
EcoAndroid: An Android Studio Plugin for

Developing Energy-Efficient Java Mobile

Applications

Ana Sofia Gonçalves Ribeiro

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. João Fernando Peixoto Ferreira

Examination Committee

Chairperson: Prof. João António Madeiras Pereira
Supervisor: Prof. João Fernando Peixoto Ferreira

Member of the Committee: Prof. Rui Filipe Lima Maranhão de Abreu

January 2021

Acknowledgments

I would first like to thank my supervisor João F. Ferreira for presenting the theme and for all the

support and guidance during this project.

To the friends Instituto Superior Técnico has given me, Inês(s), Mafalda and Rita, thank you for the

friendship in the last five years (more like four and I am sorry about that). Without you five, college

would not have been the same and would have been much more tedious.

To the rest of my friends, thank you for the tremendous encouragement through this project. To

Elisabete, Sérgio and Margarida, thank you for a friendship that turned into a family I know I will take

for the rest of my life. To Joana Pinto, who has been my friend since fifth grade or seventh grade, we

will actually never know. To Bruno, my person, who has been my best friend for the last 17 years, thank

you for never doubting my abilities to achieve something even in all the times I never believed I could.

To my family, thank you for your support and understanding all these years, especially in the last

one. To Bela, thank you for all you have done and keep doing for me. To my sisters, Joana and Sara,

thank you for dealing with me at my worst. Even if you think my thesis is only turning on the power

save mode on your phone. Finally, to my mother and father, thank you for being the best role models a

daughter could ask for and for trying to guide me to the best possible future. Even if I didn’t always see

it myself.

To each and every one of you – Thank you.

Abstract

Mobile devices have become indispensable in our daily life and reducing the energy consumed by them

has become essential over recent years. For economical and environmental reasons, as well as enhancing

the user experience, extending battery duration has become a non-functional requirement developers

should be concern with. However, developing energy-efficient mobile applications is not a trivial task.

To address this problem, we present EcoAndroid, a publicly-available Android Studio plugin that auto-

matically applies a set of energy patterns to Java source code. It currently supports ten different cases of

energy-related refactorings, over five energy patterns taken from the literature. We used EcoAndroid to

analyze 100 Java mobile applications from F-Droid and we found that 35 of the projects had a total of

95 energy code smells detected by the plugin. We used EcoAndroid to automatically refactor all the code

smells identified. We submitted the 42 refactorings that introduced code fixes (and not just informational

warnings) as pull requests to the maintainers of the respective projects. Of a total of 42 pull requests,

we received replies to 25 of them (59.5%); of those, 20 (80%) were accepted and merged into the original

projects. In total, we contributed to improve the energy efficiency of 12 different Android mobile appli-

cations. These results, together with the results obtained in a user study with 12 participants, show that

EcoAndroid is useful, usable, and the alterations proposed by the tool are easily accepted by developers.

Keywords

Sustainable Software, Green Software, Energy Consumption, Energy Patterns, Code Smells, Refactoring.

iii

Resumo

Os dispositivos móveis tornaram-se indispensáveis no nosso dia a dia e reduzir a energia consumida por

eles tornou-se essencial nos últimos anos. Por razões económicas e ambientais, além de aprimorar a

experiência do utilizador, estender a duração da bateria tornou-se um requisito não funcional com o qual

os programadores se devem preocupar. No entanto, desenvolver aplicações móveis com baixo consumo

de energia não é uma tarefa trivial. Para resolver esse problema, apresentamos EcoAndroid, um plugin

para Android Studio que aplica automaticamente um conjunto de padrões de energia a código-fonte Java.

Actualmente, o plugin suporta dez casos diferentes de refactorações relacionadas ao consumo de energia,

relativos a cinco padrões de energia retirados da literatura. Usámos o EcoAndroid para analisar 100

aplicações móveis Java do F-Droid e descobrimos que 35 dos projetos tinham um total de 95 code smells

de energia detectados pelo plugin. Usámos também o EcoAndroid para refactorizar automaticamente

todos os code smells identificados. Enviámos as 42 refactorizações que introduziram correcções de código

(e não apenas avisos informativos) como pull requests para os responsáveis dos respectivos projetos. De

um total de 42 pull requests, recebemos respostas para 25 deles (59,5 %); desses, 20 (80 %) foram aceites

e incorporados nos projetos originais. No total, contribúımos para melhorar a eficiência energética de

12 aplicaçãoes móveis Android diferentes. Estes resultados, juntamente com os resultados obtidos num

estudo de usabilidade com 12 participantes, mostram que o EcoAndroid é útil, utilizável, e as alterações

propostas pela ferramenta são facilmente aceites pelos programadores.

Palavras Chave

Software Sustentável, Software Verde, Consumo de Energia, Padrões de Energia, Code Smells, Refactor-

ização.

v

Contents

1 Introduction 1

1.1 Objectives and Contributions . 4

1.2 Thesis Outline . 6

2 Background and Related Work 7

2.1 Energy Consumption and Energy Profiling . 9

2.2 Energy Patterns for Mobile Applications. 10

2.3 Mobile Applications Environments and Languages . 15

2.4 Refactoring of Java Source Code . 15

3 EcoAndroid: An Android Studio Plugin 23

3.1 Requirements . 25

3.1.1 Functional Requirements . 25

3.1.2 Non-Functional Requirements . 26

3.2 Architecture . 26

3.3 Implementation . 30

3.3.1 Dynamic Retry Delay . 32

3.3.1.1 Dynamic Wait Time . 32

3.3.1.2 Check Network . 34

3.3.2 Push Over Poll . 37

3.3.2.1 Informational Warning FCM . 37

3.3.3 Reduce Size . 38

3.3.3.1 GZIP Compression . 39

3.3.4 Cache . 40

3.3.4.1 Check Metadata . 40

3.3.4.2 Check Layout Size . 42

3.3.4.3 SSL Session Caching . 43

3.3.4.4 Passive Provider Location . 44

3.3.4.5 URL Caching . 46

vii

3.3.5 Avoid Extraneous Graphics and Animations . 47

3.3.5.1 Dirty Rendering . 47

4 Evaluation 49

4.1 Overview . 51

4.2 Mobile Applications Analyzed . 52

4.3 First Phase: Number of EcoAndroid Refactorings . 53

4.4 Second Phase: EcoAndroid Refactorings Submitted to Project Maintainers 55

4.5 Third Phase: User Study . 57

4.5.1 Structure and Setup . 57

4.5.2 Tasks and Participants . 59

4.5.3 Results . 59

4.5.4 Answers to Research Questions . 62

5 Conclusions 63

5.1 Achievements . 65

5.2 Plugin Limitations and Future Work . 66

A Top 100 F-Droid Applications 74

B State of Pull Requests 77

C User Study Documents 79

C.1 Part 1 . 79

C.1.1 Test Group . 79

C.1.2 Control Group . 81

C.2 Part 2 . 82

C.2.1 Test Group . 82

C.2.2 Control Group . 83

D User Study Questionnaires 85

D.1 Test Group . 85

D.2 Control Group . 87

viii

List of Figures

2.1 Energy-related refactoring tools. 21

3.1 EcoAndroid structure. 28

3.2 EcoAndroid detection and refactoring process. 28

3.3 Energy patterns supported by EcoAndroid. Cases with gray background represent infor-

mational cases, where no source code is altered. 30

3.4 EcoAndroid warning information example. 31

3.5 EcoAndroid comment example. 31

4.1 Three evaluation phases. 51

4.2 Number of refactorings proposed by EcoAndroid for each pattern and statistics on the pull

requests sent. 56

ix

x

List of Tables

2.1 Energy profiling frameworks. 10

2.2 Energy patterns summary. 14

4.1 F-Droid mobile applications characteristics. 53

4.2 Characteristics of the top 100 mobile applications considered. 53

4.3 Number of energy opportunities detected by EcoAndroid. 54

4.4 Mobile applications characteristics with EcoAndroid merged pull requests. 57

4.5 User study mobile applications. 58

4.6 User study overview. 58

4.7 Relevant characteristics of participants. 59

4.8 User study results: part 1. 60

4.9 User study results: part 2. 60

4.10 Questionnaire answers - test group. 61

4.11 Questionnaire answers - control group. 62

A.1 Mobile applications considered in the evaluation. These are the top 100 applications when

sorting by descending order according to the criteria: percentage of pull requests accepted,

date of last commit, total merged pull requests, number of GitHub stars, and number of

GitHub watchers. 75

B.1 State of pull requests. 78

xi

xii

List of Listings

1 Taskbar Example - code smell detected. 5

2 Taskbar Example - energy pattern applied. 6

3 Supporting an inspection example - plugin.xml. 29

4 Supporting an inspection example - local inspection sub class. 29

5 Supporting an inspection example - local quick-fix sub class. 30

6 Dynamic Wait Time - code smell detected. 32

7 Dynamic Wait Time - energy pattern applied (information about a new approach to im-

plement it). 33

8 Dynamic Wait Time - energy pattern applied (switching to a dynamic wait time between

resource attempts case). 34

9 Check Network - code smell detected. 35

10 Check Network - energy pattern applied (onHandleIntent and hasActiveNetwork meth-

ods). 35

11 Check Network - energy pattern applied (NetworkStateReceiver class). 36

12 Check Network - energy pattern applied (onAvailable method). 36

13 Informational Warning FCM - code smell detected. 38

14 Informational Warning FCM - energy pattern applied. 38

15 GZIP Compression - code smell detected. 39

16 GZIP Compression - energy pattern applied. 39

17 Check Metadata - code smell detected. 40

18 Check Metadata - energy pattern applied. 41

19 Check Layout Size - code smell detected. 42

20 Check Layout Size - energy pattern applied. 42

21 SSL Session Caching - code smell detected. 43

22 SSL Session Caching - energy pattern applied. 43

23 Passive Provider Location - code smell detected (possible switch to PASSIV E PROV IDER). 44

24 Passive Provider Location - code smell detected (switching to PASSIV E PROV IDER). 44

xiii

25 Passive Provider Location - energy pattern applied (possible switch to PASSIV E PROV IDER). 45

26 Passive Provider Location - energy pattern applied (switching to PASSIV E PROV IDER). 45

27 Passive Provider Location - AndroidManifest.xml. 45

28 URL Caching - code smell detected. 46

29 URL Caching - energy pattern applied. 46

30 Dirty Rendering - code smell detected. 47

31 Dirty Rendering - energy pattern applied. 48

xiv

1
Introduction

Contents

1.1 Objectives and Contributions . 4

1.2 Thesis Outline . 6

1

2

Mobile devices have become a fundamental accessory in a person’s current day-to-day life. They are

used as credit cards, work tools, educational helpers, among various useful purposes. Unfortunately, the

battery power on them is finite and, despite the advances in hardware and battery technology, the needs

of most users are not yet met. As a result, the reduction of the energy consumed by mobile devices has

become an important non-functional requirement.

Regarding user practice, decreasing the energy consumption directly reduces the amount of times a

mobile device needs to be charged, creating a more convenient experience of the device for the user. A

study [1] in 2013, analysing comments left in the Google Play market place for Android applications,

concluded that 18% of the complaints were related to energy problems.

Environmental concerns are also an incentive to reduce the energy consumed by our devices. The

production of energy from fossil fuels produces greenhouse gases which contributes directly to the air

pollution. Even if nowadays there are renewable sources to produce energy, such as solar and wind,

electricity generated from fossil fuels still accounts for significant percentage of the energy produced.

For example, in 2018, 70% of the world’s energy was produced from fossil fuels [2]. These resources are

also finite and, by saving energy, we are contributing to more affordable energy for future generations.

According to the World Health Organization (WHO) [3], air pollution makes seven million casualties

word wide every year (9 out 10 people breath air containing an excessive level of pollutants). Given that

the main cause of air pollution is the burning of fossil fuels, saving energy has an impact not only on the

environment but also on our health.

Economically, saving the energy one consumes will decrease one’s utility bills. Moreover, a generalized

increase in energy consumption might lead to corporation investments to fulfill the energy demand.

Subsequently, this can lead to higher energy prices and more expensive utility bills.

One way of decreasing the energy consumed by a mobile device is to ensure that the mobile applications

that the device runs are energy-efficient. However, improving the energy efficiency of a mobile application

is a complex task since a lot of factors can influence energy consumption (for example, the mobile

networking technology used (3G, GSM or WiFi) [4]; heavy graphic processing; and screen usage while on

an application). Taking these factors into consideration is not always trivial, meaning that they can be

easily overlooked by developers when coding.

An approach that makes the development of energy-efficient mobile applications easier is following

so-called energy patterns, which are code patterns known to use energy prudently. Work documenting

these patterns has been growing in recent years [5–8]. In 2019, Cruz et al. [5] presented a catalog of 22

energy-related patterns. The catalog can be of great assistance to mobile application developers, as it

describes each pattern and its context, also providing a series of examples and references. However, the

manual application of these patterns is not trivial and can be time-consuming.

3

1.1 Objectives and Contributions

The main goal of this project is to create a developer tool that can assist in the development of en-

ergy-efficient mobile applications, by automatically refactoring their source code so that they follow

well-known energy patterns. We also aim at: a) giving an overview of previous work done in this field,

listing energy patterns already documented (in the search of a subset to support); b) discussing available

mobile platforms (Android or iOS) and which languages are the most used in each platform (to under-

stand how we can maximize our impact); c) listing a set of source code refactoring tools that can be used

to implement the main goal.

Our main contribution is a publicly-available tool named EcoAndroid1 that focuses on Android appli-

cations and is in the form of an Android Studio plugin that automatically applies a set of energy patterns

to Java source code. At the time of writing, the plugin supports ten different cases of energy-related

refactorings, over five energy patterns taken from the literature [5]. Out of the ten cases, two are infor-

mational warnings, as they only insert //TODOs to the source code, due to the complexity applying the

refactoring ourselves — for example when it is needed to register the mobile application to set up push

notifications on the app.

We used EcoAndroid to analyze 100 projects from F-Droid and we found that 35 of the projects had

a total of 95 energy code smells detected by the plugin. We used EcoAndroid to automatically refactor

all the code smells identified. We submitted the 42 refactorings that introduced code fixes (and not just

informational warnings) as pull requests to the maintainers of the respective projects. Of a total of 42

pull requests, we received replies to 25 of them (59.5%); of those, 20 (80%) were accepted and merged into

the original projects. In total, we contributed to improve the energy efficiency of 12 different Android

mobile applications.

A user study with 12 participants was done to check EcoAndroid’s usability. The results show that

using the plugin reduces the time required to identify and fix energy-related code smells. In average,

there was a saving of 1.43 minutes. Every participant stated that they found EcoAndroid to be usable

and the alterations made by it understandable.

Research Questions. Through this work, we propose to answer the following research questions:

RQ1. What energy patterns are already known by the software engineering community?

RQ2. What are the most relevant energy patterns to support?

RQ3. Are there existing tools that automatically apply energy patterns to the source code of mobile

applications?

RQ4. What are the challenges in automatically applying energy patterns?

1Available in the JetBrains store: https://plugins.jetbrains.com/plugin/15637-ecoandroid.

4

https://plugins.jetbrains.com/plugin/15637-ecoandroid

Summary. The main contributions can be summarized as follows:

• EcoAndroid, an extendable Android Studio plugin, created to assist developers in creating ener-

gy-efficient mobile applications;

• Refactoring of real-world code: we improved the energy efficiency of 12 real-world Android mobile

applications by using EcoAndroid to automatically fix 20 code smells;

• A study of the most common code smells in 100 Android mobile applications, when considering 5

energy-related patterns.

Illustrative Example An example of a contribution made by EcoAndroid is the application of the

Cache - Check Metadata energy pattern in the Android mobile application Taskbar2, which puts a start

menu and recent apps tray on top of the screen that is accessible at any time. Taskbar is a popular

application: at the time of writing, its GitHub project has 283 stars and it has been downloaded more

than 500,000 times from the app store Google Play.

Listing 1 shows the original source code, where the code smell was detected. There is an opportunity

to optimize the energy efficiency of the code by caching the object bundle and only executing the code

if the object has changed. Listing 2 shows the source code after the refactoring automatically performed

by EcoAndroid. We submitted these changes as a pull request that was accepted and merged by the

maintainers.3

public final class TaskerConditionReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

if(U.isExternalAccessDisabled(context)) return;
BundleScrubber.scrub(intent);
final Bundle bundle = intent.getBundleExtra(com.twofortyfouram.locale.api.Intent.EXTRA_BUNDLE);
...
if(PluginBundleManager.isBundleValid(bundle)) { ... }
...

}
}

Listing 1: Taskbar Example - code smell detected.

2Taskbar (Google Play): https://play.google.com/store/apps/details?id=com.farmerbb.taskbar.
3Pull Request: https://github.com/farmerbb/Taskbar/pull/138.

5

https://play.google.com/store/apps/details?id=com.farmerbb.taskbar
https://github.com/farmerbb/Taskbar/pull/138

public final class TaskerConditionReceiver extends BroadcastReceiver {
private Bundle lastbundle = null;

@Override
public void onReceive(Context context, Intent intent) {

if(U.isExternalAccessDisabled(context)) return;
if (lastbundle.equals(intent.getBundleExtra(com.twofortyfouram.locale.api.Intent.EXTRA_BUNDLE))) {

// bundle hasn't changed: we can safely return
return;

}
updateValues(intent);
...
if(PluginBundleManager.isBundleValid(lastbundle)) { ... }
...

}

private void updateValues(Intent intent) {
lastbundle =

intent.getBundleExtra(com.twofortyfouram.locale.api.Intent.EXTRA_BUNDLE);
}

}

Listing 2: Taskbar Example - energy pattern applied.

1.2 Thesis Outline

This thesis is is organized as follows: Chapter 2 (Background and Related Work) overviews work previ-

ously done in the area of energy and Java source code refactoring, such as tools that already exist. It

covers three main topics: energy consumption and energy profiling, energy patterns for mobile applica-

tions, and refactoring of Java source code. Chapter 3 (EcoAndroid: An Android Studio Plugin) describes

the specifications of the tool created and the energy patterns the tool supports. Chapter 4 (Evaluation)

shows the results of evaluating the plugin created, including a user study to assess the usability of the tool.

Chapter 5 (Conclusion) summarizes the work done in this thesis and possible future work opportunities,

such as extensions to the tool.

6

2
Background and Related Work

Contents

2.1 Energy Consumption and Energy Profiling 9

2.2 Energy Patterns for Mobile Applications. 10

2.3 Mobile Applications Environments and Languages 15

2.4 Refactoring of Java Source Code . 15

7

8

This chapter presents work previously done in the context of this thesis. First, Section 2.1 presents

available energy profiling tools. Section 2.2 lists energy patterns already documented, focusing on mobile

applications. Section 2.3 provides a summary of the most common mobile application coding environ-

ments (for example, the most popular IDEs) and the programming languages most used for each platform.

At last, Section 2.4 presents Java refactoring tools, with a subsection for energy-specific refactoring tools.

2.1 Energy Consumption and Energy Profiling

Energy Profiling is the process of measuring the energy consumed by a device, and in our specific case,

a mobile device. This process has been addressed by the scientific community before. Ahmad et al. [9]

present a paper which reviews mobile applications energy profiling. They divided energy profiling schemes

into two categories: software-based and hardware-based. Software-based schemes exploit a software

module to collect mobile component’s power usage statistics to construct power models to estimate the

application’s energy consumption. Hardware-based schemes use external hardware equipment, which are

expensive, labor-intensive, and non-scalable compared with software-based solutions.

Seo et al. [10] developed a framework to estimate the energy consumed in Java-based software sys-

tems, fitting into the software-based category. The framework takes a component-based development

perspective, which makes it well suited for distributed and embedded applications. It allows to estimate

the software system’s energy consumption at system construction-time and refine it at run-time.

Powerscope [11] is an energy profiling tool that falls into the hardware-based category. It maps

energy consumption to program structure in two stages: the data collection stage and the analysis stage.

The first phase’s objective is to sample the power consumption and the system activity. The second

phase’s objective is to create an energy profile of the data gathered from the previous stage.

Aneprof (Android Energy Profiler) [12] is a real-measurement-based power profiling tool for Android,

belonging to the hardware-based category. It can obtain function-level power distribution and distinguish

power usage among threads, Java methods and JVM services. The paper that describes this tool states

that their biggest contribution is the ability of separating Java methods and events inside Dalvik1 virtual

machines [12].

EMaaS (Energy Measurements as a Service for Mobile Applications) [13] is a system that measures

energy from a mobile application reliably, fitting into the hardware-based category. It is a peer-to-peer

cloud-based system that delivers energy measurements as a service for mobile applications. This system

addresses the issues of power monitor tools being too complex and the need for reliability energy models

to be continuously updated with new data, combining estimations from an energy model.

1Dalvik is a discontinued process virtual machine in Android operating system that executes applications written for
Android.

9

PowerSpy [14] is a fine-grained power tool for the Windows operation system. It falls into the

hardware-based category. It works by going through two phases: an event tracking and an analysis

stage phase. In the event tracking phase, the mobile application that is to be profiled is executed while

monitoring the CPU Time, I/O activity and the energy consumption. In the analysis stage phase, the

data from the previous phase is analyzed in order to understand how different parts of the system behave.

eLens [15] is a technique used to estimate energy consumption for Android mobile applications, with

an accuracy of 90%, belonging to the software-based category. It merges two ideas: program analysis

(to determine the paths traversed and track energy-related information during an execution) and per

-instruction energy modeling (that enables eLens to obtain fine-grained estimates of application energy).

eLens can be integrated into an IDE, such as Eclipse.

Table 2.1 presents a summary of the energy profiling frameworks discussed.

Framework Name Category Paper

Seo et al. Software-Based [10]
Powerscope Hardware-Based [11]
Aneprof Hardware-Based [12]
EMaas Hardware-Based [13]
PowerSpy Hardware-Based [14]
eLens Software-Based [15]

Table 2.1: Energy profiling frameworks.

2.2 Energy Patterns for Mobile Applications.

An Energy Pattern describes, formally, the alterations needed to reduce the energy consumed by a device.

The study by Pinto et al. [6] analyzes research papers published on top software engineering conferences

and identifies 11 opportunities to refactor code with the goal of reducing energy consumption. The study

also mentions that 6 of these are related to mobile applications.2

• User Interfaces: Darker colors, such as black, require less energy to display than lighter ones, such

as white;

• CPU Offloading : To offload CPU intensive computations from a mobile device to the cloud reduces

battery usage;

• HTTP Requests: HTTP request is the most energy-consuming operation of the network;

• Software Piracy : the most commonly used approach for preventing piracy is code obfuscation,

which is likely to impact the mobile application energy usage;

• I/O Operations: I/O utilities contribute significantly to the energy consumption of a mobile appli-

cation;

2The description for each energy opportunity is retrieved from the research paper “Refactoring for Energy Efficiency: A
Reflection on the State of the Art” [6] by Pinto et al.

10

• Continuously Running App: Modern mobile applications are continuously-running, periodically

sending and receiving data from servers. Such cumulatively behavior can greatly impact battery

usage.

Gottschalk et al. [7]3 presents a study about the energy savings on mobile devices by refactoring

the source code according to five energy patterns. The study presents the energy savings of using the

discussed energy patterns. The energy savings are measured with three different techniques: file-based,

energy profiling and delta-b. When using delta-b4, the Data Transfer pattern presents a 14% saving,

Third-Party Advertising a 24.4% saving5, Binding Resources Too Early an 18.1% saving, and Backlight

a 26.85% saving6. On the other hand, the Statement Change presents a 10.2% energy consumption

increase.

• Third-Party Advertising : This concerns integrated code parts within apps which display advertise-

ments during operation. Thereby, advertisements do not have an influence on apps’ functionality,

but might consume energy through 3G or WiFi connections. If advertisements are deleted, program-

mers might have to change their business model, but the main functionality remains unaffected;

• Binding Resources Too Early : Refers to hardware components, such as WiFi and GPS, which are

switched on by apps at an early stage when they are not yet needed by the app or user;

• Statement Change: Describes alternative programming statements, such as if and switch, which can

be substituted with each other, because they have the same functionality, but potential different

energy consumption;

• Backlight : Refers to the background color of an app. For different screen technologies (e.g. Super

LCD and Super AMOLED) the energy consumption can vary for different background colors;

• Data Transfer : Refers to loading data from a server via a network connection, instead of reading

prefetched data from the app’s storage.

Li et al. [16]7 presented a study about the energy-savings of three programming practices, specific for

Android mobile application development. They performed scenarios, with and without these practices,

and measured the energy consumption of each scenario.

• HTTP Request : HTTP requests are one of the most important among many methods for accessing

the Internet. The study concluded that the bundle of small HTTP requests is a good practice for

a more energy-efficient app;

3The description of each energy pattern is retrieved from the research paper “Saving Energy on Mobile Devices by
Refactoring“ [7] by Gottschalk et al.

4The delta-B technique calculates the energy consumption through the battery level, which can be read out with the
Android BatteryManager API.

5Two mobile applications were used for the experiment; the average was considered.
6Two mobile devices were used for the experiment; the average was considered.
7The description of each programming practice is retrieved from the research paper “An Investigation into Energy-Saving

Programming Practices for Android Smartphone App Development“ [16] by Li et al.

11

• Use of Memory : Higher memory usage only slightly increases the average energy consumption of

each access. They concluded that allocating a larger cache to reduce the number of accesses to the

network could be considered a good practice;

• Performance Tips: The idea was to verify if improving run-time performance would also work

for reducing energy consumption. They concluded that most performance oriented best practices

regarding array lengths, static invocations, and field access also work for reducing energy.

Cruz et al. [8] performed a study to confirm whether or not 8 performance-based practices had an

impact on the energy consumed by an Android mobile application, using 6 applications. The study

concluded that 5 out of the 8 should be considered for a more energy-efficient mobile applications:8

• ViewHolder : This pattern is used to make a smoother scroll in List Views, with no lags;

• DrawAllocation: It is a bad practice to allocate objects during drawing operations since it can

create noticeable lags. The recommended fix is allocating objects upfront and reusing them for

each drawing operation;

• WakeLock : Wake locks can be used to prevent the screen or the CPU from entering a sleep state.

If an application fails to release a wake lock, or uses it without being strictly necessary, it can drain

the battery of the device;

• Recycle: Collections implemented using singleton resources should be released so that calls to

different collection objects can efficiently use these same resources;

• ObsoleteLayoutParam: During development, UI views might be refactored several times. In this

process, some parameters might be left unchanged even when they have no effect in the view. This

causes useless attribute processing at runtime.

In 2019, Cruz et al. [5] presented a catalog of energy patterns that was created based on energy-related

changes from developers, both on Android and iOS. These patterns present solutions for energy consump-

tion problems, for example waiting for a WiFi while on a cellular connection to perform a transfer, or

giving the user dark mode to reduce the impact of the screen on the energy consumption. The catalog

presents 22 energy patterns divided into 5 categories below:9

1. Low Power Related

(a) Power Save Mode: Provide an energy efficient mode in which user experience can drop for the

sake of better energy usage.

8The description of each energy pattern is retrieved from the research paper “Performance-based Guidelines for Energy
Efficient Mobile Applications“ [8].by Cruz et al.

9The description of each energy pattern is retrieved from the research paper “Catalog of Energy Patterns for Mobile
Applications” [5] by Cruz et al.

12

(b) Power Awareness: Have a different behavior when the device is connected/disconnected to a

power station or has different battery levels.

2. Screen Related

(a) Dark UI Colors: Provide a dark UI color theme to save battery on devices with AMOLED13

screens

(b) Enough Resolution: Collect or provide high accuracy data only when strictly necessary.

(c) No Screen Interaction: Whenever possible allow interaction without using the display.

(d) Avoid Extraneous Graphics and Animations: Avoid performing tasks that are either not vis-

ible, do not have a direct impact on the user experience to the user or quickly become obsolete.

3. Reduce the Number of Accesses/Transfers

(a) Dynamic Retry Delay : Whenever an attempt to access a resource fails, increase the time

interval before retrying to access the same resource.

(b) Race-to-idle: Release resources or services as soon as possible (such as wake locks, screen).

(c) Open Only When Necessary : Open/start resources/services only when they are strictly neces-

sary.

(d) Reduce Size: When transmitting data, reduce its size as much as possible.

(e) Batch Operations: Batch multiple operations, instead of putting the device into an active state

many times.

(f) Cache: Avoid performing unnecessary operations by using cache mechanisms.

(g) Decrease Rate: Increase time between syncs/sensor reads as much as possible.

4. User Related

(a) User Knows Best : Allow users to enable/disable certain features in order to save energy.

(b) Inform Users: Let the user know if the app is doing any battery intensive operation.

(c) Manual Sync, On Demand : Perform tasks exclusively when requested by the user.

5. Reduce Power Greedy Operations

(a) Push Over Poll : Use push notifications to receive updates from resources, instead of actively

querying resources.

13

(b) WiFi Over Cellular : Delay or disable heavy data connections until the device is connected to

a WiFi network.

(c) Suppress Logs: Avoid using intensive logging. Previous work has found that logging activity

at rates above one message per second significantly reduces energy efficiency.

(d) Sensor Fusion: Use data from low power sensors to infer whether new data needs to be

collected from high power sensors.

(e) Kill Abnormal Tasks: Provide means of interrupting energy greedy operations (e.g., using

timeouts, or users input).

(f) Avoid Extraneous Work : Graphics and animations are really important to improve the user

experience. However, they can also be battery intensive — use them with moderation.

Table 2.2 has a summarized list of every energy pattern, with the paper it is mentioned in, cited in

this section.

Energy Pattern Paper(s) Energy Pattern Paper(s)

Dark UI Colors [5–7] Enough Resolution [5]
CPU Offloading [6] No Screen Interaction [5]
HTTP Requests [6, 16] Avoid Extraneous Graphics and Animations [5]
Software Piracy [6] Dynamic Retry Delay [5]
I/O Operations [6] Race-to-idle [5]
Continuously Running App [6] Reduce Size [5]
Third-Party Advertising [7] Batch Operations [5]
Binding Resources Too Early [5, 7] Cache [5]
Statement Change [7] Decrease Rate [5]
Data Transfer [7] User Knows Best [5]
Use of Memory [16] Inform Users [5]
Performance Tips [16] Manual Sync, On Demand [5]
View Holder [8] Push Over Poll [5]
DrawAllocation [8] WiFi Over Cellular [5]
WakeLock [8] Suppress Logs [5]
Recycle [8] Sensor Fusion [5]
ObsoleteLayoutParam [8] Kill Abnormal Tasks [5]
Power Save Mode [5] Avoid Extraneous Work [5]
Power Awareness [5]

Table 2.2: Energy patterns summary.

Since the goal of this thesis is to implement a refactoring tool capable of automatically applying

energy patterns, not every energy pattern detailed in this section is eligible to be supported. The energy

patterns chosen should have the following characteristics:

Criterion 1. The energy improvement is achieved without user input (such as providing a low power

mode for the user to choose from (User Knows Best) or informing the user of any battery intensive

operation (Inform Users)).

14

Criterion 2. The transformation of applying the energy pattern does not alter a big portion of the source

code. The end result of this project is for the tool to be used by developers and they might be

reluctant to automatically apply sub substantial changes on their source code.

Criterion 3. A new functionality is not added to the mobile application (such as creating a Power Save

Mode).

2.3 Mobile Applications Environments and Languages

In 2017, a study done by Habchi et al. [17] compared the ratio of energy code smells in iOS and Android

mobile applications, concluding that the latter had a higher number of energy code smells in the source

code. The study also states that these differences are related to the platform and not to the differentiation

in programming language. The main languages for programming iOS mobile applications are Swift

and Objective-C while for Android mobile applications are Java and Kotlin. Since we are interested

in maximizing the impact of this project, we focused on Android mobile applications, targeting Java

applications.

The most used IDEs for Java development are IntelliJ, Eclipse and NetBeans. In terms of Android

application development, the IDEs Android Studio (built on IntelliJ), IntelliJ, and Eclipse are the best

choices, being that the first one is the official one for Android development and the one chosen for this

project. Note that, even though we focus on Android mobile applications, Android Studio can also be used

to develop iOS mobile applications. As long as these applications are written in the Java programming

language, the tool that we propose can be used.

The act of refactoring Java code can be done directly on the Java source code form or on the compiled

byte code. Since the goal of this project is to support programmers during the development phase to

identify opportunities to optimize energy consumption, our focus is on refactoring Java source code.

2.4 Refactoring of Java Source Code

Refactoring is the process of changing the internal structure of a program without changing its external

behaviour. It is mainly used to improve code quality and reliability. It has both benefits and risks and it

might be difficult to discover when to apply refactoring [18]. As presented in the study by Kim et al. [19],

while refactoring can be known to reduce the number of bugs in a program and improve maintainability

and reliability, it also has some risks associated. Such risks are, for example, the introduction of regression

bugs and the increase of the testing cost.

Refactoring Java code is such a popular activity that well-known IDEs, such as Eclipse [20] and

IntelliJ [21], have automatic refactoring support. There are several reasons to apply refactoring to a

15

program. For example, in an object-oriented language like the Java, a common problem is the strong

coupling between classes derived from inheritance. Kegel et al. [22] present a solution that refactors

inheritance with delegation.

There exist a few tools and libraries that address the needs of developers to perform automated

refactoring. In the remainder of this section, we describe those which we find more relevant to our goals.

We start with more general tools and finish with tools focused on energy-related problems.

AutoRefactor [23] is an open-source Eclipse plugin to automatically refactor Java source code.

Walkomd [24] is an open-source tool to resolve Java coding style issues. It can be added to the built

process, through Maven or Gradle.

Facebook pfff [25] is a set of tools to perform various activities, among which refactoring source

code. This tool has support for Java.

Kadabra [26] is a Java-to-Java compilation tool for code instrumentation and transformations con-

trolled by the Lara language. It uses SPOON [27], an open-source library that enables refactoring for

the Java language.

Code-Imp [28] is an automated search-based refactoring tool for the Java language. It implements

over 25 software quality metrics and 14 design-level transformations. It is not supported by an IDE and

it is only reachable from the command line.

Faultbuster [29] is an automated code smell refactoring tool set, independent from the programming

language. Its core element is a refactoring framework which identifies and restructures critical parts from

the viewpoint of refactoring. The refactorings are based on algorithms, supporting a total of 40 Java

coding issues. It provides plugins for popular IDEs (Eclipse, Netbeans and IntelliJ IDEA) in order to

reach developers. The plugin retrieves the problems from the refactoring framework and shows a list of

the problems to the developer.

AsyncDroid [30] is an Eclipse plugin which performs automated refactoring to transform existing

improperly-used async constructs into correct constructs. This code smell could result in memory leaks,

lost results and wasted energy.

Refactorty [31] is a tool for the detection and correction of code smells. It is based on the Eclipse

Modeling Framework (EMF).10 Refactory either uses IncQuery [32] patterns to query models for certain

structures or uses metrics-based calculations. It also generates quick fixes for possible refactorings which

then can be executed to resolve particular quality smells in each development phase.

JIAD (Java based Intent Aspect Detector) [33] is a tool that performs automated refactoring by

applying design patterns in the code. Each design pattern has a set of rules that aids in the detection of

potential changes. If a part of the source code satisfies the rules, an intent-aspect is created and, with

the design pattern name in question, it is transferred to an automatic transformation tool.

10EMF is an Eclipse-based modeling framework and code generation facility for building tools and other applications
based on a structured data model.

16

Other recent work is an algorithm to perform automated refactoring to the Null Object design

pattern [34]. It consists of, first, finding the possible candidates for fields that may not have been

initialized and, secondly, refactoring the code by applying the Null Object design pattern.

Energy-specific refactoring tools. The concern for reducing the energy consumed by devices has

grown in recent years and the number of refactoring tools targeting energy-related code smells has grown

along side this concern. Next, we summarize 7 refactoring tools/approaches, targeting energy code smells.

Leafactor [35, 36] is a tool that automatically refactors Android mobile applications source code to

reduce energy consumption. The main differences between Leafactor and the tool created in the context

of this thesis are the set of energy refactoring it supports and the IDE chosen for the plugin. Leafactor is

an Eclipse plugin while our tool is compatible with both Android Studio and IntelliJ. The 5 refactorings

supported by Leafactor are acquired from a previous study [8], by the same authors, about the effect

of performance-based practices on mobile application’ energy consumption. This study is presented

in Section 2.2 (Energy Patterns for Mobile Applications) and is listed in Table 2.2.

Chimera [37] covers 11 energy-greedy code patterns. The paper presenting Chimera [37] also com-

pares the energy savings of combinations of refactorings. It uses the Lint11 for the inspection phase and

Autorefactor [23] for the refactoring phase. A new aspect about this project is how broad the evaluation

is, inspecting more than 600 mobile applications. It covers the same code smells as Leafactor and the

four extra ones:12

• HashMap Usage: The usage of HashMap is discouraged since there is ArrayMap, a more ener-

gy-efficient data structure. The alteration consists in switching HashMap to ArrayMap;

• Excessive Method Calls: Method calls can have an impact on performance since it usually involves

pushing arguments to the call stack, storing the return value in the appropriate processor’s register,

and cleaning the stack afterwards. Removing method calls inside loops that can be extracted from

them can help performance;

• Member Ignoring Method : The issue here is the existence of a non-static method that could be

static. The methods that qualify for this change should not access any class fields, should not

directly invoke non-static methods and should not be overriding methods;

• Resource Leak : This issue covers three energy-greedy code patterns, all particular cases of Wakelock.

In this issue, the cases considered are the cases of Sensor, Camera and Media resources, which differ

from Wakelock in the way they are released.

AEON (Automated Android Energy-Efficiency Inspection) [38] is a support framework, compatible

11Lint is a code analysis tool that checks an Android project source files for potential bugs and optimization improvements
for correctness, security, performance, usability, accessibility, and internationalization: developer.android.com/studio/

write/lint.
12The description of the refactorings are retrieved from the paper “Energy Refactorings for Android in the Large and in

the Wild“ [37] by Couto et al.

17

developer.android.com/studio/write/lint
developer.android.com/studio/write/lint

with IntelliJ and Android Studio. It automatically detects energy inefficiencies in Android mobile applica-

tions and helps developers fixing those inefficiencies. It also supports developers in verifying, refactoring

and profiling such inefficiencies.

EARMO [39] is an approach that detects and corrects energy-related anti-pattern in mobile ap-

plications, while accounting for energy consumption when performing the refactorings. It supports 8

anti-patterns within two categories: Object-oriented specific and Android-specific.13 The refactoring is

achieved with support from the refactoring-tool-support of Android Studio and Eclipse. When that was

not possible, the changes were applied manually.Anti-patterns considered include:

• Blob: A large class that absorbs most of the functionality of the system with very low cohesion

between its constituents;

• Lazy Class: Small classes with low complexity that do not justify their existence in the system;

• Long-parameter list : A class with one or more methods having a long list of parameters, specially

when two or more methods are sharing a long list of parameters that are semantically connected;

• Refuse Bequest : A subclass uses only a very limited functionality of the parent class;

• Speculative Generality : There is an abstract class created to anticipate further features, but it is

only extended by one class adding extra complexity to the design;

• Binding Resources too early : Refers to the initialization of high-energy-consumption components

of the device, e.g., GPS, WiFi before they can be used;

• HashMap usage: From API 19, Android platform provides ArrayMap which is an enhanced version

of the standard Java HashMap data structure in terms of memory usage. According to Android

documentation, it can effectively reduce the growth of the size of these arrays when used in maps

holding up to hundreds of items;

• Private getters and setters: Refers to the use of private getters and setters to access a field inside a

class decreasing the performance of the app because of simple inlining of Android virtual machine

that translates this call to a virtual method called, which is up to seven times slower than direct

field access.

aDoctor [40], a tool proposed by Palomba et al., is able to identify 15 Android-specific code smells

from a catalog by Reimann et al. [31]. It is built on top of Eclipse Java Development Toolkit (JDK). Later

on, aDoctor was extended as an Android Studio plugin supporting 5 energy-related refactorings [41]:14

• Durable WakeLock : To avoid unnecessary battery consumption, an idle Android device goes on

standby. When an app needs to keep the CPU active to complete some background work, the

Android API provides “wake-locks” that can be acquired to keep the device awake;

13The description of the anti-patterns is retrieved from the paper “EARMO: An Energy-Aware Refactoring Approach for
Mobile Apps“ [39] by Morales et al.

14The description of the refactorings are retrieved from the paper “Refactoring Android-specific Energy Smells: A Plugin
for Android Studio“ [40] by Iannone et al.

18

• Inefficient Data Structure: A HashMap’s key type parameter can be any Object subclass, typically

primitive types wrapper classes, like Integer. Almost all method calls on a HashMap let the Android

RunTime (ART) to apply the autoboxing continuously and unboxing (the automatic two-way con-

version between primitive type with their corresponding wrappers), that determines a non-trivial

computational overhead;

• Internal Setter : Setter methods are a fundamental component of Object-Oriented programming.

They usually accept a single argument that is assigned to an instance variable. A non-static method

of the same class that calls a setter of this kind (i.e., with only a single assignment) makes a useless

computational effort because it has the access rights to make a direct assignment on that property,

possibly causing an energy loss;

• Leaking Thread : The Android Runtime (ART) treats an active Thread instance as a Garbage

Collector (GC) root, meaning that its memory cannot be reclaimed. Whenever a Thread is stopped

(by calling stop() or interrupt()), it ceases to be treated as a GC root, becoming eligible for garbage

collection;

• Member Ignoring Method : According to the Java Memory Model, a static method is faster than

its equivalent non-static one: mainly because the caller object this reference is not passed to static

methods, so the reference resolution does not take place. A static method does not access any

internal properties (i.e., instance variables and non-static methods). Therefore, if a non-static

method does not access any internal properties of its belonging class, it should be set as a static

one.

A paper by Le Goaër presents a new category in Android lint entitled Greenness [42]. This category

has 11 checks15, which can be viewed as inspections in Android Studio:

• Everlasting Service: If someone calls Context#startService() then the system will retrieve the

service (creating it and calling its onCreate() method if needed) and then call its onStartCom-

mand(Intent, int, int) method with the arguments supplied by the client. The service will at this

point continue running until Context#stopService() or Service#stopSelf() is called. Failing to call

any of these methods leads to a serious energy leak;

• Dark UI : Developers are allowed to apply native themes for their app, or derive new ones from the

latter. This decision has a significant impact on energy consumption since displaying dark colors is

particularly beneficial for mobile devices with (AM)OLED screens;

• Battery-Efficient Location: Location awareness is one of the most popular features used by apps.

The fused location provider is one of the location APIs in Google Play services which combines

signals from GPS, WiFi, and cell networks, as well as accelerometer, gyroscope, magnetometer and

15The descriptions of the checks are retrieved from the paper “Enforcing Green Code With Android Lint“ [42] by Le
Goaër.

19

other sensors. It is officially recommended to maximize battery life;

• Sensor Leak : Most Android-powered devices have built- in sensors that measure motion, orientation,

and various environmental conditions. The common point of all these sensors is that they are

expensive while in use. Their common bug is to let the sensor unnecessarily process data when the

app enters an idle state, typically when paused or stopped;

• Sensor Coalesce: With SensorManager#registerListener(SensorEven tListener, Sensor, int) the

events are delivered as soon as possible. Instead, SensorManager#registerListener(SensorEventListener,

Sensor, int, int maxReportLatencyUs) allows events to stay temporarily in the hardware FIFO

(queue) before being delivered. The events can be stored in the hardware FIFO up to maxReport-

LatencyUs microseconds. Once one of the events in the FIFO needs to be reported, all of the events

in the FIFO are reported sequentially. Setting maxReportLatencyUs to a positive value allows to

reduce the number of interrupts the AP (Application Processor) receives, hence reducing power

consumption, as the AP can switch to a lower power state while the sensor is capturing the data;

• Bluetooth Low-Energy : In contrast to classic Bluetooth, Bluetooth Low Energy (BLE) is designed

to provide significantly lower power consumption. Its purpose is to save energy on both paired

devices but very few developers are aware of this alternative API;

• Internet In The Loop: Opening and closing internet connection continuously is extremely bat-

tery-inefficient since HTTP exchange is the most consuming operation of the network [14]. This

bug typically occurs when one obtain a new HttpURLConnection by calling URL.openConnection()

within a loop control structure (while, for, do-while, for-each);

• Durable Wake Lock : A wake lock is a mechanism to indicate that your application needs to have

the device stay on. The general principle is to obtain a wake lock, acquire it and finally release

it. Hence, the challenge here is to release the lock as soon as possible to avoid running down the

device’s battery excessively;

• Uncompressed Data Transmission: Transmitting a file over a network infrastructure without com-

pressing it consumes more energy than with compression;

• Rigid Alarm: Applications are strongly discouraged from using exact alarms unnecessarily as they

reduce the OS’s ability to minimize battery use;

• Service at Boot-time: Services are long-living operations, as components of the apps. However, they

can be started in isolation each time the device is next started, without the user’s acknowledgement.

This technique should be discouraged because the accumulation of these silent services results in

excessive battery depletion that remains unexplained from the end-user’s point of view.

HOT-PEPPER [43] is able to detect and correct 3 types of Android-specific code smells. It uses

PAPRIKA [44], a static tool analysis for Android apps for the detection and correction of code smells.

As a final step, HOT-PEPPER uses a tool called NAGA VIPER, to compute energy metrics and evaluate

20

the impact of corrected APKs16, being able to inform the developer which APK is the most energy-efficient

version, for a given scenario. The three code smells considered are:

• Internal Getter/Setter : Occurs when a field is accessed, within the declaring class, through a getter

and/or a setter. This indirect access to the field may decrease the performance of the app;

• Member Ignoring Method : This method does not access an object attribute or is not a constructor,

it is recommended to use a static method in order to increase performance. The static method

invocations are about 15%–20% faster than dynamic invocations;

• HashMap Usage: ArrayMap and SimpleArrayMap as replacements of the standard Java HashMap.

They are supposed to be more memory-efficient.

Figure 2.1 presents a summary of the 7 energy-specific refactoring tools discussed.

Figure 2.1: Energy-related refactoring tools.

16Android Application Package is the package file format used by the Android operating system.

21

22

3
EcoAndroid: An Android Studio

Plugin

Contents

3.1 Requirements . 25

3.2 Architecture . 26

3.3 Implementation . 30

23

24

This chapter presents EcoAndroid, the Android Studio plugin that we developed. Section 3.1 lists

functional and non-functional requirements, and Section 3.2 describes the architecture and the technology

choices made. Section 3.3 lists every energy pattern supported by EcoAndroid, showing an example for

each one.

3.1 Requirements

As described and justified in the previous chapter, our goal is to develop an Android Studio plugin that

can automatically refactor Java Android mobile applications so that they follow certain energy patterns.

This section presents requirements that the plugin must fulfill.

3.1.1 Functional Requirements

Process language elements Since the goal is to suggest improvements to the user code, we first need

a way to extract any element of the code that is relevant for the analysis, such as method calls and

method implementations. An IDE that provides the creation of plugins will usually provide some sort of

model to access and manipulate the elements in the code, which is the case of Android Studio (the IDE

selected for this project).

Find element scope For almost every pattern supported, it is necessary to know the scope where the

element is situated in (e.g., knowing how the assignments to variables used to invoke a parameter are

being done). Android Studio not only provides a way to access and manipulate the elements, but also a

form of seeing the relationships between the elements through abstract trees.

Create new elements The objective of the project is to perform automated refactoring, making it

necessary to alter, create or even delete elements in the source code. The IDE selected has a feature

allowing us to perform every change necessary.

Display warnings and messages to the user As a result of the inspection process, warnings and

messages should be displayed to the user in the exact place where the problem lays. Android Studio IDE

displays warnings in the source code as yellow highlights in the section of the problem.

Put the user in control The user should have the option to apply the proposed refactorings. If the

problem appears as a warning in the source code, the user can chose whether to apply the alterations or

not.

25

Allow the user to reverse refactorings The developer could wish to reverse the refactoring for some

reason. The environment chosen gives the user the option by using CTRL+Z or CMD+Z, depending on

the operating system.

3.1.2 Non-Functional Requirements

Integrate with an IDE The tool being integrated with a popular IDE has the potential to reach an

higher number of users. It also makes it easier for developers to use the tool, since it is part of an IDE

they are already using.

Extendable It should be possible to extend the tool so that it supports more patterns in the future.

This is important, since the community is still exploring new ways of writing energy-efficient mobile

applications.

Execute the tool in batch mode Even though the envisaged tool is interactive and integrated into

the IDE, it is desirable to run the tool in batch mode so that it can easily be executed on a large number

of projects. This is particularly useful to evaluate new features.

Give information to the user when the refactoring is too complex In some cases, the alterations

needed to fix the code smell might be too complex for a refactoring tool to apply. One solution is to give

information to the user, in the form of comments, so that users can perform the changes themselves if

they wish to do so. The insertion of comments is possible in Android Studio, making this feature possible.

Display all the warnings in a set of files Android Studio allows the user to inspect, one inspection

or a group of them, more than one file at the time. This makes it possible, for example, for the user to

inspect their whole project at once.

3.2 Architecture

EcoAndroid is a publicly-available Android Studio plugin1 that suggests automated refactorings with

the aim of reducing energy consumption of Java android applications. Android Studio is an integrated

development environment for Google’s Android operating system, built on JetBrains’ IntelliJ IDEA,

making EcoAndroid also compatible with IntelliJ. Android Studio is the official IDE for Android app

development, making it the best choice for maximizing the impact of our project. To the best of our

knowledge, there are no general-purpose refactoring plugins for Android Studio that can serve as the

basis for this project. Thus, to implement the refactorings of the source code, the Program Stucture

1Available in the JetBrains store: https://plugins.jetbrains.com/plugin/15637-ecoandroid.

26

https://plugins.jetbrains.com/plugin/15637-ecoandroid

Interface (PSI) [45] of IntelliJ is used. PSI is a layer of the IntelliJ Platform responsible for parsing files

and creating the syntactic and semantic code model. It creates PSI files, that are the root of a structure

representing the contents of a file as a hierarchy of elements in a particular programming language. PSI

is a read-write representation of the source code as a tree of elements corresponding to the structure of a

source file. The PSI can be modified by adding, replacing and deleting PSI elements. These features are

what allows the detection of possible energy improvements and the refactoring itself. The most common

way to inspect code using PSI is with a top-down navigation approach using a visitor, being the method

used by EcoAndroid. Since IntelliJ is an IDE for Java, and being PSI an layer of it, one of the languages

supported in this layer is the Java coding language. However, through the Custom Language Support

feature of the IDE, it is possible to extend the PSI to another language.

EcoAndroid is implemented as extending IntelliJ’s functionality: the functionality is added as an

<extension/> element in the plugin file plugin.xml.2 Our functionality is implemented through in-

spections where each one represents a case the plugin supports. An IntelliJ’s plugin can have two type

of inspections: a local inspection or a global inspection. As the names suggests, a local inspection looks

at only one file while a global inspection looks at a group of files. Due to this, a global inspection does

not appear as warning in the source code but needs to be run manually by the user. Since we do not

wish to alter a big portion of the source code, every energy pattern is implemented as a local inspection.

The results from the inspection can be viewed in two ways: a warning associated with the source code

currently being viewed; or a list of results of the IDE’s inspection task. In the latter way, the developer

can ask to inspect a file, a folder or even the whole project. They can also choose what inspections to

run. The plugin supports a total of 5 energy patterns, with a total of 10 cases. Each case is implemented

as one local inspection in the plugin.

Plugin Structure Figure 3.1 shows EcoAndroid’s structure. It is composed of 10 inspections, each

representing one case supported by EcoAndroid. Each case has always two classes associated with it:

an inspection class and a quick-fix class. The inspection class is responsible for detecting the code smell

while the quick-fix class is responsible for fixing the code smell.

2Plugin.xml is the plugin configuration file which has information about the actions and inspections done by the
plugin.

27

Figure 3.1: EcoAndroid structure.

User interaction process Figure 3.2 illustrates the process flow of the user interaction between the

developer and EcoAndroid. The plugin starts by performing a static analysis, aided by the PSI API.

The source code is represented as Abstract Syntax Trees (AST) (actions 1 and 2). If a code smell

is found, a warning is shown to the developer (action 3) and, if the they wish to do so (action 4),

the refactoring, which is also aided by the PSI API, is executed (action 5). A developer that wishes

to use the plugin can run it in two ways: either by opening the file they wish to inspect or by running

the inspection on a file, package or project. While in the first option, the warning simply appears in the

source code. The second option actually shows a list of the warnings making it easier for the developer

to see every problem. It is also possible for the developer to apply every refactoring automatically

(Analyze | CodeCleanup), although this approach was not taken when evaluating EcoAndroid.

Figure 3.2: EcoAndroid detection and refactoring process.

28

Methodology for supporting a new inspection. At the time of writing, EcoAndroid supports 10

cases. However, the plugins can be easily extended. The addition of new case, more precisely a local

inspection, follows these steps:

Step 1. Include the inspection in the plugin.xml file by adding a new <localInspection/> ele-

ment. (see Listing 3);

Step 2. Create the inspection file, a subclass of LocalInspectionTool.3 This class must be the one

registered in the previous step. (see Listing 4);

Step 3. Create the quick-fix file which will perform the refactoring, a subclass of LocalQuickFix.4

This is the class responsible for refactoring the source code, previously linked to the warning on the

inspection class. (see Listing 5).

Listings 3, 4 and 5 exemplify the addition of a refactoring — in this case, the refactoring associated

with the pattern Dynamic Wait Time, one of the cases supported by EcoAndroid. Listing 3 shows how

an inspection is added to the plugin configuration file, as an extension element. Listings 4 and 5 show an

example of how the inspection class, previously linked to the refactoring, sends the code smell information

to a class which deals with handling the refactoring process.

<idea-plugin>
...
<extensions defaultExtensionNs="com.intellij">

<localInspection
language="JAVA"
displayName="EcoAndroid: Dynamic Retry Delay Energy Pattern -

switching to a dynamic wait time between resource attempts"
groupPath="Java"
groupBundle="messages.InspectionsBundle"
groupKey="group.names.probable.bugs"
enabledByDefault="true"
level="WARNING"
implementationClass="DynamicRetryDelay.DynamicWaitTime.DynamicWaitTimeInspection"/>

...
</extensions>
...

</idea-plugin>

Listing 3: Supporting an inspection example - plugin.xml.

public class DynamicWaitTimeInspection extends LocalInspectionTool {
private DynamicWaitTimeQuickFix dynamicWaitTimeQuickFix;

public PsiElementVisitor buildVisitor(@NotNull ProblemsHolder holder,
boolean isOnTheFly) {

return new JavaElementVisitor() {
...
holder.registerProblem(timeVariable, DESCRIPTION_TEMPLATE_DYNAMIC_WAIT_TIME, dynamicWaitTimeQuickFix);
...

}

Listing 4: Supporting an inspection example - local inspection sub class.

3Fully qualified class name: com.intellij.codeInspection.LocalInspectionTool.
4Fully qualified class name: com.intellij.codeInspection.LocalQuickFix.

29

public class DynamicWaitTimeQuickFix implements LocalQuickFix { ... }

Listing 5: Supporting an inspection example - local quick-fix sub class.

3.3 Implementation

EcoAndroid supports a total of 5 energy patterns, divided in 10 separate cases, as represented in Fig-

ure 3.3. The energy patterns supported are a subset of the ones presented in the catalog by Cruz et al. [5],

which follow the criteria presented in Section 2.2. Out of the energy patterns that satisfy those criteria,

a set of 5 was chosen, taking into consideration how easy it is to support them. The energy patterns

are: Dynamic Retry Delay, Push Over Poll, Reduce Size, Cache, and Avoid Extraneous Graphics and

Animations. For some of these patterns, more than one case was implemented, as Figure 3.3 shows. The

cases with a gray background represent informational cases, which are refactorings that do not alter any

source code, opting to only inform the developer of the change by adding a //TODO comment. This type

of warning exist due to either the inability to implement the change or because the refactoring implied

too many changes to the source code.

The catalog [5] presents a list of GitHub commits in which alterations correspond to the application

of the energy patterns. During the development of EcoAndroid, the approach taken when supporting an

energy pattern was to support the alteration made by the commits shown in Cruz et al.’s catalog. Where

possible, every Java source case was covered. Every example shown in the subsections below is available

in the GitHub project for the EcoAndroid plugin.

Figure 3.3: Energy patterns supported by EcoAndroid. Cases with gray background represent informational
cases, where no source code is altered.

Warnings and comments. The messages displayed in EcoAndroid’s warnings follow a systematic

template, which is presented in the following box. The description template is the text shown to user

about the description of the problem found. The apply fix popup is the description of the action performed

by the quick-fix class — i.e., by the refactoring process.

30

Description Template : EcoAndroid: *ENERGY PATTERN NAME* [*ENERGY PATTERN CASE NAME*] can be

applied

Apply Fix popup : Apply pattern *ENERGY PATTERN NAME* [*ENERGY PATTERN CASE NAME*]

Figure 3.4 shows an example of the messages displayed by the plugin. The case represented is Dynamic

Wait Time.

Figure 3.4: EcoAndroid warning information example.

Even though it will be omitted in most of the following code listings, every refactoring performed by

the plugin inserts a comment summarizing the change and listing the files affected before the method

where the energy problem is detected (see the box below). Comments will be shown when describing

Information Warnings, e.g. the one regarding the Dynamic Wait Time case and the Push Over Poll case.

/*

* EcoAndroid: *ENERGY PATTERN NAME* ENERGY PATTERN APPLIED

* The goal is to *ENERGY PATTERN DESCRIPTION*

* Application changed java file *JAVA FILE* [and xml file *XML FILE*]

*/

Figure 3.5 shows an example of the comment added by EcoAndroid to explain the alterations made.

The case exemplified is Dynamic Wait Time.

Figure 3.5: EcoAndroid comment example.

We present the 5 energy patterns in the next 5 subsections. For each pattern, we list the consid-

ered cases, and for each case, we describe the case, the implemented inspection, and the implemented

refactoring.

31

3.3.1 Dynamic Retry Delay

The objective of the Dynamic Retry Delay pattern is to increase the interval between attempts to access

a resource, avoiding trying to constantly access a resource that most likely went down. If an attempt

to access a resource fails, the time between attempts should be increased, until a certain value, in order

to space the access to the resource. If the access is successful, the interval should not be changed. The

catalog has two Java examples of the application of this pattern. However, only one case was supported

because the second one implied too many alterations to the source code. A Kotlin example from the

catalog was also translated to Java, as it was the example given in the project document.

Dynamic Retry Delay cases

• Dynamic Wait Time

• Check Network

3.3.1.1 Dynamic Wait Time

We call the first case of the Dynamic Retry Delay energy pattern Dynamic Wait Time. The idea is to

grow the interval between thread sleeps exponentially, instead of keeping it constant (thus decreasing the

chance of trying to access a resource that most likely went down). The example presented in Listing 6

was retrieved from the mobile application Simple Task5 and translated from Kotlin.

private void startLongPoll(String polledFile, int backOffSeconds) {
pollingTask = new Thread () {

public void run() {
long start_time = System.currentTimeMillis();
long longpoll_timeout = 480;
int newBackoffSeconds = 0;
if(backOffSeconds != 0) {

log.info("Backing off for "+ backOffSeconds + " seconds");
try {

Thread.sleep((long) (backOffSeconds * 1000));

} catch (InterruptedException e) {
e.printStackTrace();

}
}
if(System.currentTimeMillis() - start_time < longpoll_timeout * 1000) {

log.info("Longpoll timed out to quick, backing off for 60 seconds");
newBackoffSeconds = 60;

}
else {

log.info("Longpoll IO exception, restarting backing off {} seconds"
+ 30);
newBackoffSeconds = 30;

}
startLongPoll(polledFile, newBackoffSeconds);

...
}

Listing 6: Dynamic Wait Time - code smell detected.

5Commit: https://github.com/mpcjanssen/simpletask-android/commit/1b674be880439bb176c285509efbd96629270f70.

32

 https://github.com/mpcjanssen/simpletask-android/commit/1b674be880439bb176c285509efbd96629270f70

Dynamic Wait Time inspection

Step 1. Look for Thread#sleep6 method calls;

Step 2. Verify if a variable is being used to invoke the method;

Step 3. Determine the origin of the variable;

Parameter: check every method call to the method the parameter belongs to and verify how the

assignments were made. If they are being done statically, continue the inspection;

Variable: either a local or a global variable. If the assignments to the variable are being done

statically, continue the inspection.

Step 4. If an informational warning is not already present in the code, two warnings are presented

to the developer: an informational warning (Listing 7) and a warning whose refactoring alters the

source code (Listing 8).

In the example shown in Listing 6, there is a sleep invocation, using the backOffSeconds variable.

This variable comes from the parameter of the method startLongPoll. As it is a parameter, the inspec-

tion looks for method calls of the method startLongPoll in the current Java file. As we can observe from

the listing, there is a method call which uses the newBackOffSeconds variable to invoke the method.

The variables are assigned with constant values, either 30 or 60. With this scenario, the plugin flags

this as a problem, showing up as a warning on the variable backOffSeconds. Since the code does not

already have an informational warning about this pattern added by the plugin, EcoAndroid presents the

user with two warnings. The user then has the choice to apply two different solutions: the first is based

on the android.work package (and EcoAndroid only introduces information as a comment); the second

refactors the code so that a dynamic wait time is used.

1 “EcoAndroid: Dynamic Retry Delay Energy Pattern - information about a new ap-

proach to implement it”

pollingTask = new Thread () {
/*
* TODO EcoAndroid
* DYNAMIC RETRY DELAY ENERGY PATTERN INFO WARNING
* Another way to implement a mechanism that manages the execution of tasks and
their retrying, if said task fails
* This approach uses the android.work package
* If you wish to know more about this topic, read the following information:
* https://developer.android.com/topic/libraries/architecture/workmanager
/how-to/define-work
*/
public void run() { ... }

Listing 7: Dynamic Wait Time - energy pattern applied (information about a new approach to implement it).

The informational warning given to the developer does not alter any source code, only adding a com-

6Fully qualified class name: java.lang.Thread.

33

ment with a link to further explain how to use the WorkRequest7 class instead of using Thread class.

2 “EcoAndroid: Dynamic Retry Delay Energy Pattern - switching to a dynamic wait time

between resource attempts case”

private void startLongPoll(String polledFile, int backOffSeconds) {
pollingTask = new Thread () {

int accessAttempts = 0;
public void run() {

...
if(System.currentTimeMillis() - start_time < longpoll_timeout * 1000) {

log.info("Longpoll timed out to quick, backing off for 60 seconds");
accessAttempts++;

}
else {

log.info("Longpoll IO exception, restarting backing off {} seconds"
+ 30);
accessAttempts++;

}
newBackoffSeconds = (int) (60.0 * (Math.pow(2.0, (double) accessAttempts)
- 1.0));
startLongPoll(polledFile, newBackoffSeconds);

...
}

Listing 8: Dynamic Wait Time - energy pattern applied (switching to a dynamic wait time between resource
attempts case).

Dynamic Wait Time refactoring (switching to a dynamic wait time between resource at-

tempts case)

Step 1. Create the accessAttempts variable;

Step 2. Alter every dynamic assignment of the variable used to put the thread to sleep to an incre-

mental assignment of the accessAttempts variable;

Step 3. Compute a value to put the thread to sleep.

The second option presented to the developer alters the source code, changing every static variable

assignment to a dynamic one. It starts by creating a variable named accessAttempts, initialized with

0. As the name suggests, the variable holds the number of access attempts to a resource. Afterwards,

every newBackOffSeconds assignment to a constant value is altered to an incremental assignment of

the accessAttempts. At last, the number of access attempts is altered to a value of time with an

upper bound. Listing 8 represents the application of the Dynamic Wait Time pattern, which applies the

alterations described.

3.3.1.2 Check Network

The second case implemented is called Check Network. This refactoring is retrieved from the mobile

application Episodes.8 The method to apply this energy pattern was deprecated so the refactoring was

7Fully qualified class name: androidx.work.WorkRequest.
8Commit: https://github.com/jamienicol/episodes/commit/e004294d1b2a4d05c49157f1ddec32c0071345a5.

34

https://github.com/jamienicol/episodes/commit/e004294d1b2a4d05c49157f1ddec32c0071345a5

adapted to work with the last version of the Android library. The Check Network case’s idea is to avoid

processing of a request without an active network connection. Whenever there is a request to process, the

application should verify if there is network connection before processing it. This prevents the processing

from being stuck on unresponsive internet method calls.

public static class Service extends IntentService {
...

@Override

protected void onHandleIntent (Intent intent) { ... }

...
}

Listing 9: Check Network - code smell detected.

Check Network inspection

Step 1. Search for implementations overriding the method BroadcastReceiver#onHandleIntent9.

The onHandleIntent method is invoked on the worker thread with a request to process;

Step 2. Verify if the body of the method, or any method it invokes, onHandleIntent does not invoke

the method getActiveNetwork stating an intention to verify if there is an active network;

Step 3. Check if the AndroidManifest.xml10 of the mobile application has permission to use inter-

net.

Exceptions: If the getActiveNetwork’s method call is located deeper into the method calls, it will show

a warning to the developer.

public static class Service extends IntentService {
...
@Override
protected void onHandleIntent(Intent intent) {

if (hasActiveNetwork()){...
else {

NetworkStateReceiver networkStateReceiver = new NetworkStateReceiver();
ConnectivityManager connectivityManager = (ConnectivityManager)

getApplicationContext().getSystemService(Context.CONNECTIVITY_SERVICE);
networkStateReceiver.enable(getApplicationContext());
networkStateReceiver.setService(this);
connectivityManager.registerDefaultNetworkCallback(networkStateReceiver);

}
}

protected boolean hasActiveNetwork() {
final ConnectivityManager connManager = (ConnectivityManager)

getApplicationContext().getSystemService(Context.CONNECTIVITY_SERVICE);
Network activeNetwork = connManager.getActiveNetwork();
return (activeNetwork != null);

}
...

}

Listing 10: Check Network - energy pattern applied (onHandleIntent and hasActiveNetwork methods).

9Fully qualified class name: android.content.BroadcastReceiver.
10AndroidManifest.xml describes essential information about your app to the Android build tools, the Android

operating system, and Google Play.

35

public static class Service extends IntentService {
...
public class NetworkStateReceiver extends ConnectivityManager.NetworkCallback {

private Service service;
public void setService(Service newService) { service = newService; }

@Override
public void onAvailable(Network network) { ... }

// EcoAndroid: Method to "turn on" this class
public void enable(Context context) {

ConnectivityManager connectivityManager = (ConnectivityManager)
context.getSystemService(Context.CONNECTIVITY_SERVICE;

connectivityManager.registerDefaultNetworkCallback(this);
}

// EcoAndroid: Method to "turn off" this class
public void disable(Context context) {

ConnectivityManager connectivityManager = (ConnectivityManager)
context.getSystemService(Context.CONNECTIVITY_SERVICE;

connectivityManager.unregisterNetworkCallback(this);
}

}
...

}

Listing 11: Check Network - energy pattern applied (NetworkStateReceiver class).

public void onAvailable(Network network) {
// EcoAndroid: If there is an active network connection, this method will
// "turn off" this class and arrange to process the request
if (service.hasActiveNetwork()) {

Context context = getApplicationContext();
disable(context);
final AlarmManager alarmManager = (AlarmManager) context.getSystemService(Context.ALARM_SERVICE);
final Intent innerIntent = new Intent(context, Service.class);
final PendingIntent pendingIntent = PendingIntent.getService(context, 0, innerIntent, 0);
SharedPreferences preferences = context.getSharedPreferences(context.getPackageName(), Context.MODE_PRIVATE);
boolean autoRefreshEnabled = preferences.getBoolean("pref_auto_refresh_enabled", false);
final String hours = preferences.getString("pref_auto_refresh_period", "0");
long hoursLong = Long.parseLong(hours) * 60 * 60 * 1000;
if (autoRefreshEnabled && hoursLong != 0) {

final long alarmTime = preferences.getLong("last_auto_refresh_time", 0) + hoursLong;
alarmManager.set(AlarmManager.RTC, alarmTime, pendingIntent);

} else {
alarmManager.cancel(pendingIntent);

}

Listing 12: Check Network - energy pattern applied (onAvailable method).

Check Network refactoring

Step 1. Create a method to check if there is an active network connection;

Step 2. Split the onHandleIntent’s code path between having a network connection or not;

Step 3. In the case of not having an active network connection, create a class to deal with it and

wait for a connection;

Step 4. Create NetworkStateReceiver class with three methods:

onAvailable: schedule the processing of the request and invoke the disable method;

enable: register the class in the connectivity manager;

disable: unregister the class in the connectivity manager.

36

The first two alterations done to the source code are the creation of the a method that checks if

there is an active network connection — hasActiveNetwork()— and the creation of an if statement in

the onHandleIntent’s method body that distinguishes the code path whether there is an connection

or not — if (hasActiveNetwork()). The second alteration done to code is the definition of the class

NetworkStateReceiver. This class is of subtype NetworkCallback11 and implements three methods:

onAvailable, enable and disable. The onAvailable method, whose code is presented in Listing 12,

is called when a framework connects and a new network is ready to be used. The enable method starts

up the class, registering the callback in the connectivity manager. The disable method shuts down the

class, unregistering the callback in the connectivity manager. Both of these methods implementations

are presented in Listing 11.

3.3.2 Push Over Poll

A push notification establishes and maintains a connection with a server over the Internet and allows the

server to send data to the application when something has actually changed on the server. On the other

hand, Polling is the continuous checking of other programs or devices by one program or device to see

what state they are in, usually to see whether they are still connected or want to communicate. The goal

of this energy pattern is to use push notifications instead of actively querying resources, such as polling.

This transformation is specifically beneficial when there is not a significant number of notifications, as

shown by Dinh and Boonkrong [46], who compare battery usage between these two techniques. If there

is not a significant number of notifications coming in, pushing notifications will be a better choice since

it is not always actively querying resources. If there are frequent notifications coming in, the difference

between these two mechanisms is not as significant. The catalog did not have any example of this energy

pattern. In order to support this pattern, a common way of doing polling, described in the Android

documentation, is flagged as a code smell.

Push Over Poll cases

• Informational Warning FCM

3.3.2.1 Informational Warning FCM

According to the Android documentation [47], Firebase Cloud Messaging (FCM) is the mechanism to use

when choosing push notifications. Since FCM requires developers to register their applications, EcoAn-

droid only creates an informational warning instead of performing code changes. When using a polling

mechanism, Android documentation12 states that there are three common ways to define background

work:
11Fully qualified class name: android.net.ConnectivyManager.NetworkCallback.
12Guide to background processing: https://developer.android.com/guide/background.

37

https://developer.android.com/guide/background

• Registering a broadcast receiver in the manifest file;

• Scheduling a repeating alarm using AlarmManager13;

• Scheduling a background task using either WorkManager14 or JobScheduler15.

Currently, the plugin detects the second approach as a polling mechanism. This case deals with

objects of the AlarmManager setting repeating alarms, as seen in Listing 13.

public void setAlarm(Context context) {
AlarmManager am =(AlarmManager)context.getSystemService(Context.ALARM_SERVICE);
Intent i = new Intent(context, Alarm.class);
PendingIntent pi = PendingIntent.getBroadcast(context, 0, i, 0);

am.setRepeating(AlarmManager.RTC WAKEUP, System.currentTimeMillis(), 1000 * 60 * 10, pi);

}

Listing 13: Informational Warning FCM - code smell detected.

Informational Warning FCM inspection

Step 1. Search for invocations of the method AlarmManager#setRepeating;

Step 2. Verify if an EcoAndroid informational comment is not already before the method.

/*
* TODO EcoAndroid
* PUSH OVER POLL ENERGY PATTERN INFO WARNING
* An alternative to a polling service is a to use push notifications
* One way to implement them is to use Firebase Cloud Messaging
* FCM uses an API and works with Android Studio 1.4 or higher with Gradle projects
* If you wish to know more about this topic, read the following information:
* https://firebase.google.com/docs/cloud-messaging/android/client
*/
public void setAlarm(Context context) { ... }

Listing 14: Informational Warning FCM - energy pattern applied.

Informational Warning FCM refactoring

Step. Insert EcoAndroid informational comment.

3.3.3 Reduce Size

The goal of the pattern Reduce Size is to reduce the size of the data being transferred as much as

possible, therefore reducing the energy being used in the transfer. The change to be made consists in

transforming/compressing the data being transmitted, whenever a data transfer occurs. The catalog did

not have any Java examples that we could use, so the example described in the Example section of the

Reduce Size energy pattern was implemented.

13Fully qualified class name: android.app.AlarmManager.
14Fully qualified class name: androidx.work.WorkManager.
15Fully qualified class name: android.app.job.JobScheduler.

38

Reduce Size cases

• GZIP Compression

3.3.3.1 GZIP Compression

In the case of GZIP Compression of the Reduce Size’s energy pattern, the intention is to request that

any given response from an URL Connection is compressed by the GZIP scheme.

HttpURLConnection con = (HttpURLConnection) url. openConnection() ;

System.out.println("Length : " + con.getContentLength());
Reader reader = new InputStreamReader(con.getInputStream());

Listing 15: GZIP Compression - code smell detected.

GZIP Compression inspection

Step 1. Search for an opened HttpUrlConnection16;

Step 2. Determine whether the connection is receiving a stream;

Step 3. Verify if the input stream is being requested as compressed by the GZIP scheme. If it isn’t,

a warning is presented by the plugin.

Exceptions: if the invocation of the method openConnection) happens inside the declaration of a re-

source in a try-with-resources statement, the plugin will not show a warning. This is because the

alterations for this pattern imply an if statement, which can not be added to the resource declaration

portion of the try-with-resources statement.

As we can see from the example shown in Listing 15, there is an open connection receiving an input

stream that is not requested to be compressed. When going through all the steps necessary by the

inspection, EcoAndroid shows a warning in the source code.

HttpURLConnection con = (HttpURLConnection) url.openConnection();
con.setRequestProperty("Accept-Encoding", "gzip");
System.out.println("Length : " + con.getContentLength());
Reader reader;
if ("gzip".equals(con.getContentEncoding())) {

reader = new InputStreamReader(new GZIPInputStream(con.getInputStream()));
} else {

reader = new InputStreamReader(con.getInputStream());
}

Listing 16: GZIP Compression - energy pattern applied.

GZIP Compression refactoring

Step 1. Invoke URLConnection#setRequestProperty method to accept stream compressed by the

GZIP scheme;

16Fully qualified class name: java.net.URLConnection.

39

Step 2. Create an if statement to correctly receive the input stream, whether it comes compressed

or not.

3.3.4 Cache

The goal of the Cache pattern is to store data that is being used frequently.This leads to a lower energy

consumption since it reduces the amount of code executed and a lower number of accesses to retrieve

information. The catalog has six Java implementations of the Cache energy pattern. Four of these are

supported by the EcoAndroid while two are not. One is due to altering involving SQL files, which is not

supported by the PSI API, and the other one is due to changing more than one file — the case created

an variable to store the last value of a variable (similar to Check Metadata), but over two class files.

Cache cases

• Check Metadata

• Check Layout Size

• SSL Session Caching

• Passive Provider Location

• URL Caching

3.3.4.1 Check Metadata

In the specific subcase of Check Metadata, the intention is to check the data received by the method

BroadcastReceiver#onReceive. On the mehod onReceive, the idea is to verify the data retrieved

from the parameter intent and, if nothing changed since the last time the method was performed, no

code is executed. If something changes, then the required actions can be taken. The transformation

Check Metadata is based on a commit to the mobile application GadgetBridge17.

public class MusicPlaybackReceiver extends BroadcastReceiver { ...
@Override

public void onReceive (Context context, Intent intent) {

String artist = intent.getStringExtra("artist");
String album = intent.getStringExtra("album");
String track = intent.getStringExtra("track");
MusicSpec musicSpec = new MusicSpec();
LOG.info("Current track: " + artist + ", " + album + ", " + track);
musicSpec.artist = artist;
musicSpec.album = album;
musicSpec.track = track;

}
}

Listing 17: Check Metadata - code smell detected.

17Commit: https://github.com/Freeyourgadget/Gadgetbridge/commit/d1a62968f69ebb7dd6dd7cb273a06aa0761681a4.

40

https://github.com/Freeyourgadget/Gadgetbridge/commit/d1a62968f69ebb7dd6dd7cb273a06aa0761681a4

Check Metadata inspection

Step 1. Search for implementations that override the BroadcastReceiver#onReceive18 method;

Step 2. Determine if the method retrieves information from the parameter intent and saves it in a

local variable;

Step 3. Verify if the variables are being checked before executing the method. If not, a warning is

shown.

Exceptions: there exist a few scenarios where this pattern should not be applied. For example, when the

onReceive method invokes methods from either the class NotificationManager19 or DownloadManager20.

In Listing 17, the implementation of the method onReceive is saving information from the parameter

intent in three local variables: artist, album and track. Since it is not verifying any of these variables

before executing the method, the plugin detects a problem and shows a warning.

public class MusicPlaybackReceiver extends BroadcastReceiver {
private String lasttrack = null;
private String lastalbum = null;
private String lastartist = null;
...
@Override
public void onReceive(Context context, Intent intent) {

if (lastartist.equals(intent.getStringExtra("artist")) && lastalbum.equals(intent.getStringExtra("album")) &&
lasttrack.equals(intent.getStringExtra("track"))) {

// EcoAndroid: nothing has changed; we can safely return
return;

}
updateValues(intent);
MusicSpec musicSpec = new MusicSpec();
LOG.info("Current track: " + lastartist + ", " + lastalbum + ", " + lasttrack);
musicSpec.artist = lastartist;
musicSpec.album = lastalbum;
musicSpec.track = lasttrack;

}
private void updateValues(Intent intent) {

lastartist = intent.getStringExtra("artist");
lastalbum = intent.getStringExtra("album");
lasttrack = intent.getStringExtra("track");

}
}

Listing 18: Check Metadata - energy pattern applied.

Check Metadata refactoring

Step 1. Create variables to store the previous values of the data retrieved from the parameter intent;

Step 2. Add an if statement to verify if there were any alterations since the last execution of the

method;

Step 3. Create auxiliary method to update storing values, updateValues(Intent).

Step 4. Alter every reference to old variable to new variable, (e.g. track→lasttrack).

18Fully qualified class name: android.content.BroadcastReceiver.
19Fully qualified class name: android.app.NotificationManager.
20Fully qualified class name: android.app.DownloadManager.

41

3.3.4.2 Check Layout Size

The Check Layout Size case aims to prevent execution of code that resets the size of a view, when the

view’s measures are at 0. This case, present in the catalog, was retrieved from the Shattered-Pixel-

Dungeon mobile application21.

private void updateDisplaySize() {

float dispWidth = view.getMeasuredWidth();
float dispHeight = view.getMeasuredHeight();
float dispRatio = dispWidth / (float) dispHeight;
float renderWidth = dispRatio > 1 ? PixelScene.MIN_WIDTH_L : PixelScene.MIN_WIDTH_P;
float renderHeight = dispRatio > 1 ? PixelScene.MIN_HEIGHT_L : PixelScene.MIN_HEIGHT_P;
if (powerSaver()){

int maxZoom = (int) Math.min(dispWidth/renderWidth, dispHeight/renderHeight);
renderWidth *= Math.max(2, Math.round(1f + maxZoom * 0.4f));
renderHeight *= Math.max(2, Math.round(1f + maxZoom * 0.4f));
final int finalW = Math.round(renderWidth);
final int finalH = Math.round(renderHeight);
if (finalW != width finalH != height){

runOnUiThread(new Runnable() {
@Override
public void run() {

view.getHolder().setFixedSize(finalW, finalH);
}

...
}

Listing 19: Check Layout Size - code smell detected.

Check Layout Size inspection

Step 1. Search method calls to View#getMeasuredWidth22 or View#getMeasuredHeight;

Step 2. Check if the values returned from the method calls are being used to invoke the method

SurfaceHolder#setFixedSize;

Step 3. Verify if the values from the first invocation are not verified to being zero along the method’s

body.

In Listing 19, we show an invocation to the method getMeasuredWidth and getMeasuredHeight,

each saved in a local variable, respectively. Those local variables are then used to invoke the method

setFixedSize through other local variables (dispthWidth→renderWidth→finalW and dispthHeight→

renderHeight→finalH).

private void updateDisplaySize() {
if (view.getMeasuredWidth() == 0 view.getMeasuredHeight() == 0) {

return;
}
...

}

Listing 20: Check Layout Size - energy pattern applied.

21Commit: https://github.com/00-Evan/shattered-pixel-dungeon/commit/5491f315f6080f6ce9883638c5a7339c19a14828.
22Fully qualified class name: android.view.View.

42

https://github.com/00-Evan/shattered-pixel-dungeon/commit/5491f315f6080f6ce9883638c5a7339c19a14828

Check Layout Size refactoring

Step. Create an if statement before the getMeasuredWidth or getMeasuredHeight method calls

that checks whether if one of the view’s measures are zero.

3.3.4.3 SSL Session Caching

The idea behind the SSL Session Caching case is to increase the cache size to a value as large as possible.

Li et al. [16] performed a study about the energy consumption of increasing the cache size. They concluded

that even if allocating more memory means an higher energy consumption, the difference is not as big

and could even be worth if it means making fewer accesses to the network. In order to achieve this, every

time the inspection finds an initialization of an SSLContext, it verifies if the size of the cache size is not

already set to 0 (which means the cache size is as big as it can be). If it does not, it adds the call to set

the cache size to 0.

SSLContext context = SSLContext.getInstance("TLS");

context.init(keyManagers, trustManagers, null) ;

Listing 21: SSL Session Caching - code smell detected.

SSL Session Caching inspection

Step 1. Find an initialization of an SSLContext23;

Step 2. Verify if the context being initialized is not already altering the cache size to 0.

SSLContext context = SSLContext.getInstance("TLS");
context.init(keyManagers, trustManagers, null);
SSLSessionContext sslSessionContext = context.getServerSessionContext();
int sessionCacheSize = sslSessionContext.getSessionCacheSize();
if (sessionCacheSize > 0) {

// EcoAndroid: the next line makes the cache size of an SSL Session unlimited
sslSessionContext.setSessionCacheSize(0);

}

Listing 22: SSL Session Caching - energy pattern applied.

SSL Session Caching refactoring

Step 1. Create a local variable called sslSessionContext, which holds the server session context;

Step 2. Create a local variable named sessionCacheSize, which has the size of the cache;

Step 3. Insert an if statement to make the cache’s size unlimited, if it is not already.

23Fully qualified class name: javax.net.SSLContext.

43

3.3.4.4 Passive Provider Location

The LocationManager24 class job is to provide access to the system location services. It has three differ-

ent type of providers: GPS PROVIDER, NETWORK PROVIDER and PASSIVE PROVIDER. This last one can be

used to passively receive location updates when other applications or services request them without actu-

ally requesting the locations yourself. This provider will only return locations generated by other provider,

leading to a lower energy consumption of the mobile application. This case is called Passive Provider

Location and it is based on the transformation found in the mobile application K925. The transformation

changes the parameter provider in requestLocationUpdates method calls of the LocationManager

class. The Passive Provider Location presents the developer with two solutions, depending on certain

specifications:

1 EcoAndroid: Cache - possible switch to PASSIVE PROVIDER

private void setLocationManager() { ...
if(locationManager.isProviderEnabled(LocationManager.NETWORK_PROVIDER)) {

locationManager.requestLocationUpdates(LocationManager.NETWORK PROVIDER) , 60000, 50, locationListener);

}
}

Listing 23: Passive Provider Location - code smell detected (possible switch to PASSIV E PROV IDER).

2 EcoAndroid: Cache - switching to PASSIVE PROVIDER

locationManager.requestLocationUpdates(LocationManager.NETWORK PROVIDER) , 60000, 50, locationListener);

Listing 24: Passive Provider Location - code smell detected (switching to PASSIV E PROV IDER).

Passive Provider Location inspection

Step 1. Search for LocationManager#requestLocationUpdates;

Step 2. Verify the first parameter given:

PASSIVE PROVIDER: this provider is the one that consumes less energy out of the three. If the method is

being invoked with it, the inspection stops here;

anything else: if the method is being invoked with any of these, the inspection continues.

Step 3. Verify if the requestLocationUpdate’s invocation is done inside the condition of an if

statement. If not, the inspection stops here;

Step 4. Inspect if, before this method call, exists an explicit intention for a desired provider;

No explicit intention: a warning, whose solution alters the source code, can be shown to the developer (List-

ing 23);

24Fully qualified class name: android.location.LocationManager.
25Commit: https://github.com/k9mail/k-9/commit/43c38a047feedda4720af5bfbc188a33f8dfaced.

44

https://github.com/k9mail/k-9/commit/43c38a047feedda4720af5bfbc188a33f8dfaced

Explicit intention: examine if there is not already an EcoAndroid informational comment before the

method. An explicit intention is said to be found if there is an invocation to

LocationManager#isProviderEnabled prior to the LocationManager#requestLocationUpdates

invocation. If not, an informational warning can be shown. (Listing 24).

/*
* TODO EcoAndroid
* CACHE ENERGY PATTERN INFO WARNING
* Another type of provider for LocationManager is PASSIVE_PROVIDER
* This provider uses a cache mechanism to retrieve the location,
which consumes less energy then the other options
* This approach uses the android.location package
* If you wish to know more about this topic, read the following information:
* https://developer.android.com/reference/android/location
/LocationManager#PASSIVE_PROVIDER
*/

private void setLocationManager() { ... }

Listing 25: Passive Provider Location - energy pattern applied (possible switch to PASSIV E PROV IDER).

/*
* EcoAndroid: This next piece of code presents two ways to implement a location
manager that spends less energy.
* 1 - Switching to PassiveProvider
* 2 - Using the criteria class to get the best provider for the needs requested
(with the need for POWER_LOW)
* The second option has been giving "priority". However, the goal is for the
programmer to chose the one which fits bets.
* If you wish to know more, please read:
https://developer.android.com/reference/android/location/LocationManager
*/
boolean flagEcoAndroid = false;
if (flagEcoAndroid) {

Criteria criteria = new Criteria();
criteria.setPowerRequirement(Criteria.POWER_LOW);
String lm = locationManager.getBestProvider(criteria, true);
locationManager.requestLocationUpdates(lm, 60000, 50, locationListener);

} else {
locationManager.requestLocationUpdates(LocationManager.PASSIVE_PROVIDER,
60000, 50, locationListener);

}

Listing 26: Passive Provider Location - energy pattern applied (switching to PASSIV E PROV IDER).

The mobile application from which this case originated from only altered the type of provider when

requesting a location update. However, during one of the evaluation phases presented in Section 4.4, we

learned about another way to save energy: if the user does not wish to use PASSIVE PROVIDER, the user

can set a requirement for POWER LOW, as presented in Listing 26. In the option that alters the source

code, the AndroidManifest.xml file needs to have permission to ACCESS FINE LOCATION (Listing 27).

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

Listing 27: Passive Provider Location - AndroidManifest.xml.

45

Passive Provider Location refactoring

Step 1. Create a local variable called flagEcoAndroid;

Step 2. Create an if statement for both possible solutions given to the user:

Criter.POWER LOW: ask for a provider with a criteria for low power consumption;

PASSIVE PROVIDER: use this provider directly.

Step 3. Insert a comment explaining the alterations and both options given to the user.

3.3.4.5 URL Caching

The idea behind the URL Caching case is to prevent processing an URL response that was already

processed. The transformation is based on the Android documentation about avoiding redundant down-

loads.26

public class HttpConnect{
...

HttpsURLConnection urlCon = (HttpsURLConnection)urlObj.openConnection();

...
}

Listing 28: URL Caching - code smell detected.

URL Caching inspection

Step 1. Search for an opened URL27 connection;

Step 2. Verify if said connection is retrieving the time the connection was last modified.

Exceptions: the inspection does not flag cases where the URL connection is open on the expression of a

return statement.

public class HttpConnect{
static long lastUpdateTime = 0;
...
HttpsURLConnection urlCon = (HttpsURLConnection) urlObj.openConnection();
long currentTime = System.currentTimeMillis();
long lastModified = urlCon.getHeaderFieldDate("Last-Modified", currentTime);
if (lastModified < lastUpdateTime) {

// TODO EcoAndroid: Skip Update
} else {

lastUpdateTime += lastModified;
}
...

}

Listing 29: URL Caching - energy pattern applied.

26Avoid redundant downloads: https://developer.android.com/training/efficient-downloads/redundant_

redundant.
27Fully qualified class name: java.net.URL.

46

https://developer.android.com/training/efficient-downloads/redundant_redundant
https://developer.android.com/training/efficient-downloads/redundant_redundant

URL Caching refactoring

Step 1. Create static global variable called lastUpdateTime;

Step 2. Create local variable called currentTime;

Step 3. Create local variable called lastModified;

Step 4. Create an if statement to differentiate the code path for when the url connection has changed

since it was last processed from when it was not.

The refactoring starts by getting the current time and the time the url connection object was last

modified. Then, a global variable is created in the class entitled lastUpdateTime, intialized to 0. The

last modification consists in adding an if statement to distinguish both code paths: if the connection was

modified since last time or not.

3.3.5 Avoid Extraneous Graphics and Animations

Displaying graphics and animations leads to high energy consumption. The intent of the Avoid Extraneous

Graphics and Animations’s pattern is to reduce the usage of this resources as much as possible (for

example, on the usage of any resource with an high energy consumption that does not have a direct

impact on the user experience). Knowing when to apply this pattern is a challenge since it is difficult

to know exactly when a resource is strictly needed or when the resource does not have a direct impact

on the user experience. The catalog from which the refactorings are based on had one Java example of

an implementation of this pattern. However, since the alteration consisted of too many changes to the

source code to be eligible for our refactoring tool, the example was not supported. In order to support

this energy pattern, a refactoring to alter the rendering mode was created.

Avoid Extraneous Graphics and Animations cases

• Dirty Rendering

3.3.5.1 Dirty Rendering

The GLSurfaceView class has two types of rendering modes that can be chosen. One where the render

is called repeatedly to the render scene, RENDERMODE CONTINUOUSLY and one where the render is only

called when the surface is created and when it is requested, RENDERMODE WHEN DIRTY. The default render

mode is the first one. The Dirty Rendering case changes the render mode to RENDERMODE WHEN DIRTY.

mRenderer = new DemoRenderer(this);
mGLSurfaceView.setEGLConfigChooser(8, 8, 8, 8, 16, 0);
mGLSurfaceView.setRenderer(mRenderer);

mGLSurfaceView.setRenderMode(GLSurfaceView.RENDERMODE CONTINUOUSLY) ;

Listing 30: Dirty Rendering - code smell detected.

47

Dirty Rendering inspection

Step 1. Search for method calls to the method GLSurfaceView#setRenderMode28;

Step 2. Verify the type of rendering. If it is not on RENDERMODE WHEN DIRTY, a warning is shown.

mRenderer = new DemoRenderer(this);
mGLSurfaceView.setEGLConfigChooser(8, 8, 8, 8, 16, 0);
mGLSurfaceView.setRenderer(mRenderer);
mGLSurfaceView.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);

Listing 31: Dirty Rendering - energy pattern applied.

Dirty Rendering refactoring

Step. Switch to RENDERMODE WHEN DIRTY the parameter used to invoke the setRenderMode method.

28Fully qualified class name: android.opengl.GLSurfaceView.

48

4
Evaluation

Contents

4.1 Overview . 51

4.2 Mobile Applications Analyzed . 52

4.3 First Phase: Number of EcoAndroid Refactorings 53

4.4 Second Phase: EcoAndroid Refactorings Submitted to Project Maintainers 55

4.5 Third Phase: User Study . 57

49

50

This chapter describes the evaluation of EcoAndroid and the results obtained. Section 4.1 gives an

overview of the evaluation process and describes its different phases. Section 4.2 details which mobile

applications were used for the evaluation and how they were retrieved and selected. Section 4.3 provides

quantitative data on the number of energy-efficiency improvement opportunities detected by EcoAndroid.

The results can be used to understand whether certain energy patterns are underused. Section 4.4 presents

a list of refactorings suggested by EcoAndroid that were applied and integrated into real-world Java mobile

applications. Finally, Section 4.5 presents a user study performed to assess the usability of EcoAndroid.

4.1 Overview

A possible way of evaluating the effectiveness of EcoAndroid is to measure the consumption of energy

before and after a proposed refactoring. However, due to the complexity of directly measuring or esti-

mating the energy a mobile application consumes [9], we follow a different approach. Since the energy

patterns applied are retrieved from research papers who verified their reliability, we argue that measuring

the energy consumed after refactoring is not strictly necessary, since a decrease of energy consumption is

almost guaranteed. The evaluation is thus divided into three phases, as illustrated in Figure 4.1:

Figure 4.1: Three evaluation phases.

First Phase. We measure how many refactorings EcoAndroid suggests for a realistic set of mo-

bile Java applications and how many of those are false positives. We call this phase the Objective

Evaluation.

Second Phase. Based on the results obtained in the first phase of the evaluation, we send the

proposed changes to the maintainers of each mobile application (as pull requests). The goal is to obtain

feedback from the application developers, but also, to measure the number of proposals accepted. We

call this phase the Subjective Evaluation, since results depend on the appreciation of the mobile

applications’ maintainers.

Third Phase. The final phase of the evaluation consists in a user study, which aims to assess the

usability of EcoAndroid. In the user study, we focus on the most relevant energy patterns (e.g. we

only consider patterns that effectively change the code, rather than just adding annotations).

51

4.2 Mobile Applications Analyzed

For the evaluation of EcoAndroid, it is required to identify a set of mobile applications on which EcoAn-

droid is used to detect possible improvements in terms of energy consumption. We used Android mobile

applications retrieved from F-droid [48], an alternative app store that catalogs over 2000 mobile appli-

cations that are Free and Open Source Software (FOSS). We retrieved meta-information about all the

F-Droid applications1 and we filtered and ordered them before being used for the evaluation. We pro-

cessed information relative to 2319 mobile applications from which we filtered 1615 with the following

characteristics:

• The source code of the application is available in GitHub;

• The GitHub project is not archived;

• The GitHub project has had a commit since 2018;

• The source code of the application is written in Java.

From the F-Droid applications retrieved, there was a total of 474 mobile applications where the main

language was not Java, 89 mobile applications where the GitHub project was archived, and 141 mobile

applications where the last commit made to the GitHub project was done more than 2 years ago. The

mobile applications were then sorted by the following order:

1
st

Percentage of Pull Requests accepted;

2
nd

Date of Last Commit;

3
rd

Total merged Pull Requests;

4
th

Number of GitHub Stars;

5
th

Number of GitHub Watchers.

The first three criteria were chosen to increase our chances of having feedback from developers. Our

intuition is that maintainers of projects that accept more pull requests might be more open to discuss

our proposals. The last 2 criteria were chosen to maximize impact by selecting popular projects. After

filtering and ordering the mobile applications, the top 100 applications were used in the evaluation process.

Table 4.1 summarizes the main characteristics of the GitHub projects, considering both processed and

inspected projects. Table 4.2 summarizes the number of Java files and lines of code (LoC) processed by

EcoAndroid. These numbers allow us to measure the average number of energy-related problems per

number of files and LoC. Table A.1 (page 75) lists the top 100 applications considered in this evaluation.

1Collection date: 25 June 2020

52

GitHub
Watchers

GitHub
Stars

GitHub
Forks

GitHub
Contributors

Merged
PRs

Closed
PRs

% PRs
Accepted

All Min 0 0 0 0 0 0 0
Apps Mean 18.53 185.37 65.27 10.21 39.71 48.20 0.61

Max 1692 25630 8716 317 2603 3009 1

Top Min 0 0 0 1 1 1 1
100 Mean 6.3 38.44 11.61 8.43 5.88 5.88 1

Max 29 616 181 317 60 60 1

Table 4.1: F-Droid mobile applications characteristics.

Java Files Java LoC

Min 13 0
Mean 74.41 14685.98
Max 722 196057

Total 7441 1468597

Table 4.2: Characteristics of the top 100 mobile applications considered.

4.3 First Phase: Number of EcoAndroid Refactorings

The first phase of the evaluation consisted in determining how many refactorings are suggested by EcoAn-

droid for the top 100 mobile applications retrieved from the filtered and ordered dataset. For this,

we executed EcoAndroid in batch mode, since doing it manually for 100 applications would be too

time-consuming. Table 4.3 presents the results. The lines with a gray background refer to the refactor-

ings which introduce //TODO’s into the source code. This first phase happened in three stages: we first

processed the top twenty mobile applications, then the following twenty, and then the remaining sixty

applications. Between each stage, we incorporated any relevant feedback received from developers. For

example, errors resulting in false positives were fixed and is no longer a problem in the following stages.

In two instances, feedback from developers pointed to errors of the plugin and these were fixed. On a

pull request to the Second Screen application regarding the Check Network energy pattern, the developer

said that the project did not declare permission to use the internet so the refactoring did not make

sense. This was fixed and it was no longer a problem in the following stages. Another pull request to

the Hacs mobile application regarding the Check Metadata energy pattern, the developer answered that

the refactoring could break some notifications. It was indeed a bug that was fixed and it was no longer

a problem in the following stages.

53

Energy Patterns Case Refactorings Projects affected

Dynamic Retry Delay Dynamic Wait Time 0 0
Check Network 5 4

Push Over Poll Info Warning FCM 8 3

Reduce Size GZIP Compression 14 11

Cache Check Metadata 7 6
SSL Session Caching 10 7
Check Layout size 0 0
Passive Provider Location 11 6
URL Caching 40 19

Avoid Extraneous Graphics Dirty Rendering 0 0
and Animations

Total 95 35

Table 4.3: Number of energy opportunities detected by EcoAndroid.

A total of 95 refactoring opportunities were found in the 7441 Java files, giving an average of one

refactoring per 78.33 ≈ 78 files. Since, in average, the source code of a mobile application inspected has

74.41 Java files, this means an average of around 0.95 ≈ 1 refactorings per project. This is the case with

most projects.

Case Analysis. The case with the most refactorings is URL Caching with 42.1% of the occurrences.

It is then followed by Check Metadata (14.7%), Passive Provider Location (11.6%), SSL Session Caching

(10.5%), Push Over Poll(8.4%), and Check Network(5.3%). EcoAndroid found no opportunities for

applying refactorings related to the cases Dynamic Wait Time, Check Layout Size and Dirty Rendering.

While reviewing the refactorings related to the Check Metadata energy pattern for the first two stages,

we noticed that for invocations of methods from the the class NotificationManager or DownloadManager,

EcoAndroid was proposing refactorings that affected negatively the notifications shown to the user. There

were two occurrences of this problem, one in each of the first two stages of the objective phase. We cor-

rected this problem before moving into stage 3.

Moreover, for refactorings related to the Passive Provider Location case, six occurrences represented

scenarios where the developer is clearly stating an intention to use a specific provider. In these cases,

instead of altering the source code, an informational warning is shown to the user for the possibility of

altering provider. Note that since the plugin will show an informational warning to the user, these are

counted as refactorings in Table 4.3. The only difference is that these cases will not be used in the second

evaluation phase.

Regarding refactorings related to the GZIP Compression case, two occurrences were scenarios where

the method invocations happened in the resource section of the try-with-resources statement. Since the

alterations for this pattern imply an if statement, which can not be added to the resource declaration

portion, these cases were flagged as false positives.

The combination of patterns with the highest number of associated refactorings is URL Caching with

54

GZIP Compression with 9 projects being affected. This is expected since they both look for an invocation

of the method URLConnection#openConnection as a first step. The next two combinations with the

most occurrences are URL Caching with SSL Session Caching and URL Caching with Passive Provider

Location, both affecting three mobile applications. With two occurrences, the combination Check Network

and URL Caching is next. With only one occurrence are the combinations: Info Warning FCM with

URL Caching, Info Warning FCM and GZIP Compression, Check Network and Check Metadata, Check

Network and SSL Session Caching, Check Metadata and Passive Provider Location, Check Metadata and

URL Caching and the last one is Check Metadata and GZIP Compression.

4.4 Second Phase: EcoAndroid Refactorings Submitted to Project

Maintainers

In the second phase of the evaluation, we sent the refactorings obtained in the first phase to the maintain-

ers of the affected projects. We excluded cases presenting only informational warnings (that introduces

//TODO’s into the source code). Therefore, we did not consider the cases InfoWarning FCM, URL

Caching, and the cases with an informational solution for Passive Provider Location (Possible switch to

Passive Provider Location). We then created pull requests to the original GitHub projects for the re-

maining refactorings. The table in the Appendix B summarizes the pull requests sent and the responses

from the developers (page 78). For each project for which EcoAndroid proposed refactorings, we followed

the following steps:

Step 1. We forked the project’s GitHub repository;

Step 2. We created a new branch named EcoAndroid that contained all the refactorings automati-

cally applied by EcoAndroid;

Step 3. We created a pull request to the original GitHub repository.

All the pull requests sent by us followed a template, which is present in the following box.2

This improves the energy efficiency of [*APPLICATION NAME*] by applying the [*ENERGY PATTERN

NAME*] Energy Pattern for mobile applications.

The energy pattern was applied in [*JAVA FILE(S) ALTERED NAME(S)*].

The general idea is [*GENERAL DESCRIPTION*].

In particular, [*SPECIFIC ALTERATIONS DESCRIPTION*].

A total of 31 pull requests were created, covering 42 refactorings. We received 25 responses (17 were

unanswered). Out of the pull requests with feedback from the applications’ developers, 20 were accepted

2For a real and full example, see https://github.com/farmerbb/Taskbar/pull/138.

55

https://github.com/farmerbb/Taskbar/pull/138

and 5 were rejected. This represents an overall acceptance rate of 80% (or 46.62% when considering

all pull requests sent). Out of the 5 pull requests rejected, two rejections were due to the refactoring

not saving energy in those cases (one regarding the pattern SSL Session Caching and the other GZIP

Compression), two were because the class did not use internet (this was regarding the pattern Check

Network and it was later fixed), and one was because the refactoring could break notifications (this was

regarding the pattern Check Metadata and it was later fixed).

In feedback received from a pull request to the mobile application Hendroid related to the case

Check Network, which had two instances of this pattern, the developer stated that their application

depended on another mobile application, changing the target project of the pull request to the mobile

application Hentoid. While inspecting the new target project, there was one less refactoring, altering the

number of Check Network refactorings to 4. Moreover, in feedback from a pull request related to the

case Check Metadata to the app SecondScreen, a developer suggested creating a pull request to a sister

mobile application — Taskbar on position #581 in our ordered mobile applications list — adding another

refactoring associated with the pattern. In feedback for a pull request related to the case CheckMetadata

to the mobile application ZimLx, the developer suggested that a pull request to another project would

be more efficient, adding another refactoring associated with the pattern to the app Omega. This new

project was not part of our mobile application list.

Check
Netw

ork

GZIP
Compres

sion

Check
Meta

data

SSL Sess
ion Caching

Passiv
e Provider Location

0

2

4

6

8

10

12

14

4

14

9

10

5

2

9

8

6

00

8

7

5

0

2

1 1 1

0

N
u
m

b
er

o
f

re
fa

ct
or

in
gs

Total Refactorings
Refactorings with Feedback

Accepted
Rejected

Figure 4.2: Number of refactorings proposed by EcoAndroid for each pattern and statistics on the pull requests
sent.

Figure 4.2 presents the number of refactorings sent and the answers given by the maintainers. By

56

observing the bar chart, we can see that the results are mostly positive. The energy pattern with the

highest percentage of acceptance is Check Metadata with 78%, followed by GZIP Compression (57%)

and SSL Session Caching (50%). The other two energy patterns did not have any accepted pull requests

(nor feedback from the maintainers). When considering the percentage of rejections, the energy pattern

with the highest value is Check Network with 50%, followed by Check Metadata (11.1%), SSL Session

Caching (10%), and GZIP Compression (7.14%). It should be noted that we only obtained responses for

60% of the pull requests.

Table 4.4 summarizes the main GitHub project characteristics which merged our pull requests. Note

that every project component average has a higher value than the average for mobile applications in-

spected (compare with Table 4.1).

GitHub
Watchers

GitHub
Stars

GitHub
Forks

GitHub
Contributors

Merged
PRs

Closed
PRs

% PRs
Accepted

Min 1 0 1 2 1 1 0.93
Mean 9.15 83 18.46 6.23 18.54 18.85 0.99
Max 22 207 61 12 60 60 1

Table 4.4: Mobile applications characteristics with EcoAndroid merged pull requests.

4.5 Third Phase: User Study

The final phase of the evaluation was a user study to validate the usefulness and usability of EcoAndroid.

We wished to answer two research questions:

RQ1: Is it easier and/or quicker to apply energy patterns when using EcoAndroid?

RQ2: Is EcoAndroid usable for developers?

4.5.1 Structure and Setup

We divided the user study into two parts that considered different energy patterns. Out of the 10 energy

patterns supported by EcoAndroid, only the ones that did not insert //TODO’s into the source code and

that had any occurrences in the first phase of the evaluation were considered. This left us with five

energy patterns to examine. Due to the complexity in understanding the changes required in a short

amount of time, the Check Network energy pattern was excluded. This left us with four energy patterns,

two per part. The first part covers the Cache - Check Metadata and Reduce Size - GZIP Compression

energy patterns and the second part covers Cache - SSL Session Caching and Cache - Passive Provider

Location energy patterns. For each energy pattern, a GitHub project was chosen to be used in the study:

from the projects with occurrences identified in the first phase, we chose the one with most GitHub stars.

57

Table 4.5 details each mobile application used and the number of stars it has.3

Energy Pattern Application Name Stars

Cache - Check Metadata Taskbar 207?
Reduce Size - GZIP Compression Tracker-Control-Android 114?

Cache - SSL Session Caching Download Navi 157?
Cache - Passive Provider Location Trekarta 50?

Table 4.5: User study mobile applications.

The number of participants was defined considering the work by J. Nielsen’s on usability and user

tests [49], which states that a sufficient number for a usability test is 5. We decided to set the number of

participants per part to 6, due to the need to divide evenly between two groups the users. This means

that our user study had a total number of twelve participants. The tasks were performed using Android

Studio (version 4.1.1) on a MacBook Air with macOs Catalina (version 10.15.7). Due to the imposed

COVID-19 social distancing restrictions, users participated remotely using Zoom’s remote control feature.

For each part, the users were divided into two distinct groups: a test group and a control group. Both

groups had access to the same system and the same version of Android studio. However, the test group

was given access to the EcoAndroid plugin while the control group was not. For the convenience of all

the participants, access to the catalog from where the energy patterns were mainly retrieved from [5] and

to specific Android documentation for each energy pattern was given.

Table 4.6 details, for each part, the number of participants per group and every mobile application

considered (with the corresponding stars).

Part Test Group Control Group Energy Pattern Projects considered

1 3 participants 3 participants Cache - Check Metadata TimeTable (4?)
SecondScreen (95?)
ZimLx (136?)
Taskbar (207?)
Audinaut (78?)

Reduce Size - GZIP Compression Onpc (42?)
Klingon-Assistant-Android (0?)
Tracker-Control-Android (70?)
Vanilla-music-lyrics-search (11?)
DokuwikiAndroid (18?)

2 3 participants 3 participants Cache - SSL Session Caching Twire (82?)
Inwallet (10?)
donwload-navi (157?)
akvo-rsr-up (3?)

Cache - Passive Provider Location OpenTopoMap (18?)
Trekarta (50?)
Acastus (12?)

Table 4.6: User study overview.

3The number of stars is the one the app had when the mobile applications where analyzed (25 June 2020).

58

4.5.2 Tasks and Participants

Participants were first given 10 minutes to read through a short document explaining in detail the tasks

in the user study, with brief explanations of the energy patterns involved in the task and with an example

of the pattern being used. Then, to apply both energy patterns, participants were given a maximum of

45 minutes to detect in the selected project where to apply the refactoring and to actually apply it. If in

the first 10 minutes of this part, participants could not detect were the energy pattern was to be applied,

they could ask for hints to help them figure it out. In the last 5 minutes, participants were asked to

answer a questionnaire to better understand their experience in this study.

Table 4.7 presents relevant participant characteristics for this study, presenting their knowledge on

Java, on developing mobile applications, and on Android Studio. Out of the twelve participants (10

females and 2 males), 10 are computer science master students and 2 are software professionals, with a

bachelor degree in computer science.

Group

Occupation (%)
Android Studio

experience

(%)

Mobile application
development

experience (%)

Energy-efficient
app development

experience (1-5)

Java
knowledge

(1-5)MSc Software
Student Professional

Test 83.33 16.67 50 16.67 1.67 3.5
Control 83.33 16.67 50 66.67 2.17 3.5

Table 4.7: Relevant characteristics of participants.

Appendix C (page 79) (User Study Documents) contains the documents shown to the participants in

each part, with the links presented to them. Appendix D (page 85) (User Study Questionnaires) contains

the questionnaires given to the participants, for both parts.

4.5.3 Results

We collected information during the execution of the tasks proposed and at the end, by asking participants

to fill in a questionnaire. During the execution of the tasks, we measured whether or not participants were

able to detect where energy patterns could be applied and whether they could change the code correctly,

counting the time to perform each step separately. Tables 4.8 and 4.9 present the data obtained for both

parts of the study.

59

Group

Task 1 [Check Metadata] Task 2 [GZIP Compression]

Detected Detection Solved Solving Detected Detection Solved Solving
problem time problem time problem time problem time

(%) (min) (%) (min) (%) (min) (%) (min)

Test 33.3 9.67 66.67 5.3 100 5 100 2.33
Control 33.3 10.67 100 8.33 100 2.67 100 4

Table 4.8: User study results: part 1.

Regarding Part 1 of the study, out of the three participants in the test group, only 2 used the plugin

to execute the first task and all used the plugin to execute the second task. While the plugin was ac-

cessible during the test, it was not mandatory to apply the pattern with it. In fact, one participant in

the test group attempted to solve the problem manually. As it was expected, the time to solve the prob-

lem in the test group is shorter than the time in the control group since no manual coding had to be done.

Group

Task 1 [SSL Session Caching] Task 2 [Passive Provider Location]

Detected Detection Solved Solving Detected Detection Solved Solving
problem time problem time problem time problem time

(%) (min) (%) (min) (%) (min) (%) (min)

Test 100 7.67 100 1 100 4.67 100 1
Control 100 5 100 1.33 100 6.67 100 1.67

Table 4.9: User study results: part 2.

Regarding Part 2, every participant in the test group used the plugin to do both tasks. Since the

alterations to apply both energy patterns do not entail as many alterations as in the first part, the

difference between the time to solve the pattern is not as significant as before. In average, the control

group requires more time than the test group, which suggests that the plugin can save time to developers.

Questionnaire. The final task performed by all the participants, of both the test and control groups,

was to fill in a questionnaire to further understand their experience. Regarding the plugin, every partic-

ipant stated that the comments added by EcoAndroid were highly necessary in order to understand the

changes made to the source code. With a classification from 1 (strongly disagree) to 5 (strongly agree),

when asked if a web link to documentation further explaining the refactoring would be helpful (for exam-

ple, to the documentation of the class) the average of answers was 4.33. Also with the same classification,

the answer to whether the plugin adds enough comments to the source code, the answer given the users

was 3.66. As mentioned, the participants of the study had available a document with descriptions and

documentation of classes which were altered during the refactoring process. During a conversation at

the end of the study, three participants mentioned that the document had a significant impact in the

60

understanding and application of the task. Regarding the complexity of the energy patterns, the Check

Metadata pattern was the hardest to understand, which can be seen by the percentage of participants

that were able to detect and solve this problem. It is also the energy pattern with the highest time to

both detect and solve the task in both groups. Nearly every participant reported that the hardest part of

the user test was understanding the conditions under which the energy pattern should be applied. One of

the most common complaints among the users was that the warnings shown by EcoAndroid were easily

missed, making it sometimes more difficult for the test group to find the location of the problem since

they were looking for a warning. Unfortunately, this is not an alteration achievable (or even desirable)

to the plugin since the presentation of the warnings is done by IDE itself, in both IntelliJ and Android

Studio. One solution is to run the inspection task on the file or project since it presents the result as list.

This was not done by any of the test group participants.

One of the main disadvantages reported is the fact that warnings are easily missed. This is not neces-

sarily a problem from the plugin, since it uses the IDE system for warnings; moreover, this problem might

have been exacerbated by the participants being only looking for mistakes, rather than being actively

coding during the task. Another disadvantage identified was the potential lack of comments added in the

refactoring for a clearer understanding of the change. The main advantages reported by the participants

are the quickness of the alterations done and how the tool is integrated in the coding environment (the

developer does not need to run anything to see the results from the inspection, only needing the plugin

installed).

Tables 4.10 and 4.11 present the answers given by participants of the user study. The score scale

goes from 1 (Strongly disagree) to 5 (Strongly agree), except for the question ”EcoAndroid inserts the

enough comments explaining the change.” where the scale is from 1 (Too few comments) and 5 (Too

many comments).

Question Score

The plugin is ready to use. 4.83
The comments that EcoAndroid adds to the source code explaining the changes performed are
necessary to understand how the code changed.

4

A link to further documentation that helps understand the change would be helpful. 4.33
The energy pattern name is descriptive enough. [e.g. Cache - Check Metadata]. 4
EcoAndroid inserts the enough comments explaining the change. 3.67
Overall, I consider EcoAndroid to be a useful plugin. 5
Overall, I would recommend that Android Java developers use EcoAndroid to assist them in creating
more energy-efficient applications.

4.83

Table 4.10: Questionnaire answers - test group.

61

Question Score

The description provided for the first pattern was clear. 4
The description provided for the second pattern was clear. 4.5

Table 4.11: Questionnaire answers - control group.

4.5.4 Answers to Research Questions

RQ1: Is it easier and/or quicker to apply energy patterns when using EcoAndroid? In telling

the participants that they had EcoAndroid at their disposal, a significant number of the participants lost

time in the detection part of the task, trying to find warnings along the source code instead of looking

for the right place to implement the energy pattern. This can be seen by the fact that, generally, the test

group took more time than the control group in detecting where to apply the first pattern. As reported

in the questionnaire, most participants felt that the warnings could be easily missed; this could have

contributed to increase the detection time. However, on the second task, the participants were more

familiar with the environment and the control group took longer to detect where to apply the patterns.

When comparing the solving times between the two groups, the test group was always quicker, which

indicates that EcoAndroid saves time. The application with the energy pattern consists of clicking on the

warning presented to the user. This would mean the time to solve the problem is close to 0. This does not

happen since some participants, even if they used EcoAndroid, tried to solve the pattern manually to see

the differences between their implementations and the one given by the plugin. In conclusion, using the

EcoAndroid is, in average, fast and makes it always easier to apply energy patterns. When the developer

is accustomed to the way EcoAndroid presents their warnings, the detection time of the problem is faster.

RQ2: Is EcoAndroid usable for developers? Out of six participants of the test group, four were

able to detect the energy pattern and five were able to apply the refactoring. It should be noted that

participants that were not able to finish the tasks were all applying the same energy pattern — Cache -

Check Metadata, which had the lowest level of understanding by the participants. Regarding questions

about the information present in the warning name, information present in the comments and amount

of comments, the average feedback was mostly positive. From the feedback obtained, participants would

like EcoAndroid to introduce more comments, When asked if they would recommend EcoAndroid to Java

developers, the average answer was 4.83 (using the same classification as before). Most participants felt

that the plugin was ready to use.

62

5
Conclusions

Contents

5.1 Achievements . 65

5.2 Plugin Limitations and Future Work . 66

63

64

In this chapter we discuss the contributions made and possible improvements of EcoAndroid. Sec-

tion 5.1 describes the main contributions and whether or not the objectives proposed were met. Section 5.2

lists possible future work that could be done to further extend the plugin.

5.1 Achievements

The objective proposed by this thesis was to create a developer tool to aid in coding more energy-efficient

mobile applications. The result was EcoAndroid. Compatible with both IntelliJ and Android Studio,

EcoAndroid supports a total of 10 refactorings, over five energy patterns, and where two represent

informational transformations. When using the plugin to inspect a set of 100 mobile applications, it

found refactoring opportunities in 35 of them, having an average of one refactoring per 78 files. When

evaluating EcoAndroid by sending pull requests to open-source GitHub projects, the feedback given by

developers was mostly positive. Out of 42 pull requests sent, where 25 had feedback, only 5 were rejected.

This represents an 80% acceptance rate in pull requests with response and an 46.62% acceptance rate

when including all pull requests sent. When evaluating EcoAndroid through an user study, we verified

that the plugin represented a saving of 1.43 minutes when fixing a code smell. While this may not

seem substantial, we must note that participants in the control group had documentation regarding the

energy patterns at their disposal. Every participant claimed that they find EcoAndroid usable and the

alterations made by it understandable.

In Section 1.1 we proposed to answer four research questions, which were addressed throughout the

document. Here we present a summary of each answer.

RQ1: What energy patterns are already known by the software engineering community?

A total of 37 energy patterns are detailed in Section 2.2 (Energy Patterns for Mobile Applications). The

energy patterns revolve around handling HTTP requests more efficiently, choosing darker backgrounds,

continuously executing a method that does not need to be running at all times, among other practices.

Specific examples are providing darker colors to the user, waiting for a WiFi connection before processing

a non-urgent request, compress data before transmitting, switching from a energy greedy operation to a

non-greedy one (implementing push notifications instead of a polling mechanism) and informing the user

of a high energy consumption task being done. Moreover, according to the evaluation performed, there

is a significant difference in EcoAndroid refactorings for each case supported (for example, EcoAndroid

detected 14 opportunities regarding the pattern Reduce Size - GZIP Compression, but 0 opportunities

regarding the pattern Dynamic Retry Delay - Dynamic Wait Time). This might be because some of these

more frequently identified cases are not as familiar to developers, suggesting that more documentation

on these cases would be helpful.

65

RQ2: What are the most relevant energy patterns to support? Since the goal of this project

was to implement a refactoring tool, we defined criteria requiring that the patterns selected should not

need input from the user in order to save energy, should not imply big alterations to the source code

and should not include a new functionality. This project focused on the energy patterns present in the

catalog by Cruz et al. [5]. In this set of patterns, the ones we consider more relevant to implement in

a refactoring tool were chosen, coming to a subset of five energy patterns: Dynamic Retry Delay, Push

over Poll, Reduce Size, Cache and Avoid Extraneous Graphics and Animations.

RQ3: Are there existing tools that automatically apply energy patterns to the source

code of mobile applications? As listed in Section 2.4 (Refactoring of Java Source Code), there are

existing refactoring tools aimed at decreasing the energy consumed by mobile devices. Examples are

Leafactor [35, 36], AEON [38] and Chimera [37]. The main differences between EcoAndroid and these

tools are the IDE chosen to implement the plugin on — our plugin is compatible with Android Studio,

the official IDE for Android development, and IntelliJ — and the energy patterns supported. Another

relevant difference is the usability check performed. EcoAndroid was tested with 12 participants over

four different cases, giving us a better understanding of how the alterations are perceived by real users.

RQ4: What are the challenges in automatically applying energy patterns? Both the inspec-

tions and refactorings implemented by EcoAndroid are performed with the aid of the PSI API, which is a

layer of IntelliJ, making all the process dependent on the IDE (but still allowing for batch command-line

execution). PSI enables plugin developers to handle the code in a structured way, presenting the elements

as trees. In some cases, the alterations required might be considered substantial and, given that this is a

refactoring tool and the alterations performed by it should never be too extensive, we face the challenge

of determining when the pattern should be applied automatically. In these cases, the approach taken by

EcoAndroid is to add a //TODO, i.e. an informational comment, before the method where the code smell

is located explaining the change, usually with a web link for the documentation supporting it. In some

cases it is possible to apply patterns completely automatically, but in other cases it is not possible.For

example, in the case of the Push Over Poll energy pattern it is impossible since the registration of the

class in Firebase is needed. To fix the problem, the same approach as before is used: adding a //TODO

comment before the method.

5.2 Plugin Limitations and Future Work

As mentioned before, reducing the energy consumed by our mobile devices has become a growing concern

in recent years. While EcoAndroid is able to help developers in coding more energy-efficient source code,

it can still be improved. Some suggestions for future work include:

66

• Inspecting the rest of the cases for the typical polling mechanisms: as explained in Section

3.3.2 (Push Over Poll), Android documentation reports that there are three typical ways of defining

background work. Currently, EcoAndroid only supports the inspection of one them. Future work

could be supporting the other two approaches;

• Supporting the remaining energy patterns of the catalog: the catalog [5] we based our

energy patterns has a total of twenty two (22) energy code smells. EcoAndroid supports five of

these. Future work could be supporting the rest of the energy patterns present in the catalog;

• Supporting the other energy patterns: Section 2.2 lists various energy patterns, some of

which are already considered by automated refactoring tools and others which do not have any

refactoring support. Future work could support some of these energy patterns discussed that are

not present in the catalog.

• Implementing the feedback from the user study: a straightforward conclusion from the user

study is the need to add more comments to better understand the alterations made to the source

code. However, some developers may not like a high number of comments. An approach to dealing

with this problem could be having a link for the EcoAndroid GitHub project homepage and having

there detailed explanations and links for the documentation for the class whose objects are altered.

Future work could be supporting this feature;

• Supporting energy patterns for the Kotlin language: the inspection and refactoring are both

aided by IntelliJ’s PSI API. We chose to support these energy patterns for the Java language but

the API is also available for the Kotlin language. Future work could be supporting these energy

patterns for Kotlin;

• Reducing the number of possible false positives: the evaluation processed 100 mobile appli-

cations, but had a total of 1615 F-droid applications that could be inspected. Since false positives

were found during the processing of the apps, future work could be repeating the evaluation process

for the remaining data set;

• Running EcoAndroid on an energy profiling tool: measuring the energy consumed by a

mobile device can be a difficult task, which is why it was not done in the evaluation of EcoAndroid.

Even if complicated, integrating EcoAndroid with an energy profiling tool could be interesting to

check the energy savings the energy patterns represent. ANEPROF [12] could be a good option

since it is a real-measurement-based power profiling tool specific for Android, which EcoAndroid is

focused on.

67

68

Bibliography

[1] C. Wilke, S. Richly, S. Götz, C. Piechnick, and U. Aßmann, “Energy consumption and efficiency

in mobile applications: A user feedback study,” in 2013 IEEE International Conference on Green

Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social

Computing. IEEE, 2013, pp. 134–141.

[2] “Forbes so you think we’re reducing fossil fuel use? think again,” https://www.forbes.com/sites/

jamesconca/2019/07/20/so-you-think-were-reducing-fossil-fuel-think-again/, accessed: 2020-12-01.

[3] “WHO air pollution,” https://www.who.int/health-topics/air-pollution#tab=tab 1, accessed:

2020-12-01.

[4] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in mobile

phones: a measurement study and implications for network applications,” in Proceedings of the 9th

ACM SIGCOMM Conference on Internet Measurement. ACM, 2009, pp. 280–293.

[5] L. Cruz and R. Abreu, “Catalog of energy patterns for mobile applications,” Empirical Software

Engineering, pp. 1–27, 2019.

[6] G. Pinto, F. Soares-Neto, and F. Castor, “Refactoring for energy efficiency: a reflection on the state

of the art,” in Proceedings of the Fourth International Workshop on Green and Sustainable Software.

IEEE Press, 2015, pp. 29–35.

[7] M. Gottschalk, J. Jelschen, and A. Winter, “Saving energy on mobile devices by refactoring.” in

EnviroInfo, 2014, pp. 437–444.

[8] L. Cruz and R. Abreu, “Performance-based guidelines for energy efficient mobile applications,”

in 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems

(MOBILESoft). IEEE, 2017, pp. 46–57.

[9] R. W. Ahmad, A. Gani, S. H. A. Hamid, F. Xia, and M. Shiraz, “A review on mobile application

energy profiling: Taxonomy, state-of-the-art, and open research issues,” Journal of Network and

Computer Applications, vol. 58, pp. 42–59, 2015.

69

https://www.forbes.com/sites/jamesconca/2019/07/20/so-you-think-were-reducing-fossil-fuel-think-again/
https://www.forbes.com/sites/jamesconca/2019/07/20/so-you-think-were-reducing-fossil-fuel-think-again/
https://www.who.int/health-topics/air-pollution#tab=tab_1

[10] C. Seo, S. Malek, and N. Medvidovic, “An energy consumption framework for distributed java-based

systems,” in Proceedings of the twenty-second IEEE/ACM international conference on Automated

software engineering. ACM, 2007, pp. 421–424.

[11] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling the energy usage of mobile

applications,” in Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing Systems

and Applications. IEEE, 1999, pp. 2–10.

[12] Y.-F. Chung, C.-Y. Lin, and C.-T. King, “Aneprof: Energy profiling for android java virtual machine

and applications,” in 2011 IEEE 17th International Conference on Parallel and Distributed Systems.

IEEE, 2011, pp. 372–379.

[13] L. Cruz and R. Abreu, “Emaas: energy measurements as a service for mobile applications,” in

Proceedings of the 41st International Conference on Software Engineering: New Ideas and Emerging

Results. IEEE Press, 2019, pp. 101–104.

[14] K. S. Banerjee and E. Agu, “Powerspy: fine-grained software energy profiling for mobile devices,”

in 2005 International Conference on Wireless Networks, Communications and Mobile Computing,

vol. 2. IEEE, 2005, pp. 1136–1141.

[15] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile application energy consumption

using program analysis,” in 2013 35th international conference on software engineering (ICSE).

IEEE, 2013, pp. 92–101.

[16] D. Li and W. G. Halfond, “An investigation into energy-saving programming practices for android

smartphone app development,” in Proceedings of the 3rd International Workshop on Green and

Sustainable Software, 2014, pp. 46–53.

[17] S. Habchi, G. Hecht, R. Rouvoy, and N. Moha, “Code smells in ios apps: How do they compare to

android?” in 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and

Systems (MOBILESoft). IEEE, 2017, pp. 110–121.

[18] K. Stroggylos and D. Spinellis, “Refactoring–does it improve software quality?” in Fifth International

Workshop on Software Quality (WoSQ’07: ICSE Workshops 2007). IEEE, 2007, pp. 10–10.

[19] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring challenges and benefits,”

in Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering. ACM, 2012, p. 50.

[20] M. Petito, “Eclipse refactoring,” http://people. clarkson. edu/˜ dhou/courses/EE564-s07/Eclipse-

Refactoring. pdf, vol. 5, p. 2010, 2007.

70

[21] A. Rani and H. Kaur, “Refactoring methods and tools,” International Journal, vol. 2, no. 12, 2012.

[22] H. Kegel and F. Steimann, “Systematically refactoring inheritance to delegation in java,” in Pro-

ceedings of the 30th international conference on Software engineering. ACM, 2008, pp. 431–440.

[23] “Autorefactor,” http://autorefactor.org/, accessed: 2020-12-01.

[24] “Walkmod,” http://walkmod.com/, accessed: 2020-12-01.

[25] “Facebook pfff,” http://github.com/facebook/pfff/, accessed: 2020-12-01.

[26] “Kadabra,” http://specs.fe.up.pt/tools/kadabra/, accessed: 2020-12-01.

[27] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier, “Spoon: A library for

implementing analyses and transformations of java source code,” Software: Practice and Experience,

vol. 46, no. 9, pp. 1155–1179, 2016.

[28] I. H. Moghadam and M. Ó Cinnéide, “Code-imp: a tool for automated search-based refactoring,” in

Proceedings of the 4th Workshop on Refactoring Tools. ACM, 2011, pp. 41–44.

[29] G. Szőke, C. Nagy, L. J. Fülöp, R. Ferenc, and T. Gyimóthy, “Faultbuster: An automatic code smell

refactoring toolset,” in 2015 IEEE 15th International Working Conference on Source Code Analysis

and Manipulation (SCAM). IEEE, 2015, pp. 253–258.

[30] Y. Lin, S. Okur, and D. Dig, “Study and refactoring of android asynchronous programming (t),” in

2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE,

2015, pp. 224–235.

[31] J. Reimann, M. Brylski, and U. Aßmann, “A tool-supported quality smell catalogue for android

developers,” in Proc. of the conference Modellierung 2014 in the Workshop Modellbasierte und mod-

ellgetriebene Softwaremodernisierung–MMSM, vol. 2014, 2014.

[32] G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth, Z. Ujhelyi, and D. Varró, “Integrating efficient

model queries in state-of-the-art emf tools,” in International Conference on Modelling Techniques

and Tools for Computer Performance Evaluation. Springer, 2012, pp. 1–8.

[33] J. Rajesh and D. Janakiram, “Jiad: a tool to infer design patterns in refactoring,” in Proceed-

ings of the 6th ACM SIGPLAN international conference on Principles and practice of declarative

programming. ACM, 2004, pp. 227–237.

[34] M. A. G. Gaitani, V. E. Zafeiris, N. Diamantidis, and E. A. Giakoumakis, “Automated refactoring

to the null object design pattern,” Information and Software Technology, vol. 59, pp. 33–52, 2015.

71

http://autorefactor.org/
http://walkmod.com/
http://github.com/facebook/pfff/
http://specs.fe.up.pt/tools/kadabra/

[35] L. Cruz, R. Abreu, and J.-N. Rouvignac, “Leafactor: Improving energy efficiency of android apps

via automatic refactoring,” in 2017 IEEE/ACM 4th International Conference on Mobile Software

Engineering and Systems (MOBILESoft). IEEE, 2017, pp. 205–206.

[36] L. Cruz and R. Abreu, “Using automatic refactoring to improve energy efficiency of android apps,”

arXiv preprint arXiv:1803.05889, 2018.

[37] M. Couto, J. Saraiva, and J. P. Fernandes, “Energy refactorings for android in the large and in the

wild,” in 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineer-

ing (SANER). IEEE, 2020, pp. 217–228.

[38] “Aeon: Automated android energy-efficiency inspection,” https://plugins.jetbrains.com/plugin/

7444-aeon-automated-android-energy-efficiency-inspection, accessed: 2020-12-01.

[39] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol, “Earmo: An energy-aware

refactoring approach for mobile apps,” IEEE Transactions on Software Engineering, vol. 44, no. 12,

pp. 1176–1206, 2017.

[40] E. Iannone, F. Pecorelli, D. Di Nucci, F. Palomba, and A. De Lucia, “Refactoring android-specific

energy smells: A plugin for android studio,” in Proceedings of the 28th International Conference on

Program Comprehension, 2020, pp. 451–455.

[41] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, “Lightweight detection of

android-specific code smells: The adoctor project,” in 2017 IEEE 24th international conference on

software analysis, evolution and reengineering (SANER). IEEE, 2017, pp. 487–491.

[42] O. Le Goaër, “Enforcing green code with android lint.”

[43] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy, “Investigating the energy impact

of android smells,” in 2017 IEEE 24th International Conference on Software Analysis, Evolution

and Reengineering (SANER). IEEE, 2017, pp. 115–126.

[44] G. Hecht, O. Benomar, R. Rouvoy, N. Moha, and L. Duchien, “Tracking the software quality of

android applications along their evolution (t),” in 2015 30th IEEE/ACM International Conference

on Automated Software Engineering (ASE). IEEE, 2015, pp. 236–247.

[45] “Program structure interface (psi),” https://www.jetbrains.org/intellij/sdk/docs/basics/

architectural overview/psi.html, accessed: 2020-12-01.

[46] P. C. Dinh and S. Boonkrong, “The comparison of impacts to android phone battery between polling

data and pushing data,” in IISRO Multi-Conferences Proceeding. Thailand, 2013, pp. 84–89.

72

https://plugins.jetbrains.com/plugin/7444-aeon-automated-android-energy-efficiency-inspection
https://plugins.jetbrains.com/plugin/7444-aeon-automated-android-energy-efficiency-inspection
https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html
https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html

[47] “Use firebase cloud messaging as an alternative to polling,” https://developer.android.com/training/

efficient-downloads/regular updates, accessed: 2020-09-30.

[48] “F-droid,” https://f-droid.org, accessed: 2020-12-01.

[49] “How many test users in a usability study,” https://www.nngroup.com/articles/

how-many-test-users/, accessed: 2020-12-01.

73

https://developer.android.com/training/efficient-downloads/regular_updates
https://developer.android.com/training/efficient-downloads/regular_updates
https://f-droid.org
https://www.nngroup.com/articles/how-many-test-users/
https://www.nngroup.com/articles/how-many-test-users/

A
Top 100 F-Droid Applications

74

Top 100 F-Droid Applications Analyzed by EcoAndroid

1 asdoi/TimeTable 51 js-labs/WalkieTalkie
2 92lleo/WhatsappWebToGo 52 TachibanaGeneralLaboratories/download-navi
3 ktt-ol/hacs 53 k3b/LosslessJpgCrop
4 mkulesh/microMathematics 54 nvllsvm/Audinaut
5 Rudloff/openvegemap-cordova 55 tobykurien/BatteryFu
6 pla1/FediPhoto 56 bradand/XMouse
7 mkulesh/onpc 57 knirirr/BeeCount
8 jfcolom/rosary 58 SecUSo/privacy-friendly-pain-diary
9 otakuhqz/ZimLX 59 btcontract/lnwallet
10 Kestutis-Z/World-Weather 60 devgianlu/PretendYoureXyzzyAndroid
11 dslul/openboard 61 tengusw/share to clipboard
12 senzhk/ADBKeyBoard 62 raatmarien/chibe
13 De7vID/klingon-assistant-android 63 andreynovikov/trekarta
14 agateau/pixelwheels 64 ivpn/android-app
15 Nonononoki/Hendroid 65 sanbeg/flashlight
16 farmerbb/SecondScreen 66 SecUSo/privacy-friendly-tape-measure
17 nelenkov/cryptfs-password-manager 67 AdrienPoupa/AttestationDeplacement
18 Willena/OpenDNSUpdater 68 beegee-tokyo/disaster-radio-android
19 dougkeen/BartRunnerAndroid 69 vanilla-music/vanilla-music-cover-fetch
20 NathanielMotus/Cavevin 70 wseemann/RoMote
21 Rudloff/lineageos-updater-shortcut 71 chaosdorf/meteroid
22 thetwom/toc2 72 billthefarmer/scope
23 OxfordHCC/tracker-control-android 73 billthefarmer/shorty
24 DoubleGremlin181/WhatsApp-Twitch-Stickers 74 billthefarmer/crossword
25 h0chi/next-companion 75 phikal/ReGeX
26 OpenArchive/Save-app-android 76 xavierfreyburger/tempus-romanum
27 rnauber/xskat-android 77 SecUSo/privacy-friendly-pin-mnemonic
28 vanilla-music/vanilla-music-lyrics-search 78 JohnLines/mediclog
29 fabienli/DokuwikiAndroid 79 wistein/TourCount
30 TeamNewPipe/NewPipe-legacy 80 wistein/TransektCount
31 rmst/yoke-android 81 phrogg/DSAAssistant
32 termux/termux-float 82 phrogg/BatteryCalibrator
33 matejdro/PebbleDialer-Android 83 rascarlo/ArchPackages
34 Pygmalion69/OpenTopoMapViewer 84 developerfromjokela/motioneye-client
35 Perflyst/Twire 85 Harvie/NorthDog
36 Abdallah-Abdelazim/mynotes-app 86 Stypox/mastercom-workbook
37 Alcidauk/CineLog 87 akvo/akvo-rsr-up
38 seguri/Lock 88 SecUSo/privacy-friendly-werewolf
39 ruleant/getback gps 89 GittyMac/MoClock
40 benjaminaigner/aiproute 90 forrestguice/SuntimesCalendars
41 Catfriend1/syncthing-android-fdroid 91 btimofeev/instead-launcher-android
42 hoihei/Silectric 92 freshollie/UsbGps4Droid
43 arnowelzel/periodical 93 gjedeer/Acastus
44 ajh3/NoSurfForReddit 94 HappyPeng2x/SumatoraDictionary
45 fistons/TinyTinyFeed 95 CorvetteCole/GotoSleep
46 Tortel/SysLog 96 punksta/volume control android
47 mcastillof/FakeTraveler 97 cetoolbox/cetoolbox
48 apcro/leafpicrevived 98 quaddy-services/DynamicNightLight
49 fei0316/snapstreak-alarm 99 tmarzeion/drawable-notepad
50 devgianlu/DNSHero 100 KeikaiLauncher/KeikaiLauncher

Table A.1: Mobile applications considered in the evaluation. These are the top 100 applications when sorting by
descending order according to the criteria: percentage of pull requests accepted, date of last commit,
total merged pull requests, number of GitHub stars, and number of GitHub watchers.

75

76

B
77

State of Pull Requests

Application Name Energy Pattern Applied Status Reason for rejection

Timetable CheckMetadata Accepted -
SecondScreen CheckNetwork Class did not declare

Rejected android.permission.INTERNET
SecondScreen CheckMetadata Accepted -

Hacs CheckMetadata Rejected Refactoring could break
some notification

ZimLX CheckMetadata Accepted -
ZimLX CheckMetadata Accepted -
Twire SSLSessionCaching Accepted -
Twire SSLSessionCaching Accepted -
Twire SSLSessionCaching Accepted -

OpenTopoMapViewer PassiverProviderLocation No response -
OpenTopoMapViewer PassiverProviderLocation No response -

GetBack GPS PassiverProviderLocation No response -
Taskbar CheckMetadata Accepted -
NewPipe CheckNetwork No response -
NewPipe SSLSessionCaching No response -
NewPipe SSLSessionCaching No response -
Audinaut CheckNetwork Accepted -
Fistons SSLSessionCaching No response -

Trekarta PassiverProviderLocation No response -
Trekarta CheckMetadata No response -
Inwallet SSLSessionCaching Accepted -

Download Navi SSLSessionCaching Accepted
Syncthing-Fork SSLSessionCaching Rejected Refactoring does not

effect energy consumption
Akvo RSR Up SSLSessionCaching No response -

Acastus Photon PassiverProviderLocation No response
RoMote CheckNetwork No response -
Omega CheckMetadata Accepted -
Hentoid CheckNetwork Rejected Class does not use network

Onpc Cordova GZIP Compression Accepted -
Rosary Cordova GZIP Compression No response -
World-Weather GZIP Compression No response -

Klingon-Assistant-Android GZIP Compression Accepted -
Tracker-Control-Android GZIP Compression Accepted -
Tracker-Control-Android GZIP Compression Accepted -
Tracker-Control-Android GZIP Compression Accepted -
Tracker-Control-Android GZIP Compression Accepted -

Vanilla-music-lyrics-search GZIP Compression Accepted -
BatteryFu GZIP Compression No response -
Trekarta GZIP Compression No response -

TourCount GZIP Compression Rejected Refactoring does not
effect energy consumption

DokuwikiAndroid GZIP Compression Accepted -
Cordova-Android GZIP Compression No response -

Table B.1: State of pull requests.

78

C
User Study Documents

C.1 Part 1

C.1.1 Test Group

EcoAndroid: User Study

Thank you very much for participating in this user study on the application of energy-related patterns in

mobile applications. We will focus on Android applications written in Java and will ask you to undertake

two programming tasks. The goal is to apply certain energy patterns to the code that we will present to

you so that it becomes more energy-efficient.

Please note that there are many ways of approaching and solving the tasks proposed. If you feel unable

to solve any task just let us know. It might be possible to give you a hint that will help you proceed.

This user study lasts for about one hour. Near the end, we will ask you to fill in a questionnaire.

Resources

You will have access to the IDE Android Studio, where two projects will be already open. To help you in

79

https://tqrg.github.io/energy-patterns/#/

solving the tasks proposed, you can access the catalogue Energy Patterns for Mobile Apps. In the tasks

below, we give additional links that might be helpful.

You will also have access to the plugin EcoAndroid that could be helpful when applying the energy

patterns. The plugin inspects the source code looking for energy code problems and, later, refactors the

source code accordingly.

Task 1: Apply the Pattern Cache

The goal of Task 1 is to apply the pattern Cache in the project Taskbar, which is already open in Android

Studio. We propose that you follow these steps:

1. Read the description of the pattern Cache in the catalog. The commit listed in the catalog might

be helpful in understanding how this pattern is normally applied. Also, the documentation for the

class BroadcastReceiver may be useful.

2. Find an opportunity to apply the pattern in the project Taskbar. If after 10 minutes you do not

know where to apply it, you can ask for a hint.

3. Apply the pattern. You can compile the code to check whether your changes are accepted, but you

do not need to use time running the application.

Task 2: Apply the Pattern Reduce Size

The goal of Task 2 is to apply the pattern Reduce Size in the project Tracker-Control-Android, which is

already open in Android Studio. We propose that you follow these steps:

1. Read the description of the pattern Reduce Size in the catalog. The following example may be

useful. Also, the documentation for the class URLConnection may be useful.

2. Find an opportunity to apply the pattern in the project Tracker-Control-Android. If after 10

minutes you do not know where to apply it, you can ask for a hint.

3. Apply the pattern. You can compile the code to check whether your changes are accepted, but you

do not need to use time running the application.

Conclusion

Once the two tasks above are concluded, we will ask you to fill in a quick questionnaire.

All the data collected in this study is anonymous and might be used in research publications.

Many thanks for participating!

80

https://tqrg.github.io/energy-patterns/#/
https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://github.com/Freeyourgadget/Gadgetbridge/commit/d1a62968f69ebb7dd6dd7cb273a06aa0761681a4
https://developer.android.com/reference/android/content/BroadcastReceiver
https://tqrg.github.io/energy-patterns/#/patterns/Reduce_Size
https://tqrg.github.io/energy-patterns/#/patterns/Reduce_Size
https://www.rgagnon.com/javadetails/java-HttpUrlConnection-with-GZIP-encoding.html
https://docs.oracle.com/javase/7/docs/api/java/net/URLConnection.html
https://docs.google.com/forms/d/e/1FAIpQLSdT_p-SRH3-0fpQEDGG3xymQmOkwDo2EGCa2ZC-gvnVE2BSAA/viewform

C.1.2 Control Group

EcoAndroid: User Study

Thank you very much for participating in this user study on the application of energy-related patterns in

mobile applications. We will focus on Android applications written in Java and will ask you to undertake

two programming tasks. The goal is to apply certain energy patterns to the code that we will present to

you so that it becomes more energy-efficient.

Please note that there are many ways of approaching and solving the tasks proposed. If you feel unable

to solve any task just let us know. It might be possible to give you a hint that will help you proceed.

This user study lasts for about one hour. Near the end, we will ask you to fill in a questionnaire.

Resources

You will have access to the IDE Android Studio, where two projects will be already open. To help you in

solving the tasks proposed, you can access the catalogue Energy Patterns for Mobile Apps. In the tasks

below, we give additional links that might be helpful.

Task 1: Apply the Pattern Cache

The goal of Task 1 is to apply the pattern Cache in the project Taskbar, which is already open in Android

Studio. We propose that you follow these steps:

1. Read the description of the pattern Cache in the catalog. The commit listed in the catalog might

be helpful in understanding how this pattern is normally applied. Also, the documentation for the

class BroadcastReceiver may be useful.

2. Find an opportunity to apply the pattern in the project Taskbar. If after 10 minutes you do not

know where to apply it, you can ask for a hint.

3. Apply the pattern. You can compile the code to check whether your changes are accepted, but you

do not need to use time running the application.

Task 2: Apply the Pattern Reduce Size

The goal of Task 2 is to apply the pattern Reduce Size in the project Tracker-Control-Android, which is

already open in Android Studio. We propose that you follow these steps:

1. Read the description of the pattern Reduce Size in the catalog. The following example may be

useful. Also, the documentation for the class URLConnection may be useful.

2. Find an opportunity to apply the pattern in the project Tracker-Control-Android. If after 10

minutes you do not know where to apply it, you can ask for a hint.

81

https://tqrg.github.io/energy-patterns/#/
https://tqrg.github.io/energy-patterns/#/
https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://github.com/Freeyourgadget/Gadgetbridge/commit/d1a62968f69ebb7dd6dd7cb273a06aa0761681a4
https://developer.android.com/reference/android/content/BroadcastReceiver
https://tqrg.github.io/energy-patterns/#/patterns/Reduce_Size
https://tqrg.github.io/energy-patterns/#/patterns/Reduce_Size
https://www.rgagnon.com/javadetails/java-HttpUrlConnection-with-GZIP-encoding.html
https://docs.oracle.com/javase/7/docs/api/java/net/URLConnection.html

3. Apply the pattern. You can compile the code to check whether your changes are accepted, but you

do not need to use time running the application.

Conclusion

Once the two tasks above are concluded, we will ask you to fill in a quick questionnaire.

All the data collected in this study is anonymous and might be used in research publications.

Many thanks for participating!

C.2 Part 2

C.2.1 Test Group

EcoAndroid: User Study
Thank you very much for participating in this user study on the application of energy-related patterns in

mobile applications. We will focus on Android applications written in Java and will ask you to undertake

two programming tasks. The goal is to apply certain energy patterns to the code that we will present to

you so that it becomes more energy-efficient.

Please note that there are many ways of approaching and solving the tasks proposed. If you feel unable

to solve any task just let us know. It might be possible to give you a hint that will help you proceed.

This user study lasts for about one hour. Near the end, we will ask you to fill in a questionnaire.

Resources

You will have access to the IDE Android Studio, where two projects will be already open. To help you in

solving the tasks proposed, you can access the catalogue Energy Patterns for Mobile Apps. In the tasks

below, we give additional links that might be helpful.

You will also have access to the plugin EcoAndroid that could be helpful when applying the energy

patterns. The plugin inspects the source code looking for energy code problems and, later, refactors the

source code accordingly.

Task 1: Apply the Pattern Cache - SSL Session Caching

The goal of Task 1 is to apply the pattern Cache in the project Download-Navi, which is already open in

Android Studio. We propose that you follow these steps:

1. Read the description of the pattern Cache in the catalog. The following commit may be useful.

Also, the documentation for the class SSLSessionContext may be useful.

2. Find an opportunity to apply the pattern in the project Download-Navi. If after 10 minutes you

do not know where to apply it, you can ask for a hint.

82

https://docs.google.com/forms/d/e/1FAIpQLScPTx3EDhRizOASh0HxEGIOrzRfv6Pg4j0AMOn8UyIXbjIlRg/viewform
https://tqrg.github.io/energy-patterns/#/
https://tqrg.github.io/energy-patterns/#/
https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://github.com/akvo/akvo-rsr-up/pull/210/commits/389a944a666b0f6401732123c89ee750ac653936
https://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSLSessionContext.html

3. Apply the pattern. You can compile the code to check whether your changes are accepted, but you

do not need to use time running the application.

Task 2: Apply the Pattern Cache - Passive Provider Location

The goal of Task 2 is to apply the pattern cache in the project Trekarta, which is already open in Android

Studio. We propose that you follow these steps:

1. Read the description of the pattern Cache in the catalog. The commit listed in the catalog might

be helpful in understanding how this pattern is normally applied or this other commit. Also, the

documentation for the class LocationManager may be useful.

2. Find an opportunity to apply the pattern in the project Trekarta. If after 10 minutes you do not

know where to apply it, you can ask for a hint.

3. Apply the pattern. You can compile the code to check whether your changes are accepted, but you

do not need to use time running the application.

Conclusion

Once the two tasks above are concluded, we will ask you to fill in a quick questionnaire.

All the data collected in this study is anonymous and might be used in research publications.

Many thanks for participating!

C.2.2 Control Group

EcoAndroid: User Study
Thank you very much for participating in this user study on the application of energy-related patterns in

mobile applications. We will focus on Android applications written in Java and will ask you to undertake

two programming tasks. The goal is to apply certain energy patterns to the code that we will present to

you so that it becomes more energy-efficient.

Please note that there are many ways of approaching and solving the tasks proposed. If you feel unable

to solve any task just let us know. It might be possible to give you a hint that will help you proceed.

This user study lasts for about one hour. Near the end, we will ask you to fill in a questionnaire.

Resources

You will have access to the IDE Android Studio, where two projects will be already open. To help you in

solving the tasks proposed, you can access the catalogue Energy Patterns for Mobile Apps. In the tasks

below, we give additional links that might be helpful.

83

https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://github.com/federicoiosue/Omni-Notes/commit/bd3c96f2e87553a6c5d5b1a70e7e5d9b4565c20b
https://github.com/gjedeer/Acastus/pull/13/files
https://developer.android.com/reference/android/location/LocationManager
https://docs.google.com/forms/d/e/1FAIpQLSdT_p-SRH3-0fpQEDGG3xymQmOkwDo2EGCa2ZC-gvnVE2BSAA/viewform
https://tqrg.github.io/energy-patterns/#/
https://tqrg.github.io/energy-patterns/#/

Task 1: Apply the Pattern Cache - SSL Session Caching

The goal of Task 1 is to apply the pattern Cache in the project Download-Navi, which is already open in

Android Studio. We propose that you follow these steps:

1. Read the description of the pattern Cache in the catalog. The following commit may be useful.

Also, the documentation for the class SSLSessionContext may be useful.

2. Find an opportunity to apply the pattern in the project Download-Navi. If after 10 minutes you

do not know where to apply it, you can ask for a hint.

3. Apply the pattern. You can compile the code to check whether your changes are accepted, but you

do not need to use time running the application.

Task 2: Apply the Pattern Cache - Passive Provider Location

The goal of Task 2 is to apply the pattern cache in the project Trekarta, which is already open in Android

Studio. We propose that you follow these steps:

1. Read the description of the pattern Cache in the catalog. The commit listed in the catalog might

be helpful in understanding how this pattern is normally applied or this other commit. Also, the

documentation for the class LocationManager may be useful.

2. Find an opportunity to apply the pattern in the project Trekarta. If after 10 minutes you do not

know where to apply it, you can ask for a hint.

3. Apply the pattern. You can compile the code to check whether your changes are accepted, but you

do not need to use time running the application.

Conclusion

Once the two tasks above are concluded, we will ask you to fill in a quick questionnaire.

All the data collected in this study is anonymous and might be used in research publications.

Many thanks for participating!

84

https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://github.com/akvo/akvo-rsr-up/pull/210/commits/389a944a666b0f6401732123c89ee750ac653936
https://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSLSessionContext.html
https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://tqrg.github.io/energy-patterns/#/patterns/Cache
https://github.com/federicoiosue/Omni-Notes/commit/bd3c96f2e87553a6c5d5b1a70e7e5d9b4565c20b
https://github.com/gjedeer/Acastus/pull/13/files
https://developer.android.com/reference/android/location/LocationManager
https://docs.google.com/forms/d/e/1FAIpQLScPTx3EDhRizOASh0HxEGIOrzRfv6Pg4j0AMOn8UyIXbjIlRg/viewform

D
User Study Questionnaires

D.1 Test Group

EcoAndroid - User Study

Thank you so much for participating in the EcoAndroid user study! As a last task, we ask you to answer

the following questions so we can better understand your experience in the study.

Note: All the data collected in this study is anonymous and might be used in research publications.

Questions about the user

This section is about getting to know more about the users and their knowledge about Java, Android

Studio and developing mobile applications.

What is your current occupation?

BSc Student

MSc Student

PhD Student

85

Software Professional (Not a student)

Have you ever used Android Studio before? .

no →

← yes

Have you ever developed a mobile application? .

How do you assess your knowledge of practices for building more energy-

efficient mobile applications? .

expert →

← no knowledge

How do you assess your own Java knowledge? .

Questions about the user study

This section is about better understanding your experience in this study.

The plugin EcoAndroid is easy to use. .

strongly agree →

← strongly disagree

The comments that EcoAndroid adds to the source code explaining the

changes performed are necessary to understand how the code changed. . . .

A link to further documentation that helps understand the change would

be helpful .

The energy pattern name is descriptive enough. [e.g. Cache - Check Meta-

data]. .

EcoAndroidinserts the enough comments explaining the change.

too many comments →

← too few comments

Overall, I consider EcoAndroidto be a useful plugin. .

strongly agree →

← strongly disagree

Overall, I would recommend that Android Java developers use EcoAndroid

to assist them in creating more energy-efficient applications.

What did you like the most about EcoAndroid?

What did you like the least about EcoAndroid?

Is there anything you would change in EcoAndroid?

86

D.2 Control Group

EcoAndroid - User Study
Thank you so much for participating in the EcoAndroid user study! As a last task, we ask you to answer

the following questions so we can better understand your experience in the study.

Note: All the data collected in this study is anonymous and might be used in research publications.

Questions about the user

This section is about getting to know more about the users and their knowledge about Java, Android

Studio and developing mobile applications.

What is your current occupation?

BSc Student

MSc Student

PhD Student

Software Professional (Not a student)

Have you ever used Android Studio before? .

no →

← yes

Have you ever developed a mobile application? .

How do you assess your knowledge of practices for building more energy-

efficient mobile applications? .

expert →

← no knowledge

How do you assess your own Java knowledge? .

Questions about the user study

This section is about better understanding your experience in this study.

The description provided for the first pattern was clear.

strongly agree →

← strongly disagree

The description provided for the second pattern was clear.

What did you find easiest about the application of the first energy pattern?

What did you find more difficult about the application of the first energy pattern?

What did you find easiest about the application of the second energy pattern?

What did you find more difficult about the application of the second energy pattern?

87

88

89

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings

	1 Introduction
	1.1 Objectives and Contributions
	1.2 Thesis Outline

	2 Background and Related Work
	2.1 Energy Consumption and Energy Profiling
	2.2 Energy Patterns for Mobile Applications.
	2.3 Mobile Applications Environments and Languages
	2.4 Refactoring of Java Source Code

	3 EcoAndroid: An Android Studio Plugin
	3.1 Requirements
	3.1.1 Functional Requirements
	3.1.2 Non-Functional Requirements

	3.2 Architecture
	3.3 Implementation
	3.3.1 Dynamic Retry Delay
	3.3.1.1 Dynamic Wait Time
	3.3.1.2 Check Network

	3.3.2 Push Over Poll
	3.3.2.1 Informational Warning FCM

	3.3.3 Reduce Size
	3.3.3.1 GZIP Compression

	3.3.4 Cache
	3.3.4.1 Check Metadata
	3.3.4.2 Check Layout Size
	3.3.4.3 SSL Session Caching
	3.3.4.4 Passive Provider Location
	3.3.4.5 URL Caching

	3.3.5 Avoid Extraneous Graphics and Animations
	3.3.5.1 Dirty Rendering

	4 Evaluation
	4.1 Overview
	4.2 Mobile Applications Analyzed
	4.3 First Phase: Number of EcoAndroid Refactorings
	4.4 Second Phase: EcoAndroid Refactorings Submitted to Project Maintainers
	4.5 Third Phase: User Study
	4.5.1 Structure and Setup
	4.5.2 Tasks and Participants
	4.5.3 Results
	4.5.4 Answers to Research Questions

	5 Conclusions
	5.1 Achievements
	5.2 Plugin Limitations and Future Work

	Bibliography
	Appendix A

	A Top 100 F-Droid Applications
	Appendix B

	B State of Pull Requests
	Appendix C

	C User Study Documents
	C.1 Part 1
	C.1.1 Test Group
	C.1.2 Control Group

	C.2 Part 2
	C.2.1 Test Group
	C.2.2 Control Group

	Appendix D

	D User Study Questionnaires
	D.1 Test Group
	D.2 Control Group

