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Abstract

In this work the flipped-Radau pseudospectral method is employed in order to solve multiphase optimal con-
trol problems. The application of interest is the generation of multi-stage rocket trajectories. The method is
implemented in the MATLAB tool SPARTAN, developed at DLR, with the use of the NLP solver IPOPT. A rele-
vant numerical example is implemented for validation of the algorithm. The example is appropriate because it
contains mutations in the equations of motion from one phase to the next. The problem is composed of three
distinct phases and it is concerned with the recovery of the main booster of the orbital launcher Falcon 9 via
a boost-back manoeuvre and a vertical landing near the launch site. The algorithm is validated by analysis of
the Hamiltonian associated with the trajectory. The results show that the method is able to generate optimal
trajectories with accuracy comparable to state of the art solvers.
Keywords: optimal control, Radau pseudospectral method, multi-stage rocket trajectory generation, boost-
back and vertical landing.

1 Introduction

Rocket trajectory optimization is profoundly tied to
optimal control. Since launch vehicle technology de-
veloped, the optimization of rocket trajectories has
been made through Pontryagin’s Minimum principle
[1]. The classical approach to solve optimal control
problems (OCPs) is through the calculus of variations,
leading to the Hamiltonian boundary-value problem,
which is the indirect method approach [2]. But indi-
rect methods are often impractical due to the associ-
ated necessity of deriving the problem-wise optimality
conditions [3]. In addition, these methods most often
comprise convergence issues [4], and thus, lack reli-
ability when a good initial guess is not available.

In contrast, direct methods, and in particular pseu-
dospectral methods, have gained popularity over the
past decades since their generalization by Fahroo et
al. [5, 6]. Pseudospectral methods consist on the
transcription of the dynamics based on the roots of
an orthogonal polynomial, typically a particular Ja-
cobi polynomial [7]. The constraints are evaluated
at each collocation point resulting in a large list of
equality and inequality algebraic constraints, accom-
panied with the algebraic objective function; this list
of constraints, referred to as a nonlinear program-
ming (NLP) problem, is passed through an off-the-
shelf nonlinear optimizer such as IPOPT [8] and the
solution is obtained. In essence, in a pseudospectral
method, the optimal control problem is transformed

into a parametric optimization problem.
Regarding multiphase optimal control, successful

efforts have been made in order to implement the fea-
ture into software [7]. Multiphase optimal control al-
lows the study of trajectories that might contain nec-
essary state discontinuities or even mutations in the
equations of motion. In order to generate trajectories
of orbital launchers it is relevant to develop a multi-
phase algorithm, this way state discontinuities can be
accounted for.

In this work, the flipped Legendre-Gauss-Radau
pseudospectral method (or, simply, flipped Radau
method) is employed to generate optimal trajectories
of multi-stage rockets. The flipped Radau method is
well suited because it allows endpoint collocation, and
it does not present dramatic convergence issues on
the dual variables [9]. The foundation for the imple-
mentation of the multiphase feature is SPARTAN [10],
a MATLAB tool developed at the German Aerospace
Centre (DLR) with the objective of solving general
purpose optimal control problems.

2 Multiphase Optimal Control
Problem

The purpose of a generic multiphase problem for-
mulation is to account for cases in which state discon-
tinuities are expected. In the context of rocket launch-
ers composed of multiple stages, state discontinuities
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are expected at stage separation events.
Letting p = 1; : : : ; P be a scalar integer indicat-

ing a specific phase, where P is the total number of
phases in the problem, a generic multiphase optimal
control problem can be formulated as minimizing the
cost functional

J = Φ
`
x(t (1)0 ); t (1)0 ; x(t (P )

f ); t (P )
f

´
+

PX
p=1

(Z t
(p)
f

t
(p)
0

Ψ
`
x(t);u(t)

´
dt

)
; (1)

associated with the trajectory of the dynamic system

ẋ (p)(t) = f (p)
`
x(t);u(t)

´
; (2)

subject to the path constraints

h(p)
`
x(t);u(t)

´
≤ 0 ; (3)

the event constraints

ffi(p)
`
x(t (p)0 ); t (p)0 ; x(t (p)f ); t (p)f

´
≤ 0 ; (4)

and the phase linkage conditions

∆x
(p)
min ≤ ‘(p) = x(t (p+1)

0 )− x(t (p)f ) ≤ ∆x
(p)
max ; (5)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu
is the control vector, and ∆x

(p)
min and ∆x

(p)
max are, re-

spectively, the user-defined lower and upper bound-
ary vectors for the linkage conditions. This formula-
tion indicates that the constraints are not explicit func-
tions of time, therefore, the systems in study are time
invariant. Equation 5, which corresponds to the phase
linkage conditions, consists of two distinct constraints,
the upper bound and the lower bound of the eventual
state discontinuities. This allows the specification of
several discontinuity scenarios.

2.1 Gaussian Quadrature and Domain
Mapping

It is possible to compute the definite integral from
−1 to 1 of a given polynomial function, f (fi), accord-
ing to the Gaussian quadrature where the function is
evaluated at N discrete points and a weighted sum of
the samples is performed [11, 12]. In order to inte-
grate over a generic interval t ∈ [t0; tf ], the domain
of the independent variable, t, is mapped into the nor-
malized domain fi ∈ [−1; 1]. This mapping is linear
and it can be expressed as [13]

t(fi) =
tf − t0

2
fi +

tf + t0
2

; fi ∈ [−1; 1] : (6)

By performing a change of variables, the Gaussian
quadrature can be expressed for a generic interval asZ tf

t0

f (t) dt =
tf − t0

2

NX
k=1

wk fk ; (7)

where fk = f
`
t(fik)

´
is the value of the function evalu-

ated at t(fik), andwk is a scalar quadrature weight as-
sociated with the k th function sample. It is important
to note that it is not sufficient to evaluate the function
at any given set of N discrete points. For the quadra-
ture to be accurate it is crucial that the distribution
of points follows a pattern similar to the distribution
of roots of a particular Jacobi polynomial (also called
Gauss points) [11, 12].

2.2 Lagrange Polynomial Interpolation
and the Differentiation Matrix

In order to compute the first derivative of a polyno-
mial function x(fi) with respect to fi ∈ [−1; 1], a differ-
entiation matrix, A, can be built based on a Lagrange
polynomial interpolation [7, 14, 15]

Aki =
X
l
l 6=i

1

fii − fil

Y
j

j 6=i ;l

fik − fij
fii − fij

; (8)

where Aki is a scalar element on the k th row and i th

column of matrix A, and the derivative operation with
respect to a generic domain, t ∈ [t0; tf ], is

ẋk =
2

tf − t0

X
i

Akixi ; (9)

where xk is the polynomial x(fi) evaluated at k th sam-
ple fik . As was the case for Gaussian quadrature,
the accuracy of the Lagrange polynomial interpola-
tion, and that of the differentiation matrix, is directly
related to the choice of sample points along the do-
main of fi .

2.3 Root distribution of the flipped
Radau polynomial

A good choice of sample points is a proportional
mapping of the roots of Legendre-based polynomials,
such as the flipped Radau polynomial. The flipped
Radau polynomial is the result of the difference be-
tween two Legendre polynomials of consecutive or-
der, as

RN(fi) = PN(fi)− PN−1(fi); fi ∈ [−1; 1] ; (10)

where PN(fi) is the Legendre polynomial of order N.
And the Gaussian quadrature weights associated with
the roots of the flipped Radau polynomial can be com-
puted by doing a flip operation on the weights of the
direct Radau, reversing their order [12, 13]

wk = flip


1− fiDR

k

N2P 2
N−1(fiDR

k )

ff
; k = 1; 2; ::; N ; (11)

where fiDR
k is the kth abscissa of the direct Radau

roots, N is the degree of the Radau polynomial, and

2



PN−1(fiDR
k ) is the Legendre polynomial of degree N−

1 evaluated at fiDR
k .

Figure 1 illustrates the pattern of collocation nodes
for a discretization of the domain composed of mul-
tiple phases using the flipped Radau pseudospec-
tral method. The multiphase discretization scheme
is a simple concatenation of several "single phase"
schemes. It can be noticed that the "density" of nodes
increases near the phase transition points. One pe-
culiarity of the roots of the Radau polynomial is that
they are asymmetric with respect to the origin.

-1  1  | -1  1  | -1 1

Normalized independent variable, 

Multiphase Collocation Nodes Example

Phase 1
Phase 2
Phase 3

Figure 1: Illustration of the pattern of collocation
nodes for multiple phase transcription. Example of
three phases, each with five collocation nodes.

2.3.1 Multiphase OCP expressed as a NLP prob-
lem

The multiphase nonlinear programming problem
can be expressed as minimizing the cost

JN = Φ +
PX
p=1

t (p)f − t (p)0

2

N(p)X
k

w
(p)
k Ψk ; (12)

subject to

‰
(p)
k =

t (p)f − t (p)0

2
f
(p)
k −

X
i

A
(p)
ki x

(p)
i = 0 ; (13)

h
(p)
k ≤ 0 ; (14)

ffi(p) ≤ 0 ; (15)

∆x
(p)
min ≤ ‘(p) ≤ ∆x

(p)
max ; (16)

where the vector ‰(p)k is a shortened representation of
the constraints for dynamic defects from (13).

3 Optimality Conditions

The classical approach (indirect methods) of find-
ing a solution to an optimal control problem begins
by deriving the first order optimality conditions. In or-
der to do so, the cost functional (1) is augmented by
means of the complementary vectors, �, – and —, to

include all constraints expressed in (2) to (4). This
process is often referred to as dualization [4]. It is im-
portant to discuss these conditions in order to verify
if a trajectory obtained with the flipped Radau pseu-
dospectral method is optimal. Omitting the phase in-
dicator p for simplicity, one can define the augmented
Hamiltonian as [15]:

H
`
x ;u;–;—

´
= Ψ

`
x ;u

´
+ –|f

`
x ;u

´
+—|h

`
x ;u

´
;

(17)
and the augmented cost functional is written with re-
spect to the Hamiltonian as [9]

J – = Φ + �|ffi+

Z tf

t0

`
H− –|ẋ

´
dt ; (18)

where –(t) ∈ Rnx is the state covector (or costate),
—(t) ∈ Rnh is the constraint covector and � ∈ Rnffi is
the endpoint covector.

The first order necessary conditions for optimality
can be derived from (18) by setting the first varia-
tion of the augmented cost functional equal to zero,
‹J – = 0 [2, 16]. These necessary conditions are ex-
pressed in terms of the Hamiltonian as [2, 12, 15, 16]:

f
`
x ;u

´
− ẋ = 0 ; (19)

—|h
`
x ;u

´
= 0 ; (20)

�|ffi
`
x(t0); t0; x(tf ); tf

´
= 0 ; (21)

@H
@u

`
x ;u;–;—

´
= 0 ; (22)

–̇| +
@H
@x

`
x ;u;–;—

´
= 0 ; (23)

@Φ

@x(tf )
+ �|

@ffi

@x(tf )
− –|(tf ) = 0 ; (24)

H
`
tf
´

+
@Φ

@tf
+ �|

@ffi

@tf
= 0 ; (25)

where H
`
tf
´

is the Hamiltonian evaluated at tf ,
H
`
tf
´

= H
`
x(tf );u(tf );–(tf )

´
.

Equations (19), (20) and (21) result from the varia-
tion of the augmented cost about the three covectors,
–, — and �, respectively, and they are a rewriting of
the constraints of the original problem statement in (2)
through (4). One interesting result that yields from the
optimality conditions is the fact that the inequality con-
straints (3) and (4) are turned into equality constraints
by means of a product with the respective covectors:
the conditions are satisfied whenever the inequality
constraints are active (h = 0 and/or ffi = 0), and
they can be satisfied when the constraints are inactive
(h < 0 and/or ffi < 0) by making sure that the covec-
tors bind to zero at the corresponding times (— = 0
and/or � = 0), thus ensuring a null product in (20) and
(21). Because of this, (20) and (21) are often referred
to as slackness conditions.
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Equations (22) and (23) are called the Euler-
Lagrange equations and they apply at every point
along the domain. In particular (23) is called the
costate equation because it describes the rate of
change of the costate, effectively serving as a new
equation of motion corresponding to the costates.
Equation (22) is also referred to as the strong form
of Pontryagin’s minimum principle and it only applies
if the optimal control sequence lies exclusively within
the allowable control set.

Finally (24) and (25) are the endpoint conditions
that must be satisfied for the cases of unknown final
state and unknown final time, respectively [2].

In addition, because it is not an explicit function of
time, the Hamiltonian of the optimal solution will be a
constant [2, 9],:

H
`
x(t);u(t);–(t)

´
= H(tf ) = H† ; (26)

where H† represents a generic constant scalar.
The problem of finding a solution that satisfies all

first order optimality conditions is known as the Hamil-
tonian boundary value problem (HBVP).

4 NLP Solver Formatting

4.1 Generic input format of the nonlin-
ear solver

In order to solve an optimal control problem via the
Radau pseudospectral method, one needs to tran-
scribe the original problem statement into a format
which a nonlinear solver can interpret. A nonlinear
program is expressed as [8, 17, 18] minimizing

J(XNLP) ; (27)

subject to

Cmin ≤ C(XNLP) ≤ Cmax ; (28)

Xmin ≤ XNLP ≤ Xmax : (29)

where Cmax and Cmin are, respectively, the upper and
lower boundary vectors of the constraints, and Xmax

and Xmin are the upper and lower boundary vectors
of the decision variables, respectively. Essentially,
there is a cost function, J(XNLP), to be minimized, a
list of algebraic constraints, C(XNLP), to be satisfied
and a list of parameters, XNLP, that act as decision
variables. In order to transform the optimal control
problem into a NLP it is necessary to concatenate all
the decision variables into a main vector and to ag-
gregate all constraints into a main constraint vector,
this is depicted by vectors XNLP and C(XNLP) respec-
tively. The algebraic constraints contained in C(XNLP)
can assert either an equality or an inequality by set-
ting Cmax = Cmin or Cmax > Cmin respectively.

4.2 Formatting the vector of decision
variables

In order to construct a nonlinear programming
problem one needs both, a list of decision variables
and a list of algebraic constraints. Let

XU(p) =
ˆ
x
(p)
0

|
x
(p)
1

|
u
(p)
1

|
: : :

x
(p)
k

|
u
(p)
k

|
: : : x

(p)

N(p)

|
u
(p)

N(p)

|˜|
; (30)

be the concatenated decision vector of state and con-
trol associated with the nodes of a given phase p. No-
tice that there is no control variable associated with
the very first node i = 0, this is because this node is
not collocated [13]. The complete vector of decision
variables can be expressed as

XNLP =
ˆ
XU(1)| : : : XU(p)| : : :

XU(P )| t
(1)
f : : : t

(p)
f : : : t

(P )
f

˜|
: (31)

The lower and upper boundaries of the vector of de-
cision variables, Xmin and Xmax can be build accord-
ing to an analogous procedure, given the parameters
specified by the user for each problem.

4.3 Constraints formatting

The cost functional fed to the nonlinear solver is
identical to the cost described in (12), thus,

J(XNLP) = JN : (32)

In order to construct the concatenated vector,
C(XNLP), two additional arrays are introduced,
namely F (p) and H(p), containing all the constraints
corresponding to phase p from (13) and (14):

F (p) =
h
‰
(p)
1

|
‰
(p)
2

|
: : : ‰

(p)
k

|
: : : ‰

(p)

N(p)

|
i|

(33)

H(p) =
h
h
(p)
1

|
h
(p)
2

|
: : : h

(p)
k

|
: : : h

(p)

N(p)

|
i|

(34)

where ‰(p)k and h(p)k are as in (13) and (14), respec-
tively. This way, the concatenated vector of con-
straints can be written as

C(XNLP) =
ˆ
F (1)| : : : F (P )| H(1)| : : :

H(P )| ffi(1)| : : : ffi(P )| ‘(1)
|
: : : ‘(P−1)

|˜|
: (35)

The lower and upper boundaries for the vector of con-
straints, Cmin and Cmax, are constructed in an analo-
gous manner, with the peculiarity that the boundaries
corresponding to the dynamic defects, must be set
invariably equal to zero, F (1:P ) = 0, such that the dy-
namics are enforced and that the trajectory satisfies
the equations of motion at all times.
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4.4 Jacobian Matrix

The Jacobian matrix is a quantitative description of
the derivatives of the constraints with respect to the
decision variables, providing a first order gradient that
is necessary to aid the nonlinear solver. This sec-
tion serves to overview the components of the Jaco-
bian matrix that results from a discretization based
on the flipped Radau method. Each row of the Ja-
cobian matrix corresponds to an algebraic constraint,
and each column corresponds to a decision variable.
Ultimately, each element represents a linear depen-
dency between a constraint (row) with respect to a
decision variable (column). The Jacobian can be ex-
pressed as [13]

Jac = ∇XNLP

»
J(XNLP)
C(XNLP)

–
=

266664
∇JN
∇F (1:P )

∇H(1:P )

∇ffi(1:P )

∇‘(1:P−1)

377775 : (36)

The format of the vectors XNLP and C(XNLP) dictate
the sparsity pattern of the Jacobian matrix. Figure 2
is a visual representation of the pattern of the Jaco-
bian for an example problem with four phases. In
this Figure, zero elements are represented by white
space, while non-zero elements are represented with
coloured dots. The first row of the matrix corre-
sponds to the discrete cost functional where the
magenta circles represent a Lagrangian cost and
the blue dot at the end of phase four represents
a Mayer cost; there are four open terminal times
(green columns); a scalar path constraint applied to
all phases (concatenated diagonals in cyan); vector
event constraints at the terminal times of every phase
(magenta blocks); and three linkage conditions con-
necting the four phases sequentially (red diagonals
at the bottom rows). The four phases can be distin-
guished by the four large red blocks with blue diagonal
smaller blocks (corresponding to the dynamic defects
of each phase). The prominent red diagonals in the
Jacobian correspond to the sparsity pattern of the dif-
ferentiation matrices and to the identity matrices cor-
responding to the linkage conditions. The values of
the Jacobian matrix corresponding to the red dots are
static, i.e., they will remain unchanged in every itera-
tion loop.

4.5 Overview of the Solving Procedure

In order to solve a given optimal control problem a
procedural approach is taken. This procedure needs
to be generic in order to be able to handle as many
problems as possible. The main task at hand is to
perform a transformation of the user input into vari-
ables and constraints that are useful to feed an NLP

solver. The following description applies to the MAT-
LAB tool SPARTAN developed at DLR [10, 13]. Fig-
ure 3 presents a high-lever overview of the solving
procedure implemented in SPARTAN for visual aid.

5 Rocket Boost-Back and Verti-
cal Landing Problem

The problem to consider is an adaptation from [19].
This example is concerned with the recovery of the
first stage of an orbital launcher via vertical land-
ing, where the landing target is located close to the
launching site (return-to-launch-site scenario). The
vehicle in question is based on the characteristics of
the main booster of SpaceX’s Falcon 9 rocket. This
problem is appropriate to validate the algorithm devel-
oped in this work because it is composed of three dis-
tinct phases, resulting from the mutation of the equa-
tions of motion from one phase to the next. The algo-
rithm is validated by analysis of the optimality condi-
tions.

The problem occurs in a vertical, two-dimensional
plane (2-D). At the beginning of the trajectory it is
assumed that stage separation has already occurred
and that the booster has performed the "turn back" at-
titude manoeuvre such that the boost-back-burn may
begin. The trajectory is composed of three phases:
Phase 1 Boost-back. At t = t0 the rocket is in mid

air with ascending linear momentum. Three en-
gines (out of nine) ignite and the thrust direction
is constrained to point strictly horizontally. In this
phase the rocket inverts its horizontal motion.
The duration of the boost-back burn, t = t1, is
a known, fixed parameter.

Phase 2 Coast arc. At t = t1 the engines shut down
and remain off during all of phase 2. The vehicle
takes a parabolic flight profile during this phase.
It is taken for granted that an attitude justifica-
tion manoeuvre takes place during this phase in
order to roughly align the thrust vector with the
velocity vector at the beginning of phase 3.

Phase 3 Landing. At t = t2 one engine (out of nine)
ignites. The vehicle is now controllable and the
booster makes its way to the target site. Touch-
down happens at t = tf . Both t2 and tf are
unknown variables to be determined.

The equations of motion are formulated in the
target-centred reference frame [19]. Throughout the
trajectory, both position and velocity are modelled in
Cartesian coordinates, with the reference frame of
displacement centred at the landing target location.
Figure 4 presents a free-body diagram of the vehicle
for visual reference. Downrange is represented by the
horizontal axis, x , increasing from left to right, and al-
titude is represented by the vertical axis, y , increasing
from bottom to top. The angle „ indicates the direc-
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Cost Functional
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Figure 2: Sparsity pattern of the Jacobian matrix for an example problem with 4 phases, 5 collocation points
on each phase. 4 open terminal times. One scalar path constraint applying to every phase and a terminal
constraint vector applying to every phase. White spacing represents zero-valued elements.
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Problem
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User Input
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Loop
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NLP Solution
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Figure 3: Flowchart of the solving process by the
MATLAB tool SPARTAN.

tion of the thrust vector, T , and the flight-path angle,
represented by the angle ‚, indicates the direction of
the velocity vector, v . Both angles are measured from
the x axis and positive in the direction of increasing y .
The Cartesian components of velocity, vx and vy , are

positive in the direction of increasing respective posi-
tion coordinates. The aerodynamic drag force is rep-
resented by vector D which is always collinear with
the velocity vector, and m is the mass of the vehicle.
The Earth is assumed to be flat and non rotating, and
the acceleration of gravity is assumed to be invari-
ant with altitude throughout the trajectory, taking the
value g0. The control variable is the thrust tilt angle,
„. A point-mass approximation of the vehicle is em-
ployed, thus the attitude of the spacecraft is not mod-
elled and the angle of attack is assumed to be zero at
all times. An exponential model is used for the drag
force. The optimal control problem can be formulated

θ

γ

D

T
v

mg0

γy

x
Figure 4: Free-body diagram of the vehicle.

as minimizing the cost

J = Φ
`
m(tf )

´
= −m(tf ) ; (37)

associated with the dynamic system

ẋ = vx ; (38)

ẏ = vy ; (39)
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v̇x =
T

m
k cos „ − D

m
cos ‚ ; (40)

v̇y =
T

m
k sin „ − D

m
sin ‚ − g0 ; (41)

ṁ = − T

Ispg0
k (42)

and subject to the event constraints

x(t0) = 36:022 km ; (43)

y(t0) = 60:708 km ; (44)

vx(t0) = 1:052 km s−1 ; (45)

vy (t0) = 1:060 km s−1 ; (46)

x(tf ) = 0 km ; (47)

y(tf ) = 0 km ; (48)

vx(tf ) = 0 km s−1 ; (49)

−0:5 m s−1 ≤ vy (tf ) ≤ 0:5 m s−1 ; (50)

with

D =
1

2
0 exp


− y
h0

ff
CDı

d2

4
v2 ; (51)

v2 = v2x + v2y ; (52)

cos ‚ =
vx
v
; (53)

sin ‚ =
vy
v
; (54)

and

T =

8><>:
1
3TLO t ∈ [t0; t1]

0 t ∈ [t1; t2]
1
9TLO t ∈ [t2; t3]

k =

8><>:
1 t ∈ [t0; t1]

0 t ∈ [t1; t2]

1 t ∈ [t2; t3]

;

(55)
where k is the engine throttle, 0 is the air density
at sea level, h0 is the density scale height, CD is the
drag coefficient, d is the diameter of the vehicle and
v is the norm of the velocity vector. The linkage con-
ditions are omitted because there are no expected
jump discontinuities on the sates of the systems in
any phase transition. Table 1 shows the constants
and parameters used in this problem. This problem
was solved using 10, 8 and 12 collocation nodes in
phases 1, 2 and 3, respectively. The NLP solver used
was IPOPT [18], and the method used to compute
partial derivative was the complex step differentia-
tion method [20]. The results are depicted in Figs. 5
through 10. In addition, the resulting parameters of
unknown times and final mass are presented in Ta-
ble 2.

The trajectory of the vehicle is shown in Fig. 5,
where the downrange and the altitude are plotted
against each other. The boost-back phase is shown
in blue, the coasting arc is shown in orange and the
landing phase is represented in yellow. Curiously, the
vehicle traces a path that vaguely resembles a shep-
herd’s staff. The plot clearly shows that at the begin-
ning of the trajectory the vehicle is travelling from left

Table 1: Relevant constants and parameters for the
Falcon 9 first stage recovery problem.

Constant Value Unit

Specific impulse, Isp 282 s

Lift-off Thrust, TLO 5886 kN

Rocket diameter, d 3.66 m

Drag Coefficient, CD 0.75 1

Density scale height, h0 7500 m

Gravity acceleration, g0 9.80665 m s−2

Sea level air density, 0 1.225 kg m−3

Phase 1 initial time, t0 0 s

Boost-back duration, t1 40.8 s

Dry mass, mdry 25600 kg

to right and with ascending velocity. The boost-back
burn inverts the horizontal motion of the vehicle and
during the coasting arc, the vehicle takes a parabolic
flight due to being in complete free-fall. Finally, in the
landing phase the vehicle approaches the zenith of
the target and the flight path angle gets closer and
closer to being vertical. Intuitively speaking, the tra-
jectory follows a predictable path.
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Figure 5: Altitude vs downrange trajectory.

Figure 6 illustrate the Cartesian components of ve-
locity with time. The phase transition points are vis-
ible through the increase in density of collocation
nodes and also through the removable discontinu-
ities present in each component. The horizontal com-
ponent of velocity decreases linearly during the first
phase and goes from positive to negative, inverting
the direction of flight, which is indicative of the boost-
back burn phase. This component stays constant dur-
ing the coasting phase, as expected. It is noticeable
that during phases 1 and 2, the vertical component
of velocity decreases linearly, without noticeable dis-
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continuities, indicating that this component has been
subject to a constant acceleration during these two
phases, undoubtedly the acceleration of gravity. It
is also visible that the vertical component of veloc-
ity goes from positive to negative close to the 110 s
mark, inverting the direction flight. Both velocity com-
ponents go to zero during the landing phase, as ex-
pected.
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Figure 6: Cartesian components of velocity with time.

The mass profile of the vehicle can be seen in
Fig. 7. Due to the constant throttle level, and the con-
stant specific impulses, the mass of the vehicle de-
cays linearly during phases 1 and 3. The mass flow-
rate is higher in phase 1 due to the larger thrust as-
sociated — there are three engines on during phase
1 and only one engine ignited during phase 3. Not
remarkably, the mass stays constant during phase 2
(coast phase).
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Figure 7: Mass of the vehicle with time.

The angle indicating the thrust direction (control) is
presented in Fig. 8. It can be seen that the direc-
tion of thrust is constrained to 180° during phase 1,
and constrained to 0° during phase 2 (during phase 2

the thrust direction is inconsequential due to the throt-
tle being constrained to zero). Finally, in the landing
phase the direction of thrust is allowed to vary, and
the angle draws a curve that approaches 90°, indicat-
ing that the thrust points vertically at the end of the
trajectory.
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Figure 8: Thrust direction, „, with time.

Moving on to the solution of dual variables, Fig. 9
shows the evolution of the mass costate along time.
Recalling the first order necessary conditions from
Section 3, it is possible to note that the endpoint con-
dition expressed in (24) is verified at the final time of
the trajectory, namely

–m(tf ) =
@Φ

@m(tf )
= −1 : (56)

This condition is not verified at any other phase end-
point due to the fact that the mass is either fixed at
those points or completely determined by the initial
conditions, the constant mass flow rates and the fixed
endpoint time of phase 1. Ultimately, the validation
of the endpoint condition at the final time of the tra-
jectory brings confidence that the solution is optimal.

Finally, Fig. 10 shows the Hamiltonian associated
with the trajectory. By inspection of the plot, one can
assert that the Hamiltonian is phase-wise constant,
and with regards to phases 2 and 3, one can verify
that the Hamiltonian is zero, which implies that the
endpoint condition (25) is satisfied in these phases:

H
`
t
(2)
f

´
= H

`
t
(3)
f

´
= 0 ; (57)

Because the final time of phase 1 is fixed, the end-
point condition (25) does not apply to that phase.
Briefly stated, the Hamiltonian satisfies the optimal-
ity conditions for time invariant systems [2, 7, 9], and
therefore this result brings confirmation that the solu-
tion is optimal.
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Figure 9: Mass costate with time. The mass costate
takes the value -1 at the final time.
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Figure 10: Hamiltonian vs time. Hamiltonian is zero
during phases 2 and 3.

Table 2 presents the values of pertinent variables
obtained with SPARTAN. The results are overall sat-
isfactory.

6 Conclusions

In this work the flipped Radau pseudospectral
method was applied to solve multiphase optimal con-
trol problems, specifically multi-stage rocket trajectory
generation problems. The algorithm was validated
by solving a reference problem containing multiple
phases. A simplified version of the problem was im-
plemented, which concerned a booster recovery of
the Falcon 9 orbital launcher. Despite the difference
in the formulations, the results were satisfactory as
the solution was shown to be optimal by analysis of
the Hamiltonian.

Table 2: Relevant optimization parameters obtained
with SPARTAN.

Parameter SPARTAN Unit

Boost-back burn duration, t1 40.8 s

Landing burn start time, t2 220.4583 s

Total time of flight, tf 303.5469 s

Final mass, m(tf ) 27905.5554 kg
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