probability defined in

equation 4.3 still stands. That is, the probability of two T0s being able to connect with each other,

whether or not they are in the same cluster, in the presence of T0-T1 link failures is given by equation4.3.

Since the pattern of failures that determines the probability of connectivity between a pair of T0s in

different clusters is the same as between a pair of T0s in the same cluster, and we have already shown

how valleys can increase the resilience to failures for this pattern of link failures, we will now study link

failures between T1s and T2s.

Link failures between T1s and T2s

Now, if we assume that only links between T1s and T2s can fail, there need to be m × n link failures to

disconnect two T0s of different clusters.

As a result, since m, specific, link failures between T0s and T1s are able to disconnect a pair of T0s

but, in the case of links between T1s and T2s, there need to be m×n link failures, we can see that T0-T1

link failures have a bigger impact in the network, in terms of connectivity, than failures between T1s and
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T2s. Thus, this is why we are only considering valleys between T0s and T1s but not between T1s and

T2s. The BGP implementation allows this, as explained in the previous section.

We shall now try to determine the probability of two T0s being able to connect with each other in the

presence of T1-T2 link failures. We start by analyzing networks without parallel links between pairs of

T1s-T2s

If we assume there can only be link failures between T1s and T2s and links between T0s and T1s are

perfect, we can determine that, with y being the probability of a T1-T2 link failure, the probability of being

unable to connect 2 T0s of different clusters via a pair of T1s in the same relative position of the cluster,

considering there are n spine sets, is

P (no connectivity via a specific pair of T1s) = (1− (1− y)2)n. (4.5)

Thus, the probability of a pair of T0s not being able to establish a connection through any T1 is given

by

P (no connectivity) = ((1− (1− y)2)n)m = (1− (1− y)2)m×n. (4.6)

Finally, we can determine that the probability that a pair of T0s can connect with each other is

P (connectivity) = 1− P (no connectivity) = 1− (1− (1− y)2)m×n. (4.7)

This probability is dependent not only on m, the number of T1s per cluster, but also on n, the number

of spine sets.

Once again, we want to analyze the impact of T1-T2 link failures in the connectivity between ToRs.

In order to do this, we determined the maximum probability of link failures that still maintain 99.999%

of connectivity between T0s, using different values of m and n. Due to the fact that, in the topologies

generated in 3, the maximum of T1s per cluster is 48, as well as the maximum number of spine sets, we

evaluated equation 4.7 with values of m and n up to 48. These results can be seen in figure 4.7.

From the figure, we can verify that the maximum probability of a T1-T2 link failure increases with the

number of T1s inside a cluster and with the number of spine sets. However, the difference between

probabilities starts to decrease as m, or n, increases.

For example, with m = 8, for n = 32 and n = 40 we have a maximum probability of link failure of, ap-

proximately, 79% and 81%, respectively. This is a small difference when compared with the probabilities

for n = 8 and n = 16, which are 59% and 70%. We can also do a similar analysis for higher values of m.

For example, with n = 8, the maximum probabilities of link failure for m = 32 and m = 48 are 79% and

82%, respectively, which are similar values when compared to the difference between the probabilities

of m = 8 and m = 16, 59% and 70%.
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Figure 4.7: Maximum probabilities of a T1-T2 link failure that a network supports, for 99.999% connectivity between
ToRs, and for different values of T1s per cluster, m, and T2s per spine plane, n.

We can also conclude that, even for small values of m and n, these probabilities of link failures are

higher than the ones achieved with failures between T0s and T1s, shown previously in figure 4.5. This is

due do the fact that, for the minimum number of spine sets, n = 1, the expression is exactly the same as

4.3. Therefore, as we increase the number of spine sets, the maximum probability of T1-T2 link failures

increases as well and it will always be higher than the failure probabilities of T0-T1 links.

For example, with m = 8, and n = 1 the maximum probability of a link failure between a T1 and a T2

that maintains 99.999% of connectivity between T0s is 12% but, for n = 2, this value increases to 28%.

This validates the conclusion that links between T0s and T1s are critical in the network and why valleys

are used to increase the resilience to failures in this set of links.

We also present, in figure 4.8, the different maximum probabilities of a T1-T2 link failure that support

99.999%, 99.99% and 99.9% of connectivity between T0s, for m = 8 and different values of n.

Use of parallel links

As previously mentioned, it is cheaper to use parallel links between pairs of T1-T2s in order to use fewer

T2s. In this case, even if the number of connections that a T1 has to T2s is the same, the probability of

connectivity differs when we use parallel links.

In the case of parallel links, a T0 can connect to a T0 of another cluster through two specific T1s and

a specific T2 as long as there is a single active connection from each T1 to the T2. Therefore, if there

are b parallel links between a T1 and a T2, there are n spine sets and x is the probability of a T1-T2 link

failure, then the probability of two T0s not being able to connect via a specific pair of T1s is given by
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Figure 4.8: Maximum probabilities of a T1-T2 link failure that a network supports, for 99.999%, 99.99% and 99.9%
of connectivity between T0s, and for 8 T1s per cluster, m = 8, and different values of T2s per spine
plane, n.

P (no connectivity through a specific pair of T1s) = (1− (1− xb)2)n. (4.8)

Consequently, the probability of connectivity between a pair of T0s, when using parallel links, is

P (connectivity) = 1− (1− (1− xb)2)n×m. (4.9)

Given both equations 4.7 and 4.9, it is possible to conclude that there is a higher resilience to link

failures when using parallel links. We can verify this by comparing both expressions for the same number

of T1s per cluster and total connections from a T1 to T2s. This can be seen in figure 4.9, in which we

represent the maximum probability of a T1-T2 link failure that still supports 99.999% of connectivity

between T0s, for networks with 8 T1s per cluster. We include in the figure three networks, one that does

not use parallel links and another two networks with two and three parallel links, respectively, between

T1s and T2s.

However, it should be noted that we are only analyzing link failures. If we were considering router

failures, for the same number of connections, a T2 router failure would bring down more paths when

using parallel links than when not using. Additionally, when routers need updates of their firmware, they

need to be temporarily taken out of production and, consequently, updating a T2 would also have a

bigger impact in the network when using parallel links.
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Figure 4.9: Maximum probabilities of a T1-T2 link failure that a network supports, for 99.999% connectivity between
ToRs, and for different values of T2s per spine plane, n, and number of parallel links from a T1 to a T2,
b.

Relationship between the resilience to T1-T2 link failures and the cost

By observing figure 4.8, it is possible to conclude that the maximum probability of a T1-T2 link failure

increases more rapidly for a low number of spine sets. When looking at the curve corresponding to

m = 8, for example, we can see that from 1 to 5 spine sets, that is, from 0% to 49%, approximately,

maximum probabilities of T1-T2 link failures, adding a spine set has a bigger impact on the maximum

probability than for higher values of spine sets. For example, for 99.999% of connectivity between T0s,

and m = 8, going from 2 spine sets to 4 can increase the maximum probability of a T1-T2 link failure

from 28% to 45%, a growth of 61%, as opposed to the increase from 49% to 63%, which corresponds

to a growth of 29%, when we increase the 5 spine sets to 10.

Thus, as we increase the probabilities of link failures, it will be more and more expensive. We can

see this in figure 4.10, which was obtained through a similar process used in figure 4.6. We modified

algorithm 3.1 to also provide the maximum probability of a T1-T2 link failure that each network supports

for 99.999%, 99.99%, and 99.9% of connectivity between T0s. Then, we obtained the cheapest networks

of 10 Gbps links that provide 99.999% of connectivity, for different values of maximum probabilities of

T1-T2 link failures.

Comparison of the cost of networks with different availabilities

Finally, we can also compare the cost of supporting different levels of availability between servers, that is,

in our case, the probability of a T0 being able to connect with another T0. Therefore, by using algorithm
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Figure 4.10: Cost per sever of networks of 10 Gbps links with different maximum probabilities of T1-T2 link failures
that a network supports, for 99.999% of connectivity between servers.

3.1, and its further modifications, we are able to obtain the cheapest networks that support, for example,

at least, 10% of the T0-T1 and 60% of the T1-T2 links down while achieving an availability of 5x9.

In figure 4.11, we analyze the price per server of networks with 3 levels of availability, 3x9, 4x9, and

5x9. Additionally, we compare two different sets of maximum probabilities of link failures, one with 10%

of T0-T1 and 60% of T1-T2 link failures, depicted in figure 4.11(a), and another with 30% of T0-T1 and

80% of T1-T2 link failures, represented in figure 4.11(b).

It is possible to determine, by these figures, that the difference between the cost per server of the

different availabilities diminishes with the increase of the number of servers.

4.3 Connectivity to the Internet

Data center companies also want to maximize the availability of external access to the data center. In

our topology, we consider, as shown previously in figure 2.7, that all T2s are connected to a “super

node” with perfect links, i.e. that does not suffer failures, which connects the data center to the Internet.

Therefore, we only take into account paths from T0s to T2s to analyze the connection to the Internet.

With this topology, it is possible to determine that there are m × n shortest paths, of length 2,

connecting a T0 to a T2 and, consequently, the Internet. However, only m of these paths are disjoint.
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(a) Network that supports 10% of T0-T1 link fail-
ures and 60% of T1-T2 link failures.

(b) Network that supports 30% of T0-T1 link fail-
ures and 80% of T1-T2 link failures.

Figure 4.11: Cost per server of networks of 10 Gbps linkswith different resilience to failures, for different values of
availabilities.

Link failures between T0s and T1s

In order to analyze the connectivity of T0s to the Internet, in the presence of link failures, we first assume

that T1-T2 links are perfect and evaluate the probability of connectivity in the presence of T0-T1 link

failures.

A T0 cannot connect to the Internet, in the presence of T0-T1 link failures, if all m links it has to T1s

fail. Thus, if x the probability of a T0-T1 link failing, then the probability that a T0 can connect to the

Internet is given by

P (connectivity to the Internet) = 1− xm. (4.10)

Similarly to what was previously done, we equaled equation 4.10 to the different values of connec-

tivity, that is 5x9, 4x9, and 3x9, in order to determine the maximum probability of a link failure between

a T0 and a T1 that guarantees the different values of connectivity between a T0 and the Internet. The

results are presented in figure 4.12.

As can be seen, these values are higher than the ones achieved in previous sections. For example,

for m = 8 and a connectivity of 5x9, the maximum probability of failure that supported connectivity

between a pair of T0s is, approximately, 12 % but, in this case, it is 23%.
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Figure 4.12: Maximum probabilities of a T0-T1 link failure that a network supports, for 99.999%, 99.99% and 99.9%
of connectivity between T0s and the Internet, and for different values of T1s per cluster, m.

Link failures between T1s and T2s

Now, similarly to what was done in the previous section, we assume that T0-T1 links are perfect and that

only T1-T2 links suffer failures. In this scenario, all m×n T1-T2 links must fail to disconnect a T0 from the

Internet. If y is the probability of a T1-T2 link failing, then the probability of a T0 connecting to the Internet

is

P (connectivity to the Internet) = 1− ym×n. (4.11)

Using the same values as in section 4.2, we calculate the highest probability of a T1-T2 link failure

that still guarantees that a T0 can connect to the Internet with a probability of 99.999%, depicted in figure

4.13.

As with link failures between T0s and T1s, the maximum probability of a T1-T2 link failure that still

respects 99.999% connectivity between a ToR and the Internet is higher than between a pair of T0s.

For example, for m = 8 and n = 2, the maximum probability of failure for connectivity between T0s is,

approximately, 28% and, in this case, it is 48%.

We also present, in figure 4.14, the comparison of maximum probabilities of a T1-T2 link failure that

support 99.999%, 99.99% and 99.9% of connectivity between T0s and the Internet, for m = 8 and

different values of n.
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Figure 4.13: Maximum probability of a T1-T2 link failure that a network supports, for 99.999% connectivity between
a ToR and the Internet, and for different values of T1s per cluster, m, and T2s per spine plane, n.

Use of valleys and parallel links

We will not be studying the use of valleys in this case because it would not achieve better results. This

can be explained by the following: if we are only studying failures between T0s and T1s, then every

T1 has a connection to T2s and, consequently, a T0 only needs to have an active connection to a T1.

However, if a T0 has a connection to a T1, then it will not need to use valleys because that T1 already

makes the connection to the T2s.

In this case, using parallel links will achieve the same results as not using due to the fact that we

consider that links from T2s to the “super node” are perfect. If we were considering that there were faulty

parallel links between T2s and the “super node” then, once again, we would see an increased resilience

to link failures when using parallel links.

Comparison of the cost of networks with different availabilities

Now, we can compare the cost of supporting different levels of availability between the data center and

the Internet. We modified, once again, algorithm 3.1 so that it also outputs the maximum probabilities

of T0-T1 and T1-T2 link failures that each network supports in order to provide 99.999%, 99.99% and

99.9% of availability.

In figure 4.15, we analyze the price per server of networks with 3 levels of availability, 3x9, 4x9, and

5x9, for maximum probabilities of 30% of T0-T1 link failures and 80% of T1-T2 link failures.

When comparing figures 4.11(b) and 4.15, it can be observed that networks in figure 4.15 have, with
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Figure 4.14: Maximum probabilities of a T1-T2 link failure that a network supports, for 99.999%, 99.99% and 99.9%
of connectivity between T0s and the Internet, and for 8 T1s per spine plane, m = 8, and different
values of T2s per spine plane, n.

the exception of networks with 10 000 servers, a lower cost per server. This is due to the fact that, for the

same number of T1s per cluster and connections from a T1 to T2s, the value of the maximum probability

of both T0-T1 and T1-T2 link failures is higher in the case of connecting the data center to the Internet

than connecting pairs of T0s.

4.4 Path diversity

Folded Clos topologies have many redundant paths between different nodes. In data centers, we want

to take advantage of this characteristic and use different paths to reach the same destination. This way,

we can distribute the traffic by many paths and, consequently, enable load-balancing in the network.

In BGP, there is an extension called multi-path that allows the installation of multiple routes with

equal cost to the same prefix in the FIB, and, afterwards, makes use of ECMP to use, in simultaneous,

these routes. In this case, the cost is defined by the length of the AS-PATH. Consequently, only the best

paths with the same length are stored. Even if, for example, there is a single shortest path available and

other paths with a higher AS-PATH length, the shortest path is the only one stored and used.

Additionally, ECMP allows us to configure how many redundant paths to the same destination are

stored in the FIB. We want to make use of as many paths as possible but, due to the cost or the

maximum size of the FIB, we may want to limit the number of paths stored.

However, when we limit the number of paths stored in the FIB, sometimes, given the fact that the

paths are stored in chronological order, i.e., in the order that the routes are learned, most nodes end up
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Figure 4.15: Cost per server of networks of 10 Gbps links that support 99.999% of connectivity, for maximum
probabilities of 30% T0-T1 link failures and 80% of T1-T2 link failures.

saving the same routes. If, for example, in data centers, we want T0s to distribute the traffic by only half

of the available T1s, each T0 will save the first routes learned by the T1s. But, when advertising a route,

each T1 will broadcast it to all T0s at the same time. As a consequence, T0s may save the routes learned

from the same T1s, which leads to some T1s barely receiving traffic and others that receive most of the

traffic from the T0s. This causes a very unequal load-balancing in the network.

Nevertheless, in this work we assume perfect load-balancing. For each volume of traffic that a node

receives for a given prefix, it evenly distributes it by all the paths stored in the FIB. It should be noted

that, in reality, traffic flows are indivisible.

ECMP value in the presence of link failures

In the presence of link failures, some paths will no longer be available. In folded Clos topologies, given

the fact that every connection originated in T0s is made through T1s, the number of redundant paths,

i.e., the ECMP value, will be determined by how many T1s can be used to reach the destination. As

a consequence, we only study link failures between T0s and T1s, since it only takes a T0-T1 failure to

decrease the number of redundant paths from that T0 but, in the case of T1-T2 link failures, it takes all of

the links between a T1 and T2s.

When valleys are not enabled, if we take the expression in equation 4.1 and multiply it by the number

of T1s in a single cluster, we end up with the value of ECMP, that is, number of paths stored in the FIB

for the same prefix, for a probability x of a T0-T1 link failure:
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(1− x)2 ×m. (4.12)

In figure 4.16, it is depicted the ECMP value in terms of the probability of a T0-T1 link failure, for

different values of T1s per cluster, m. We can observe in this figure how the ECMP value decreases as

the probability of a T0-T1 link failure increases.

Figure 4.16: Value of ECMP of T0s for different values of T1s per cluster, m, and for different values of T0-T1 link
failure probabilities.

Use of valleys

Nonetheless, similarly to what is done to increase connectivity, we can use valleys to augment the ECMP

value in the presence of link failures. In figures 4.17(a) and 4.17(b), we can see the theoretical value

for networks with 8 T1s per cluster, m = 8, and 16 T1s per cluster, m = 16, respectively, as depicted in

figure 4.16, and the simulated values with and without valleys. The simulated values were obtained by

running a slight modification of algorithm 4.1 so that it also determines the ECMP value.

The graphs in figure 4.17 allow us to conclude that, given the fact that valleys only start being used

for high probabilities of a T0-T1 link failure, the ECMP value obtained with and without valleys is the same

up until a 50% probability of link failure for networks with 8 T1s per cluster, and 60% for networks with

16 T1s per cluster.

However, as the probabilities of link failure increase, the use of valleys allows the use of more paths.

For example, for m = 16, a probability of link failure of 80% results in an average of the ECMP value

without valleys of 0.64, and, by using valleys, this value increases to 1.94.
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(a) Network with 8 T1s per cluster, m = 8. (b) Network with 16 T1s per cluster, m = 16.

Figure 4.17: Comparison between the use of valleys in the value of ECMP of T0s, for different T0-T1 link failure
probabilities.

Additionally, we can see that the ECMP value using valleys surpasses the value without valleys for

lower link failure probabilities in networks with 8 T1s per cluster, figure 4.17(a), than in networks with 16

T1s per cluster, figure 4.17(b). From this we can conclude that valleys are more relevant in architectures

with fewer T1s per cluster. This is due to these architectures supporting less failures in T0-T1 links and,

consequently, valleys start being used at lower probabilities as well.

Therefore, valleys not only allow more pairs of T0s to connect with each other in the presence of link

failures, but also allow a higher number of paths to be used.

However, since valleys only start being used at high probabilities of failures, one must conclude

that, if BGP allowed, it would be preferable to use, in terms of connectivity, non-valley and valley paths

simultaneously, that is, 2-hop and 4-hop paths. In this case, an approximation of the value that ECMP

would have can be deduced from the fact that two T0s would be able to connect through a T1, or a pair

of T1s in the same relative position of both clusters, if both T0s were in different clusters, if there was

a single active link from the source to a T1 or from the destination to a T1. Therefore, if x is the

probability of a T0-T1 link failure and there are m T1s per cluster, then the ECMP value is given by

(1− x)×m. (4.13)

This expression is represented, for networks with 8 T1s per cluster, m = 8, in figure 4.18, along with

the previous values obtained in figure 4.17(a), in order to compare the ECMP value. We can conclude

that using valleys in simultaneous would be advantageous in terms of the number of paths available.
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Figure 4.18: Values of ECMP with and without the use of valleys, and comparison with the simultaneous use of
both types of paths, for different values of T0-T1 link failure probabilites and a network with 8 T1s per
cluster, m = 8.

4.5 Routing State

We now present the number of routes installed in the FIB, and in the RIB, for a complete analysis,

without link failures and in terms of the different parameters of the network. We consider the following

parameters: k T0s per cluster, m T1s per cluster, n spine sets and, finally, p clusters.

In this study, we consider that only T0s are advertising a single aggregated route to its servers.

Therefore, we consider that each router only stores routes to T0s, which may not happen in every

network, and we are also not considering the number of routes from the Internet that a T2 stores.

RIB values

In the case of the RIB, it stores every path learned to a prefix, whether or not the router in question

elected this route as the best one, and independently of the cost, which is, in this case, determined by

the AS-PATH length.

Each T0 saves a route to all of the remaining T0s in the data center and, since it is connected to m

T1s that provide a path to the T0s, it has m routes per T0 in the data center.

In the case of T1s, we need to differentiate the values when we do not use valleys and when we do

and, additionally, when we use parallel links or not. In order to simplify, we consider that the parallel

links form a single link, that is, even though there may be more than one physical link, it is registered as

a single logic link.
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Without valleys, each T1 has one route to each T0 of its cluster, that is, k routes, and, since it is

connected to n T2s, it has n routes per T0 of other clusters. In the case of valleys, however, the T1 has,

in addition to the routes that do not use valleys, k − 1 routes per T0 of its cluster, since each T0 of its

cluster will advertise a route to other T0s, and k routes per T0 of other clusters.

Finally, in the case of T2s, they only connect to a T1 of each cluster and, consequently, have a

single route per T0 in the data center. However, as previously mentioned, T2s also store routes from the

Internet.

It should be noted that, since we are analyzing the number of routes in the RIB when there are no

link failures, T1s only advertise paths without valleys and, consequently, T0s and T2s will not learn about

these paths until T1s start using them. As such, the number of routes in the RIBs of T0s and T2s does

not change with the use of valleys when there are no link failures.

The expressions that represent the number of RIB entries for each type of router can be found in

table 4.1.

Table 4.1: Number of RIB entries, without failures.

T0s T2s
(k × p− 1)×m k × p

Options T1s
No valleys k + k × (p− 1)× n

With a valley k + k × (p− 1)× n+ k × (k − 1) + k × (p− 1)× k

In order to analyze these expressions, we assume that we are dealing with a fixed number of servers,

designated by N , in the data center.

For example, if we consider that T0s are connected to l servers, we need N/l T0s. Thus, even if we

change the number of T0s per cluster and, consequently, the number of clusters, the number of T0s is

the same and, thus, k × p is a constant.

Therefore, since each router has a number of entries directly proportional to k × p, this value will not

have an impact in the number of entries, for equal values of l. We can also conclude that, for bigger

values of l, fewer T0s are required and, consequently, the number of entries in the RIB diminishes in

each router.

However, it should be noted that we are assuming an aggregation of prefixes in the T0s and, if this is

not the case, and every prefix that the T0 connects to is advertised, then the value of l will not change

the number of entries. Thus, we can see the advantages that prefix aggregations have.

Additionally, we can conclude that aggregation of prefixes at higher tiers could also lead to improve-

ments in the number of entries installed in the RIB. For example, if each T1 could advertise an aggre-

gation of the prefixes advertised by the T0s of its cluster, then the term k × p, in all the tables of the
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routers, would be substituted by only p. And, if each T2 was able to aggregate the prefixes advertised by

each T1, then we could even substitute k× p, in T0s and T2s, by only one route. However, in the case of

failures, routers may not be able to aggregate and still need to advertise “individual” prefixes.

We can also conclude that the number of entries in T0s is directly proportional to the number of T1s

per cluster and the number of entries in T1s is directly proportional to the number of spine sets and, in

the case of valleys, also to the number of T0s.

FIB values

In the FIB, only the elected routes are installed. Therefore, if multi-path is not used, only a route per

prefix is installed. However, in this work, we have to take multi-path into account and, consequently,

routes with the same AS-PATH length will be stored. There is also an option, if needed, of limiting the

number of equal-cost paths stored, which we will designate by ECMP in the expressions.

In the case of T0s, they have m routes, that is, the number of T1s per cluster, per T0 in the data

center. The number of routes installed is limited by this number or, alternatively, by the ECMP value set

in the BGP implementation.

In T1s, if there are no failures in the network, their FIBs will only store the paths that are not valleys.

As a consequence, they save a route per T0 of the cluster and the minimum between n, the number of

spine sets, and the ECMP value defined, per each T0 of other clusters. However, when we use valleys,

if the T1 is unable to connect directly to a T0 of its cluster then, instead of storing a single route to it, it

stores either up to k − 1 routes that the other T0s of the cluster advertise or the limit imposed by ECMP.

And, if it does not have a shortest path through any T2 to a T0 of another cluster, then it will store, instead

of the n shortest routes, up to n routes adversited by T2s that provide paths with a valley on the cluster

destination, in addition to up to k routes advertised by the T0s of its cluster that provide paths with a

valley on the cluster source, or the limit imposed by ECMP. Although we only present, in table 4.2, the

values of the number of entries in the FIB when there are no failures, it is possible to understand how

the table can grow when valleys are allowed and there are link failures.

Finally, T2s store the same number of routes as in the RIB since they only have a route per T0.

Additionally, they store an elevated number of routes from the Internet.

The expressions that represent the number of FIB routes, without failures, for each type of router can

be seen in table 4.2.

Table 4.2: Number of FIB entries, without failures.

T0s T1s T2s
(k × p− 1)×min(m,ECMP ) k + (k × p− 1)×min(n,ECMP ) k × p

By analyzing table 4.2, we end up with the same conclusions that were derived from table 4.1. Since
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each router has a number of entries in the FIB directly proportional to k × (p − 1), if only T0s advertise

prefixes, then clusters with more servers per T0 and fewer T0s allow the installation of less routes.

Additionally, it would also be advantageous to have T1s announce an aggregated prefix of the prefixes

that each T0 of its cluster advertises, in order to substitute the expression k × p by simply p. And, as

previously concluded, having T2s advertise an aggregated prefix of the advertised prefixes by T1s would

even substitute the expression k × p by a single route.

When a T1 connects a T0 of its cluster to a T0 of a different cluster, and it needs to use a valley, it

may have the option of using a valley inside its cluster or in the cluster of the destination. However, the

probability of the T1 choosing a valley in its cluster is not uniform and it is, instead, related to the storage

of paths in the FIB. Since it will have, at most k − 1 paths, installed in the FIB, that use a valley in the

source cluster and n in the destination cluster, if x is the number of T0s, in the cluster of the source,

that the T1 can use to reach the destination, and y is the number of T2s that it can also use, then the

probability of the T1 choosing the cluster origin to accommodate the valley is given by

P (valley in the source cluster) =
x

x+ y
.

This means that, if a T1 only has a single failure to the T0 origin, then

P (valley in the source cluster) =
k − 1

k − 1 + n
. (4.14)

4.6 Conclusions

In this chapter, we were able to determine mathematical expressions that provide the probability of

connectivity between pairs of servers, and between servers and the Internet, in terms of link failures. By

doing this, it was possible to determine approximate values of availability, usually defined in the SLAs of

data centers. We also compared the cost of networks for different values of availability between servers,

and between the data center and the Internet.

We concluded that links between T0s and T1s are critical in the network due to the number of disjoint

paths connecting a T0 to other T0s, or the Internet, being limited by the number of T1s that the T0

connects to. Therefore, the link failures that have a bigger impact in the network are T0-T1 link failures.

We saw how using non-shortest paths, which we designated by valleys, can improve end-to-end

connectivity. In the presence of link failures, valleys allow pairs of servers to connect with each other

that otherwise could not. Additionally, valleys allow an increase in the number of redundant paths that

a T0 has, but only for a high percentage of link failures. We presented how, instead of an exclusive

use of shortest or non-shortest paths, the simultaneous use of both paths can increase the number of

redundant paths that a T0 has stored in the FIB. However, the need to store more routes when using
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valleys can have an impact in the cost of routers due to the increase of the memory needed.

We were able to determine mathematical expressions that, by assuming that each T0 advertises

a prefix, provide the number of routes in both the RIB and the FIB as a function of the routers in the

topology. We provided an insight into how aggregation of prefixes can help reduce the memory size

needed.
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Chapter 5

Congestion Analysis
Data centers run different types of applications, which will determine the traffic pattern of each network.

In this work, we want to examine how link failures affect the congestion of links in the different folded

Clos topologies by studying the, assumed by us, traffic patterns of 3 well-known application models.

5.1 Traffic patterns

The traffic patterns that we are analyzing correspond to the following applications:

1. In HPC, the application is distributed by many servers that process the data and communicate with

each other to obtain results. Therefore, the traffic occurs inside the data center, that is, between

servers. Distributed applications can, however, have different patterns of communication between

servers [35]: one to all, all to one, all to all and one to one. Additionally, applications may take

advantage of the location of the servers in the data center, that is, spatial locality. Consequently, we

assume flows are preferably intra-rack, followed by intra-cluster and, if more servers are needed,

by inter-cluster. In this study, we analyze all to all communications between servers of the same

cluster and between all the servers of the data center.

2. Search engines, which we are treating as a concrete example of an HPC application with addi-

tional communication from and to the Internet, such as Google search [17], have specific servers

dedicated to accepting requests from the Internet, distribute each request by other servers, as-

semble the results of the computations and reply to the user. In this case, we assume most of

the traffic occurs inside the data center and the rest between the data center and the Internet.

As an HPC application, search engines make use of spatial locality and, consequently, we only

consider traffic intra-cluster between internal servers. Thus, a single ToR per cluster is elected to

receive and distribute the requests by the remaining servers of the cluster. Additionally, we are

assuming that servers dedicated to receiving requests from the Internet have 80% of their share of

the traffic between themselves and the other servers and the remaining 20% between themselves

and the Internet. The remaining servers reply solely to the server that distributes requests with the

same amount of traffic received by him, that is, 80% of the total volume divided by the number of

remaining servers.
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3. Streaming services are assumed to mostly having servers dedicated to serving clients from the

Internet. Servers receive requests from the Internet and start sending large amounts of data,

obtained from the storage resources, to the clients. Therefore, we assume most traffic occurs

between the servers and the Internet. In our study, we consider that all servers are serving re-

quests from clients, that is, are sending data to the Internet, and have occasional communications

between themselves and the other servers of the cluster. Thus, for each server, we consider 80%

of the share of the traffic is between the server and the Internet and the remaining 20% to servers

of the same cluster.

In our work, two important aspects should be taken into account. Firstly, as with link failures, since

we do not assume that a server has more than one connection to a T0, we are only measuring traffic to

and from T0s, that is, we do not study the traffic between servers and the ToRs. Secondly, we assume

that each traffic flow is perfectly distributed by the ECMP and, consequently, load-balancing is perfect,

that is, each traffic flow is equally distributed by all paths at each router. In practice, however, traffic flows

are indivisible.

In order to analyze the different traffic patterns, we started with the program, previously mentioned

in section 4.1, which builds a graph representing the network given as input. However, algorithm 4.1,

described as well in section 4.1, which discovers the existence of a path from one node to others, is not

sufficient to distribute traffic since, in this case, we need to know not only if there is a path but also every

shortest path between nodes.

Therefore, we slightly modified algorithm 4.1 into algorithm 5.1. This algorithm discovers all the

shortest paths between a source node, s, and the other nodes in the network. Each time we took a

node u out of the queue, we check if the path to its neighbors through him has the same distance as the

shortest path found to the neighbors. Therefore, if, for a neighbor v, the distance is the same, we can

register node u as one of the parents of node v, that is, node v has a path to the source through node u.

After running the algorithm, we still need to distribute the traffic. Given the fact that we only store the

parents of every node, we need to use recursion to go through the path and add the flows of traffic to

each link, as presented in algorithm 5.2.

Finally, we want to determine the maximum probability of link failures that each network supports.

We consider that a network supports a given probability of failure if, for half, or less, the samples we

take, there are no links with a sum of traffic flows higher than their capacity, that is, no link is supposed

to deliver, for example, 12 Gbps of traffic if it only has a capacity of 10 Gbps. To do this, we took 100

samples, for each traffic pattern and different volumes of traffic, until we found a probability of link failure

that presented more than half of the samples with overcapacitated links.

Similarly to the connectivity analysis, we divided the link failures in T0s-T1s and T1s-T2s. However,

since paths from T1s to T2s share a T0-T1 link, then failures in T0s-T1s are the critical ones, as seen in
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Algorithm 5.1: FindShortestPaths(s, valleys)
begin

for each v do
dist[v]←− +∞
visited[v]←− false
path[v]←− ∅
parents[v]←− ∅
nrPaths[v]←− 0

Q←− s
dist[s]←− 0
visited[s]←− true

while Q 6= ∅ do

select u of Q for which d[u] is smallest
Q←− Q− {u}

for each adjacent node v of u do

if visited[v] 6= true then

if ASNInPath(v, u) = 1 and (valleys 6= true or IsT2(v) = true) or
ASNInPath(v, u) = 2 then

continue

dist[v]←− dist[u] + 1
visited[v]←− true
path[v]←− u
Q←− Q+ {v}

if (dist[u] + 1) = dist[v] then

nrPaths[v]←− nrPaths[v] + 1
parents[v]←− parents[v] + {u}

the connectivity analysis and, as a result, we applied no oversubscription in T1s. Therefore, our analysis

focuses on T0-T1 link failures, with the exception of the impact of using parallel links, explained in detail

in section 5.3.

Traffic patterns comparison

As previously mentioned, we studied HPC patterns with all to all communication between the T0s of a

single cluster, intra-cluster, and between every pair of T0s in the data center, inter-cluster. The compari-

son of the maximum probability of a T0-T1 link failure that a network, with 48 T0s per cluster, 16 T1s per

cluster, and 27 clusters, supports for these two modes is represented in figure 5.1. From this figure we

can conclude that the difference between the results is minimal, with a maximum of 2%, and this is due

to the fact that, in both cases, the amount of traffic transversing the network is the same. Therefore, this

allows us to largely reduce the computation time by only analyzing communication intra-cluster.
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Algorithm 5.2: RebuildPaths(v, traffic)
begin

if parents[v] = ∅ then

return

distributedTraffic←− traffic/nrParents[v]

for each parent p of v do

addTrafficToLink(v, p, distributedTraffic, )
RebuildPaths(p, distributedTraffic)

Figure 5.1: Comparison between HPC all to all communication intra-cluster and inter-cluster of the maximum prob-
abilities of a T0-T1 link failure that a network supports, as a function of the traffic sent by each T0.

We compare, in figure 5.2, the maximum probability of link failure for each traffic pattern, for two

networks with 10 Gbps of capacity links,: network A in figure 5.2(a), and network B in figure 5.2(b). Both

networks have the same number of servers, approximately a hundred thousand, and the same number

of T0s per cluster, but have T0s with a different number of ports. On network A, each T0 connects to

40 servers and 8 T1s, and on network B, each T0 connects to 80 servers and 16 T1s. Consequently,

since both networks share the number of T0s per cluster, network A has double the number of clusters

of network B.

In figure 5.2, we present, in the axis x, the traffic sent by every T0 in the network, in the case of the

HPC and streaming patterns. In the case of the search engine, we present the value of traffic sent by

the T0 that receives requests from users in the Internet, distributes these requests and then replies to

users.
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Since each network has a different number of T1s, then the axis in figures 5.2(a) and 5.2(b) differ.

However, if we divide the traffic sent by a T0 by the number of servers in each T0, we obtain the value

per server and are able to compare the probabilities in terms of traffic per server. For example, 40 Gbps

sent by a T0 in network A corresponds to, approximately, 1 Gbps per server, and 80 Gbps sent by a T0

in network B corresponds to the same value per server, when divided by the 80 servers connected to

each T0.

(a) Network A, with 8 T1s per cluster. (b) Network B, with 16 T1s per cluster.

Figure 5.2: Comparison between the three different patterns of communication of the maximum probabilities of a
T0-T1 link failure that two networks, A and B, support, as a function of the traffic sent by a T0.

We can conclude that network B supports higher probabilities of link failure than network A due to

the higher number of T1s per cluster. For example, for HPC, network A only supports a probability of

link failure of 4% for a traffic volume of 40 Gbps, and network B supports 12%, which is a value 3 times

higher, for 80 Gbps of traffic.

We can see in both networks that, in general, the HPC traffic pattern is the one that supports less

failures and the search engine the one that supports more. Additionally, the streaming traffic pattern

is the pattern that suffers more variation with the number of T1s per cluster. Although, in network A,

the streaming pattern supports similar failures to HPC, in network B it supports more failures than this

pattern and has similar values to the search engine pattern.

Additionally, we decided to compare the values obtained with network B to the values obtained with

network C, which has exactly the same number of servers per T0 and T1s per cluster, but has half the

number of T0s per cluster and, consequently, double the number of clusters. To summarize, network C

has 80 servers per T0, 24 T0s per cluster, instead of 48, 16 T1s per cluster, 24 spine sets, since there is

no oversubscription at the T0s, and 53 clusters, instead of the 27 of network B. The results are shown in

figure 5.3.
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Figure 5.3: Comparison between the three different patterns of communication of the maximum probabilities of a
T0-T1 link failure that network C, with 16 T1s per cluster, supports, as a function of the traffic sent by
each T0.

From figure 5.3, it is possible to determine that this network presents slightly better results for the

HPC pattern. For example, for a volume of traffic of 60 Gbps, network B supports 20% of link failures

and network C supports 23%. However, for the other two traffic patterns, the network has worse results,

especially in the case of the streaming pattern. For example, for the streaming traffic pattern, while

network B supports 22% of failures for a volume of traffic of 80 Gbps sent by each T0, network C only

supports 13%. As such, we can conclude that, for the same number of servers, spine sets, and T1s per

cluster, networks with more clusters and fewer T0s per cluster achieve better results for HPC intra-cluster

communication patterns and worse results for the search engine and streaming patterns.

It should also be noted that, while we are not applying oversubscription in the T1s, in the case of the

HPC intra-cluster and the streaming patterns, since the volume of traffic inter-cluster, and between the

data center and the Internet, is small, compared to the remaining traffic, then oversubscription in the T1s

should be applied. Applying oversubscription in the T1s allows a reduction in the number of T2s in the

network, since T1s connect to more T0s than T1s, and, consequently, the cost of the network decreases.

5.2 Non-shortest path routing

We studied, for identical networks and traffic patterns, the difference in the maximum T0-T1 link failure

probabilities when using valleys. We can observe the results for the HPC intra-cluster communication

pattern in figure 5.4(a), and for the streaming pattern in figure 5.4(b).

It can be concluded, from figure 5.4, that valleys do not improve the maximum probability of a link
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(a) HPC intra-cluster. (b) Streaming.

Figure 5.4: Comparison between the use of valleys, for the HPC intra-cluster and streaming patterns, of the maxi-
mum probabilities of a T1-T2 link failure that a network supports, as a function of the traffic sent by each
T0.

failure and can, on the contrary, make the network more susceptible to overcapacitated links, as can be

seen in figure 5.4(b). This is due to the fact that valleys only start being used when the probability of

failure is very high and all of the shortest paths become unavailable, that is, a T0 will begin to have only

three, two, and eventually a single shortest path available to other T0s before valleys are used. When

valleys start being used, even though there may be multiple paths available, the number of disjoint paths

is very small, as seen in the path diversity analysis. Therefore, if a T0 is sending a large volume of traffic,

as the percentage of links down increases, there will come a time when that T0 may have multiple paths,

but the number of disjoint paths is so mall that links that share multiple paths will be overcapacitated.

Thus, with the BGP implementation as it is, valleys are mostly advantageous when the amount of

traffic being sent is very small, so that it can provide connectivity between T0s that otherwise would not

be able to connect. Therefore, to take a greater advantage of valleys, it would be useful if the routing

protocol could be modified in order to use, simultaneously, shortest and non-shortest paths, that is,

paths with and without valleys, since the average ECMP value would be higher, as seen in 4.18.

5.3 Parallel links

In this work, we consider the option of using parallel links between the same pair of T1s-T2s. For

example, a T1 can connect to 24 T2s using a single link to each one or, alternatively, to 12 T2s using two

different links to each T2. This way, the number of links from a T1 to T2s is the same. However, as we

will further see, even though, in terms of connectivity, the use of parallel links increases the probability

of two routers being able to connect with each other in the presence of T1-T2 link failures, it has the
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opposite impact in the distribution of traffic due to BGP being unable to advertise the number of parallel

paths.

As can be seen in figure 5.5, for a network with 16 T1s and no oversubscription at the T1s, for the

HPC inter-cluster pattern, in figure 5.5(a), and the streaming pattern, in figure 5.5(b), the use of parallel

links greatly reduces the maximum T1-T2 link failure probability that a network supports.

For example, we can see that on both the HPC inter-cluster and streaming patterns, using parallel

links leads to overcapacitated links for any probability of link failure for traffic volumes higher than 100

Gbps. But, on the contrary, when using a single link between pairs of T1s-T2s, the network supports, for

a volume of 100 Gbps of traffic, approximately, 14% and 36% of link failures for HPC inter-cluster and

streaming communication patterns, respectively.

(a) HPC inter-cluster. (b) Streaming.

Figure 5.5: Comparison between the use of parallel links between a T1 and a T2, given by parameter b, for the HPC
inter-cluster and streaming communication patterns, of the maximum probabilities of a T1-T2 link failure
that a network supports, as a function of the traffic sent by each T0.

To further understand why this happens and what can be done to minimize this disadvantage of

parallel links, we now give a simple example. In figure 5.6(a), we have a network with 8 routers, each

link has a capacity of 8 Gbps and A is trying to send 30 Gbps of traffic to router B. Routers A and B

have each a link to routers C, D, E, F, G, and H, similarly to what happens in folded Clos topologies, if

we consider that A and B are T1s in different clusters and the remaining routers are T2s. In the figure,

we only represent the flow of traffic, although links between routers are bidirectional.

Now, A can use any of the 6 available paths, each one through a different router, as advertised by

BGP. However, when making use of ECMP, it can distribute the traffic by the 6 paths available. Thus,

router A sends 30/6 = 5 Gbps of traffic through routers C, D, E, F, G, and H, enabling load-balancing in

the network.

If, however, the link between C and B fails, as represented in figure 5.6(b), BGP messages are
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exchanged in the network and A learns it no longer has a path through C. Therefore, to send 30 Gbps

to router B, it has to distribute the traffic through the 5 remaining available paths, resulting in 30/5 =

6 Gbps per path. In this case, the load-balancing continues to be perfect and none of the links are

overcapacitated, that is, have a traffic load above their capacity.

(a) Network without failures. Router A
sends 5 Gbps through each path.

(b) Network with a link failure between
routers C and B. Router A sends 6 Gbps
through each available path.

Figure 5.6: Example of a network with 8 routers and the flow of traffic from router A to router B.

When using parallel links we can, however, use only 3 routers in the upper tier and achieve the same

results that we did in figure 5.6(a) when there are no link failures. This is represented in figure 5.7(a),

where router A has a path through routers C, D, and E, and, consequently sends 30 Gbps to router B by

distributing the traffic through the 6 links that connect router A to routers C, D, and E.

(a) Network without failures. Router A
sends 5 Gbps through each link con-
necting it to routers C, D, and E.

(b) Network with a link failure between
routers C and B. Router A sends 5 Gbps
through each link connecting to routers
C,D and E. However, router C sends 10
Gbps through its only available link to
router D.

Figure 5.7: Example of a network with 5 routers and two parallel links between pairs of routers in different tiers.
The flow of traffic represented is from router A to router B.

However, when a link from C to B fails, which is the equivalent of what happened previously in figure

5.6(b), the resulting flows are not equal. While in figure 5.6(b), the link failure determines that A has
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one less path available to C, this does not happen in figure 5.7(b) because BGP only informs routers of

the availability of a path and does not include information about the number of parallel paths. Therefore,

router C will not advertise to router A that it has one less path to router B because it continues to have

at least one path to it. Router A will then keep making use of the 6 links that have a path to router B

due to having paths through any router. However, the traffic that arrives in router C is, afterwards, only

routed through the single remaining link that connects it to B. Thus, router A will send 5 Gbps of traffic

through each link connecting it to routers C, D, and E, but, in router C, the link that connects C to B will

accommodate both flows of 5 Gbps and, in total, carry 10 Gbps to router B.

This situation can, as it happens in this case, lead to links with traffic loads higher than their capacity.

Given the fact that, in both networks, links have a capacity of 8 Gbps then, in figure 5.7(b), the remaining

link between routers C and B has a flow of 10 Gbps and, consequently, some of the packets arriving at

router C will be discarded.

To try and mitigate this issue, there is the option of aggregating parallel links in a single virtual link

and, when the number of unavailable physical links reaches a previously defined value, the whole virtual

link is taken down. This way, the whole path goes from fully, or almost fully available, in terms of capacity,

to no longer available. This can avoid what happens in figure 5.7(b) because, if we had set the threshold

at the unavailability of a single parallel link, connection from router C to B would be shutdown and router

A would no longer send any traffic through router C, since it no longer had a path to router B through

it. This situation is depicted in figure 5.8 and, as can be seen, each link represented carries 30/4 = 7.5

Gbps of traffic, which is lower than the capacity of each link.

Figure 5.8: Example of a network with 5 routers and two parallel links between pairs of routers in different tiers.
The flow of traffic represented is from router A to router B. In this example, given that there is a failure
from router C to router B, the path from router C to router B is shut down and the traffic flows through
routers D and E.

However, by shutting down whole connections between routers, we are not making use of paths

that are still available, even if at lower capacity. One solution that could solve this would be for BGP to

include the capacity of the path when advertising it. This already exists, using an extended community,

as defined, for example, in [36], but it is static and, consequently, would require a software to detect
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failures and automatically implement the correct bandwidth value for each path. Additionally, ECMP has

a uniform hash so, in order to distribute more traffic through a certain path, the only solution presented

so far is to have repeated paths in the FIB, in proportion to the bandwidth of each path. Thus, if, for

example, path U has 10 Gbps of capacity and path V only has 5 Gbps, then, there would be two routes

with path U installed in the FIB and only one with path V. This would increase the size and, consequently,

the cost of the FIB.

5.4 Conclusions

In this chaper, we assumed traffic patterns of three different applications: HPC, search engines and

streaming services. By simulating the use of traffic in different networks, we were able to analyze

congestion in links of different topologies, in the presence of link failures.

We concluded that, from the three applications, HPC tolerates the lowest percentage of link failures

and search engines the highest. We determined that increasing the number of T1s per cluster allows a

network to support higher percentages of link failures and saw that, for the same number of servers, T1s

per cluster, and spine sets, networks with a smaller number of T0s per cluster and more clusters achieve

better results for the HPC pattern, and worse results for the search engine and streaming patterns. We

also determined that oversubscription in the T1s should be applied in the HPC intra-cluster and search

engine patterns, in order to reduce the overall cost of the network.

We studied non-shortest path routing and concluded that allowing valleys does not change the max-

imum probability of T0-T1 link failures for the HPC pattern but leads to worse results for the streaming

pattern. This is due to the fact that valleys only start being used when the percentage of link failures is

very high and, with valleys, even though many paths are used, the number of disjoint paths is very small,

which leads to links common to all paths to have a higher traffic load than their capacity.

We analyzed congestion in networks with and without the use of parallel links and were able to

determine that the actual configuration of BGP leads to overcapacitated links when using parallel links,

even if the probability of T1-T2 link failures is very small. This happens because BGP does not advertise

the number of parallel paths.
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Chapter 6

Emulation of networks
In order to validate some of our results, we emulated small folded Clos networks using Common Open

Research Emulator (CORE) 6.1.0 [37] and FRRouting (FRR) 7.4-dev [38]. Using this software, we were

able to configure BGP in the networks and verify that, with the previously disclosed assignment of ASNs,

BGP is able to provide a connection between each pair of routers only through the shortest paths. We

also confirmed that BGP multi-path allows the installation of multiple shortest paths in the FIB and that

ECMP is able to load-balance the traffic by these paths. We verified that, by applying link failures in the

network, paths in the shape of valleys were discovered and used when shorter paths were unavailable.

We now present, in detail, how we configured the networks used.

6.1 Initial configuration

An example of a network used is depicted in figure 6.1, with 2 clusters, each one with 4 T0s and 3 T1s,

and spine planes composed of a single T2 each.

Figure 6.1: Example of a 3-tier folded Clos network, emulated using CORE.

It is possible to add routers, add links between them and configure them using the graphical interface

of CORE, as shown in figure 6.1, or, alternatively, by using an XML file. In this case, we started by trying

out the graphical interface but ended up implementing a program that, by inserting the number of T0s

and T1s per cluster, and the number of clusters and spine planes as arguments, builds the XML file with

the proper BGP configuration. Then, it is only needed to load the file in CORE.

Before configuring BGP, however, we needed to activate the following services in each router:
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• IPForward, which allows the routers to, essentially, work as routers and, consequently, when they

receive a packet meant for an IP address that it is not its own, it forwards the packet in accordance

to the information stored in the FIB.

• Secure Shell (SSH), which enabled us to start an SSH connection from the host to each router

and then use the virtual shell, vtysh, to apply any configurations needed or to access the RIB and

FIB during the emulation.

• FRRBGP, a daemon responsible for the implementation of BGP.

• FRRZebra, which, as designed by FRR, implements zebra, a middleman daemon that FRRBGP

communicates with. This daemon is responsible for talking to the dataplane and it is mainly impor-

tant when multiple protocols are implemented since it coordinates routing decisions but, since it is

part of the default configuration of FRR, we decided to keep it.

6.2 BGP configuration

After adding routers to the network, we need to configure the interfaces that interconnect them and

implement our routing protocol, BGP. The configuration can be done in two ways: by using the virtual

shell in the router, during the emulation, or by editing the file ”usr/local/etc/frr/frr.conf”.

In listing 6.1, we present the interface and BGP configuration of router T01.

Listing 6.1: BGP configuration of router T01.

1 interface eth0

2 ip address 10.0.1.2/31

3 !

4 interface eth1

5 ip address 10.0.1.4/31

6 !

7 interface eth2

8 ip address 10.0.1.6/31

9 !

10 interface loopback

11 ip address 10.0.1.0/24

12 !

13 !

14 router bgp 1 ! set ASN of 1

15 bgp router-id 10.0.1.0 ! set BGP identifier
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16 bgp bestpath as-path multipath-relax

17 neighbor 10.0.1.3 remote-as 100 ! peer with T11

18 neighbor 10.0.1.5 remote-as 100 ! peer with T12

19 neighbor 10.0.1.7 remote-as 100 ! peer with T13

20 !

21 address-family ipv4 unicast

22 network 10.0.1.0/24 ! advertise prefix 10.0.1.0/24

23 exit-address-family

In the first 8 lines, we define the interfaces, eth0, eth1, and eth2, that connect to routers T11, T12 and

T13, respectively. By issuing command interface <name> we can choose an interface, such as eth0,

which is the first Ethernet interface of the router, and then, by following with the command ip address,

we assign an IP address to the interface. In this case, eth0 has the IP address 10.0.1.2 and, as we will

further see, it is connected to the interface 10.0.1.3 of router T11. We also define a loopback interface

that identifies the device in the network.

Then, from line 14, we have the BGP configuration, using commands defined in [39]. In line 14, by

issuing command router bgp, we assign an ASN to the router, which is, in this case, 1. Then, in line

15, with the command bgp router-id, we assign a BGP router identifier to the router so that it can

establish peering sessions with other BGP peers. The identifier is, usually, the first IPv4 address of the

loopback interface and, consequently, we defined the BGP identifier as 10.0.1.0.

On line 16, since multi-path is enabled, by using the command bgp bestpath as-path

multipath-relax, we are allowing BGP to consider that paths with the same AS-PATH length, but with

a different AS sequence, have equal cost. This is important due to the use of valleys. Otherwise, since

all of the T1s of a cluster have the same ASN and so do the T2s in the data center, all of the AS-PATHs

of shortest paths would be the same. However, by using valleys, since each T0 has its own ASN, then

the AS-PATHs of valley paths are different and we need to use this command to allow storing them, in

simultaneous, in the FIB.

On lines 17 to 19, we define the peer neighbors. Following neighbor we insert the IP address of the

interface of the peer that the router is connected to. We also input the ASN of the peer, which appears

after remote-as. In this case, each peer is a T1 with ASN 100 and each command shows the IP address

of the interface connected to routers T11, T12 and T12, in lines 17, 18 and 19, respectively.

Finally, on line 22 we define the prefix that we want to advertise, 10.0.1.0/24, using the command

network. When the network command is issued, the network is advertised to every peer of the router. In

this case, however, since the command network 10.0.1.0/24 is between commands address-family

ipv4 unicast and exit-addres-family, it is specified that we want to advertise this route only to all

of our neighbors with whom we exchange IPv4 unicast routes. For this family of routers in particular,

it is not necessary to specify which neighbors belong to it since all of them are added by default and,
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consequently, every router trades IPv4 unicast routes with peers.

Then, in listing 6.2, we present the interface and BGP configuration of router T11.

Listing 6.2: BGP configuration of router T11.

1 interface eth0

2 ip address 10.0.1.3/31

3 !

4 interface eth1

5 ip address 10.0.2.3/31

6 !

7 interface eth2

8 ip address 10.0.3.3/31

9 !

10 interface eth3

11 ip address 10.0.4.3/31

12 !

13 interface eth4

14 ip address 10.1.1.2/31

15 !

16 router bgp 100 ! set ASN of 100

17 bgp router-id 10.0.1.3 ! set BGP identifier

18 bgp bestpath as-path multipath-relax

19 neighbor 10.0.1.2 remote-as 1 ! peer with T01

20 neighbor 10.0.2.2 remote-as 2 ! peer with T02

21 neighbor 10.0.3.2 remote-as 3 ! peer with T03

22 neighbor 10.0.4.2 remote-as 4 ! peer with T04

23 neighbor 10.1.1.3 remote-as 5000 ! peer with T21

24 !

25 address-family ipv4 unicast

26 neighbor 10.0.1.2 allowas-in 1 ! accept valleys from T01

27 neighbor 10.0.2.2 allowas-in 1 ! accept valleys from T02

28 neighbor 10.0.3.2 allowas-in 1 ! accept valleys from T03

29 neighbor 10.0.4.2 allowas-in 1 ! accept valleys from T04

30 exit-address-family

Having previously explained the purpose of each command, we now briefly summarize configuration

of router T11. We can see that, similarly to router T01, the interfaces are firstly configured and that

interface eth0, with an IP address of 10.0.1.3, is the one that connects with router T01, as defined in line
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17 of listing 6.1. Then, interfaces eth1, eth2, eth3 and eth4 connect to routers T02, T03, T04 and T21,

respectively. In this case, since we are not advertising a network from router T11, we did not setup a

loopback interface.

It can also be observed that this router has an ASN of 100 and, since there is no loopback interface,

its BGP identifier is the IP address of interface eth0: 10.0.1.3. Additionally, the router connects to routers

T01, T02, T03, T04, and T22, with ASNs 1, 2, 3, 4, and 5000, respectively.

Finally, the main difference between T01 and T11, in terms of configuration, is that T11 does not

advertise its own route but only re-advertises routes that receives from its peers. Additionally, the com-

mand that allows valley paths, neighbor <ip-address> allowas-in <nr> is added here, in the T1s,

as can be seen in lines 26-30. In these lines, it is configured that the router T11 accepts routes from

each neighbor, even if they have, at most once, the ASN of T11 in the AS-PATH.

Finally, we present the interface and BGP configuration of router T22 in listing 6.3.

Listing 6.3: BGP configuration of router T21.

1 interface eth0

2 ip address 10.1.1.3/31

3 !

4 interface eth1

5 ip address 10.1.4.3/31

6 !

7 router bgp 5000 ! set ASN of 5000

8 bgp router-id 10.1.1.3 ! set BGP identifier

9 bgp bestpath as-path multipath-relax

10 neighbor 10.1.1.2 remote-as 100 ! peer with T11

11 neighbor 10.1.4.2 remote-as 101 ! peer with T14

It is worth noticing that, since we did not want to limit the number of equal-cost paths to a prefix

installed in the FIB, and the default was 64, we did not use the command maximum-paths <nr>.

6.3 Simulating link failures

In order to test how the network responded to link failures, we had to simulate them. The most efficient

way of doing this that we found, since we could not disconnect links during the emulation, was to alter

the BGP and interface configuration while the emulation was running, and send the signal to shutdown

connections to peers.

To do this, whenever we wanted to drop a connection between peers, we issued the commands

73



neighbor <ip-address-> shutdown and interface <ethi> shutdown in the virtual shell of the

router.

6.4 Adding traffic flows

In order to apply traffic between the T0s, we used Multi-Generator (MGEN) [40]. By using SSH and

MGEN, we were able to start flows of traffic from each router using the command

1 mgen event "<start-time> ON <flow-id> UDP DST <destination-ip>/<destination-

port> <traffic-pattern> TTL 30".

To stop the flow we simply needed to execute the command

1 mgen event "<start-time> OFF <flow-id>".

We could also begin a Transmission Control Protocol (TCP) flow, instead of User Datagram Protocol

(UDP), after starting a listening port on the router destination with the command

1 mgen event "listen TCP <port>"

It should also be noted that we set the option of Time To Live (TTL) to 30 since, even though they

specify the default value is 255, we noticed flows would stop after just 3 hops. However, after setting

TTL to 30, the traffic flows behaved as expected.
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Chapter 7

Conclusions
We now present the main results of our work and suggest how it can be further improved.

7.1 Results

In this thesis, we studied in detail the networks in data centers, analyzed their cost, in terms of routers,

and their resilience to link failures, given the different architectures we can build using folded Clos topolo-

gies.

We studied the cost of the routers in the different tiers of a 3-tier folded Clos topology, T0s, T1s and

T2s. We identified that T2 routers need more memory and forwarding capacity than T0s and T1s. T2

routers need a faster backplane to provide higher forwarding capacities, in order to interconnect the

clusters and connect them to external endpoints to the data center, and bigger RIBs and FIBs in order to

install the routes to prefixes from all over the Internet. We concluded that the cost per server, as well as

the power per server, tends to diminish with the increase in the number of servers. Additionally, we found

that T2s have a bigger percentage in the acquisition cost of smaller networks than in bigger networks.

We showed that networks with 40 Gbps links have a cost and power usage up to 2 times higher than

networks with links of 10 Gbps, even though the capacity is 4 times higher.

A detailed analysis of connectivity in the presence of link failures in terms of the different parameters

of a topology, namely the number of T1s per cluster and the number of connections from a T1 to T2s, was

presented. We studied T0-T1 and T1-T2 links separately and found that the crucial links in the network

are the ones between T0s and T1s since all of the paths from a T0 to other T0s, or to endpoints external

to the data center, share these links. Therefore, the number of disjoint paths that a T0 has is limited by

the number of T1s in its cluster.

We determined mathematical expressions that provide the probability of connectivity between pairs

of servers, and between servers and the Internet, in terms of link failures. Therefore, we were able to

obtain approximate values of availability, usually defined in the SLAs of data centers, and compare the

cost of networks for different values of availability between servers, and between the data center and

the Internet.

We showed how the number of paths that a T0 has to other endpoints diminishes in the presence of

T0-T1 link failures and presented mathematical expressions that provide the number of entries needed
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in the RIB and the FIB of each router, assuming that each T0 advertises a single aggregated prefix to its

servers.

Three different traffic patterns that can be present in data centers were assumed and analyzed:

HPC intra-cluster and inter-cluster, search engines and streaming services. We showed that increasing

the number of T1s per cluster increases the resilience to link failures in the network. We were able to

conclude that, for HPC intra-cluster and search engine traffic patterns, most of the traffic will be intra-

cluster and, consequently, oversubscription at the T1s should be applied. By applying oversubscription

at the T1s, they connect to more T0s than T2s so we can reduce the number of T2s used, which leads to

a reduction of the overall cost of the network.

We studied non-shortest path routing and concluded that using non-shortest paths, which we des-

ignated by valleys, improves end-to-end connectivity in the presence of link failures. We saw how the

average of the number of redundant paths that a T0 has to other endpoints increases by using valleys,

but only for high probabilities of link failures. We concluded that the simultaneous use of shortest and

non-shortest paths, instead of exclusively using shortest or non-shortest paths, can further increase the

number of redundant paths, in the presence of link failures. However, the use of valleys requires more

memory in routers, which can have an impact in the cost of the network, and it can lead to networks

with overcapacitated links for lower values of T0-T1 link failure probabilities than when only shortest path

routing is used.

We presented the option of parallel links and concluded that, while maintaining the number of con-

nections between a T1 and T2s, parallel links allow a reduction of the overall cost of the network. By

using fewer T2s and using parallel links between T1s and T2s, it is possible, as it was seen, to reduce up

to 61% of the overall cost of the network. We also saw an improvement in connectivity, in the presence

of T1-T2 link failures, when parallel links are used, but we did not consider router failures. If we consider

router failures, a T2 failure has a bigger impact on a network with parallel links due to more paths be-

coming unavailable. Additionally, since BGP does not advertise the number of parallel paths, the use of

parallel links can lead to overcapacitated links, even for small values of T1-T2 link failure probabilities.

Therefore, measures such as aggregating physical links into a single virtual link should be applied in

order to avoid congestion.

Finally, we emulated small networks, by using CORE and configured BGP using FRR, which enabled

us to verify some of our results.

7.2 Future Work

For future work, we think it would be interesting to study the following:

• Widen this study to different extensions of Clos topologies. Different connections between the
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tiers should be explored, such as, for example, a T1 connecting to more than a single spine plane.

Additionally, as in the HGRID of Facebook, there may be an additional tier of routers connecting

3-tier folded Clos networks as a unit.

• Study in more detail the connection of the data center to the Internet. In this work, we

considered that every T2 connected to the same “super node” that made the connection to the

Internet but, other than an upper tier, the routers connecting the data center to the Internet can be,

for example, structured as an additional cluster.

• Add failures in routers. Our analysis does not take into account the probability of a failure in a

router. This can be important since, when a router fails, every link connected to it is unusable and,

for example, this may have an impact in the use of parallel links between the pairs of T1s-T2s.

• Analyze the simultaneous use of shortest and non-shortest paths. Non-shortest paths, which

we designate, in this case, by valleys, are advantageous to connect two T0s that otherwise could

not but, however, they only start being used when the number of link failures is elevated. Therefore,

the option of using, simultaneously, valley and non-valley paths should be studied to determine the

advantages it could provide, especially in the distribution of traffic.

• Envision how to distribute traffic proportionately to the bandwidth of each path. Using par-

allel links is extremely important to reduce the overall cost of the network and, additionally, can

improve the probability of connectivity between T0s in the presence of link failures. However, as

was previously seen, it makes the network highly susceptible to overcapacitated links when there

are failures due to BGP not advertising the number of parallel paths. And, even if it advertised the

bandwidth of each path, the FIB would largely increase in size. Therefore, it would be useful to find

a way to distribute traffic proportionately to the bandwidth of each path without these constraints.

• Study aggregation of routes. The aggregation of routes allows the reduction of the size of the

FIBs and RIBs and, consequently, could be important in reducing the cost of the many routers

used.
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