
Development of Multiphase Radau Pseudospectral
Method for Optimal Control Problems

José Eduardo Valério Garrido

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. Paulo Jorge Soares Gil

Dr.-Ing. Marco Sagliano

Examination Committee

Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha

Supervisor: Prof. Paulo Jorge Soares Gil

Member of the Committee: Prof. Bruno João Nogueira Guerreiro

January 2021

Aos meus irmãos

Alice e Luis

Authorship Declaration

I declare that this document is an original work of my own authorship and that it fulfils all the requirements of

the Code of Conduct and Good Practices of the Universidade de Lisboa.

v

Agradecimentos

Quero agradecer à DLR, nomeadamente, ao departamento GNC do Instituto de Sistemas Espaciais em

Bremen pela oportunidade fantástica que me foi concedida, sem a qual este trabalho não teria sido possível.

Um obrigado especial vai para o Dr. Marco Sagliano pela sua fé em mim e pela sua orientação, sem

as quais eu encontrar-me ia perdido. O Dr. Sagliano foi a verdadeira mente por de trás deste trabalho, não

consigo agradecer-lhe o suficiente.

Quero agradecer também ao Professor Paulo Gil, não só por me apoiar neste empreendimento, mas

também pela sua orientação e pelos seus conselhos imprescindíveis.

Um grande obrigado à minha querida amada Carmen Machado pelo seu suporte, pela sua motivação e

pelo seu humor, essenciais nos tempos mais difíceis.

Finalmente, eu quero agradecer profundamente à minha mãe, Deolinda Valério, ao meu pai, Eduardo

Garrido, à minha tia, Elisa Valério, e aos meus avós Maria e Manuel Valério pelo seu suporte e atenção

contínuos durante toda a minha vida académica.

vii

Acknowledgements

I want to thank the DLR, namely, the GNC department at the Institute of Space Systems in Bremen, for

providing me with this amazing opportunity without which this work would not have been possible.

A special thanks goes to Dr. Marco Sagliano for his faith in me and his ceaseless guidance, without

which I would find myself lost. Dr. Sagliano was the true mastermind behind the writing of this thesis. I cannot

thank him enough.

I also want to thank Professor Paulo Gil not only for endorsing me in this quest, but also for his priceless

advice and persistent reality checks.

A big thank you to my beloved sweetheart Carmen Machado for her support, motivation and dry humour,

getting me through the most difficult times.

Finally, I want to deeply thank my mother, Deolinda Valério, my father, Eduardo Garrido, my aunt, Elisa

Valério, and my grandparents, Maria and Manuel Valério, for their continuous care and support throughout my

academic life.

ix

Palavras Chave

controlo óptimo, método pseudoespectral de Radau, trajectória de foguetes multiestágios, aterragem vertical,

trajectória ascendente, inserção em órbita.

Resumo

Neste trabalho, o método pseudoespectral de Radau invertido é usado para resolver problemas de controlo

óptimo compostos de múltiplas fases. A aplicação de interesse é a geração de trajectórias de foguetes

compostos de múltiplos estágios em ambos os contextos de ascensão para órbita e de descida para ater-

ragem vertical. O método é implementado no programa SPARTAN, desenvolvido em MATLAB pelo Centro

Aeroespacial Alemão (DLR), que utiliza o solver de programação não linear IPOPT. São implementados dois

problemas numéricos relevantes para validar o algoritmo. Os problemas são apropriados porque, de uma

fase para a seguinte, os respectivos sistemas dinâmicos estão sujeitos ou a alterações nas equações do

movimento ou a descontinuidades de salto nos seus estados (ou ambos). O primeiro problema é composto

de três fases distintas e baseia-se na recuperação do estágio principal do lançador orbital Falcon 9 através

de uma manobra de impulso de retorno e de aterragem vertical. O segundo problema é composto de quatro

fases e baseia-se no lançamento, ascensão e inserção em órbita do foguete orbital de múltiplos estágios

Delta III. O algoritmo é validado através da comparação directa dos resultados com as respectivas fontes

e também através da análise ao Hamiltoniano e às variáveis complementares associadas. Os resultados

mostram que o método é capaz de gerar trajectórias óptimas com exactidão comparável a outros programas

de última geração.

xi

Keywords

optimal control, Radau pseudospectral method, multi-stage rocket trajectory generation, boost-back and ver-

tical landing, ascent trajectory, orbit insertion.

Abstract

In this work, the flipped Radau pseudospectral method is employed in order to solve multiphase optimal con-

trol problems. The application of interest is the generation of multi-stage rocket trajectories, both in ascent to

orbit and descent to vertical landing. The method is implemented in the MATLAB tool SPARTAN, developed at

DLR, with the use of the NLP solver IPOPT. Two relevant numerical examples are implemented for validation

of the algorithm. The examples are appropriate because they contain either mutations in the equations of mo-

tion from one phase to the next or jump discontinuities in the states (or both). The first problem is composed

of three distinct phases and is concerned with the recovery of the main booster of the orbital launcher Falcon

9 via a boost-back manoeuvre and a vertical landing near the launch site. The second problem is composed

of four phases and is concerned with the launch, ascent and orbit insertion of the multiple-staged solid fuel

orbital rocket Delta III. The algorithm is validated both, by the comparison of the results to the corresponding

reference solutions, and by the analysis of the dual variables and of the Hamiltonian associated with the tra-

jectories. The results show that the method is able to generate optimal trajectories with accuracy comparable

to state of the art solvers.

xiii

Contents

Authorship Declaration . v

Agradecimentos . vii

Acknowledgements . ix

Resumo . xi

Abstract . xiii

List of Tables . xvii

List of Figures . xx

List of Symbols . xxiii

List of Abbreviations . xxv

1 Introduction 1

1.1 Objective . 1

1.2 The Orbital Launch Vehicle . 1

1.2.1 Tsiolkovsky Rocket Equation and Staging . 1

1.2.2 Equations of Motion . 3

1.2.3 Trajectory Optimization . 4

1.3 Optimal Control and Trajectory Optimization Methods . 6

2 Direct and Indirect Method Paths and Covector Mapping 11

2.1 The Optimal Control Problem . 11

2.2 Mathematical Background . 12

2.2.1 Gaussian Quadrature and Domain Mapping . 12

2.2.2 Lagrange Polynomial Interpolation and the Differentiation Matrix 13

2.2.3 Legendre-Radau polynomial and node distribution 14

2.3 Indirect Method Route . 15

2.3.1 Hamiltonian Boundary-Value Problem . 15

2.3.2 Discrete Hamiltonian Boundary-Value Problem . 18

2.4 Direct Method Route . 18

2.4.1 Nonlinear Programming Problem (NLP) . 19

2.4.2 Karush–Kuhn–Tucker Conditions . 19

2.5 Covector Mapping . 21

xv

3 Implementation of the Flipped Radau Method for Multiphase Problems 25

3.1 Multiphase Optimal Control Problem . 25

3.2 Multiphase NLP and Covector Mapping . 26

3.2.1 Scalar set selection for multiphase covector mapping and simplified NLP 28

3.3 Vector Formatting and Jacobian Matrix . 28

3.3.1 Input format of the nonlinear solver . 28

3.3.2 Formatting the vector of decision variables . 29

3.3.3 Constraints formatting . 29

3.3.4 Jacobian Matrix . 30

3.4 Overview of the Solving Procedure . 31

4 Test and Validation with Numerical Examples 35

4.1 Problem 1: Falcon 9 Rocket Boost-Back Burn and Vertical Landing (3 phases, 2-D trajectory) 35

4.2 Problem 2: Delta III Rocket Ascent to Elliptical Orbit (4 phases, 3-D trajectory) 44

5 Conclusions 53

References 55

Appendices 61

A Detailed Jacobian Matrix Structure A1

A.1 Cost Function Gradient . A2

A.2 Gradient of Dynamic Defects . A2

A.3 Gradient of Path Constraints . A3

A.4 Event Constraints Gradient . A4

A.5 Gradient of the Linkage Conditions . A4

xvi

List of Tables

2.1 Sets of scalar factors to use in the NLP problem in order to obtain minimal, normalizing and

automatic covector mappings. 23

3.1 Three different scenarios of phase linkage conditions in a given phase p. 26

3.2 Multiphase scalar factors for the minimal costate mapping. 28

4.1 Relevant constants and parameters for the Falcon 9 first stage recovery problem. 38

4.2 Comparison of relevant parameter results between SPARTAN and Anglim et al. [67]. . . . 43

4.3 Relevant constants and parameters for the multistage solid propellant rocket problem [10]. 47

4.4 Component properties of the vehicle for the multistage solid propellant rocket problem [9]. 47

4.5 Comparison of relevant parameter results between SPARTAN and Rao et al. [9]. 51

xvii

List of Figures

1.1 The Tsiolkovsky rocket equation relates the propellant mass fraction, “, to the ratio ∆V =ve . 2

1.2 Simplified launch sequence illustration of a two staged rocked. 9

2.1 Comparison of node distributions for N = 7 in the domain fi ∈ [−1; 1]. A uniform distribution

is shown in red squares. The roots of the flipped Radau polynomial are shown in black circles,

an extra discretization point at fi = −1 is shown as a blue cross. 15

2.2 Example trajectories for illustration of the variations ‹t0, ‹tf , ‹x0 and ‹xf . An optimal trajectory

is represented by x∗(t) and a varying neighbour solution is represented by x(t). 16

2.3 Commutative diagram between direct and indirect method routes to solve an optimal control

problem [19]. 22

3.1 Illustration of the pattern of collocation nodes for multiple phase transcription. Example of three

phases with five collocation nodes in each phase. 27

3.2 Sparsity pattern of the Jacobian matrix for an example problem with four phases, five collo-

cation points on each phase, four open terminal times, one scalar path constraint applying to

every phase and a terminal constraint vector applying to every phase. White spacing repre-

sents zero-valued elements. 31

3.3 Flowchart of the solving process by the MATLAB tool SPARTAN. 32

4.1 Illustration of the main stage of SpaceX’s Falcon 9 rocket [68]. 35

4.2 Free-body diagram of the vehicle. 36

4.3 Downrange and altitude with time. Both position coordinates are tangent to the time axis at the

final time. 39

4.4 Cartesian components of velocity with time. Both components approach zero at the final time. 39

4.5 Profile of the total mass of the vehicle with time. Linear decay in phases 1 and 3 indicates

constant mass flow-rate. 40

4.6 Thrust direction, „, with time. Thrust direction approaches 90° at the final time. 40

4.7 Flight path angle, ‚, with time; flight path angle approaches 270° at the final time. 40

4.8 Altitude vs downrange trajectory. Boost-back phase is represented in blue; the coast phase is

represented in orange; and the landing phase is shown in yellow. 41

4.9 2-D trajectory yielded by SPARTAN (in red) superimposed with the reference solution [67]

(dashed black). 41

xix

4.10 Mass costate with time. The mass costate takes the value -1 at the final time. 42

4.11 Left: Cartesian components of primer vector with time. Top-right: Norm of the cross product

between the control and the primer vector. Bottom-Right: Zoom in on phases 2 and 3 of the

top-right plot. 43

4.12 Hamiltonian vs time. Hamiltonian is zero during phases 2 and 3. 43

4.13 Delta III rocket illustration [69]. 44

4.14 Free-body diagram of the vehicle in ECI coordinates. The Earth is represented by a sphere

centred at the origin. 45

4.15 Spacecraft altitude vs time. 48

4.16 Norm of the velocity vector vs time. 48

4.17 Spacecraft altitude vs time. Comparison of results with the reference solution [9]. 48

4.18 Velocity norm vs time. Comparison of results with the reference solution [9]. 48

4.19 Decay in total vehicle mass along the trajectory. 49

4.20 Cartesian components of control. The components assert a unit vector. 49

4.21 Left: Mass costate along the trajectory. Right: Zoom in on phases 1, 2 and 3 of the left plot. 50

4.22 Left: Cartesian components of the velocity costate (primer vector) at each time instant. Right:

Norm of the cross product between the control and the primer vector. 50

4.23 Comparison between the Hamiltonian obtained with SPARTAN and the reference solution [9]. 51

xx

List of Symbols

Roman symbols

C(XNLP) Algebraic constraints of the nonlinear programming problem

D Chapters 2, 3 and Appendix A: Differentiation matrix. Chapter 4: Drag force vector

D∗ Dual differentiation matrix

F Array of concatenated dynamic defects

f
`
·
´

Generic algebraic vector function representing the right-hand side of the equations of motion

Fext External forces which do not change the mass of the system

Fnet Total net force acting on the system

g Vector of gravitational acceleration of the Earth

H Array of concatenated path constraints

h
`
·
´

Generic algebraic vector function representing path constraints

In×n Identity matrix of dimension n by n

r Spacecraft position vector

T ; T Thrust vector, thrust vector norm

u(t) Generic control vector

ve ; ve Exahust velocity vector, exahust velocity vector norm

v Spacecraft velocity vector

x(t) Generic state vector

XNLP Vector of decition variables of the nonlinear programming problem

‘ Algebraic vector function representing linkage conditions

H Variational Hamiltonian

H† Scalar constant representing the optimal Hamiltonian

J Performance measure expressed as a cost functional

J –N Augmented-discrete cost functional

J – Augmented cost functional

JN– Discrete-augmented cost functional

JN Discrete cost functional

L Lagrangian of the Hamiltonian

xxi

‖x‖ Vector Euclidean norm

MR Vehicle Mass ratio

Y Logic operator for exclusive disjunctioneH KKT HamiltonianeL KKT Lagrangian

CD Drag coefficient

C–;k Scalar factor of the dynamic defects corresponding to the k th sample point along the time domain

C—;k Scalar factor of the path constraints corresponding to the k th sample point along the time domain

g0 Gravitational acceleration of the Earth at the surface

h0 Density scale height

Isp Engine specific impulse

J(XNLP) Cost function of the nonlinear programming problem

m Vehicle mass

nx Dimension of vector x , such that x ∈ Rnx

PN(fi) Legendre polynomial of order N

RN(fi) Flipped Radau polynomial of order N

t Independent variable for the time domain

t0 Initial time domain point

tf Final time domain point

wk Gauss quadrature weight corresponding to the k th sample point along the domain

Greek symbols

– Covector associated with dynamic defects

— Covector associated with path constraints

� Covector associated with event constraints

ffi
`
·
´

Generic algebraic vector function representing event constraints

‰ Dynamic defect constraints

∆x Instantaneous change in state vector for linkage conditions

∆t Period of time

∆V Change in velocity

— Standard gravitational parameter of the Earth

Φ Mayer term of the cost functional

Ψ Lagrange term of the cost functional

 Atmospheric air density

0 Standard atmospheric air density at sea level

fi Normalized domain of the independent variable

fiDR Abscissas corresponding to the roots of the direct Radau polynomial

xxii

–̃ KKT multiplier associated with dynamic defects

—̃ KKT multiplier associated with path constraints

�̃ KKT multiplier associated with event constraints

‹ Variation operator

“ Propellant mass fraction

Subscripts

0 Value of vector at the initial point of the time domain

max Upper boundary vector

min Lower boundary vector

f Value of vector at the final point of the time domain

i Value of vector at the i th sample point along the domain

k Value of vector at the k th sample point along the domain

ki Matrix element in the k th row and i th column

Superscripts

(p) Vector in phase p

| Vector transpose

xxiii

List of Abbreviations

CMT Covector Mapping Theorem.

DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Centre).

ECI Earth-Centered Inertial reference frame.

EoM Equations of Motion.

HBVP Hamilton Boundary-Value Problem.

ISS International Space Station.

KKT Karush–Kuhn–Tucker optimality conditions.

NLP Non-linear Programming.

OCP Optimal Control Problem.

ODE Ordinary Differential Equation.

OLV Orbital Launch Vehicle.

SPARTAN Simple Pseudospectral Algorithm for Rapid Trajectory ANalysis.

xxv

Chapter 1

Introduction

1.1 Objective

In this thesis, the flipped Radau Pseudospectral method for optimal control is extended to solve multi-

phase problems. This extension of the algorithm allows the study of problems that might contain state and/or

control discontinuities or local mutations in the equations of motion, thus augmenting in complexity and in

quantity the range of problems that are possible to solve. The method is applied to the case of multiple stage

launch vehicles in both ascent from surface to orbit and descent from free-fall to vertical landing.

1.2 The Orbital Launch Vehicle

An orbital launch vehicle (OLV) is a machine designed to take payloads to a specified orbit in space.

These machines, commonly known as Rockets, play a very important role in implementing (and sometimes

maintaining) modern world utilities such as Global Positioning Systems, telecommunication services, space

observatories, among others. Therefore, it is of ultimate interest for these machines to perform in a way that

is fuel-effective and which allows a safe payload delivery.

This is not a trivial task, mainly because the propulsion system of a rocket requires high values of pro-

pellant mass fraction, which is to say that the propellant alone makes up a significant proportion of the total

mass of the vehicle. Essentially, the rocket has to transport all of the fuel required to propel itself along the

trajectory, but the more fuel it carries the more fuel is required due to the increased weight. The Tsiolkovsky

Rocket equation can be used in order to calculate the propellant mass fraction of the vehicle given a required

velocity budget.

1.2.1 Tsiolkovsky Rocket Equation and Staging

The Tsiolkovsky rocket equation provides a scalar evaluation of the performance of a given vehicle con-

figuration. In the absence of external forces, such as gravity or aerodynamic drag, and assuming perfect fuel

consumption, there is a limit to how much velocity a rocket can gain. This limit is related to the mass ratio of

1

the vehicle by [1]

∆V = ve ln(MR) = −ve ln(1− “) ; (1.1)

where ∆V is, for a given configuration, the available change in velocity the rocket acquires and ve is the

effective exhaust velocity. The mass ratio, MR, is the quotient between the initial and final mass of the vehicle,

and “ is the propellant mass fraction as follows [1]:

MR =
Initial Mass

Mass at Burnout
; (1.2)

“ =
Propellant Mass

Initial Mass
= 1− 1

MR
: (1.3)

The higher ∆V a vehicle configuration has, the better it is expected to perform. Figure 1.1 illustrates the

relationship between the propellant mass fraction, “, and the ratio of output ∆V to exhaust velocity, ve , given

by (1.1). The asymptotic gradient of the plot makes it clear that achieving high values of ∆V is not trivial, as

this implies that the propellant mass fraction will tend to 1 — a vehicle with no room for payload or structural

mass. In practice, the values of propellant mass fraction typically lie in between 0.75 to 0.95 [2].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Propellant Mass Fraction,

0

1

2

3

4

5

6

7

V
 /

v e

Tsiolkovsky Rocket Equation

Figure 1.1: The Tsiolkovsky rocket equation relates the propellant mass fraction, “, to the ratio ∆V =ve .

One ingenious way to work around this is the concept of multi-stage rocket. As expressed in (1.4), a

multi-stage rocket allows the partition of the total ∆V into multiple contributions. Letting P be the number of

stages of the vehicle, the rocket equation becomes [3]

∆V =
PX
p=1

v (p)e ln
“

MR (p)
”

= −
PX
p=1

v (p)e ln
“

1− “(p)
”
: (1.4)

A multi-stage rocket is advantageous because it makes it possible to dispose of inert mass along the

trajectory as empty burnout stages are detached and jettisoned in stage separation events. At the cost of

ejecting fully functioning propulsion systems along with empty tanks and structural mass at stage separation

events, a multi-stage configuration also allows the modification of engine specification from stage to stage,

therefore the propulsion system of each stage can be tailored to meet the requirements of the environment

it will be working in. It is relevant to note that if not for the detachment of the empty stages, the multiphase

configuration would be almost redundant due to the additive property of the logarithmic function.

The difficulty in achieving high values of ∆V due to the character of the rocket equation is only aggravated

when the effects of gravity and atmospheric drag are taken into account. Both of these forces act in opposition

2

to the movement of the rocket during the launch sequence, which results in the suppression of the total ∆V

budget of the vehicle.

In the case of gravity, for instance, assuming a vertical launch and a constant gravitational acceleration,

a rough estimate of the velocity budget can be computed based on the duration of flight, ∆t as follows [4]:

∆VActual = ∆VTotal −∆VGravity ; (1.5)

∆VGravity = g0∆t ; (1.6)

where ∆VActual is the expected velocity budget of the vehicle when subject to the force of gravity, ∆VTotal is

the velocity budget of the rocket calculated via (1.4) (in isolation of external forces), ∆VGravity is the equivalent

velocity expense of gravity and g0 is the standard gravity acceleration of the Earth.

Ultimately, a staged rocket makes it easier to achieve high values of ∆VTotal, necessary to overcome

gravity and atmospheric drag expenses. The motivation for multi stage rockets is thus established.

1.2.2 Equations of Motion

Generic formulation

As a dynamic system, an OLV a can be represented by a state vector, x(t), descriptive of relevant

properties associated with the system. In this case, the state vector will often consist on the group position-

velocity-mass [5–7].

The behaviour of the vehicle is described by the equations of motion (EoM) which describe the rate of

change of the state vector with time. A sequence of states associated with a time interval is called a trajectory

and it is possible to influence the trajectory by introducing the control vector, u(t), into the equations of motion.

In the case of an OLV, the control vector will often consist on the components of thrust.

Given the state and control vectors, respectively x(t) ∈ Rnx and u(t) ∈ Rnu , where nx and nu are

the respective vector dimensions, it is said that the system is subject to equations of motion, generically

represented as [8]:

ẋ(t) = f
`
x(t);u(t)

´
; (1.7)

where f (·) is a vector function representative of the right-hand side of the differential equations. The vector

function f (·) can be explicitly dependent on the state of the system, x(t) and on the specified control vector,

u(t). The generic formulation of (1.7) will be used throughout this work as a way to express any given dynamic

system.

Equations of motion for rockets

The propulsive system of a rocket is based on the reactive force from mass exhaust. The equations of

motion for a rocket modelled as a point mass can be expressed as follows [3]:

Fnet = Fext + T = m
dv

dt
; (1.8)

T = ve
dm

dt
; (1.9)

3

where the vector Fnet is the resulting net force acting on the vehicle, the vector Fext is the sum of common

external forces that do not change the mass of the system, T is the thrust vector, m is the total mass of the

vehicle, v is the velocity vector, and ve is the effective mass exhaust velocity vector. Equations (1.8) and (1.9)

account for propulsion based on both escaping mass, dm
dt < 0, and incident mass, dm

dt > 0, with respect to

the center of mass of the vehicle. Because the mass flow rate, dm
dt , is a scalar quantity, it yields that the thrust

vector, T , is always collinear with the exhaust velocity vector, ve .

The equations of motion for rockets and other rocket-like propulsive systems can be written in state-

space representation without loss of generality by solving (1.8) and (1.9) for the rates of change of velocity

and mass, respectively, dv
dt and dm

dt , and adjoining the kinematic equations
`
ṙ = v

´
, where r is the position

vector:

ṙ = v ; (1.10)

v̇ =
Fext

`
r ; v
´

m
+
T

m
; (1.11)

ṁ = −
‚‚T‚‚
ve

; (1.12)

where the generic force Fext(·) is representative of external sources of acceleration such as gravitational

forces, aerodynamic forces, or fictitious forces introduced by a non-inertial reference frame, and the norm of

the effective exhaust velocity vector, ve = ‖ve‖, is a known constant for a given vehicle.

Equations (1.10) to (1.12) presume a point-mass approximation of the system, this is to say that these

equations overlook some aspects of rocket behaviour. For instance, this model does not encompass the

attitude control of the vehicle, and therefore the angle of attack is assumed to be zero at all times. More

refined approximations imply the extension of the state vector and the consequent appending of additional

equations of motion.

1.2.3 Trajectory Optimization

Before every launch, a trajectory should be generated in order to minimize the fuel consumption of the

vehicle. This is where the discipline of optimal control comes in.

Optimizing multi-staged rocket trajectories is not an easy task. The difficulties include:

• The nonlinear nature of the equations of motion.

• The modelling of physical phenomena, such as drag which is a function of the relative air velocity.

• The mutation of the equations of motion from one stage to the next due to the varying of the

exhaust velocity, ve , or, possibly, other terms.

• The state discontinuities that occur at stage separation events from abrupt mass detachments.

• The fact that every trajectory optimization problem is a distinct boundary-value problem.

In generic terms, a dynamic system that is subject to non-differentiable points can be subdivided into

different phases corresponding to periods of time along which the system is fully differentiable. This way, each

phase is modelled with the appropriate set of dynamic equations and the non-differentiable points correspond

to phase transition points. If there are multiple non-differentiable points then one can subdivide the problem

into multiple phases. Always with the assumption that the transitions between phases are instantaneous.

4

Trajectory optimization problems of this sort are called multiphase optimal control problems.

In the particular case of multi-staged rockets, it is appropriate to subdivide the problems into phases

according to the stage separation events. This way one stage is associated with one phase and stage sep-

aration events correspond to phase transition points. In the context of this work, the terms stage and phase

might be used interchangeably.

The challenges described above are the motivation for the development of a multiphase numerical al-

gorithm. There must be a trajectory generation utility capable of dealing with such systems. In addition, this

utility would need to be generic instead of problem-specific in order to be useful for both current and future

missions.

Path constraints

In addition to the difficulties expressed above, the vehicle might be subject to constraints due to design

requirements or safety factors. For instance, it might be necessary to keep the aerodynamic pressure below a

certain value along the trajectory, or it might be required to limit the acceleration experienced by the vehicle to

an acceptable interval, or, still, the trajectory might be physically conditioned by no-fly zones. These types of

constraints are called path constraints [6, 7] and they can be though of as an algebraic equation (or inequality)

that must be verified at each point in time. Path constraints are expressed as

h
`
x(t);u(t)

´
≤ 0 : (1.13)

For reference, other examples of path constraints commonly used are:

• To assert a constant norm of the thrust vector along the trajectory.

• To ensure that the norm of the position vector is greater than or equal to the radius of the Earth.

Event constraints

Event constraints are a set of equations (or inequalities) that must be satisfied at the boundaries of

the problem, that is, at the initial and/or final times of each phase. These are also referred to as boundary

conditions or point constraints [7, 9, 10].

A commonly used set of event constraints in the case of OLVs is, for example, the assertion of orbital

elements at the final time of the trajectory. When finding the optimal trajectory to a desired orbit, it is possible

to assert the values of five out of the six orbital elements in order to leave one unknown, usually the true

anomaly, as a degree of freedom. This is very convenient as, most often, the true anomaly of the spacecraft

at the point of orbit insertion is not a relevant factor.

Event constraints are expressed as

ffi
`
x(t0); t0; x(tf); tf

´
≤ 0 : (1.14)

The equations of motion, together with the path constraints and the event constraints dictate feasibility.

The state and control sequences that satisfy these constraints form a feasible solution, not necessarily an

optimal solution.

5

The performance measure

The performance measure is a scalar quantity indicator of optimality [6–8, 11, 12]. In optimal control,

this quantity is conventionally expressed as a cost functional, J , this way the optimal trajectory is found by

minimizing (or maximizing) the cost. The cost functional is expressed as [6–8, 11, 12]

J =

Bolza Problemz }| {
Φ
`
x(t0); t0; x(tf); tf

´
| {z }

Mayer Term

+

Z tf

t0

Ψ
`
x(t);u(t)

´
| {z }

Lagrange Term

dt : (1.15)

The Bolza problem is the standard formulation of a generic optimal control problem, standing as the sum

of an integral functional of the continuous problem and a function evaluated at the boundaries [7, 11]. If the

boundary term is omitted, Φ ≡ 0, the problem is known as the Lagrange problem, and if the integrand term

is omitted, Ψ ≡ 0, the problem is known as the Mayer problem [7, 11]. Most often it is possible to express a

Lagrange problem as a Mayer problem (and vice-versa).

The performance measure is the parameter that dictates optimality: a trajectory that minimizes time will,

most likely, be different to one that minimizes energy, yet both are optimal trajectories. Therefore, the process

of finding the optimal trajectory begins by choosing the optimal performance measure. In the case of OLVs,

the performance measure will often consist on maximizing the final mass of the vehicle.

1.3 Optimal Control and Trajectory Optimization Methods

Rocket trajectory optimization is profoundly tied to optimal control. Since launch vehicle technology

developed (roughly during the second half of the twentieth century) the optimization of rocket trajectories has

been made through Pontryagin’s Minimum principle [5, 13]. The terms "trajectory optimization" and "optimal

control" are so much tied together that they can often be used interchangeably [14]. In particular, the term

primer vector was coined specifically in the context of rocket trajectory optimization [5, 13]. The primer

vector is the complementary vector associated with velocity [5, 13, 15]. It has been shown that, for final-

mass-maximization problems, one of the optimality conditions is for the thrust vector to be collinear with the

primer vector [5, 13, 15]. The complementary vectors (or covectors, costates, adjoined vectors, or, still, dual

variables) are auxiliary variables that serve a similar purpose to that of Lagrange multipliers in parametric

optimization problems.

Given a constrained dynamic system, the subject of optimal control is concerned with finding the control

sequence that will promote a desired state transformation and which will minimize (or maximize) an associated

performance measure [6–8, 11, 12, 15]. Optimal control is a multidisciplinary subject that exists formally for

more than three hundred years [16], although it is not unreasonable to assume that this discipline has been

present in the collective human mind long before that in the shape of informal thoughts.

The classical approach to solve optimal control problems is through the calculus of variations, leading to

the Hamiltonian boundary-value problem [6, 8]. Most often analytical solutions cannot be derived, and thus

numerical methods are employed. Until the beginning of the twenty-first century indirect methods, such as

6

single shooting and multiple shooting methods, were standard for solving trajectory optimization problems,

including rocket and spacecraft trajectories [6, 8, 13, 17, 18].

But indirect methods are often impractical due to the associated necessity of deriving the problem-wise

optimality conditions [7]. In addition, these methods most often comprise convergence issues [7, 19], and

thus, lack reliability when a good initial guess is not available. On top of this, indirect methods are inadequate

for problems with inequality path constraints: typically the time intervals relative to the active and the inactive

constraints must be known a priori so that the problem can be manually divided into corresponding phases [7].

Ultimately, these issues make indirect methods hostile to employ in a general purpose software application.

In contrast, direct methods, and in particular pseudospectral methods, have gained popularity over the

past decades since their introduction by Elnagar et al. [20] and their generalization by Ross, Fahroo et al. [21–

24]. Pseudospectral methods consist on the transcription of the dynamics based on the roots of an orthogonal

polynomial, typically a particular Jacobi polynomial [9, 25]. The constraints are evaluated at each collocation

point resulting in a large list of equality and inequality algebraic constraints, accompanied with the algebraic

objective function; this list of constraints, referred to as a nonlinear programming (NLP) problem, is passed

through an off-the-shelf nonlinear optimizer such as SNOPT [26] or IPOPT [27, 28] and the solution is ob-

tained. In essence, in a pseudospectral method the optimal control problem is transformed into a parametric

optimization problem.

The solution obtained from a pseudospectral method is computed with disregards to the first order op-

timality conditions from the Hamiltonian Boundary-Value Problem. Instead, the set of necessary conditions

associated with the NLP is employed, called the Karush–Kuhn–Tucker conditions [19], resulting in some loss

of information with regards to the original optimal control problem [23, 29]. In order to make sure that the solu-

tion is optimal, the first order necessary conditions are verified in post processing with the aid of the covector

mapping theorem (CMT) [23, 29–31], thus "double checking" the optimality of the solution. Finally, having the

discrete solution, the continuous representation can be obtained by use of Lagrange interpolating polynomials

[32]. Pseudospectral methods can also be referred to as orthogonal collocation methods and they are known

to converge spectrally [23, 33, 34].

Since the introduction of pseudospectral methods there have been multiple iterations and innovations

[19, 29, 35–37], including their implementation into several software tools such as GPOPS and GPOPS-

II [9, 10], DIDO [21, 38], PSOPT [39], ICLOCS2 [40], SPARTAN [32, 41–46] among others. One notable

instance of the application of pseudospectral methods into the real world was the famous zero-propellant

manoeuvre of the ISS where a large angle reorientation of the spacecraft was performed by aid of reaction

wheels and gravity gradient only, virtually no propellant was spent [47]. Direct methods are widely used

because they can accommodate a broader range of problem formulations than indirect methods and lack

their drawbacks.

The NLP problem passed to the nonlinear solver via a pseudospectral method requires the aid of an

associated Jacobian matrix. Because most optimal control software packages are general purpose, they must

either (i) require the user for an analytic Jacobian matrix which can quickly become an exhausting process,

especially for larger and more complicated problems, or (ii) the software packages provide the Jacobian matrix

via an arbitrary numerical method. For convenience to the user, the second alternative is most often provided.

7

Because of this, these software packages require numerical differentiation methods to compute the partial

derivatives of the constraints with respect to the variables and ultimately assemble the Jacobian matrix. In

the context of optimal control, methods such as the complex step method and the Dual number method have

been employed to some extent [48–52].

Because generality is desired, a scaling process is often applied to the NLP as a way to normalize the

magnitude of the algebraic constraints. One effective scaling method is to factor each constraint by the magni-

tude of the respective Jacobian matrix row [51, 53, 54]. Another scaling method has been proposed recently

which is based on a balancing technique between primal and dual variables [55]. Despite not introducing

coupling between the constraints, the scaling does affect the resulting output dual variables. This means that

the NLP needs to be rescaled back in post-processing before the output of the final solution and also before

the covector mapping.

Within pseudospectral methods, the three most commonly used techniques are the Legendre-Gauss

pseudospectral method, the Legendre-Gauss-Lobatto pseudospectral method and the Legendre-Gauss--

Radau pseudospectral method (direct or flipped), all of which have been properly formalized [29]. The roots

of Legendre polynomials sit invariably within the interval [−1;+1]. The position of the roots changes slightly

from method to method, but the most relevant difference between the methods is the inclusion (or exclusion)

of the interval endpoints (-1) or (+1). The roots of the Legendre-Gauss polynomial do not include any of the

endpoints; the roots of the Legendre-Gauss-Lobatto polynomial include both interval endpoints; and the roots

of the Legendre-Gauss-Radau polynomial include either the left endpoint (-1) or the right endpoint (+1) of the

interval.

The roots of the Legendre-Gauss polynomial do not include the endpoints of the interval, because of

this, the respective method by itself does not allow for endpoint constraints, in order to include endpoint

constraints, one must add an auxiliary quadrature constraint for artificial collocation of the terminal (or ini-

tial) endpoint [9]. This extra constraint constitutes an additional burden to the NLP, making the problem

slightly, but unnecessarily, more complex. The Legendre-Gauss-Lobatto method provides a solution to this

because, without the necessity of additional constraints, the method allows both endpoints of the domain

to be constrained. However, it has been shown that this method has convergence issues with respect to

the costates [29, 37] which compromises the calculation of the first order optimality conditions. Finally, the

Legendre-Gauss-Radau method (direct or flipped), due to the asymmetric distribution of collocation points,

encompasses the best of both worlds by allowing the domain endpoints to be constrained without sacrificing

convergence of the costates [37].

With regards to pseudospectral methods, there have been efforts to develop the so-called integral for-

mulation of the NLP as an alternative to the typical differential form [10, 35, 56, 57]. It has been shown that

the choice of the differential form over the integral form or vice-versa is arbitrary for both the Legendre-Gauss

pseudospectral method and the Legendre-Gauss-Radau pseudospectral method (direct or flipped). How-

ever, this is not the case for the Legendre-Gauss-Lobatto pseudospectral method due to the structure of the

respective differentiation matrix.

Regarding multiphase optimal control, successful efforts have been made in order to implement the

feature into software [9, 10]. Multiphase optimal control allows the study of trajectories that might contain

8

necessary state discontinuities or even mutations of the equations of motion. Figure 1.2 illustrates the launch

sequence of a vehicle with two stages. It is evident that the stage separation event introduces a discontinuity

of mass into the system. In order to generate trajectories of orbital launchers it is relevant to develop a

multiphase algorithm. This way state discontinuities can be accounted for.

 S

ta
ge

 1

 Stage 2
Orbit

Insertion

Stage
Separation

Take-Off

Figure 1.2: Simplified launch sequence illustration of a two staged rocked.

Other developments in pseudospectral optimal control have taken place, most notably h and hp mesh

refinement methods [52, 58–60]. In a h method the number of polynomials to be concatenated along the

domain is increased, while in a p method the degree of the polynomial in use is increased. hp methods

are a combination of the two. The implementation of p mesh refinement methods is often superfluous, as

it is more satisfying to manually modify the degree of the polynomial at rerun whenever a solution is not

considered accurate enough. On the other hand h and hp methods can be powerful, however, the respective

implementation can be laborious and a refinement strategy is required. Other mesh refinement methods have

been proposed which are based on discontinuities in the optimal control [61–63], this is relevant because the

control discontinuity points are ideal to concatenate adjacent mesh intervals.

In this work, the flipped Radau pseudospectral method is employed to generate optimal trajectories of

multi-stage rockets in both ascension to orbit and descent to vertical landing. The Legendre-Gauss-Radau

method is well suited because it is a pseudospectral method that allows endpoint collocation, and it does not

present dramatic convergence issues on the dual variables [37]. The foundation for the implementation of the

multiphase feature is SPARTAN [32], a MATLAB tool developed at DLR — Deutsches Zentrum für Luft- und

Raumfahrt — with the objective of solving general purpose optimal control problems.

9

Chapter 2

Direct and Indirect Method Paths and

Covector Mapping

2.1 The Optimal Control Problem

An optimal control problem (OCP) is a formal mathematical statement describing a physical scenario

where a minimization objective is required and a system of ordinary differential equations (ODEs) is involved.

One characteristic of optimal control, in contrast to nonlinear programming (pure parametric optimization),

is that the system in study is subject to dynamic constraints as well as algebraic ones [6, 7]. This means

that the passing of time, or the domain of a relevant independent variable, is involved in some way. The

problems become more complicated and interesting. An optimal control problem can be formulated as [6, 8,

37] minimizing the cost functional

J = Φ
`
x(t0); t0; x(tf); tf

´
+

Z tf

t0

Ψ
`
x(t);u(t)

´
dt ; (2.1)

associated with the trajectory of the dynamic system

ẋ(t) = f
`
x(t);u(t)

´
; (2.2)

subject to the path constraints

h
`
x(t);u(t)

´
≤ 0 ; (2.3)

and to the event constraints

ffi
`
x(t0); t0; x(tf); tf

´
≤ 0 : (2.4)

The functions above are defined by the following mappings:

Φ : Rnx × R× Rnx × R → R ; (2.5)

Ψ : Rnx × Rnu → R ; (2.6)

f : Rnx × Rnu → Rnx ; (2.7)

11

h : Rnx × Rnu → Rnh ; (2.8)

ffi : Rnx × R× Rnx × R → Rnffi ; (2.9)

where nh is the dimension of the path constraint vector, i.e., the number of simultaneous constraints that the

system is subject to at a given time and nffi is the dimension of the event constraint vector.

An optimal control problem exists in the domain of an independent variable about which integration

occurs. In the context of geometric problems, for instance, the independent variable can be defined as a

spatial coordinate, while in the case of dynamic systems such as orbital launchers, the independent variable

is time.

2.2 Mathematical Background

Solving optimal control problems numerically requires discretization, regardless of the method in use.

The discretized problem must be managed similarly to the continuous one, therefore it requires equivalent

mathematical operators. For example, there must be a discrete integral operator, as well as a discrete deriva-

tive operator.

In this Section some relevant mathematical concepts are briefly reviewed, namely the Gaussian quadra-

ture which is a discrete integral operator, and the differentiation matrix based on Lagrange polynomial inter-

polation used to compute a discrete derivative. Other relevant concepts are presented, namely the linear

mapping of the domain of an optimal control problem, as well as some properties of the Legendre-Radau

polynomials.

2.2.1 Gaussian Quadrature and Domain Mapping

It is possible to compute the definite integral from −1 to 1 of a given polynomial function, f (fi), according

to the Gaussian quadrature. The function is evaluated at N discrete points and a weighted sum of the samples

is performed [29, 64, 65], Z 1

−1
f (fi) dfi =

NX
k=1

wk fk ; (2.10)

where fk = f (fik) is the value of the function at fi = fik , and wk is a scalar quadrature weight associated with

the k th function sample. In the case of a function that is constant, for instance f (fi) = 1, the quadrature rule

is [65] Z 1

−1
dfi =

NX
k=1

wk = 2 : (2.11)

It is important to note that it is not sufficient to evaluate the function at any given set of N discrete points.

For the quadrature to be accurate it is crucial that the distribution of points follows a pattern similar to the

distribution of roots of a Legendre-based polynomial (also called Gauss points) [65]. For example, by sampling

the function according to the roots of a N th order Legendre-Radau polynomial the Gaussian quadrature is

exactly accurate for polynomial integrand functions of order up to 2N − 2 [29, 64]. If the integrand function is

not a polynomial then there will be an error associated with the integration [29, 65]. This error can be reduced

12

by increasing the number of sample points, N, effectively approximating the integrand by a polynomial of

higher order.

In order to perform an integration over a generic interval t ∈ [t0; tf], the domain of the independent

variable, t, is mapped into the normalized domain fi ∈ [−1; 1]. This mapping is linear and it can be expressed

as [51]

t(fi) =
tf − t0

2
fi +

tf + t0
2

; fi ∈ [−1; 1] ; (2.12)

dt =
tf − t0

2
dfi : (2.13)

By performing a change of variables, the Gaussian quadrature can be expressed for a generic interval asZ tf

t0

f (t) dt =
tf − t0

2

NX
k=1

wk fk ; (2.14)

where fk = f
`
t(fik)

´
is the value of the function evaluated at t(fik).

The change of variable of integration can be interpreted as a shift in the domain from concrete time, t,

to a pseudo-time, fi , which is always within −1 to 1. This domain shift allows for the problem to be normalized

and for the endpoints of the domain, t0 and tf , to be set as optimization parameters (decision variables),

which is crucial when the final time of the trajectory is unknown, for instance.

2.2.2 Lagrange Polynomial Interpolation and the Differentiation Matrix

With a set of N discretization points along the domain, and the corresponding samples of a polynomial

xi , the smooth function approximation, x(fi), which passes through the N points can be found via Lagrange

polynomial interpolation by [66]

x(fi) =
X
i

xiLi (fi) ; (2.15)

Li (fi) =
Y
j
j 6=i

fi − fij
fii − fij

; (2.16)

where fii is the independent variable associated with the i th sample point and Li (fi) is the corresponding

Lagrange interpolating polynomial which is a function of the independent variable fi and a function of the

locations of the samples along the domain.

The first derivative of the polynomial, x(fi), with respect to fi can also be estimated based on the La-

grange polynomial interpolation by [66]

dx(fi)

dfi
=
X
i

xi
dLi (fi)

dfi
: (2.17)

Alternatively, a differentiation matrix,D, can be built such that the derivative of x with respect to fi at the points

fi = fik is computed as
dxk
dfi

=
X
i

Dkixi ; (2.18)

where xk = x(fik) and Dki is a scalar element on the k th row and i th column of matrix D. This differentiation

13

matrix can be constructed one element at a time as [9]

Dki =
dLi (fik)

dfi
=
X
l
l 6=i

1

fii − fil

Y
j

j 6=i ;l

fik − fij
fii − fij

: (2.19)

Applying the chain rule to (2.18) and using (2.13), the derivative of x with respect to a generic domain,

t ∈ [t0; tf], can be computed by [23]

dx

dt
=

dfi

dt

dx

dfi
; (2.20)

ẋk =
dxk
dt

=
2

tf − t0

X
i

Dkixi : (2.21)

As was the case for Gaussian quadrature, the accuracy of the Lagrange polynomial interpolation, and

that of the differentiation matrix, is directly related to the choice of sample points along the domain of fi .

Equation (2.21) provides a generic way to compute the first derivative of any given function, x(t), with respect

to a generic domain, provided an appropriate sampling strategy is used. If no mind is paid to the selection of

discretization points, for instance, by choosing a uniform distribution of nodes, the accuracy of the Lagrange

approximation is not guaranteed, mainly due to the Runge phenomenon. As it happens, the roots of the three

Legendre-based polynomials mentioned earlier (Legendre, Legendre-Radau and Legendre-Lobatto) turn out

to be a good choice for the discretization pattern [29].

Although the derivative dx
dt could be computed directly by building matrix D using the values of t instead

of fi in (2.16) and (2.19), it is more convenient to isolate t0 and tf as these will be used as decision variables.

And so, matrix D is used for the derivative with respect to the normalized domain of fi and the derivative with

respect to t yields easily via a simple multiplication. This also has the advantage of matrix D being constant,

so it will not change as t0 or tf change.

2.2.3 Legendre-Radau polynomial and node distribution

Due to the Runge phenomenon, the worst possible choice of sample points for polynomial interpolation

is an equidistant grid [29, 51]. In contrast, a good choice of sample points is a proportional mapping of the

roots of Legendre-based polynomials, such as the flipped Radau polynomial. The flipped Radau Polynomial

is the result of the difference between two Legendre polynomials of consecutive order:

RN(fi) = PN(fi)− PN−1(fi); fi ∈ [−1; 1] (2.22)

where PN(fi) is the Legendre polynomial of order N. Figure 2.1 shows the comparison between an equidistant

grid and the distribution of the flipped Radau polynomial roots for reference. One peculiarity of the roots of

the Radau polynomial is that they are asymmetric with respect to the origin.

The Gaussian quadrature weights associated with the roots of the flipped Radau polynomial can be

computed by doing a flip operation on the weights of the direct Radau, reversing their order [29, 51]

wk = flip

1− fiDR

k

N2P 2
N−1(fiDR

k)

ff
; k = 1; 2; ::; N ; (2.23)

14

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Normalized independent variable,

Flipped Radau Roots
Discretization Point
Uniform Distribution

Figure 2.1: Comparison of node distributions for N = 7 in the domain fi ∈ [−1; 1]. A uniform distribution
is shown in red squares. The roots of the flipped Radau polynomial are shown in black circles, an extra
discretization point at fi = −1 is shown as a blue cross.

where fiDR
k is the kth abscissa of the direct Radau roots, N is the degree of the Radau polynomial, and

PN−1(fiDR
k) is the Legendre polynomial of degree N − 1 evaluated at fiDR

k .

Because the roots of the flipped Radau polynomial do not include the left limit of the interval (fi = −1)

there will be no weight associated with this point, and therefore this point will not be collocated. However

the point at fi = −1 can be used as an auxiliary discretization sample for the calculation of the derivative at

the collocation points [35]. Also, this additional discretization point allows the specification of the state at the

beginning of the trajectory (initial condition).

Letting i = 0; 1; 2; : : : ; N be the index corresponding to the discretization points, and k = 1; 2; : : : ; N

be the index corresponding to the collocation points, the resulting differentiation matrix D from (2.19) will be

rectangular of size N × (N + 1).

2.3 Indirect Method Route

In this Section, the classical indirect method approach to solving optimal control problems is reviewed.

In an indirect method the optimal control problem is transcribed by way of the following two steps:

1. Dualization,

2. Discretization,

(in that order) after which a solver procedure is employed to obtain a discretized solution.

The two steps described above are further explored in this Section in the following way: Section 2.3.1

describes step 1, presenting the dualization process and the optimality conditions known as the Hamiltonian

Boundary-Value Problem, and Section 2.3.2 briefly describes step 2, where only the discrete version of the

cost functional is presented.

2.3.1 Hamiltonian Boundary-Value Problem

In an indirect method the process of finding a solution to the optimal control problem begins by deriving

the first order optimality conditions. In order to do so, the cost functional (2.1) is augmented by means of

the complementary vectors, �, – and —, (Lagrange multipliers) to include all constraints expressed in (2.2) to

15

(2.4). This process is often referred to as dualization [19]. The augmented cost functional is written as [37]

J – = Φ
`
x(t0); t0; x(tf); tf

´
+�|ffi

`
x(t0); t0; x(tf); tf

´
+

Z tf

t0

n
Ψ
`
x ;u

´
+ –|

ˆ
f
`
x ;u

´
− ẋ

˜
+—|h

`
x ;u

´o
dt ;

(2.24)

where –(t) ∈ Rnx is the state covector (or costate), —(t) ∈ Rnh is the constraint covector and � ∈ Rnffi is the

endpoint covector. Two important quantities that simplify the writing of the first order optimality conditions are

the variational Hamiltonian, H, and the Lagrangian of the Hamiltonian, L, which can be expressed as [23]:

H
`
x ;u;–

´
= Ψ

`
x ;u

´
+ –|f

`
x ;u

´
; (2.25)

L
`
x ;u;–;—

´
= Ψ

`
x ;u

´
+ –|f

`
x ;u

´
+—|h

`
x ;u

´
: (2.26)

In order to introduce the concept of variations Fig. 2.2 illustrates two hypothetical trajectories: an optimal

trajectory, x∗(t), and a neighbouring solution x(t). The image presents a simplified version of the relation-

ships between these two functions and the variations at the endpoints, namely ‹t0, ‹tf , ‹x0 and ‹xf . It can

be seen that if tf and x(tf) are not allowed to vary, then the optimal solution must invariably include the right

endpoint.

Figure 2.2: Example trajectories for illustration of the variations ‹t0, ‹tf , ‹x0 and ‹xf . An optimal trajectory is
represented by x∗(t) and a varying neighbour solution is represented by x(t).

The first order necessary conditions for optimality can be derived from (2.24) by setting the first variation

of the augmented cost functional equal to zero, ‹J – = 0. These necessary conditions are expressed in terms

of the Lagrangian of the Hamiltonian as [6, 8, 23, 29]:

f
`
x ;u

´
− ẋ = 0 ; (2.27)

—|h
`
x ;u

´
= 0 ; (2.28)

�|ffi
`
x(t0); t0; x(tf); tf

´
= 0 ; (2.29)

@L
@u

`
x ;u;–;—

´
= 0 ; (2.30)

–̇| +
@L
@x

`
x ;u;–;—

´
= 0 ; (2.31)

16

‹x0 = 0 Y
@Φ

@x(t0)
+ �|

@ffi

@x(t0)
+ –|(t0) = 0 ; (2.32)

‹xf = 0 Y
@Φ

@x(tf)
+ �|

@ffi

@x(tf)
− –|(tf) = 0 ; (2.33)

‹t0 = 0 Y −H
`
t0
´

+
@Φ

@t0
+ �|

@ffi

@t0
= 0 ; (2.34)

‹tf = 0 Y H
`
tf
´

+
@Φ

@tf
+ �|

@ffi

@tf
= 0 ; (2.35)

where H
`
t0
´

and H
`
tf
´

is the Hamiltonian evaluated at t0 and tf , respectively:

H
`
t0
´

= H
`
x(t0);u(t0);–(t0)

´
; (2.36)

H
`
tf
´

= H
`
x(tf);u(tf);–(tf)

´
: (2.37)

Equations (2.27), (2.28) and (2.29) result from the variation of the augmented cost about the three covec-

tors, –, — and �, respectively, and they are a rewriting of the constraints of the original problem statement in

(2.2) through (2.4). One interesting result that yields from the optimality conditions is the fact that the inequal-

ity constraints (2.3) and (2.4) are turned into equality constraints by means of a product with the respective

covectors: the conditions are satisfied whenever the inequality constraints are active (h = 0 and/or ffi = 0),

and they can be satisfied when the constraints are inactive (h < 0 and/or ffi < 0) by making sure that the

covectors bind to zero at the corresponding times (— = 0 and/or � = 0), thus ensuring a null product in (2.28)

and (2.29). Because of this, (2.28) and (2.29) are often referred to as slackness conditions.

Equations (2.30) and (2.31) are called the Euler-Lagrange equations and they apply at every point along

the domain. In particular (2.31) is called the costate equation because it describes the rate of change of the

costate, effectively serving as a new equation of motion corresponding to the costates. Equation (2.30) is

also referred to as the strong form of Pontryagin’s minimum principle and it only applies if the optimal control

sequence lies exclusively within the allowable control set. Thus, equation (2.30) must be disregarded in the

case of "bang-bang" control problems where the control sequence includes a saturation of the control set.

Finally (2.32) through (2.35) are the endpoint conditions and they are characterized by an exclusive

disjunction property, represented by the symbol "Y". Briefly stated, the right-hand-side conditions only apply

when the left-hand-side conditions do not, and vice-versa. For instance, if in a given problem the initial time

is known (fixed), then its variation is zero ‹t0 = 0, this means that the left-hand-side of (2.34) applies, but the

right-hand-side does not. The right-hand-side equation of (2.34) only applies when the variation of the initial

time is not zero, i.e, when the initial time is not known. The analogous is true for the other endpoint conditions.

The exclusive disjunction property of the endpoint conditions results in an incomplete set of conditions in either

endpoint of the domain, which is why an optimal control problem is essentially a boundary-value problem.

In addition, because it is not an explicit function of time, the Hamiltonian of the optimal solution will be a

constant [37]. Thus:

H
`
x(t);u(t);–(t)

´
= H† ; (2.38)

H(t0) = H(tf) = H† ; (2.39)

where H† represents a generic constant scalar.

17

The problem of finding a solution that satisfies all first order optimality conditions is known as the Hamil-

tonian boundary value problem (HBVP). If a problem is simple enough, then it might be possible to solve it

analytically, however, due to the nonlinear nature of optimal control problems, most often an analytical so-

lution is not possible to obtain and numerical methods must be employed. Therefore, the HBVP has to be

discretized.

2.3.2 Discrete Hamiltonian Boundary-Value Problem

The discrete Hamiltonian boundary-value problem results form the discretization of the first order opti-

mality conditions discussed in Section 2.3.1. This discretization is necessary in order to make the problem

solvable by numerical methods. For the sake of argument, let the optimality conditions be discretized accord-

ing to the roots of the flipped Radau polynomial. Then, from (2.25) and (2.26), the discrete Hamiltonian and

Lagrangian are:

Hk = H
`
xk ;uk ;–k

´
= Ψk + –|

k fk ; (2.40)

Lk = L
`
xk ;uk ;–k ;—k

´
= Ψk + –|

k fk +—|
khk ; (2.41)

and the augmented-discrete cost functional can be can be written based on the discrete optimality conditions

as

J –N = Φ + �|ffi+
tf − t0

2

X
k

wk

»
Lk − –|

k

2

tf − t0

X
i

Dkixi

–
: (2.42)

Another way to obtain (2.42) is to discretize (2.24) directly, this way the integration becomes a Gaussian

quadrature and the time derivative, ẋ , becomes a multiplication with the differentiation matrix. Again, for

this discretization to be meaningful the distribution of nodes in the domain of time must be similar to the root

pattern of the flipped Radau polynomial or of some other Legendre based polynomial. For brevity, the discrete

optimality conditions derived from the HBVP are not presented.

Indirect methods have been the standard for solving optimal control problems because they are intuitive

and allow for an analytical approach, also, there is no loss of information in the process which means that

once a solution is obtained, there is no need to double check its validity. However, these methods require

the derivation of the problem-wise optimality conditions, which means that they are unsuited for a general

purpose software program. Indirect methods have been the standard to solve optimal control problems until

the beginning of the twenty-first century, then, by the ever-increasing computing power of modern machines,

direct methods became a reliable alternative.

2.4 Direct Method Route

In this Section the direct method approach to solve optimal control problems is reviewed. The transcrip-

tion process of a direct method is composed of the same two steps as the indirect method approach described

in Section 2.3, only the steps are in reverse order :

1. Discretization

2. Dualization

18

In this Section these two steps are reviewed in the context of direct methods in the following manner:

in Section 2.4.1 describes the discretization step, which transforms the original optimal control problem into

a nonlinear programming problem, and in Section 2.4.2 the optimality conditions of the NLP, known as the

Karush-Kuhn-Tucker conditions, are presented.

2.4.1 Nonlinear Programming Problem (NLP)

In a direct method, the optimal control problem, stated in (2.1) through (2.4), is first discretized. The result

is a list of discrete algebraic constraints which is commonly referred to as a nonlinear programming problem

(NLP). The NLP is sent to a nonlinear solver such as such as SNOPT [26] or IPOPT [27, 28] which iterates on

the optimization variables until a solution is obtained. The NLP can be expressed as minimizing the discrete

cost

JN = Φ +
tf − t0

2

X
k

wkΨk ; (2.43)

subject to:

C–;k

»
fk −

2

tf − t0

X
i

Dkixi

–
= 0 ; (2.44)

C—;khk ≤ 0 ; (2.45)

ffi ≤ 0 ; (2.46)

where (2.43) results from substituting the integral term in (2.1) with (2.14), and (2.44) yields by expanding

the term ẋk in fk − ẋk = 0 with (2.21). The scalar factors C–;k and C—;k are introduced in (2.44) and (2.45),

respectively, in order to facilitate the generalization of the covector mapping theorem. As long as the scalars

are not zero, they do not affect the solution of the primal variables (state and control), but they do affect

the solution of the dual variables, and this can be used to obtain a meaningful mapping of the covectors.

The equality constraints imposed by (2.44) (or other similar forms) will be referred to as "dynamic defects"

throughout this work.

2.4.2 Karush–Kuhn–Tucker Conditions

The Karush–Kuhn–Tucker (KKT) conditions are the first order optimality conditions that result from the

dualization of the NLP. Thus, the KKT conditions are to the NLP what the Hamiltonian Boundary-Value Prob-

lem (Section 2.3.1) is to the original optimal control problem.

In order to express the KKT conditions, two new quantities are introduced which relate to (2.25) and

(2.26), these are the hereinafter called KKT Hamiltonian and the KKT Lagrangian, respectively:

eHk = eH`xk ;uk ; –̃k ; t0; tf ´ =
tf − t0

2
wkΨk + C–;k –̃

|
k fk ; (2.47)

eLk = eL`xk ;uk ; –̃k ; —̃k ; t0; tf ´ =
tf − t0

2
wkΨk + C–;k –̃

|
k fk + C—;k—̃

|
khk : (2.48)

19

The discrete-augmented cost functional is expressed in terms of the KKT Lagrangian as [23, 29]

JN– = Φ + �̃|ffi+
X
k

» eLk − –̃|
kC–;k

2

tf − t0

X
i

Dkixi

–
: (2.49)

The dualization of the NLP occurs within the nonlinear solver, the KKT multipliers, –̃k , —̃k and �̃, are attributed

automatically and thus the KKT conditions are "invisible" to the outside, being contained in the "black box"

of the solver. This means that the user only needs to worry about the NLP and is never required to derive

optimality conditions, regardless of the problem at hand. This is a great advantage of direct methods because

the implementation of these methods into general purpose software is far easier than that of indirect methods.

The KKT conditions can be expressed in accordance with the current nomenclature as [23, 29]:

C–;k

»
fk −

2

tf − t0

X
i

Dkixi

–
= 0 ; (2.50)

—̃|
kC—;khk = 0 ; (2.51)

�̃|ffi = 0 ; (2.52)

@ eLk
@uk

= 0 ; (2.53)

wk
X
i

2C–;i
(tf − t0)wi

D∗ki –̃
|
i +

@ eLk
@xk

= 0; k = 1; 2; : : : ; N − 1 ; (2.54)

w0

X
i

2C–;i
(tf − t0)wi

D∗0i –̃
|
i +

@ eL0
@x0

= −c0; (k = 0) ; (2.55)

wN
X
i

2C–;i
(tf − t0)wi

D∗Ni –̃
|
i +

@ eLN
@xN

= −cN ; (k = N) ; (2.56)

@Φ

@x0
+ �|

@ffi

@x0
+

2C–;0
(tf − t0)w0

–̃|
0 = c0; (k = 0) ; (2.57)

@Φ

@xN
+ �|

@ffi

@xN
− 2C–;N

(tf − t0)wN
–̃|
N = cN ; (k = N) ; (2.58)

X
k

@ eHk
@t0

+
@Φ

@t0
+ �̃|

@ffi

@t0
= 0 ; (2.59)

X
k

@ eHk
@tf

+
@Φ

@tf
+ �̃|

@ffi

@tf
= 0 ; (2.60)

where c0 and cN are arbitrary real numbers, andD∗ is a dual version of the differentiation matrix which applies

to the covectors. This matrix is computed as [23, 29, 37]

D∗ik = − wi
wk
Dki ; (2.61)

where wi and wk are Gaussian quadrature weights. And, because the optimal Hamiltonian is constant [9, 37],

the summation terms in (2.59) and (2.60) can be simplified by

X
k

@ eHk
@t0

= −
X
k

@ eHk
@tf

= −H† : (2.62)

Resulting in a satisfactory agreement of (2.59) and (2.60) with (2.34) and (2.35).

20

Because (2.49) is in discrete from, it is not possible to distinguish the terms on the inside of the Gaussian

quadrature to the ones that are outside (as is the case with the integral terms in the continuous version of the

problem). As a result, coupling is introduced between (2.55) and (2.56) with (2.57) and (2.58), respectively,

as the endpoints of the trajectory are present on each pair of conditions. This coupling can be interpreted

as a loss of information with respect to the original continuous optimal control problem [23, 29]. The closure

conditions [23, 29]

c0 = 0 ; (2.63)

cN = 0 ; (2.64)

assert equivalence between the solution of the NLP with the solution of the boundary-value problem.

There are a few disadvantages of using direct methods. The major one is that there is some information

loss due to the process of discretizing first and dualizing after. Ultimately, the problem being solved is not

exactly the same as the original problem statement. Because of this, some post-processing tasks must be

done in order to double check the validity of a solution. One of this tasks is to inspect the Hamiltonian and

verify if it behaves as expected [37]. Despite this, the advantages of direct methods over indirect methods

greatly outclass the disadvantages.

2.5 Covector Mapping

I order to assert an equivalence between the KKT conditions and the discrete Hamiltonian boundary-

Value problem it is required to relate the KKT multipliers, �̃, –̃ and —̃, with the covectors, �, – and —,

respectively. This way, a solution to the KKT conditions is guaranteed to be a solution to the Hamiltonian

boundary-value problem as well. Therefore, the two expressions (2.42) and (2.49), although syntactically

distinct, must be equivalent. This equivalence can be expressed as

J –N = JN– ; (2.65)

where the order of the superscripts – and N illustrates the order between the operations of dualization and

discretization, respectively. Performing a little algebra leads to the following relationships:

� = �̃ ; (2.66)

Lk =
2

(tf − t0)wk
eLk : (2.67)

And further expanding the terms in (2.67) yields:

Hk =
2

(tf − t0)wk
eHk ; (2.68)

–k =
2C–;k

(tf − t0)wk
–̃k ; (2.69)

—k =
2C—;k

(tf − t0)wk
—̃k : (2.70)

21

Equations (2.66) through (2.70) are a generic form of the covector mapping theorem for linear mappings of

the independent variable.

For visual aid, Fig. 2.3 presents a schematic of direct and indirect procedures, and also of the covector

mapping theorem which bridges the gap between the two discrete versions of the problem. Going from

left to right in the Figure is equivalent to deriving the optimality conditions, and going from top to bottom

represents the operation of discretization. This way it is shown that in an indirect method the derivation of

optimal conditions occurs first and the discretization occurs after, where as in a direct method the opposite is

true. Because the operations of dualization and discretization are not commutative, the covector mapping is

required to connect the discrete HBVP with the KKT conditions.

Figure 2.3: Commutative diagram between direct and indirect method routes to solve an optimal control
problem [19].

Table 2.1 presents three alternative sets for the scalars C–;k and C—;k that can be to used in the NLP

problem, namely, the minimal mapping, the normalizing mapping and the automatic mapping sets. The

minimal mapping set simplifies the computations in processing. By using this scalar set, the decision variables

t0 and tf are moved from the denominator to the numerator in the case of the dynamic defect constraints,

which simplifies the calculation of the derivatives with respect to these variables. The remaining constraints,

i.e., the path constraints and the event constraints, maintain a simple form as no new decision variables are

introduced into the problem. By omitting these variables whenever possible a few derivative computations

can be spared, and considering that the derivatives with respect to tf and t0 are computed in every iterative

loop in order to build the Jacobian matrix it is expected that the use of the minimal mapping results in faster

iterations. However, the use of the minimal mapping set always requires some post-processing tasks, as the

KKT multipliers need to be equated to the costates once the discrete solution to the NLP is found.

In contrast, the normalizing mapping set will introduce the variables tf and t0 into the path constraints

which can potentially increase the iterations times, but the result is a relation between costates and KKT

multipliers that is more uniform, as (2.69) and (2.70) become a simple quadrature weight normalization of the

KKT multipliers. The normalizing mapping set does not require additional pre-processing jobs.

Finally, the automatic mapping set yields a direct relationship between the two covector types, and so

post-processing jobs are reduced. The disadvantage of using this scalar set is that it introduces decision

22

Table 2.1: Sets of scalar factors to use in the NLP problem in order to obtain minimal, normalizing and
automatic covector mappings.

C–;k C—;k

Minimal mapping tf−t0
2 1

Normalizing mapping tf−t0
2

tf−t0
2

Automatic mapping tf−t0
2 wk

tf−t0
2 wk

variables into the constraints that need not be there for an accurate solution of the primal variables, and so

the Jacobian matrix becomes slightly more complex, which can potentially result in longer iteration times.

There is also the introduction of the Gaussian quadrature weights, wk , into the NLP which change according

to the number of discretization points used which implies an increase in pre-processing jobs.

In summary, the covector mapping theorem bridges the gap between direct and indirect methods through

a choice of scalar sets, C–;k and C—;k . The sets presented in Table 2.1 are the ones with the most obvious

advantages, but other scalar sets can be used in the NLP, provided consistency is preserved.

23

Chapter 3

Implementation of the Flipped Radau

Method for Multiphase Problems

3.1 Multiphase Optimal Control Problem

In this Section, the generic multiphase optimal control problem is presented. The formulation is based

on the problem of Section 2.1, which can be interpreted as a single phase problem. The purpose of a

generic multiphase problem formulation is to account for cases in which state discontinuities are expected.

In the context of rocket launchers composed of multiple stages, state discontinuities are expected at stage

separation events.

Letting p ∈ [1; : : : ; P] be a scalar integer indicating a specific phase, where P is the total number of

phases in the problem, a generic multiphase optimal control problem can be formulated as minimizing the

cost functional

J = Φ
`
x(t (1)0); t (1)0 ; x(t (P)

f); t (P)
f

´
+

PX
p=1

(Z t
(p)
f

t
(p)
0

Ψ
`
x(t);u(t)

´
dt

)
; (3.1)

associated with the trajectory of the dynamic system

ẋ (p)(t) = f (p)
`
x(t);u(t)

´
; p = 1; : : : ; P ; (3.2)

subject to the path constraints

h(p)
`
x(t);u(t)

´
≤ 0; p = 1; : : : ; P ; (3.3)

the event constraints

ffi(p)
`
x(t (p)0); t (p)0 ; x(t (p)f); t (p)f

´
≤ 0; p = 1; : : : ; P ; (3.4)

and the phase linkage conditions

∆x
(p)
min ≤ ‘(p) = x(t (p+1)

0)− x(t (p)f) ≤ ∆x
(p)
max; p = 1; : : : ; P − 1 ; (3.5)

where ∆x
(p)
min and ∆x

(p)
max are, respectively, the user-defined lower and upper boundary vectors for the linkage

25

conditions. The functions presented in (3.1) through (3.5) are defined by the following mappings:

Φ : Rnx × R × Rnx × R → R ; (3.6)

Ψ : Rnx × Rnu → R ; (3.7)

f (p) : Rnx × Rnu → Rnx ; (3.8)

h(p) : Rnx × Rnu → Rn
(p)
h ; (3.9)

ffi(p) : Rnx × R × Rnx × R → Rn
(p)
ffi ; (3.10)

‘(p) : Rnx × Rnx → Rnx ; (3.11)

where nx is the dimension of the state vector, nu is the dimension of the control vector, n(p)h is the number of

simultaneous path constraints on phase p, and n(p)ffi is the total number of event constraints of phase p. This

formulation indicates that the constraints are not explicit functions of time, therefore, the systems in study are

time invariant. Also, the Mayer term and the Lagrange term are not expected to change from phase to phase,

which is shown by the absence of the superscript "(p)" which would be attached to these functions in (3.1).

Also, the state and control vectors must not change their sizes from phase to phase, again this is shown by

the absence of the corresponding superscript "(p)" in nx and nu .

Equation (3.5), which corresponds to the phase linkage conditions, consists of two distinct constraints,

the upper bound and the lower bound of the eventual state discontinuities. This allows the specification of

several discontinuity scenarios. Table 3.1 presents three possible scenarios of phase linkage conditions in

order to describe a given state over a phase transition. The vector a represents a generic array that is arbitrary

(user-defined), and the phase indicator, p, is omitted for syntax simplicity.

Table 3.1: Three different scenarios of phase linkage conditions in a given phase p.

Relationship between ∆xmin and ∆xmax Note

1. Continuity ∆xmin = ∆xmax = 0

2. Known discontinuity ∆xmin = ∆xmax = a a ∈ Rnx

3. Unknown discontinuity ∆xmin < ∆xmax ∆xmin;∆xmax ∈ Rnx

It is possible to enforce a continuous state, a known discontinuity or an unknown discontinuity. For

instance, in a stage separation event where the ejected mass is a known parameter, mejected = known, the

linkage condition for mass would be

∆mmin = ∆mmax = −mejected ; (3.12)

thus enforcing a known discontinuity of mass at that point (case 2 in Table 3.1). It is up to the user to decide

what the values ∆xmin and ∆xmax should be in order to best represent a given problem.

3.2 Multiphase NLP and Covector Mapping

Following the reasoning exposed in Section 2.4.1 for the single phase case, the NLP for multiphase

problems can be easily worked out. The multiphase NLP is quite similar to the single phase counterpart in

26

that the multiphase NLP is just an aggregate of several single phase problems. The main difference is that

the multiphase NLP contains additional phase linkage conditions required to relate one phase to the next. In

a multiphase problem state discontinuities are expected, and so the phase linkage conditions are important in

order to relate the states at the endpoints of each phase. The multiphase NLP can be expressed as minimizing

the cost

JN = Φ +
PX
p=1

t (p)f − t (p)0

2

N(p)X
k

w
(p)
k Ψk ; (3.13)

subject to:

C
(p)
–;k

»
f
(p)
k − 2

t (p)f − t (p)0

X
i

D
(p)
ki x

(p)
i

–
= 0 ; (3.14)

C
(p)
—;kh

(p)
k ≤ 0 ; (3.15)

ffi(p) ≤ 0 ; (3.16)

∆x
(p)
min ≤ ‘(p) ≤ ∆x

(p)
max ; (3.17)

where N(p) is the number of collocation points used to discretize phase p.

Similarly, the covector mapping can also be generalized for multiphase based on the single phase formu-

lation presented in Section 2.5. Multiphase covector mapping can be written as:

–
(p)
k =

2C
(p)
–;k

(t (p)f − t (p)0)wk
–̃
(p)
k ; (3.18)

—
(p)
k =

2C
(p)
—;k

(t (p)f − t (p)0)wk
—̃

(p)
k ; (3.19)

�(p) = �̃(p) : (3.20)

Again, the superscript p = 1; 2; : : : ; P serves as an ordinal indicator of a given phase, in a problem with P

sequential phases. Figure 3.1 illustrates the pattern of collocation nodes for a discretization of the domain

composed of multiple phases using the flipped Radau pseudospectral method. The multiphase discretization

scheme is a simple concatenation of several "single phase" schemes. It can be noticed that the "density" of

nodes increases near the phase transition points.

-1 1 | -1 1 | -1 1

Normalized independent variable,

Multiphase Collocation Nodes Example

Phase 1
Phase 2
Phase 3

Figure 3.1: Illustration of the pattern of collocation nodes for multiple phase transcription. Example of three
phases with five collocation nodes in each phase.

27

3.2.1 Scalar set selection for multiphase covector mapping and simplified NLP

In this work the minimal mapping set is used because it does not require dedicated pre-processing tasks.

Further, this mapping seems to be the standard in literature [9, 23]. The multiphase version of the minimal

mapping set from Table 2.1 is shown in Table 3.2.

Table 3.2: Multiphase scalar factors for the minimal costate mapping.

C
(p)
–;k C

(p)
—;k

Choice of scalar factors for costate mapping
t (p)f − t (p)0

2
1

The format of the minimal mapping scalar factors for multiphase is similar to the case of single phase

seen in Table 2.1, with the added superscript "(p)" to the variables t0 and tf in order to specify the phase, as

each phase contains its own pair of initial and final times. With the mapping selection shown in Table 3.2 the

constraints from (3.14) and (3.15) can be simplified to:

‰
(p)
k =

t (p)f − t (p)0

2
f
(p)
k −

X
i

D
(p)
ki x

(p)
i = 0 ; (3.21)

h
(p)
k ≤ 0 ; (3.22)

where the vector ‰(p)k is a shortened representation of the constraints for dynamic defects from (3.21) for

phase p. Equations (3.18) and (3.19) will also be subject to simplifications once the scalars C(p)
–;k and C(p)

—;k are

substituted with the respective values from Table 3.2, these equations become, respectively:

–
(p)
k =

–̃
(p)
k

wk(p)
; (3.23)

—
(p)
k =

2

(t (p)f − t (p)0)

—̃
(p)
k

wk(p)
; (3.24)

Ultimately, the discrete form of the cost functional expressed in (3.13) and the discrete form of the con-

straints expressed in (3.16), (3.17), (3.21) and (3.22) are the ones to send to the nonlinear solver.

3.3 Vector Formatting and Jacobian Matrix

3.3.1 Input format of the nonlinear solver

In order to solve an optimal control problem via the Radau pseudospectral method, one needs to tran-

scribe the original problem statement into a format which a nonlinear solver can interpret. A nonlinear program

is expressed as [26–28] minimizing

J(XNLP) ; (3.25)

subject to

Cmin ≤ C(XNLP) ≤ Cmax ; (3.26)

Xmin ≤ XNLP ≤ Xmax : (3.27)

28

where Cmax and Cmin are, respectively, the upper and lower boundary vectors of the constraints, andXmax and

Xmin are the upper and lower boundary vectors of the decision variables, respectively. Essentially, there is a

cost function, J(XNLP), to be minimized, a list of algebraic constraints, C(XNLP), to be satisfied and a list of

parameters, XNLP, that act as decision variables. In order to transform the optimal control problem into a NLP

it is necessary to concatenate all the decision variables into a main vector and to aggregate all constraints into

a main constraint vector, this is depicted by vectorsXNLP and C(XNLP) respectively. The algebraic constraints

contained in C(XNLP) can assert either an equality or an inequality by setting Cmax = Cmin or Cmax > Cmin

respectively.

3.3.2 Formatting the vector of decision variables

In order to construct a nonlinear programming problem one needs both, a list of decision variables and a

list of algebraic constraints. Let

XU(p) =
h
x
(p)
0

|
x
(p)
1

|
u
(p)
1

|
: : : x

(p)
i

|
u
(p)
i

|
: : : x

(p)

N(p)

|
u
(p)

N(p)

|
i|
; (3.28)

be the concatenated decision vector of state and control associated with the nodes of a given phase p. Notice

that there is no control variable associated with the very first node i = 0, this is because this node is not

collocated [51]. The resulting size of this column vector is [nx + N(p)(nx + nu)]× 1.

The complete vector of decision variables can be expressed as:

XNLP =
h
XU(1)| : : : XU(p)| : : : XU(P)| t

(1)
f : : : t

(p)
f : : : t

(P)
f

i|
(3.29)

resulting in a column vector of size
ˆPP

p=1[nx +N(p)(nx + nu)] + P
˜
× 1. The lower and upper boundaries of

the vector of decision variables, Xmin and Xmax can be build according to an analogous procedure, given the

parameters specified by the user for each problem.

3.3.3 Constraints formatting

The cost functional fed to the nonlinear solver is identical to the cost described in (3.13), thus,

J(XNLP) = JN : (3.30)

In order to construct the concatenated vector, C(XNLP), two additional arrays are introduced, namely F (p) and

H(p), containing all the constraints corresponding to phase p from (3.21) and (3.22):

F (p) =
h
‰
(p)
1

|
‰
(p)
2

|
: : : ‰

(p)
k

|
: : : ‰

(p)

N(p)

|
i|

(3.31)

H(p) =
h
h
(p)
1

|
h
(p)
2

|
: : : h

(p)
k

|
: : : h

(p)

N(p)

|
i|

(3.32)

where ‰(p)k and h(p)k are as in (3.21) and (3.22), respectively. This way, the concatenated vector of constraints

can be written as

C(XNLP) =
h
F (1)| : : : F (P)| H(1)| : : : H(P)| ffi(1)| : : : ffi(P)| ‘(1)

|
: : : ‘(P−1)

|
i|
: (3.33)

29

The lower and upper boundaries for the vector of constraints, Cmin and Cmax, are constructed in an analogous

manner, with the peculiarity that the boundaries corresponding to the dynamic defects, must be set invariably

equal to zero, F (1:P) = 0, such that the dynamics are enforced and that the trajectory satisfies the equations

of motion at all times.

3.3.4 Jacobian Matrix

The Jacobian matrix is a quantitative description of the derivatives of the constraints with respect to the

decision variables, providing a first order gradient that is necessary to aid the nonlinear solver. This section

serves to overview the components of the Jacobian matrix that results from a discretization based on the

flipped Radau method. An in-depth description of this matrix can be consulted in Appendix A.

Each row of the Jacobian matrix corresponds to an algebraic constraint, and each column corresponds

to a decision variable. Ultimately, each element represents a linear dependency between a constraint (row)

with respect to a decision variable (column). Mathematically the Jacobian can be expressed as [51]

Jac = ∇XNLP

24J(XNLP)

C(XNLP)

35 =

26666666664

∇JN

∇F (1:P)

∇H(1:P)

∇ffi(1:P)

∇‘(1:P−1)

37777777775
: (3.34)

The format of the vectors XNLP and C(XNLP) dictate the sparsity pattern of the Jacobian matrix. Fig-

ure 3.2 is a visual representation of the pattern of the Jacobian for an example problem with four phases.

In this Figure, zero elements are represented by white space, while non-zero elements are represented with

coloured dots. The first row of the matrix corresponds to the discrete cost functional where the magenta circles

represent a Lagrangian cost and the blue dot at the end of phase four represents a Mayer cost; there are four

open terminal times (green columns); a scalar path constraint applied to all phases (concatenated diagonals

in cyan); vector event constraints at the terminal times of every phase (magenta blocks); and three linkage

conditions connecting the four phases sequentially (red diagonals at the bottom rows). The four phases can

be distinguished by the four large red blocks with blue diagonal smaller blocks (corresponding to the dynamic

defects of each phase). The prominent red diagonals in the Jacobian correspond to the sparsity pattern of

the differentiation matrices and to the identity matrices corresponding to the linkage conditions. The values of

the Jacobian matrix corresponding to the red dots are static, i.e., they will remain unchanged in every iteration

loop.

It is relevant to note that the diagonals on the linkage conditions rows are, invariably, positive and negative

identity matrices with the dimension of the state vector, ±Inx×nx , connecting one phase to the next. Also, it is

noticeable in Fig. 3.2, that the constraints of different phases are decoupled from one another, in other words,

decision variables of one phase do not affect the constraints of any other phase, thus the resulting Jacobian

matrix is very sparse.

30

Variables

C
on
st
ra
in
ts

Jacobian Structure

Phase 1

Dynamic Defects

Path Constraints

Event Constraints

Linkage Conditions

Cost Functional

Time
dep.

Phase 2 Phase 3 Phase 4

Figure 3.2: Sparsity pattern of the Jacobian matrix for an example problem with four phases, five collocation
points on each phase, four open terminal times, one scalar path constraint applying to every phase and a
terminal constraint vector applying to every phase. White spacing represents zero-valued elements.

3.4 Overview of the Solving Procedure

In order to solve a given optimal control problem a procedural approach is taken. This procedure needs

to be generic in order to be able to handle as many problems as possible. The main task at hand is to perform

a transformation of the user input into variables and constraints that are useful to feed an NLP solver. The

following description applies to the MATLAB tool SPARTAN developed at DLR [32, 51]. Figure 3.3 presents a

high-level overview of the solving procedure implemented in SPARTAN for visual aid.

1. User Input First the user provides a set of MATLAB functions, with everything deemed necessary to de-

scribe the problem, namely: the Mayer term and the Lagrange term, the right-hand side of the equations

of motion, the algebraic function of path constraints (and the respective upper and lower boundaries),

the algebraic function of the event constraints (and the respective upper and lower boundaries), the

upper and lower boundaries of the endpoint variables of every phase, the upper and lower boundaries

of state and control along the trajectory of every phase, and the upper and lower boundaries of the

phase linkage conditions of every phase transition. Also, with regards to discretization rules, the user

needs to provide the number of phases in the problem, the number of collocation nodes to use on each

phase and the concrete number of states and controls of the problem. Finally the user may choose the

NLP solver and the differentiation method along with some minor solver options.

2. Transcription Process Once the user provides the input MATLAB functions (along with the respective

handle names), then SPARTAN takes control and starts the transcription process. This process con-

sists on generating the location of the collocation points (roots of the flipped Radau polynomial) accord-

ing to the number of nodes specified by the user; generating the concatenated vectors of upper and

31

Discretization

Rules

Problem

Details

User Input

Boundary

Vectors

Initial

Guess
Jacobian

Structure

Transcription Process

Iterative

Loop

NLP Solver

Scale Down

Scale Up

Compute Constraints

and Jacobian Matrix

Conversion to

Continuous Form

NLP Solution

OCP Solution

Post-Processing

Figure 3.3: Flowchart of the solving process by the MATLAB tool SPARTAN.

lower boundaries of the decision variables and of the algebraic constraints based on the problem data

provided by the user, perform a dependency analysis on the algebraic function provided by the user in

order to construct the structure of the Jacobian matrix with satisfactory sparsity; and generate an initial

guess of state and control at the collocation nodes in the form of a concatenated vector of decision

variables.

3. Iterative Loop The initial guess vector and the boundary vectors then scaled and fed to the NLP solver

where an iterative loop takes place. For all purposes the solver can be treated as a "black box" which,

at every iteration, provides an update on the decision variables and requests an update on both, the

constraints and the respective Jacobian matrix. Because the user provides the algebraic functions in

"full size", the updated variables need to be scaled up in every iteration loop in order to compute the

constraints, and the constraints and the Jacobian need to be scaled down in every iteration loop before

being sent to the solver.

4. Post-processing Finally, if the problem is feasible, the solver yields a solution to the NLP, which consists

on the concatenated vector of decision variables. Some post-processing tasks are then required in

order to output a solution that makes sense to the user. The discretization rules provided by the user are

taken in order to "break apart" the vector of decision variables into states, controls and endpoint times.

32

A similar process takes place in order to extract the dual variables. Then, one needs to extrapolate the

endpoint controls and costates corresponding to the initial time, t0, of each phase, as this endpoint is

not collocated. After that, the costate mapping is performed and the Hamiltonian is computed. Finally a

"continuous" solution is generated based on the Lagrange interpolating polynomials. This interpolation

is applied to state, control, costate and Hamiltonian alike.

33

Chapter 4

Test and Validation with Numerical

Examples

4.1 Problem 1: Falcon 9 Rocket Boost-Back Burn and Vertical Land-

ing (3 phases, 2-D trajectory)

The first problem to consider is an adaptation from [67]. This example is concerned with the recovery

of the first stage of an orbital launcher via vertical landing, where the landing target is located close to the

launching site (return-to-launch-site scenario). The vehicle in question is based on the characteristics of the

main booster of SpaceX’s Falcon 9 rocket which is illustrated in Figure 4.1. This problem is appropriate to

validate the algorithm developed in this work because it is composed of three distinct phases, resulting from

the mutation of the equations of motion from one phase to the next. The algorithm is validated by analysis of

the optimality conditions.

The problem occurs in a vertical, two-dimensional plane (2-D). At the beginning of the trajectory it is

assumed that stage separation has already occurred and that the booster has performed the "turn back"

Figure 4.1: Illustration of the main stage of SpaceX’s Falcon 9 rocket [68].

35

attitude manoeuvre such that the boost-back-burn may begin. The trajectory is composed of three phases:

Phase 1 Boost-back. At t = t0 the rocket is in mid air with ascending linear momentum. Three engines (out

of nine) ignite and the thrust direction is constrained to point strictly horizontally. In this phase the rocket

inverts its horizontal motion. The duration of the boost-back burn, t = t1, is a known, fixed parameter.

Phase 2 Coast arc. At t = t1 the engines shut down and remain off during all of phase 2. The vehicle takes

a parabolic flight profile during this phase. It is taken for granted that an attitude justification manoeuvre

takes place during this phase in order to roughly align the thrust vector with the velocity vector at the

beginning of phase 3.

Phase 3 Landing. At t = t2 one engine (out of nine) ignites. The vehicle is now controllable and the booster

makes its way to the target site. Touch-down happens at t = tf . Both t2 and tf are unknown variables

to be determined.

The equations of motion are formulated in the target-centred reference frame [67]. Throughout the tra-

jectory, both position and velocity are modelled in Cartesian coordinates, with the reference frame of displace-

ment centred at the landing target location. Figure 4.2 presents a free-body diagram of the vehicle for visual

reference. Downrange is represented by the horizontal axis, x , increasing from left to right, and altitude is rep-

resented by the vertical axis, y , increasing from bottom to top. The angle „ indicates the direction of the thrust

vector, T , and the flight-path angle, represented by the angle ‚, indicates the direction of the velocity vector,

v . Both angles are measured from the x axis and positive in the direction of increasing y . The Cartesian

components of velocity, vx and vy , are positive in the direction of increasing respective position coordinates.

The aerodynamic drag force is represented by vector D which is always collinear with the velocity vector,

and m is the mass of the vehicle. The Earth is assumed to be flat and non rotating, and the acceleration

of gravity is assumed to be invariant with altitude throughout the trajectory, taking the value g0. The control

variable is the thrust tilt angle, „. A point-mass approximation of the vehicle is employed, thus the attitude

of the spacecraft is not modelled and the angle of attack is assumed to be zero at all times. An exponential

model is used for the drag force. The optimal control problem can be formulated as minimizing the cost

J = Φ
`
m(tf)

´
= −m(tf) ; (4.1)

θ

γ

D

T
v

mg0

γy

x
Figure 4.2: Free-body diagram of the vehicle.

36

associated with the dynamic system

ẋ = vx ; (4.2)

ẏ = vy ; (4.3)

v̇x =
T

m
k cos „ − D

m
cos ‚ ; (4.4)

v̇y =
T

m
k sin „ − D

m
sin ‚ − g0 ; (4.5)

ṁ = − T

Ispg0
k (4.6)

and subject to the event constraints

x(t0) = 36:022 km ; (4.7)

y(t0) = 60:708 km ; (4.8)

vx(t0) = 1:052 km s−1 ; (4.9)

vy (t0) = 1:060 km s−1 ; (4.10)

m(t0) = 76 501 kg ; (4.11)

x(tf) = 0 km ; (4.12)

y(tf) = 0 km ; (4.13)

vx(tf) = 0 km s−1 ; (4.14)

−0:5 m s−1 ≤ vy (tf) ≤ 0:5 m s−1 ; (4.15)

m(tf) = free ; (4.16)
with

D =
1

2
0 exp

− y
h0

ff
CDı

d2

4
v2 ; (4.17)

v2 = v2x + v2y ; (4.18)

cos ‚ =
vx
v
; (4.19)

sin ‚ =
vy
v
; (4.20)

and

T =

8>>>><>>>>:
1
3TLO t ∈ [t0; t1]

0 t ∈ [t1; t2]

1
9TLO t ∈ [t2; t3]

k =

8>>>><>>>>:
1 t ∈ [t0; t1]

0 t ∈ [t1; t2]

1 t ∈ [t2; t3]

; (4.21)

where k is the engine throttle, 0 is the air density at sea level, h0 is the density scale height, CD is the drag

coefficient, d is the diameter of the vehicle and v is the norm of the velocity vector. The linkage conditions

are omitted because there are no expected jump discontinuities on the sates of the systems in any phase

transition. Table 4.1 shows the constants and parameters used in this problem.

The problem at hand is not formulated exactly the same way as in the original article, therefore, a few

remarks are in order to relate the two formulations of this problem. Briefly stated, the problem implemented in

this work contains fewer degrees of freedom than that of the original article. Namely:

1. The duration of the boost-back burn, t1, is fixed, while in [67] this parameter is taken as an

additional decision variable. The fixed value of engine shut down time of phase 1, t1, was selected

in such a way as to facilitate a vertical flight-path angle towards the end of phase 3.

2. The throttle level is fixed at the maximum value during phases 1 and 3, while in [67] the throttle is

allowed vary between 0 and 1 in both of these phases.

37

Table 4.1: Relevant constants and parameters for the Falcon 9 first stage recovery problem.

Constant Value Unit

Specific impulse, Isp 282 s

Lift-off Thrust, TLO 5886 kN

Rocket diameter, d 3.66 m

Drag Coefficient, CD 0.75 1

Density scale height, h0 7500 m

Gravity acceleration at seal level, g0 9.80665 m s−2

Air density at sea level, 0 1.225 kg m−3

Phase 1 initial time, t0 0 s

Phase 1 to phase 2 transition time, t1 40.8 s

Dry mass, mdry 25600 kg

3. Downrange, altitude, horizontal velocity at the final time of the trajectory are constrained to zero,

while in [67] these variables appear solely as weighted minimization parameters in the cost func-

tional.

Also, some parameters have been relaxed in the present formulation with respect to the original article.

Namely:

1. The control is expressed in polar coordinates throughout the whole trajectory, therefore there

is no need to include an additional path constraint in order to assert the modulus of Cartesian

components. This contrasts with the formulation in [67] where the use of polar and Cartesian

coordinates is alternated from phase to phase.

2. In the present formulation, and opposed to the original article, the landing phase is not constrained

to a gravity turn, allowing extra manoeuvrability of the vehicle during this phase end facilitating a

vertical flight path angle at the landing point.

3. The vertical component of the velocity at the landing time, vy (tf), is allowed to vary as shown in

(4.15), while in [67] this variable is a taken as a Mayer cost to be minimized.

4. The cost functional is composed only of the final mass of the vehicle, while in [67] the final posi-

tions and velocities are weighted in as well.

During phase 1 the trajectory is completely determined because the control sequence is known and the

endpoint times are fixed, and in phase 2 the vehicle is uncontrollable due to the throttle being constrained to

zero. Ultimately, the only degrees of freedom available to optimize the trajectory, therefore, are the engine

reignition time, t2, the total time of flight, tf and the direction of the thrust vector during phase 3.

With this simplified formulation one makes sure that the problem is feasible, therefore an optimal solution

is guaranteed to exist and it is possible to focus on the ability of the algorithm to find it. A simplified formulation

of the problem is adequate in this case because there is no interest in studying the feasibility of the problem,

there is only interest in validating the flipped Radau method.

This problem was solved using 10, 8 and 12 collocation nodes in phases 1, 2 and 3, respectively. The

NLP solver used was IPOPT [28], and the method used to compute partial derivatives was the complex step

differentiation method [48, 49]. The results are depicted in Figs. 4.3 through 4.12. Specifically, Figs. 4.3

38

through 4.9 deal with the solution of state and control, while Figs. 4.10 through 4.12 deal with the solution of

the dual variables (covectors and Hamiltonian). In addition the resulting parameters of unknown times and

final mass are presented in Table 4.2 including the references of the original article.

Figures 4.3 and 4.4 illustrate the Cartesian components of position, and the Cartesian components of

velocity with time, respectively. The phase transition points are visible through the increase in density of col-

location nodes. With regards to Fig. 4.4, the phase transitions are clearly pronounced due to the removable

discontinuities present in each component. The horizontal component of velocity decreases linearly during

the first phase and goes from positive to negative, inverting the direction of flight, which is indicative of the

boost-back burn phase. This component stays constant during the coasting phase, as expected. It is no-

ticeable that during phases 1 and 2, the vertical component of velocity decreases linearly, without noticeable

discontinuities, indicating that this component has been subject to a constant acceleration during these two

phases, undoubtedly the acceleration of gravity. It is also visible that the vertical component of velocity goes

from positive to negative close to the 110 s mark, inverting the direction flight. Both velocity components go to

zero during the landing phase, as expected. In contrast, regarding Fig. 4.3, the position does not contain re-

movable discontinuities, this is due to the fact that position is the integration of velocity through time, resulting

in a curve that is "one degree" smother. One relevant remark is that both the downrange and the altitude are

tangent to the time axis at the endpoint of the trajectory, indicating a smooth landing.

The mass profile of the vehicle can be seen in Fig. 4.5. Due to the constant throttle level, and the

constant specific impulses, the mass of the vehicle decays linearly during phases 1 and 3. The mass flow-

rate is higher in phase 1 due to the larger thrust associated — there are three engines on during phase 1

and only one engine ignited during phase 3. Not remarkably, the mass stays constant during phase 2 (coast

phase).

The angle indicating the thrust direction (control) is presented in Fig. 4.6. It can be seen that the direction

of thrust is constrained to 180° during phase 1, and constrained to 0° during phase 2 (during phase 2 the

thrust direction is inconsequential due to the throttle being constrained to zero). Finally, in the landing phase

0 50 100 150 200 250 300 350

Time (s)

0

20

40

60

80

100

120

C
ar

te
si

an
 C

om
po

ne
nt

s
of

 P
os

iti
on

 (
km

)

Position Vector vs Time

Collocated Nodes
Downrange
Altitude

Figure 4.3: Downrange and altitude with time.
Both position coordinates are tangent to the time
axis at the final time.

0 50 100 150 200 250 300 350

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

C
ar

te
si

an
 C

om
po

ne
nt

s
of

 V
eo

lic
y

(k
m

/s
)

Velocity Vector vs Time

Collocated Nodes
V

x

V
y

Figure 4.4: Cartesian components of velocity with
time. Both components approach zero at the final
time.

39

the direction of thrust is allowed to vary, and the angle draws a curve that approaches 90°, indicating that the

thrust points vertically at the end of the trajectory.

Figure 4.7 shows the evolution of flight path angle of the vehicle in time. The flight path angle, represent-

ing the direction of the velocity vector, starts close to 45° at the beginning of the boost back phase, indicating

an ascending trajectory compatible with the initial conditions expressed in (4.9) and (4.10). The Figure also

shows the removable discontinuities occurring at the phase transition times, which goes in agreement with

the discussion above with regards to the velocity components in Fig. 4.4, in particular, the slight discontinuity

in the flight path angle occurring in the transition between coast phase and landing phase indicates that the

powered landing does not follow a gravity turn (in a gravity turn the flight path angle is unaffected by the

thrust), however, this angle does approach 270° in the last phase, indicating a vertical landing. Ultimately,

Fig. 4.7 concurs with Fig. 4.6 during the landing phase in the sense that the velocity vector and the thrust

vector both tend to be vertical at the end of the trajectory and point in opposite directions.

The trajectory of the vehicle is shown in Fig. 4.8, where the downrange and the altitude are plotted against

each other. The boost-back phase is shown in blue, the coasting arc is shown in orange and the landing phase

0 50 100 150 200 250 300 350

Time (s)

20

30

40

50

60

70

80

M
as

s
(t

)

Mass Profile vs Time

Collocated Nodes
Phase 1
Phase 2
Phase 3

Figure 4.5: Profile of the total mass of the vehicle with time. Linear decay in phases 1 and 3 indicates constant
mass flow-rate.

0 50 100 150 200 250 300 350

Time (s)

0

20

40

60

80

100

120

140

160

180

A
ng

le
 (

de
g)

Thrust Tilt Angle (Control) vs Time

Collocated Nodes
Phase 1
Phase 2
Phase 3

Figure 4.6: Thrust direction, „, with time. Thrust
direction approaches 90° at the final time.

0 50 100 150 200 250 300 350

Time (s)

0

50

100

150

200

250

300

A
ng

le
 (

de
g)

Flight Path Angle vs Time

Collocated Nodes
Phase 1
Phase 2
Phase 3

Figure 4.7: Flight path angle, ‚, with time; flight
path angle approaches 270° at the final time.

40

is represented in yellow. Curiously, the vehicle traces a path that vaguely resembles a shepherd’s staff. The

plot clearly shows that at the beginning of the trajectory the vehicle is travelling from left to right and with

ascending velocity. The boost-back burn inverts the horizontal motion of the vehicle and during the coasting

arc, the vehicle takes a parabolic flight due to being in complete free-fall. Finally, in the landing phase the

vehicle approaches the zenith of the target and the flight path angle gets closer and closer to being vertical.

Intuitively speaking, the trajectory follows a predictable path.

Fig. 4.9 presents a comparison between the trajectory yielded by SPARTAN and the reference solution

[67]. It can be seen that the trajectories are quite similar, having an identical maximum altitude. The solutions

diverge slightly during the descent of the vehicle, and the trajectory from SPARTAN approaches the target at

a steeper flight path angle. This Figure is presented in order to confirm the plausibility of the scenario, given

that the two problem formulations are similar. However, the two trajectories must be judged independently for

their optimality, as the corresponding problem formulations are in fact not the same, having a different number

of degrees of freedom and a different cost functional.

Moving on to the solution of dual variables, Fig. 4.10 shows the evolution of the mass costate along

-20 0 20 40 60 80

Downrange (km)

10

20

30

40

50

60

70

80

90

100

110

A
lti

tu
de

 (
km

)

Trajectory

Collocated Nodes
Phase 1: Boost-Back
Phase 2: Free-Fall
Phase 3: Landing

Figure 4.8: Altitude vs downrange trajectory. Boost-back phase is represented in blue; the coast phase is
represented in orange; and the landing phase is shown in yellow.

-20 0 20 40 60 80

Downrange (km)

0

20

40

60

80

100

A
lti

tu
de

 (
km

)

Trajectory

SPARTAN
2017, Anglim et al.

Figure 4.9: 2-D trajectory yielded by SPARTAN (in red) superimposed with the reference solution [67] (dashed
black).

41

time. Recalling the first order necessary conditions from Section 2.3.1, it is possible to note that the endpoint

condition expressed in (2.33) is verified at the final time of the trajectory, namely

–m(tf) =
@Φ

@m(tf)
= −1 : (4.22)

This condition is not verified at any other phase endpoint due to the fact that the mass is either fixed at those

points or completely determined by the initial conditions, the constant mass flow rates and the fixed endpoint

time of phase 1. Ultimately, the validation of the endpoint condition at the final time of the trajectory brings

confidence that the solution is optimal.

Another factor to consider in order to validate the optimality of the solution is whether the primer vector

(velocity costate) is collinear with the thrust vector [5, 15]. Figure 4.11, therefore, shows the Cartesian com-

ponents of this vector (on the left), and the norm of the cross product between this vector and the control

(top-right and bottom-right plots). In order for the vectors to be collinear, it is required that the cross product

between each other yields zero. It is clear that this collinearity is not achieved during the phase 1, in fact, the

norm of the cross product is identical to the vertical component of the primer vector during this phase. This

non-collinearity, however, is expected because the control is constrained during this phase of the trajectory,

having no degrees of freedom available assert orientation concurrency with the primer vector. During phase

2, the throttle is constrained to be zero at all times, which means that the cross product yields a trivial null

vector. However, during phase 3, the thrust is allowed to vary its direction and assert orientation concurrency.

By looking at Figure 4.11 we see that the norm of the cross product is very small with respect to the compo-

nents of both the primer vector and of the control, being roughly eight orders of magnitude smaller. With this

information it is possible to assess that the two vectors are indeed collinear during phase 3. This result further

increases confidence in the optimality of the solution.

Finally, Fig. 4.12 shows the Hamiltonian associated with the trajectory. By inspection of the plot, one can

assert that the Hamiltonian is phase-wise constant, and with regards to phases 2 and 3, one can verify that

the Hamiltonian is zero, which implies that the endpoint condition (2.35) is satisfied in these phases:

H
`
t
(2)
f

´
= H

`
t
(3)
f

´
= 0 ; (4.23)

0 50 100 150 200 250 300 350

Time (s)

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

M
as

s
C

os
ta

te

Mass Costate vs Time

Collocated Nodes
Phase 1
Phase 2
Phase 3

Figure 4.10: Mass costate with time. The mass costate takes the value -1 at the final time.

42

Briefly stated, the Hamiltonian satisfies the optimality conditions for time invariant systems [6, 9, 37], and

therefore this result brings further confirmation that the solution is optimal.

Table 4.2 presents the values of pertinent variables obtained with SPARTAN. The results of the original

article [67] are also presented for comparison. Briefly speaking, and disregarding the duration of the boost-

back phase, the trajectory yielded by SPARTAN consists of a longer duration of coasting arc, and a shorter

duration of powered descent when compared to the solution of the original article. This also results in a

significantly higher final mass of the vehicle. The results are satisfactory overall.

Table 4.2: Comparison of relevant parameter results between SPARTAN and Anglim et al. [67].

Parameter SPARTAN Anglim et al. [67] Unit

Boost-back burn duration, t1 40.8 40.5684 s

Landing burn start time, t2 220.4583 216.9112 s

Total time of flight, tf 303.5469 307.8189 s

Final mass, m(tf) 27905.5554 26221.1488 kg

0 50 100 150 200 250 300 350

Time (s)

-20

-15

-10

-5

0

5

10

C
ar

te
si

an
 C

om
po

ne
nt

s

Primer Vector (
V
) vs Time

Collocated Nodes

Vx

Vy

0 50 100 150 200 250 300 350

Time (s)

0

2

4

6

8

N
or

m
 o

f C
ro

ss
 P

ro
du

ct
, |

|u
v|| Thrust and Primer Vector Cross Product Norm

Phase 1
Phase 2
Phase 3

0 50 100 150 200 250 300 350

Time (s)

0

0.5

1

1.5

2

2.5

N
or

m
 o

f C
ro

ss
 P

ro
du

ct
, |

|u
v|| 10-8 Cross Product Norm, Zoom on phases 2 and 3

Phase 2
Phase 3

Figure 4.11: Left: Cartesian components of primer vector with time. Top-right: Norm of the cross product
between the control and the primer vector. Bottom-Right: Zoom in on phases 2 and 3 of the top-right plot.

0 50 100 150 200 250 300 350

Time (s)

-100

0

100

200

300

400

500

600

700

800

H
am

ilt
on

ia
n

Hamiltonian vs Time

Collocated Nodes
Phase 1
Phase 2
Phase 3

Figure 4.12: Hamiltonian vs time. Hamiltonian is zero during phases 2 and 3.

43

4.2 Problem 2: Delta III Rocket Ascent to Elliptical Orbit (4 phases,

3-D trajectory)

This example deals with the optimization of the ascent trajectory of a solid propellant multi-staged rocket

taken from [7, 9, 10]. The vehicle associated with this problem is based on the characteristics of Boeing’s Delta

III rocket which is illustrated in Fig. 4.13. This problem is appropriate to validate the algorithm developed in

this work because it is composed of four distinct phases. The modelling of the problem in four phases results

from mutations in the equations of motion from one phase to the next which yield removable discontinuities

on the velocity, but also from jump discontinuities in the mass of the vehicle due to stage separation events.

The algorithm is validated by analysis of the optimality conditions and also by comparison of the results with

the reference solution.

This problem occurs in three dimensional space (3-D) and it is about finding the trajectory from launch

pad to orbit insertion of a vehicle composed of nine solid rocket boosters, one main stage, and one upper

stage. In total there are four distinct phases, P = 4. The flight sequence is:

Phase 1 Ignition of the main stage and of six solid boosters (out of nine) at t = t0. Full throttle until the

burnout of the six solid boosters. The six empty boosters are separated and dropped out at t = t1.

Phase 2 Main stage continues in full throttle during all of phase 2. Ignition of the three left over boosters at

t = t1. Full throttle until the burnout of the boosters. Three empty boosters are separated and dropped

out at t = t2.

Phase 3 Main stage continues in full throttle. Burn out of the remaining fuel in the main stage. Main stage is

separated and dropped out at t = t3.

Phase 4 Ignition of the upper stage at t = t3. Full throttle until orbit insertion. Payload deployed at t = t4.

The equations of motion are taken directly form [9]. Figure 4.14 presents the free-body diagram of

the vehicle for visual reference. The position vector is represented by r , the velocity vector is v , and the

aerodynamic drag force is represented by D. The thrust vector, is shown as T . The air is assumed to be

"attached" to the Earth, sharing its rotation. The acceleration of gravity, g , is collinear with the position vector

r ; the aerodynamic drag force, D, is collinear with the spacecraft’s velocity relative to local air, vrel, and the

Figure 4.13: Delta III rocket illustration [69].

44

x y

z

D

T

r

vrel v

Ω×r

g

g // r

D // vrel

vrel + Ω×r = v

Figure 4.14: Free-body diagram of the vehicle in ECI coordinates. The Earth is represented by a sphere
centred at the origin.

inertial velocity of the spacecraft, v , can be decomposed into velocity relative to local air, vrel, and inertial air

velocity, Ω × r , where Ω is the Earth’s angular velocity vector relative to the inertial reference frame. The

Earth is assumed to be spherical and rotating about the z axis, and the acceleration of gravity decays with

the radial distance to the centre of the planet as [9]

g = − —

‖r‖3
r ; (4.24)

where — is the standard gravitational parameter of the Earth. The mass of the vehicle is represented by m,

and the control variable is the thrust unit vector, u. A point-mass approximation of the vehicle is employed,

thus the attitude of the spacecraft is not modelled and the angle of attack is assumed to be zero at all times.

An exponential model is used for the drag force. The optimal control problem is stated as minimizing the cost

functional

J = Φ
`
m(tf)

´
= −m(tf) ; (4.25)

subject to the equations of motion

ṙ = v ; (4.26)

v̇ = g +
T

m
u +

D

m
; (4.27)

ṁ = − T

g0Isp
; (4.28)

the initial conditions

r(t
(1)
0) =

ˆ
5605:2× 103 0 3043:4× 103

˜|
m ; (4.29)

v(t
(1)
0) =

ˆ
0 0:4076× 103 0

˜|
m ; (4.30)

m(t
(1)
0) = 301 454 kg ; (4.31)

the terminal conditions (orbital elements)

semi-major axis a
(4)
f = 24 361:14 km ; (4.32)

45

eccentricity e
(4)
f = 0:7308 ; (4.33)

inclination i
(4)
f = 28:5° ; (4.34)

longitude of ascending node Ω
(4)
f = 269:8° ; (4.35)

argument of perigee !
(4)
f = 130:5° ; (4.36)

true anomaly �
(4)
f = free ; (4.37)

and the phase linkage conditions

r(t
(p+1)
0)− r(t(p)f) = 0 ; (4.38)

v(t
(p+1)
0)− v(t

(p)
f) = 0 ; (4.39)

m(t
(p+1)
0)−m(t

(p)
f) = −m(p)

dry : (4.40)

Where T is the thrust modulus (constant along each phase), g0 is the Earth’s gravity acceleration, Isp is the

specific impulse (constant along each phase) and D is the aerodynamic drag force. The drag force assumes

an exponential model of the atmospheric air density and it is computed as

D = −1

2
SCD‖vrel‖vrel ; (4.41)

with

 = 0 exp{−h=h0} ; (4.42)

h = ‖r‖ − Re ; (4.43)

Ω =
ˆ
0 0 Ω⊕

˜|
; (4.44)

vrel = v −Ω× r : (4.45)

Where S is the reference surface area, CD is the drag coefficient, is the air density as a function of altitude,

0 is the standard air density at sea level, h is the altitude of the spacecraft, h0 is the density scale height,

Re is the radius of the Earth and Ω⊕ is the angular velocity of Earth’s rotation. Tables 4.3 and 4.4 show the

values of all the constants and vehicle properties mentioned above.

It is relevant to note that the intermediate phase transition times t1, t2 and t3 are known (fixed), but the

final time of phase 4 is open and to be determined. The problem was solved with the collocation of 8, 8, 8,

and 16 flipped Radau nodes on phases 1, 2, 3 and 4, respectively. The NLP solver used was IPOPT [28], and

the computation of partial derivatives was done through the complex step differentiation method [48, 49].

The results for this problem are presented in Figs. 4.15 through 4.23. More specifically, Figs. 4.15 through

4.20 deal with the solution of state and control, while Figs. 4.22 through 4.23 are related to the dual variables

and the optimality of the solution.

Figures 4.15 and 4.16 show the altitude of the spacecraft and the norm of the velocity vector with time,

respectively. It can be seen that the altitude, expressed with respect to the Earth radius, starts at zero with a

path that is tangential to the time axis, and goes to about 200 km where orbit insertion occurs. The profile of

the altitude seems to "wobble" during the last phase where it decreases after reaching a local maximum, only

46

Table 4.3: Relevant constants and parameters for the multistage solid propellant rocket problem [10].

Constant Value Unit

Payload mass, mpayload 4164 kg

Reference surface area, S 4ı m2

Drag Coefficient, CD 0.5 1

Air density at sea level, 0 1.225 kg m−3

Density scale height, h0 7200 m

Earth radius, Re 6378145 m

Earth rotation rate, Ω⊕ 7.292 115 85× 10−5 rad s−1

Standard gravitational parameter, — 3.986 012× 1014 m3 s−2

Gravity acceleration at sea level, g0 9.80665 m s−2

Phase 1 initial time, t0 0 s

Phase 1 to phase 2 transition time, t1 75.2 s

Phase 2 to phase 3 transition time, t2 150.4 s

Phase 3 to phase 4 transition time, t3 261 s

Table 4.4: Component properties of the vehicle for the multistage solid propellant rocket problem [9].

Solid Fuel Boosters Main Stage Upper Stage Unit

Total Mass, mcomponent 19290 104380 19300 kg

Propellant Mass, mprop 17010 95550 16820 kg

Dry Mass, mdry = mcomponent −mprop 2280 8830 2480 kg

Engine Thrust, T 628500 1083100 110094 N

Burn Time, tb 75.2 261 700 s

Number of Engines 9 1 1 1

Specific Impulse, Isp T tb=(g0mprop) s

to increase again for the orbit insertion point. The velocity norm starts a little above zero due to the tangential

component introduced by the Earth’s rotation at the surface and it follows a non-decreasing profile along the

trajectory.

Figures 4.17 and 4.18 present a direct comparison between the results obtained with SPARTAN and the

reference solution [9]. The figures show the same variables depicted in Fig. 4.15 and Fig. 4.16, respectively:

altitude and norm of velocity. The two solutions are superimposed for direct comparison with the state-of-

the-art solver GPOPS [9]. With regards to both plots, it can be seen that the two solutions show excellent

agreement with each other, being virtually indistinguishable.

The profile of the total mass of the vehicle is shown in Fig. 4.19. In agreement with the equations

of motion, the mass decays linearly due to constant mass flow rate on each phase (steeper mass gradients

correspond to larger mass flow rates). Also, it is possible to see that the plot presents clear jump discontinuities

at the phase transitions, this is the direct result of stage separation events where empty rocket boosters are

discarded. Jump discontinuities in the mass of the system represent a main motivation for the employment

of a multiphase algorithm. This characteristic of the problem makes it adequate to validate the flipped Radau

pseudospectral method.

47

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

0

50

100

150

200

250
A

lti
tu

de
 (

km
)

Altitude vs Time

Collocated Nodes
Phase 1
Phase 2
Phase 3
Phase 4

Figure 4.15: Spacecraft altitude vs time.

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

0

2

4

6

8

10

12

V
el

oc
ity

 N
or

m
 (

km
/s

)

Velocity Vector Norm vs Time

Collocated Nodes
Phase 1
Phase 2
Phase 3
Phase 4

Figure 4.16: Norm of the velocity vector vs time.

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

0

50

100

150

200

250

A
lti

tu
de

 (
km

)

Altitude vs Time
Comparison with reference solution

SPARTAN
2010, Rao et al. (GPOPS)

Figure 4.17: Spacecraft altitude vs time. Com-
parison of results with the reference solution [9].

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

0

2

4

6

8

10

12

V
el

oc
ity

 N
or

m
 (

km
/s

)

Norm of the Velocity Vector vs Time
Comparison with reference solution

SPARTAN
2010, Rao et al. (GPOPS)

Figure 4.18: Velocity norm vs time. Comparison
of results with the reference solution [9].

The Cartesian components of the control, u, are presented in Fig. 4.20. In this case the phase transition

points are evidenced by the increased density of collocated nodes along the time domain. It can be asserted

that the components assert a unit vector throughout the trajectory. The representation of thrust in unit vector

form is convenient to preserve continuity, as the modulus of thrust changes instantaneously at every phase

(the thrust is subject to jump discontinuities). The smoothness of the thrust unit vector along the trajectory

indicates that the thrust vector, although subject to jump discontinuities in its norm, preserves smoothness in

its direction regardless of the phase transitions.

With regards to Fig. 4.21 there a few relevant points to mention. The left plot presents the mass costate

in all 4 phases, while the plot on the right shows a zoom in version of the mass costate that focuses on phases

1, 2 and 3. By inspection of both illustrations in this Figure one can extract the following information:

–m(t
(2)
0) = 0 ; (4.46)

–m(t
(3)
0) = 0 ; (4.47)

–m(t
(4)
f) = −1 : (4.48)

48

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

0

50

100

150

200

250

300

350
T

ot
al

 M
as

s
(t

)
Vehicle Mass vs time

Discretization Points
Phase 1
Phase 2
Phase 3
Phase 4

Figure 4.19: Decay in total vehicle mass along
the trajectory.

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

 C
om

po
ne

nt
s

Control Cartesian Components vs Time

Collocated nodes
u

x

u
y

u
z

Figure 4.20: Cartesian components of control.
The components assert a unit vector.

These equalities indicate the validity of the endpoint conditions expressed in (2.32) and (2.33) from Chapter 2.

Namely, equation (2.32) applies in phases 2 and 3, and equation (2.33) applies in phase 4. Neither of these

two conditions apply in phase 1. This is because the initial mass of phase 1 is constrained to a fixed value,

‹m
(1)
0 = 0 , and thus, the exclusive disjunction property applies. No further conditions apply to the endpoints

of phase 1 because the mass has a constant flow-rate: a set initial value and a constant flow-rate imply a set

final value in the case of fixed final time. The exclusive disjunction property applies also at the final endpoint

of phase 1, ‹m(1)
f = 0. With regards to phase 4, there is also an explicit constraint on the initial mass to

a fixed value, ‹m(4)
0 = 0, and the mass flow-rate is also constant, which is a similar scenario to phase 1,

however, phase 4 consists of an unconstrained final time, ‹t(4)f 6= 0, and this means that the final mass is also

unconstrained ‹m(4)
f 6= 0 (although completely determined once a final time is obtained). This leaves one

degree of freedom available to apply the endpoint condition in (2.33). Curiously, with regards to phases 2 and

3, either (2.32) or (2.33) (but not both) could be employed, as the mass is unconstrained on both endpoints of

these phases. Presumably the NLP solver "chooses" to employ the one which will minimize the Hamiltonian

given an initial guess of costates, even though this decision will not affect the solution of state and control.

Ultimately, the mass costate satisfies the necessary conditions described in Chapter 2, which is indicative of

an optimal solution.

Further, Fig. 4.22 presents two pertinent plots. The plot on the left illustrates the Cartesian components of

the velocity costate (or primer vector), and the plot on the right shows the norm of the cross product between

this vector and the thrust unit vector (control), shown in Fig. 4.20. It is known that an optimal trajectory requires

the thrust vector to be collinear with the primer vector at all times (provided that the thrust is not constrained)

[5, 15]. With this in mind, and by looking at the right plot of Fig. 4.22, one can notice that the norm of the cross

product between thrust and primer vector is very close to zero throughout the trajectory, indicating that these

two vectors are very close to being collinear. This collinearity brings further evidence to prove the optimality

of the solution.

It is well known that every optimal control problem can be formulated in multiple ways without changing

what will be the optimal solution of state and control, but the same cannot be said about the Hamiltonian

49

[6]. The solution of the Hamiltonian is not unique to a given trajectory of state and control. For instance, in

this particular case, the mass flow-rate is constant on every phase ṁ = Constant, and therefore the problem

could be formulated by having open intermediate times, t1, t2 and t3, and fixed endpoint masses (instead of

fixed times and open masses), in which case the endpoint condition in (2.35) would apply at the terminal point

of each phase, forcing the Hamiltonian to be zero everywhere. Nevertheless, the solution of state and control

would be identical to the present one, as no additional degrees of freedom would be introduced.

By looking at Fig. 4.23, it is clear that the Hamiltonian yielded by SPARTAN does not concur with the

reference solution [9] in its entirety. The divergence of the Hamiltonian in phases 1 and 3, is thus, most likely,

due to a slight difference in formulations between the two approaches. Finding the exact formulation which

yields the Hamiltonian of the original source is a "reverse-engineering" problem that goes beyond the scope of

this thesis. As discussed above, although different formulations might affect the Hamiltonian solution, they do

not affect the solution of state and control, provided the degrees of freedom remain the same. In other words,

the divergence of the Hamiltonian is not a relevant factor to determine optimality in this case. A closer look

0 200 400 600 800 1000

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

M
as

s
C

os
ta

te

Mass Costate (
m

) vs Time

Discretization Points
Phase 1
Phase 2
Phase 3
Phase 4

0 50 100 150 200 250 300

Time (s)

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

M
as

s
C

os
ta

te

Mass Costate (
m

) vs Time

(Zoom in on phases 1, 2 and 3)

Discretization Points
Phase 1
Phase 2
Phase 3

Figure 4.21: Left: Mass costate along the trajectory. Right: Zoom in on phases 1, 2 and 3 of the left plot.

0 200 400 600 800 1000

Time (s)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

P
rim

er
 V

ec
to

r
C

om
po

ne
nt

s

Cartesian Components of the Velocity Costate (
v
) vs Time

Collocated Nodes

Vx

Vy

Vz

0 200 400 600 800 1000

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
or

m
 o

f C
ro

ss
 P

ro
du

ct
, |

|u
v||

10-8

Cross Product Norm Between Control and
 Primer Vector at Collocated Nodes

Phase 1
Phase 2
Phase 3
Phase 4

Figure 4.22: Left: Cartesian components of the velocity costate (primer vector) at each time instant. Right:
Norm of the cross product between the control and the primer vector.

50

at Fig. 4.23 reveals something that is verified in both results, namely, the validation of the endpoint condition

from (2.35) in phase 4,

H(t
(4)
f) = 0 : (4.49)

This condition is valid because the final time of phase 4 is open, ‹t(4)f 6= 0. So, because the optimal Hamilto-

nian is constant [9, 37], then it must also be zero everywhere along this phase. Notice that neither (2.34) or

(2.35) apply to phases 1, 2 or 3, and this is because the endpoint times of these phases are fixed (exclusive

disjunction property). Ultimately, Fig. 4.23 shows that SPARTAN yields a phase-wise constant Hamiltonian,

implying that the solution is indeed optimal.

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-60

-50

-40

-30

-20

-10

0

10

H
am

ilt
on

ia
n

Hamiltonian vs Time

SPARTAN
2010, Rao et al. (GPOPS)

Figure 4.23: Comparison between the Hamiltonian obtained with SPARTAN and the reference solution [9].

Table 4.5 presents the results of relevant parameters associated with the problem, namely the final time

of phase 4 and the final mass of the vehicle (Mayer cost). The results from [9] are also presented. In can be

noted that the final mass of the vehicle is only a couple hundred grams higher in the solution of SPARTAN

with regards to the solution of the original article. This increases confidence that the trajectories are virtually

identical. Although the final time is unspecified in the original article, the results should be very similar as well

due to the identical initial masses at the beginning of phase 4 and the constant mass flow rate during this

phase. Ultimately, the results yielded by SPARTAN with the flipped Radau method are satisfactory.

Table 4.5: Comparison of relevant parameter results between SPARTAN and Rao et al. [9].

Parameter SPARTAN Rao et al. [9] Unit

Total time of flight, tf 924.13043 unspecified s

Final mass, m(tf) 7529.9284 7529.7123 kg

51

Chapter 5

Conclusions

In this work the flipped Radau pseudospectral method was applied to solve multiphase optimal control

problems, specifically multi-stage rocket trajectory generation problems in both ascension to orbit and descent

to vertical landing. The algorithm was validated by solving two relevant reference problems containing multiple

phases each.

A simplified version of the first reference problem was implemented, which concerned a booster recovery

of the Falcon 9 orbital launcher. Despite the difference in the formulations, the results were satisfactory as

the solution was shown to be optimal by analysis of the dual variables and Hamiltonian. Also, by direct

comparison with the reference solution, the trajectories diverged only slightly, making the simplified problem

scenario plausible by the standards of the original article.

With respect to the second example, concerning the ascent and orbit insertion of the Delta III rocket,

not only were the optimality conditions verified by the dual variable analysis, but the results showed excellent

agreement with the reference solution. Ultimately, the implementation of the flipped Radau pseudospectral

method in multiphase problems can be deemed successful, and further, it can be assessed that the accuracy

obtained is comparable to state of the art solvers.

Regarding future developments in booster recovery trajectory generation, given that the era of reusable

rockets has arrived, the implementation of an algorithm capable of dealing with non-sequential phases could

be an interesting research topic, as it would allow the optimization of both the ascending path and the booster

recovery path simultaneously.

53

References

[1] G. P. Sutton and O. Biblarz. Rocket Propulsion Elements. John Wiley & Sons Inc, ninth edition, 2016.

ISBN 1118753658.

[2] Isakowitz, Steven. International Reference Guide to Space Launch Systems. American Institute of

Aeronautics and Astronautics, Reston, Va, 2004. ISBN 156347591X.

[3] W. Wiesel. Spaceflight dynamics. Aphelion Press, Beavercreek, Ohio, 2010. ISBN 9781452879598.

[4] T. S. Taylor. Introduction to Rocket Science and Engineering. Taylor & Francis Inc, 2017. ISBN

1498772323.

[5] N. X. Vinh. General Theory of Optimal Trajectory for Rocket Flight in a Resisting Medium. Journal of

Optimization Theory and Applications, 11(2):189–202, feb 1973. doi: 10.1007/bf00935883.

[6] Arthur E. Bryson Jr. and Yu-Chi Ho. Applied Optimal Control. Optimization, Estimation, and Control.

Hemisphere Publishing Corporation, Washington New York, 1975. ISBN 9780891162285.

[7] J. T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM,

Philadelphia, second edition, 2010. ISBN 978-0-898716-88-7.

[8] D. E. Kirk. Optimal Control Theory, An Introduction. Dover Publications Inc., 2004. ISBN 0486434842.

[9] A. V. Rao, D. A. Benson, C. L. Darby, M. A. Patterson, C. Francolin, I. Sanders, and G. T. Huntington.

Algorithm 902: GPOPS, A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using

the Gauss Pseudospectral Method. ACM Transactions on Mathematical Software, 37(2):1–39, Apr. 2010.

doi: 10.1145/1731022.1731032.

[10] M. A. Patterson and A. V. Rao. GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal

Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlin-

ear Programming. ACM Transactions on Mathematical Software, 41(1):1–37, October 2014. doi:

10.1145/2558904.

[11] Naidu, D. S. Optimal Control Systems. CRC Press, Boca Raton, Fla, 2003. ISBN 0849308925.

[12] F. Lewis. Optimal Control. John Wiley & Sons, Hoboken, 2012. ISBN 9781118122648.

[13] D. F. Lawden. Optimal Trajectories for Space Navigation. Butterworths, London, 1963.

55

https://doi.org/10.1007/bf00935883
https://doi.org/10.1145/1731022.1731032
https://doi.org/10.1145/2558904

[14] J. T. Betts. Survey of Numerical Methods for Trajectory Optimization. Journal of Guidance, Control, and

Dynamics, 21(2):193–207, mar 1998. doi: 10.2514/2.4231.

[15] B. Conway. Spacecraft Trajectory Optimization. Cambridge University Press, Cambridge New York,

2010. ISBN 9780511909450.

[16] H. J. Sussmann and J. C. Willems. 300 Years of Optimal Control: from the Brachystochrone to the

Maximum Principle. IEEE Control Systems, 17(3):32–44, June 1997. doi: 10.1109/37.588098.

[17] L. S. Pontryagin and V. G. Boltyanskii and R. V. Gamkrelidze and E. F. Mishchenko. The Mathematical

Theory of Optimal Processes. Interscience Publishers, John Wiley & Sons, 1962.

[18] Michael Athans and Peter L. Falb. Optimal Control. An Introduction to the Theory and Its Applications.

Dover Publications Inc., 2006. ISBN 0486453286.

[19] D. A. Benson, G. T. Huntington, T. P. Thorvaldsen, and A. V. Rao. Direct Trajectory Optimization and

Costate Estimation via an Orthogonal Collocation Method. Engineering Notes, Journal of Guidance,

Control, and Dynamics, 29(6):1435–1440, Nov. 2006. doi: 10.2514/1.20478.

[20] G. Elnagar, M. A. Kazemi, and M. Razzaghi. The pseudospectral Legendre method for discretizing

optimal control problems. IEEE Transactions on Automatic Control, 40(10):1793–1796, 1995. doi:

10.1109/9.467672.

[21] F. Fahroo and I. M. Ross. Costate Estimation by a Legendre Pseudospectral Method. Journal of Guid-

ance, Control, and Dynamics, 24(2):270–277, mar 2001. doi: 10.2514/2.4709.

[22] F. Fahroo and I. M. Ross. Direct Trajectory Optimization by a Chebyshev Pseudospectral Method. Journal

of Guidance, Control, and Dynamics, 25(1):160–166, Jan. 2002. ISSN 0731-5090. doi: 10.2514/2.4862.

[23] I. M. Ross and F. Fahroo. Legendre Pseudospectral Approximations of Optimal Control Problems.

Springer, 295:327–342, 2003. doi: 10.1007/978-3-540-45056-6_21.

[24] Q. Gong, W. Kang, N. S. Bedrossian, F. Fahroo, P. Sekhavat, and K. Bollino. Pseudospectral Optimal

Control for Military and Industrial Applications. In 2007 46th IEEE Conference on Decision and Control,

pages 4128–4142. IEEE, 2007. doi: 10.1109/cdc.2007.4435052.

[25] Fornberg, Bengt. A practical guide to pseudospectral methods. Cambridge University Press, Cambridge

New York, 1996. ISBN 0521495822.

[26] P. E. Gill, E. Wong, W. Murray, and M. A. Saunders. User’s Guide for SNOPT Version 7.6: Software for

Large-Scale Nonlinear Programming. University of California, San Diego, January 2017.

[27] A. Wächter and L. Biegler. On the Implementation of an Interior-Point Filter Line-Search Algorithm

for Large-Scale Nonlinear Programming. Mathematical programming, 106:25–57, March 2005. doi:

10.1007/s10107-004-0559-y.

[28] Y. Kawajir, C. Laird, S. Vigerske, and A. Wächter. Introduction to IPOPT: A tutorial for downloading,

installing, and using IPOPT. Chicago Northwestern University, April 2015.

56

https://doi.org/10.2514/2.4231
https://doi.org/10.1109/37.588098
https://doi.org/10.2514/1.20478
https://doi.org/10.1109/9.467672
https://doi.org/10.2514/2.4709
https://doi.org/10.2514/2.4862
https://doi.org/10.1007/978-3-540-45056-6_21
https://doi.org/10.1109/cdc.2007.4435052
https://doi.org/10.1007/s10107-004-0559-y

[29] Fariba Fahroo and I. Michael Ross. Advances in Pseudospectral Methods for Optimal Control. In AIAA

Guidance, Navigation, and Control Conference and Exhibit, Honolulu, USA, 2008, pages 1–23, 2008.

doi: 10.2514/6.2008-7309.

[30] I. M. Ross. A Historical Introducion to the Covector Mapping Principle. In AAS / AIAA Astrodynamics

Specialist Conference, Tahoe, NV, USA, pages 1–21, 2005.

[31] Q. Gong, I. M. Ross, W. Kang, and F. Fahroo. Connections Between The Covector Mapping Theorem

and Convergence of Pseudospectral Methods for Optimal Control. Computational Optimization and

Applications, 41(3):307–335, oct 2008. doi: 10.1007/s10589-007-9102-4.

[32] Marco Sagliano and Stephan Theil and Vincenzo D’Onofrio and Michiel Bergsma. SPARTAN: A Novel

Pseudospectral Algorithm for Entry, Descent, and Landing Analysis. In Advances in Aerospace Guid-

ance, Navigation and Control, pages 669–688. Springer International Publishing, dec 2017. doi:

10.1007/978-3-319-65283-2_36.

[33] L. Trefethen. Spectral methods in MATLAB. Society for Industrial and Applied Mathematics, Philadelphia,

PA, 2000. ISBN 9780898714654.

[34] G. T. Huntington and A. V. Rao. Comparison of Global and Local Collocation Methods for Optimal

Control. Journal of Guidance, Control, and Dynamics, 31(2):432–436, Mar. 2008. ISSN 0731-5090. doi:

10.2514/1.30915.

[35] D. A. Benson. A Gauss Pseudospectral Transcription for Optimal Control. PhD thesis, Massachusettes

Institute of Technology, 2004.

[36] I. M. Ross, P. Sekhavat, A. Fleming, Q. Gong, and W. Kang. Pseudospectral Feedback Control: Foun-

dations, Examples and Experimental Results. In AIAA Guidance, Navigation, and Control Confer-

ence and Exhibit, pages 1–23. American Institute of Aeronautics and Astronautics, Aug. 2006. doi:

10.2514/6.2006-6354.

[37] D. Garg. Advances in Global Pseudospectral Methods for Optimal Control. PhD thesis, University of

Florida, 2011.

[38] K. P. Bollino. High-Fidelity Real-Time Trajectory Optimization for Reusable Launch Vehicles. PhD thesis,

Naval Postgraduate School, Monterey, 2006.

[39] V. M. Becerra. Solving complex optimal control problems at no cost with PSOPT. In 2010 IEEE Interna-

tional Symposium on Computer-Aided Control System Design, pages 1391–1396. IEEE, sep 2010. doi:

10.1109/cacsd.2010.5612676.

[40] Y. Nie, O. Faqir, and E. C. Kerrigan. ICLOCS2: Try this Optimal Control Problem Solver Before you Try

the Rest. In 2018 UKACC 12th International Conference on Control (CONTROL). IEEE, sep 2018. doi:

10.1109/control.2018.8516795.

[41] M. Sagliano and S. Theil. Hybrid Jacobian Computation for Fast Optimal Trajectories Generation. In

AIAA Guidance, Navigation, and Control Conference, Boston, USA, 2013. doi: 10.2514/6.2013-4554.

57

https://doi.org/10.2514/6.2008-7309
https://doi.org/10.1007/s10589-007-9102-4
https://doi.org/10.1007/978-3-319-65283-2_36
https://doi.org/10.2514/1.30915
https://doi.org/10.2514/6.2006-6354
https://doi.org/10.1109/cacsd.2010.5612676
https://doi.org/10.1109/control.2018.8516795
https://doi.org/10.2514/6.2013-4554

[42] L. Huneker and M. Sagliano and Y. E. Arslantaş. SPARTAN: An Improved Global Pseudospectral Algo-

rithm for High-Fidelity Entry-Descent-Landing Guidance Analysis. In 30th International Symposium on

Space Technology and Science, Kobe, Japan, 2015, 2015.

[43] M. Sagliano. Development of a Novel Algorithm for High Performance Reentry Guidance. PhD thesis,

Universität Bremen, 2016.

[44] M. Sagliano, E. Mooij, and S. Theil. Onboard trajectory generation for entry vehicle via adaptive multi-

variate pseudospectral interpolation. In AIAA Science and Technology Forum and Exposition, 2016.

[45] Yunus Emre Arslantaş and Thimo Oehlschlägel and Marco Sagliano. Safe landing area determination

for a Moon lander by reachability analysis. Acta Astronautica, 128:607–615, nov 2016. ISSN 0094-5765.

doi: 10.1016/j.actaastro.2016.08.013.

[46] Marco Sagliano. Pseudospectral Convex Optimization for Powered Descent and Landing. Journal of

Guidance, Control and Dynamics, 41(2), 2018. doi: 10.2514/1.G002818.

[47] N. S. Bedrossian and S. Bhatt and W. Kang and I. M. Ross. Zero-propellant maneuver guidance. IEEE

Control Systems Magazine, 29(5):53–73, Oct. 2009. ISSN 1941-000X. doi: 10.1109/MCS.2009.934089.

[48] J. R. R. Martins, P. Sturdza, and J. J. Alonso. The Complex-Step Derivative Approximation. ACM

Transactions on Mathematical Software, Vol. 29, No. 3, September 2003, Pages 245-262, 2003. doi:

10.1145/838250.838251.

[49] V. D’Onofrio. Implementation of Advanced Differentiation Methods for Optimal Trajectory Computation.

Master’s thesis, Università Degli Studi Di Napoli “Federico II”, 2014.

[50] D’Onofrio, Vincenzo and Sagliano, Marco and Arslantaş, Yunus E. Exact Hybrid Jacobian Computation

for Optimal Trajectory Generation via Dual Number Theory. In AIAA Guidance, Navigation, and Control

Conference. American Institute of Aeronautics and Astronautics, January 2016. doi: 10.2514/6.2016-

0867.

[51] M. Sagliano, S. Theil, M. Bergsma, V. D’Onofrio, L. Whittle, and G. Viavattene. On the Radau Pseu-

dospectral Method: theoretical and implementation advances. CEAS Space Journal, 9(3):313–331,

June 2017. doi: 10.1007/s12567-017-0165-5.

[52] Y. M. Agamawi, W. W. Hager, and A. V. Rao. Mesh Refinement Method for Solving Bang-Bang Optimal

Control Problems Using Direct Collocation. AIAA Scitech 2020 Forum, Jan 2020. doi: 10.2514/6.2020-

0378.

[53] A. V. Rao. A Survey of Numerical Methods for Optimal Control. In AAS/AIAA Astrodynamics Specialist

Conference, AAS Paper 09-334, Pittsburgh, PA, August 10 - 13, pages 1–32, 2009.

[54] M. Sagliano. Performance analysis of linear and nonlinear techniques for automatic scaling of discretized

control problems. Operations Research Letters, Vol.42 Issue 3, May 2014, pp. 213-216, 2014. doi:

10.1016/j.orl.2014.03.003.

58

https://doi.org/10.1016/j.actaastro.2016.08.013
https://doi.org/10.2514/1.G002818
https://doi.org/10.1109/MCS.2009.934089
https://doi.org/10.1145/838250.838251
https://doi.org/10.2514/6.2016-0867
https://doi.org/10.2514/6.2016-0867
https://doi.org/10.1007/s12567-017-0165-5
https://doi.org/10.2514/6.2020-0378
https://doi.org/10.2514/6.2020-0378
https://doi.org/10.1016/j.orl.2014.03.003

[55] I. M. Ross, Q. Gong, M. Karpenko, and R. J. Proulx. Scaling and Balancing for High-Performance

Computation of Optimal Controls. Journal of Guidance, Control, and Dynamics, 41(10):2086–2097, oct

2018. doi: 10.2514/1.g003382.

[56] D. Garg, M. Patterson, W. W. Hager, A. V. Rao, D. A. Benson, and G. T. Huntington. A unified framework

for the numerical solution of optimal control problems using pseudospectral methods. Automatica, 46

(11):1843–1851, nov 2010. doi: 10.1016/j.automatica.2010.06.048.

[57] D. Garg, W. W. Hager, and A. V. Rao. Pseudospectral methods for solving infinite-horizon optimal control

problems. Automatica, 47(4):829–837, apr 2011. doi: 10.1016/j.automatica.2011.01.085.

[58] C. L. Darby and A. V. Rao. A Mesh Refinement Algorithm for Solving Optimal Control Problems Using

Pseudospectral Methods. American Institude of Aeronautics and Astronautics, 2009.

[59] M. Sagliano. Generalized hp Pseudospectral-Convex Programming for Powered Descent and Landing.

Journal of Guidance, Control, and Dynamics, 42(7):1562–1570, jul 2019. doi: 10.2514/1.g003731.

[60] N. Koeppen, I. M. Ross, L. C. Wilcox, and R. J. Proulx. Fast Mesh Refinement in Pseudospectral Optimal

Control. Journal of Guidance, Control, and Dynamics, 42(4):711–722, 2019. doi: 10.2514/1.G003904.

[61] Q. Gong, F. Fahroo, and I. M. Ross. Spectral Algorithm for Pseudospectral Methods in Optimal Control.

Journal of Guidance, Control, and Dynamics, 31(3):460–471, may 2008. doi: 10.2514/1.32908.

[62] J. D. Eide, W. W. Hager, and A. V. Rao. Modified Radau Collocation method for Solving Optimal Control

Problems with Nonsmooth Solutions Part I: Lavrentiev Phenomenon and the Search Space. In 2018

IEEE Conference on Decision and Control (CDC). IEEE, dec 2018. doi: 10.1109/cdc.2018.8619830.

[63] J. D. Eide, W. W. Hager, and A. V. Rao. Modified Radau Collocation Method for Solving Optimal

Control Problems with Nonsmooth Solutions Part II: Costate Estimation and the Transformed Ad-

joint System. In 2018 IEEE Conference on Decision and Control (CDC). IEEE, dec 2018. doi:

10.1109/cdc.2018.8619426.

[64] R. Radau. Étude sur les formules d’approximation qui servent à calculer la valeur numérique d’une

intégrale définie. Journal de mathématiques pures et appliquées, 6:283–336, 1880.

[65] P. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press, Orlando, 1984. ISBN

9780122063602.

[66] J.-P. Berrut and L. N. Trefethen. Barycentric Lagrange Interpolation. SIAM Review, 46(3):501–517, jan

2004. doi: 10.1137/s0036144502417715.

[67] K. S. G. Anglim, Z. Zhang, and Q. Gao. Minimum-Fuel Optimal Trajectory For Reusable First-Stage

Rocket Landing Using Particle Swarm Optimization. World Academy of Science, Engineering and Tech-

nology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing En-

gineering, 11(5):981–990, 2017. doi: 10.5281/ZENODO.1130268.

59

https://doi.org/10.2514/1.g003382
https://doi.org/10.1016/j.automatica.2010.06.048
https://doi.org/10.1016/j.automatica.2011.01.085
https://doi.org/10.2514/1.g003731
https://doi.org/10.2514/1.G003904
https://doi.org/10.2514/1.32908
https://doi.org/10.1109/cdc.2018.8619830
https://doi.org/10.1109/cdc.2018.8619426
https://doi.org/10.1137/s0036144502417715
https://doi.org/10.5281/ZENODO.1130268

[68] SpaceX. SpaceX - Falcon 9, 2020. URL https://www.spacex.com/vehicles/falcon-9/. Accessed 1, August,

2020.

[69] W. D. Graham. Delta III, July 2010. URL https://commons.wikimedia.org/wiki/File:Delta_III.svg. Accessed

1, August, 2020.

60

https://www.spacex.com/vehicles/falcon-9/
https://commons.wikimedia.org/wiki/File:Delta_III.svg

Appendices

61

Appendix A

Detailed Jacobian Matrix Structure

In this Appendix is presented the generic structure of the Jacobian matrix in accordance with

• the flipped Radau pseudospectral method.

• the ordering of the decision variables described in Section 3.3.

• the choice of covector scalars C(p)
–;k and C(p)

—;k presented in Table 3.2.

The generic form of the Jacobian matrix from (3.34) is here reiterated,

Jac =

26666666664

∇JN

∇F (1:P)

∇H(1:P)

∇ffi(1:P)

∇‘(1:P−1)

37777777775
: (A.1)

In this appendix, a Section is dedicated to each group of gradients of the Jacobian matrix in the same order

as they appear in (A.1), such that Section A.1 is dedicated to the gradient of the cost functional, ∇JN ,

Section A.2 is dedicated to the gradient of the dynamic defects, ∇F (1:P), and so on up to Section A.5 which

is dedicated to the gradient of the linkage conditions, ∇‘(1:P−1).

In order to simplify the syntax, the quantity, S(p) is introduced as

S(p) = nx + N(p)(nx + nu) : (A.2)

This quantity represents the size of the array containing the decision variables of state and control in a given

phase (p).

It is relevant to note that the computation of partial derivatives is taken for granted in this chapter. These

derivatives are not trivial, but they can be computed by means of several different methods. By omitting the

computation of the derivatives, the length of this chapter is shortened and also no particular differentiation

method is highlighted.

A1

A.1 Cost Function Gradient, ∇J N

The phase-wise gradient of the cost function, ∇XU(p)JN is

∇XU(p)JN =
t
(p)
f − t

(p)
0

2

»
2

t
(p)
f − t

(p)
0

a(p) w
(p)
1

@Ψ1

@x
(p)
1

w
(p)
1

@Ψ1

@u
(p)
1

w
(p)
2

@Ψ2

@x
(p)
2

w
(p)
2

@Ψ2

@u
(p)
2

: : :

w
(p)

N(p)−1
@ΨN(p)−1

@x
(p)

N(p)−1

w
(p)

N(p)−1
@ΨN(p)−1

@u
(p)

N(p)−1

2

t
(p)
f − t

(p)
0

b(p) + w
(p)

N(p)

@ΨN(p)

@x
(p)

N(p)

w
(p)

N(p)

@ΨN(p)

@u
(p)

N(p)

–
= ∇J (p)

XU ;

(A.3)

where ∇J (p)
XU is of size 1× S(p), and

a(p) =

8>><>>:
@Φ

@x
(p)
0

; if p = 1

01×nx ; if p 6= 1

; b(p) =

8>><>>:
01×nx ; if p 6= P

@Φ

@x
(p)

N(p)

; if p = P
: (A.4)

And

@JN

@t
(p)
f

=

8>>>>><>>>>>:
1

2

N(p)X
k

w
(p)
k Ψ

(p)
k −

1

2

N(p+1)X
k

w
(p+1)
k Ψ

(p+1)
k ; if p = 1; 2; : : : ; P − 1

1

2

N(p)X
k

w
(p)
k Ψ

(p)
k +

@Φ

@t
(p)
f

; if p = P

(A.5)

= ∇J (p)
tf : (A.6)

Ultimately, the vector of concatenated gradients of the cost is

∇JN =
h
∇J (1)

XU ∇J
(2)
XU : : : ∇J (P)

XU ∇J
(1)
tf ∇J (2)

tf : : : ∇J (P)
tf

i
: (A.7)

Equation (A.7) corresponds to the first row of the matrix illustrated in Figure 3.2.

A.2 Gradient of Dynamic Defects, ∇F (1:P)

The dependency of the dynamic defects with respect to the states and controls can be stated as

∇XU(q)F (p) =

8><>:∇F
(p)
XU ; if q = p

0nxN(p)×S(q) ; if q 6= p

; (A.8)

which is saying that states and controls of a given phase do not influence the dynamics of a different phase.

This is favourable because it implies that the Jacobian will be sparse. The dynamic defects for a given phase

can be expressed as

∇F (p)
XU =

26666664
−D(p)

10 Inx
t
(p)
f

−t(p)0
2

@f
(p)
1

@x
(p)
1

−D(p)
11 Inx

t
(p)
f

−t(p)0
2

@f
(p)
1

@u
(p)
1

· · · −D(p)

1N(p)
Inx 0nx×nu

−D(p)
20 Inx −D(p)

21 Inx 0nx×nu · · · −D(p)

2N(p)
Inx 0nx×nu

...
...

...
. . .

...
...

−D(p)

N(p)0
Inx −D(p)

N(p)1
Inx 0nx×nu · · · t

(p)
f

−t(p)0
2

@f
(p)

N(p)

@x
(p)

N(p)

−D(p)

N(p)N(p)
Inx

t
(p)
f

−t(p)0
2

@f
(p)

N(p)

@u
(p)

N(p)

37777775 : (A.9)

A2

Further, the dependency of the dynamic defects with respect to the initial and final times is

∇
t
(q)
f

F (p) =

"
@‰

(p)
1

@t
(q)
f

|
@‰

(p)
2

@t
(q)
f

|

· · ·
@‰

(p)

N(p)

@t
(q)
f

|#|
; (A.10)

with

@‰
(p)
k

@t
(q)
f

=

8>>>><>>>>:
1
2 fk ; if q = p

− 1
2 fk ; if q = p − 1

0nx×1 ; if q 6= p; p − 1

: (A.11)

Letting the initial and final time gradients of a given phase be

∇F (p)
t0 = ∇

t
(p−1)
f

F (p) ; (A.12)

∇F (p)
tf = ∇

t
(p)
f

F (p) : (A.13)

Accounting for all phases, the gradient of the dynamic defects can be written as

∇F (1:P) =

26664
∇F (1)

XU 0
nxN

(1)×S(2) ··· 0
nxN

(1)×S(P) ∇F (1)
tf

0
nxN

(1)×1
··· 0

nxN
(1)×1

0
nxN

(1)×1

0
nxN

(2)×S(1) ∇F (2)
XU ··· 0

nxN
(2)×S(P) ∇F (2)

t0
∇F (2)

tf
··· 0

nxN
(2)×1

0
nxN

(2)×1

...
...

. . .
...

...
...

. . .
...

...
0
nxN

(P)×S(1) 0
nxN

(P)×S(2) ··· ∇F (P)
XU 0

nxN
(P)×1

0
nxN

(P)×1
··· ∇F (P)

t0
∇F (P)

tf

37775 : (A.14)

In this matrix the sparsity pattern of the dynamic defects is evident. This pattern is represented by blocks of

red dots and blue diagonal dots in Fig. 3.2.

A.3 Gradient of Path Constraints, ∇H(1:P)

Similarly to the case of dynamic defects, the states and controls of a given phase do not influence the

path constraints of a different phase. The phase-wise path constraint gradient is thus:

∇H(p)
XU =

2666666664

0
n
(p)
h

×nx

@h
(p)
1

@x
(p)
1

@h
(p)
1

@u
(p)
1

0
n
(p)
h

×nx
0
n
(p)
h

×nu
· · · 0

n
(p)
h

×nx
0
n
(p)
h

×nu

0
n
(p)
h

×nx
0
n
(p)
h

×nx
0
n
(p)
h

×nu

@h
(p)
2

@x
(p)
2

@h
(p)
2

@u
(p)
2

· · · 0
n
(p)
h

×nx
0
n
(p)
h

×nu

...
...

...
...

...
. . .

...
...

0
n
(p)
h

×nx
0
n
(p)
h

×nx
0
n
(p)
h

×nu
0
n
(p)
h

×nx
0
n
(p)
h

×nu
· · ·

@h
(p)

N(p)

@x
(p)

N(p)

@h
(p)

N(p)

@u
(p)

N(p)

3777777775
; (A.15)

and the concatenated matrix for all phases is

∇H(1:P) =

266666664

∇H(1)
XU 0

n
(1)
h N

(1)×S(2) · · · 0
n
(1)
h N

(1)×S(P) 0
n
(1)
h N

(1)×P

0
n
(2)
h N

(2)×S(1) ∇H(2)
XU · · · 0

n
(2)
h N

(2)×S(P) 0
n
(2)
h N

(2)×P
...

...
. . .

...
...

0
n
(P)
h N(P)×S(1) 0

n
(P)
h N(P)×S(2) · · · ∇H(P)

XU 0
n
(P)
h N(P)×P

377777775
: (A.16)

A3

A.4 Event Constraints Gradient, ∇ffi(1:P)

With regards to the event constraints, only the initial and final states of each phase represent dependen-

cies, thus, only two blocks of size nx × nx appear on the Jacobian of the phase-wise event constraints: one

on the left for the dependency on the initial state, and one on the right for the dependency on the final time.

In between these two blocks there are only zeros.

∇ffi(p)
XU =

»
@ffi(p)

@x
(p)
0

0
n
(p)
ffi ×nx

0
n
(p)
ffi ×nu

· · · @ffi(p)

@x
(p)

N(p)

0
n
(p)
ffi ×nu

–
: (A.17)

In order to account for all phases, a diagonal concatenation is in place, as

∇ffi(1:P) =

266666664

∇ffi(1)
XU 0

n
(1)
ffi ×S(2) · · · 0

n
(1)
ffi ×S(P) 0

n
(1)
ffi ×P

0
n
(2)
ffi ×S(1) ∇ffi(2)

XU · · · 0
n
(2)
ffi ×S(P) 0

n
(2)
ffi ×P

...
...

. . .
...

...

0
n
(P)
ffi ×S(1) 0

n
(P)
ffi ×S(2) · · · ∇ffi

(P)
XU 0

n
(P)
ffi ×P

377777775
: (A.18)

A.5 Gradient of the Linkage Conditions, ∇‘(1:P−1)

Finally, for the linkage conditions, the matrices for the left and right pairs of phases are defined as

∇∆x
(p)
l =

h
0nx×nx 0nx×nx 0nx×nu : : : −Inx×nx 0nx×nu

i
(A.19)

∇∆x (p)r =
h
Inx×nx 0nx×nx 0nx×nu : : : 0nx×nx 0nx×nu

i
(A.20)

where Inx×nx is the identity matrix of size nx × nx . Invariably, the full gradient matrix for the linkage conditions

is a diagonal concatenation of of the pairs of matrices expressed above.

∇‘(1:P−1) =

26666664
∇∆x

(1)
l ∇∆x

(1)
r 0nx×S(3) · · · 0nx×S(P−1) 0nx×S(P) 0nx×P

0nx×S(1) ∇∆x
(2)
l ∇∆x

(2)
r · · · 0nx×S(P−1) 0nx×S(P) 0nx×P

...
...

...
. . .

...
...

...

0nx×S(1) 0nx×S(2) 0nx×S(3) · · · ∇∆x
(P−1)
l ∇∆x

(P−1)
r 0nx×P

37777775 (A.21)

It can be noted that the first phase is never the "right" pair of a link and that the last phase is never the "left"

pair of any link. This is because the algorithm invariably assumes that the phases are sequential.

A4

	Front Cover
	Dedication
	Authorship Declaration
	Agradecimentos
	Acknowledgements
	Resumo
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Symbols
	List of Abbreviations
	1 Introduction
	1.1 Objective
	1.2 The Orbital Launch Vehicle
	1.2.1 Tsiolkovsky Rocket Equation and Staging
	1.2.2 Equations of Motion
	1.2.3 Trajectory Optimization

	1.3 Optimal Control and Trajectory Optimization Methods

	2 Direct and Indirect Method Paths and Covector Mapping
	2.1 The Optimal Control Problem
	2.2 Mathematical Background
	2.2.1 Gaussian Quadrature and Domain Mapping
	2.2.2 Lagrange Polynomial Interpolation and the Differentiation Matrix
	2.2.3 Legendre-Radau polynomial and node distribution

	2.3 Indirect Method Route
	2.3.1 Hamiltonian Boundary-Value Problem
	2.3.2 Discrete Hamiltonian Boundary-Value Problem

	2.4 Direct Method Route
	2.4.1 Nonlinear Programming Problem (NLP)
	2.4.2 Karush–Kuhn–Tucker Conditions

	2.5 Covector Mapping

	3 Implementation of the Flipped Radau Method for Multiphase Problems
	3.1 Multiphase Optimal Control Problem
	3.2 Multiphase NLP and Covector Mapping
	3.2.1 Scalar set selection for multiphase covector mapping and simplified NLP

	3.3 Vector Formatting and Jacobian Matrix
	3.3.1 Input format of the nonlinear solver
	3.3.2 Formatting the vector of decision variables
	3.3.3 Constraints formatting
	3.3.4 Jacobian Matrix

	3.4 Overview of the Solving Procedure

	4 Test and Validation with Numerical Examples
	4.1 Problem 1: Falcon 9 Rocket Boost-Back Burn and Vertical Landing (3 phases, 2-D trajectory)
	4.2 Problem 2: Delta III Rocket Ascent to Elliptical Orbit (4 phases, 3-D trajectory)

	5 Conclusions
	References
	Appendices
	A Detailed Jacobian Matrix Structure
	A.1 Cost Function Gradient
	A.2 Gradient of Dynamic Defects
	A.3 Gradient of Path Constraints
	A.4 Event Constraints Gradient
	A.5 Gradient of the Linkage Conditions

