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Resumo

A utilizacdo das redes de corrente continua (DC do inglés Direct Current), incluindo a transmissao de energia em
corrente continua a alta tensdéo HVDC, tornou-se uma realidade nestes Gltimos anos, com o avango muito
acentuado da eletrénica de poténcia. Quando comparado com a tradicional transmisséo de energia em corrente
alternada a alta tensdo HVAC, o sistema HVDC para longas distancias apresenta vantagens ao nivel ambiental,
custo, peso, perdas, saude publica e permite a ligacdo entre duas redes AC assincronas independentes diretamente.

O objetivo desta tese é modelar e controlar uma rede DC multiterminal padréo, contendo a interligacdo de duas
redes independentes. Cada uma destas redes é constituida por uma fonte AC, inversor-rectificador, conversor DC-
DC, cargas resistivas e cargas eletronicas, (poténcia constante e corrente constante). Foram criadas duas estratégias
de controlo ndo lineares incluindo estatismo. Estes controladores tém de ser capazes de controlar a tensdo da linha
em regime permanente, independentemente de perturbagées.

Os controladores desenvolvidos para o inversor-rectificador trifasico e para conversores DC-DC partem de dois
métodos de controlo ndo linear baseados na teoria de estabilidade de Lyapunov, e combina a teoria do backstepping
com a teoria do controlo por modo de deslizamento (BSMC).

Para comparacéo de desempenho foram desenhados e implementados controladores Pl lineares na mesma rede e
os resultados foram comparados com os dos controladores néo lineares.

As duas estratégias referidas anteriormente foram comparadas em termos de resposta a transitorios e
sobretensfes/subtensdes através das simulagdes MATLAB/Simulink. Foi possivel concluir que o desempenho
melhora quando se utilizam os controladores néo lineares desenvolvidos.

Palavras chave: HVDC, HVAC, Rede DC multiterminal, BSMC, Controladores ndo lineares, Controladores
Lineares.



Abstract

The use of DC networks including the transmission of energy using DC current at high voltage HVDC has become
a reality with the advancement of power electronics. The HVDC system, for long distances has advantages in
terms of the environment, cost, weight, losses, public health when compared to the traditional HVAC, while
allowing the interconnection of two independent asynchronous AC networks directly.

The purpose of this dissertation is to model and control a standard multiterminal DC network which consists in
the interconnection of two independent networks. Each of these networks have an AC source, inverter, DC-DC
converter, resistive loads, and electronic loads (constant power and constant current). Two nonlinear control
strategies were created including droop control. These controllers must be able to control the voltage steady state
regardless of disturbances.

The developed controllers for the three-phase inverter-rectifier and for the DC-DC converters are based on two
nonlinear control methods based on the theory of Lyapunov stability and combine the theory of the backstepping
and the theory of sliding mode control (BSMC).

For performance assessment, linear Pl controllers were designed and implemented using the network models and
the results were compared with nonlinear controllers.

The two strategies mentioned above were compared in terms of response to transients and
overvoltage/undervoltage through MATLAB/Simulink simulations. Results show that nonlinear controllers
outperform their linear counterparts, as expected.

Keywords: HVDC, HVAC, Multiterminal DC network, BSMC, Nonlinear controllers, Linear controllers.
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Chapter 1

Introduction

1.1 Background

Nowadays, the AC network is commonly used to transmit and distribute electrical energy. This methodology was
adopted at the end of 19"century when Nikola Tesla “won” the war of currents. Back then, Tesla supported
alternating current (AC) to distribute power and Thomas Edison claimed that direct current (DC) was the best and
safest system for electric power distribution. At that time, AC won the battle mainly because the invention of
transformers. With this important electrical machine it was possible to convert the voltage to higher or lower levels
with high efficiency and lower implementation costs [1].

However, in the last years with advancement in Electronics, especially in semiconductor technology that allowed
to step-up or step-down DC voltage conversion, DC networks became a possible solution to replace or complement
the AC distribution system [2].

The main reason to motivate the use of DC distribution instead of AC relies in the fact that transmission capacity
can be increased due to the increased voltage allowed by the low voltage directive [3]. Another important
motivation is the fact that less AC/DC and DC/AC conversions are needed which improves the total efficiency of
the system. Finally, is also relevant to say that DC network including the distributed energy generation provides
an environment that can guarantee outage free, better power quality to consumers[3].

With the recent growth in renewable energy (RE) the DC links became more interesting, because a considerable
amount of RE electricity is produced using direct current. Recent studies have shown that for long distances the
best way to transmit power from offshore wind farms to the coast is by high voltage direct current (HVDC) links.
This fact led a new interest in the HVDC grids, especially in the study of stability and the voltage control. In this
type of RE an HVDC transmission usually results in a multi-terminal network. It is possible to control this network
with voltage source converters connected in its terminals (VSCs), Fig.1.1. These converters permit the transfer of
the power from the DC side to AC grids where the consumers are connected. The importance of control in this
multi-terminal network is to guarantee that DC voltage remains almost stable while damping out any oscillations
that results from the change in the incoming power and by faults in the AC side [4].

Multi-terminal HVDC structure brings a lot of advantages such as cost maintenance and weight reduction, but also
have disadvantages. The main problem is stability in DC voltage and input filters due to the presence of the
constant power loads [5].

The biggest challenge of using multi-terminal DC grid is the interconnection between the grid and electronic loads.
There are three types of electronic loads, constant voltage loads that maintains the value of the voltage constant
regardless the current, constant current loads that imposes a fixed current value and finally constant power loads
that maintaining a constant power regardless of the line voltage are responsible for stability issues. A possible
solution to overcome the stability problem, may need the insertion of a suitable capacitor in parallel to the constant-
power load converter [5].

Regardless the stability issue with constant power loads, HVDC transition system is the better method to solve the
problems between the interconnection of power networks, because DC power do not show frequency or phase
angles incompatibilities, so it’s possible to connect two separately asynchronous AC systems. For long distances
HVDC system is also better because it can use underground and submarine cables. This type of system permits



more power transfer with fewer cables compared to AC system. For long distances HVAC systems have more
losses than HVDC and reactive power compensation is needed and a bigger investment cost as it shown in Fig.1.2.
Finally, for environment reasons HVDC is the optimal choice because it shows almost zero induction or alternating
electro-magnetic fields [6].

i /I\ (D VsC VsC HID—% K
Wind Farm 1 — —
AC grid 1
. HVIC .
T T H grld H
—(D-{ VsC VSC {D—&—[
II'Id I"JLT]Tl 1|I'| in — 1
AC grid Ny,

Figure 1.1 - Typical HVDC multi-terminal network [4]

Investment Cost
' 3

Total AC Cost

Total DC Cost

DC line Cost

DC terminal Cost
4
AC terminal Coat

» Distance

Figure 1.2 - HYDC-HVAC cost [6]

Commonly, linear controllers like proportional integral (PI) are used to regulate voltages and currents in an
electronic converter. But in some cases, the use of these controllers becomes less robust against the system
disturbances. To solve these cases, nonlinear controllers where developed to improve the behaviour of equipment.
With nonlinear controllers such as hysteresis, sliding mode control (SMC) it is possible to control just-in time
while providing a precise control action [7].

1.2 Dissertation Objectives and Motivation

This dissertation has four main objectives:
1) To derive a dynamic model for a standard multi-terminal DC network;
2) To simulate the network in a computational environment;
3) To develop control strategies for the multi-terminal DC network;



4) To evaluate the developed control strategies.

To fulfil these objectives, the standard multi-terminal DC network it will be composed by two equal circuits and
a third one that connects the first ones (Fig.1.3). Basically, the system has two identical networks that are connected
by a line that can be represented by a = model. Each network has a constant power load, current constant load and
AC/DC, DC/DC converters. After obtaining the DC network model, the objective is to design nonlinear (and
linear) controllers able to track the DC voltage at a certain value. These controllers should also guarantee the
stability of all system in a way that the all network always is stable independently of the load type in use. In
addition to this the second line of the DC network will have a power controller responsible for the injection of
power into to the DC grid. To conclude the description of the DC network it is also relevant to refer that both grids
will have low-pass filters to attenuate the amplitude of high frequency harmonics and all strategies of control the
DC voltage in inverter will have droop control.

The main idea of testing both nonlinear and linear controllers is to verify if the both types have the same behaviour
in similar conditions. Theoretically, it is expected that the presence of constant power loads affects the performance
of the linear controllers, at least presenting larger oscillations in the DC voltage, showing probably that the best
controller should be the nonlinear.

MATLAB/Simulink is the computation program chosen to carry out all the simulations and trials. The choice lies
on the fact that it is an extremely reliable program in all mathematical computations, and it is recognized by all the
community in this field.

One of the main purposes of this dissertation is to contribute in a significant way to develop control strategies in a
DC multiterminal network because only a few works have addressed the control in this type of network. In the
present years, more than ever, there is a big concern about our planet. Human activities (footprint) are responsible
for the destruction of several habitats and for the greenhouse effect. Fortunately, the world community are finally
doing efforts to minimize those problems and one of the solutions being implemented is the utilization of RE
instead of fossil fuels. The energy produced with RE is in the DC form so the idea of use a DC network instead of
using an AC one becomes more interesting.

However, just the idea isn”t enough, for that to happen the DC network must be a better solution than AC networks.
As said before, considering the progress in semiconductor technology, the implementation cost, and the fact that
for long distances the HVDC is advantageous regarding HVAC, makes the idea a solution for the present and
future. Nevertheless, is important to refer that for the present the best way is to implement a DC multiterminal
network that connects several independent grids that have AC and DC combined. For those reasons this
dissertation can be an important contribute for the new and sustainable world.
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Figure 1.3 - Equivalent circuit of a four-terminal VSC-HVDC network (Constant Power Loads)



1.3 Dissertation Structure
This master dissertation is divided into seven chapters plus bibliography and appendix.

In chapter 1, the background was presented, followed by the dissertation objectives, motivation, and the
dissertation structure.

In chapter 2, the dynamic model of the standard multiterminal DC network is present step-by-step together with
the design of network key components.

In chapter 3, the state of art will be presented, including a brief explanation of nonlinear systems Lyapunov stability
theory. Based on that, develop two nonlinear methods to design nonlinear controllers. These nonlinear methods
are backstepping and sliding mode control.

In chapter 4 the objective is to design four nonlinear controllers, based on the methods explained in the previous
chapter. Two of them to control voltage and current in the inverter-rectifier and the other two to control the same
quantities, in the DC-DC converter (constant power loads.) This chapter also explains the power control and droop
control.

In the chapter 5, linear PI theory is briefly explained and used to design controllers that control the voltages of the
previous chapter. All the controllers in this chapter are linear with exception of the current controller of the inverter
that is nonlinear same as in the chapter 3. These controllers are used as reference for comparison with the nonlinear
controllers.

In the chapter 6, the simulations results are present and analysed using all the control approaches explained before.

In the chapter 7, the principal conclusions of this master dissertation are presented together with possible ideas for
future work.



Chapter 2

Modelling the Standard Multiterminal DC Network

The standard multiterminal DC network will be modelled considering the = model of lines in Fig 1.3, shown in
Fig. 2.1.
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Figure 2.1- Equivalent circuit of a four-terminal VSC-HVDC network with = model

In the Fig 2.1 the DC lines are modelled by an equivalent circuit of four terminals. For the analysis each one of
the three-line equivalent circuits will be considered separately. For each one of the tree line equivalent circuits the
model equations are represented hereafter.
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Figure 2.2 — Equivalent = model of the line one

The equations of the equivalent = model of the line one (Fig. 2.1) are:
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Zgc1 = Rgcr +jLaca
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Figure 2.3 - Equivalent = model of the line two

The equations of the equivalent = model of the line two (Fig. 2.3) are:

Yr
El] _ 1 +ch27 chz Ez]
I~ Yr Yrl|lLl
! Yr <1+chzz> 1 ch27 ?
Or:
Yr
EZ] _ 1+ chz ? _chz El]
L~ Y, Yol 1
2 Yy (1 +chzZT) 1+ch2§ !
Where:
E,—E,
IL2 7
dc2

chz = Rdcz +deL'2

2.1)

2.2)

(2.3)

(2.4)

(2.5)

(2.6)

@.7)

(2.8)
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The equations of the equivalent = model of the line three (Fig.2.4) are:

T
EZ 1+ ch3 ? ch3 E4
12] - Yr Yr 14] 2.9
V(14 Zaesy) 1+ Zacry 29)
Or:
T
E4 1+ ch3 7 _ch3 E2
I ] - Y, Yr| L1 ]
AR A <1 + Zges f) 14 Zges ?T 2 (2.10)
Where:
I _ E2 - E4
L3 ™ Zies (2.11)

Zacs = Racz +jLacs
The above equations are used in the simulations of the multiterminal network lines.

2.1 AC Grid Configuration

For the purpose of this dissertation the AC side powering the DC grids will be represented by a three-phase system
with internal short-circuit impedance connected to a 3-phase inverter-rectifier. The AC sources short circuit
resistive and inductive components of the impedances cannot be neglected due to the power levels transmitted.
These sources are connected to inverter-rectifiers in the multiterminal HVDC system. The inverter-rectifier
switching action injects high frequency harmonics in the current waveforms. The amplitude of the harmonics
decreases with the harmonic order relative to the switching frequency but still require to be further attenuated.
Therefore, in the AC side the use of a filter that acts like a low pass-filters to minimize the harmonics amplitude
especially in high frequencies is required. LCL filter is going to be used instead of a traditional LC filter because
presents a better performance in this type of system.

2.1.1 LCL Filter

The high frequency harmonics produced by the inverter-rectifier may cause ripple in the power system variables.
The ripple can create resonance problems at the harmonic frequencies [8]. Therefore, the design and utilization of
an AC filter is crucial to minimize the harmonics problems. The AC filter basically acts as a low-pass filter. This
filter is installed between the three-phase voltage source and the inverter-rectifier. Thus, the high frequencies are
strongly attenuated, while the fundamental harmonic are almost not affected [9]. The filter has a T shape with two
inductors (and their parasitic resistances) and a capacitor in series with a damping resistance connected in a triangle
form (Fig.2.5). The use of high order LCL filter improves the attenuation in the high frequencies compared to the
traditional LC filter. The weight and size of the LCL components are reduced, using smaller values of inductors
and capacitors while guaranteeing a good performance [10].
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Figure 2.5 — LCL filter representation

To size the filter inductance values it is considered an equivalent single phase LCL filter circuit (Fig 2.6) in which
the damping resistance is neglected.

Figure 2.6 — Equivalent single phase LCL filter circuit neglecting the damping resistance

The dynamic behaviour of the circuit (Fig 2.6) can be described in the following form:

dvcy 1
FT C_O, (i- lac)
di 1 )
pri L_l(VaC — Veor — Rsi) (2.12)
di 1 _
L dic = L—O(Uco’ — Eqc — Rylac)
Rewriting the 2.12 into matrix form to obtain the state model x = Ax + Bu
i R 1
[E] -2 o -— 1
dt Ly Ly i L_ 0
diac _ 0 _ ﬁ i l _I_ 1 1 I:I/(IC:I
at | Lo Lo v‘“, 0 ——|lEa (2.13)
co L
dvcy 1 1 0 0 0 0
dt G G
Ry L
Ly Ly — 0
A=| o0 B L p- " 1
B Lo Lo |’ 0 —— (2.14)
1 1 Lo
— —-—= 0
Cy C 0 0
The filter transfer function is the following:
Ioc(s) 1 (2.15)

Voe(s) ~ (L1LoCy)s3 + as? + bs + (R; + Ry)



Where,

a=L,Cy'Ry + LoCy'Rs

b=CyRsR + L+ L, (2.16)
The denominator of the transfer function (2.15) can be factorized into two factors as demonstrated in (2.17).

lac(s) c
Voe(s) (1 +sd)(1 + bys + a;s2)

2.17)
Where,
1
‘TR, +R
Co'RaRy + Ly + Lo
= Ri+R,
L,Cy'Ry + LoCy'Rs (2.18)
1T CoRaRy + Ly + Ly
LyLoCy’
T Co'RsRy + Ly + Lo

From the second order term the resonant frequency of the circuit can be written in the following form:

\/CO’R3R1 L+ L
(J)f =

a;

LiLoCo’ (2.19)

If the resistances of inductances are neglected the resonant frequency is expressed in the following form:

L1LOC0’ (2'20)

Taking into account (2.20) the capacitor C is expressed in the following form:

,_ Loty

o Lotly
LiLowy? 2.21)

To smooth the overall response a resistance in series with filter capacitance is placed to damp out resonance, this
resistance (R,") behaves like a passive damping (Fig. 2.7). The R,” in series with C,” attenuates the gain and

improve the stability of the system.

Figure 2.7 — Equivalent single phase LCL filter circuit with the damping resistance R2”

The dynamic behaviour of the circuit (Fig. 2.7) can be described in the following form:



dvcy

1
=C_0,(l_lac)

dt
di 1
G- L (Vac = veo = Rai = Ry (i — i) (2.22)
dige

1 . e
dt = Z (UCO’ —Egc — Ryigc + R, (i- lac))

Rewriting the 2.22 into matrix form to obtain the state model x = Ax + Bu

di g [_RatR RS 1 .
[ dt Ly L, Ly i I 0
R I O T R (R N
dac | Lo Lo Lo [[,25] |0 ——|lEac (2.23)
co L
Dey ! ! 0 l0 0 OJ
dt | COI COI
R;+ Ry’ R, 1 .
Ly Ly Ly — 0
| R R, +R, 1 B—Ll )
B Lo Lo Ly |”" |0 —-= (2.24)
! LY I P
Co’ Co
The filter transfer function with the damping resistance is the following:
1(s) _ (LoCo)s? + (R1Cy + R, Cy)s + 1
Vae(s)  (L1LoCy")s® + ays? + bys + (R + R3) (2.25)
Where,
bz = R3R1C0, + Ll + R3R2,C0’ + LO + RZICOIRl (226)
The value of the resistance R, " can be defined as follows:
R, !
2 =
rCo 2.27)
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Figure 2.8 — Bode diagram without the damping resistance
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Figure 2.9 — Bode diagram with the damping resistance

Comparing the bode diagram of figures 2.8 and 2.9 is possible to observe that including the damping resistance
the gain at the resonant frequency is strongly reduced.

The impedance of a RC branch is defined as follows:

1
Zre=R—]j .
¢ (2.28)
However, the RC filter in the figure 2.5 is connected in a triangle form being defined as Z, = 3Zy Where, Zg is
connected in star form.
Therefore, the filter RC in triangle form will be defined as:
3(LaLowy?) (2.29)
3
- waO

0

R,
Considering the Fig. 2.5 the internal impedance of the AC can be written in the following form [11]:
Vaae” 1
Sec @ (2.30)

wlLg
Rl = 7

0=

(2.31)

Where L, and R, are the internal impedance of the AC source, V,,. is the phase-to-phase voltage, S, is the short-
circuit power, w is angular frequency of the network, and X/R ratio = 7.

The maximum current ripple of the inverter-rectifier is given by [12]:

Ai = —r 61
Limax I
3( eq) (2.32)

Where L., is the equivalent inductor filter, & is the duty-cycle, Aiy., is the ripple of the current, ¥, is the nominal
DC voltage, T is the period.
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The current that goes to the RC branch is very low so the inductors L, and L, are practically in series. Hence, the
L.q is approximately equal to the sum of L, and L, (2.33), with that is possible to reduce the filter size.

Leg=Lo+1L, (2.33)

The maximum peak-to-peak current ripple happens at § = 0.5, then [12]:

Ai = V" T
limax = 6(L1 + Lo) (234)
From (2.34) the expression of L, is given by:
V,
Ll = T T - LO
6AiLmax (2.35)
R; =0.010 (2.36)

Where, R; is the resistance connected in series with the inductor L, and its value is computed considering the
efficiency of the inverter-rectifier and the losses. The current ripple will be 10% of the inductor L, current
(Aipmax = 0.11;4). The current I, is computed assuming a near unity efficiency in the inverter-rectifier. Hence,
the I,, is computed as follows:
I Valn
1= =,
V3Voge (2.37)

2.1.2 Three-Phase Inverter Rectifier

To model the inverter-rectifier shown in the Fig. 2.10 it is assumed the L., is approximately equal to the sum of
Lo and L4, so that the LCL filter is seen as an RL circuit by the inverter-rectifier.
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v
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i \ CA \ T |Vn
£ |
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v
Vas | v Vao G2

Figure 2.10 — AC grid representation modified from [12]

Each inverter branch can be controlled using a binary variable y, to define the branch status.

_ (1> 5y, ON A Sy, OFF (2.38)
re=loo Sy OFF A Sy, on +K € 14.B.C}
V=Y (2.39)

From Fig. 2.11 is possible to see all the possible combinations of the semiconductors.
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Figure 2.12 — a, fCartesian plane modified from [12]

To fully understand the operation mode of the inverter is necessary to build the following table with y, anda,
notation. The table 2.1 was build considering the Fig. 2.12 and the (2.40) equation [12].

_Qra—ve—vIW

VAN - 3
@ys —vc —va)V
Vow = —————— (2.40)

N Qye —va—ve)Va
CN — 3
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Table 2.1 - y, and a, 8 vector table modified from [12]

Vetor Ya 14] Yc Van Vpn Ven Ve, Vg
0 0 0 0 0 0 0 0 0
1 1 0 0 2V, s K 5 0

3 3 3 3V
’ 1 1 o W R T kR
3 3 3 N V2
3 0 1 ok %k kR
3 3 3 N 2
4 0 ! 1%k h , 0
3 3 3 - 3%
5 0 0 O T
3 3 3 V6 V2
6 1 0 1k W%k ko h
3 3 3 V6 V2
7 1 1 1 0 0 0 0 0
The V,,V matrix is given by the transformation matrix Clark-Concordia:
- 1 1 -
1 —-—= =
1% 2 2 vV
“ 2 \3 V31| AN (2.41)
Vﬁ = =10 —_— _—_— VBN
v 3 2 2 {ly
0 1 1 1 CN
V2 V2o V2
The transformation matrix that allows the conversionafto ABC is the following:
[ 1 0 L
V2
V, 4
1 V3 1][’e
Vol=|-= — —=||Vs (2.42)
2 2 W2
Vc VO
1 V3 1
"2 "2 VZ

2.2 HVDC Grid Configuration

The HVDC transmission grid will be loaded by constant power loads and with DC-DC converters feeding constant
current loads.

Three
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______________ N
i |
ATy =
Rdc Ldc I
"HJ. lmzl s1 = >3
I
Constant
cdefz == Cdc/2 : Ci =2 ””% Power
I Load
: 52— >
|
|

Figure 2.13 — HVDC transmission grid representation
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The DC-DC converter (Fig. 2.13) is here illustrated with a four-quadrant chopper, because this converter has three

operating modes:

1, If S1 A S4ON
If S1 A S30N

’ LfSZAS4ON
-1, IfS2 A S30N

’y:

+U
Vi=yU=10
-U

(2.43)

(2.44)

Fig. 2.14 shows an example of the V; waveform, while the DC output current is assumed nearly constant.

& 1,-’;
0
il A
+U 128
0 i *
& I0
0 n »

Figure 2.14 — Wave forms representation

2.2.1 Constant Current Load

Icte

Figure 2.15 — Constant current load representation

From Fig. 2.15, supposing the load resistor is big enough to absorb negligible power, the load power P is:

P =Vyclcee
The load power P depends on the value of I, in (2.45).

2.2.2 Constant Power Load

(2.45)
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Figure 2.16 — Constant power load representation
From Fig. 2.16, supposing the represented resistor is big enough to absorb negligible power, the load constant
power P is:

Pte = 14.Vy. = constante (2.46)
For constant P,,,, the load current is obtained solving (2.46) for I .

Constant power load exhibit negative incremental resistance (2.47) and this behaviour is the responsible for
stability issues in transmission lines [13].
Vdc dVdc (2-47)

APete = Vycdlge + 13cdVye =0 & K = dl, = —Tept
c c

As it shown in Fig. 2.17 the voltage decreases with increase in current and vice-versa. The negative impedance
characteristic of constant power load is also shown.

AV
d a7 = RcreL
v \
VI=P=Constant
A
[ PN
Al -
— 1 i

Figure 2.17 — V-1 curve of constant power load and the negative impedance characteristic [13]

2.2.3 DC-DC converter LC Output Filter
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Vi C Vo Load
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¥

Figure 2.18 — LC filter
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The Fig. 2.18 represents the output filtering stage of the DC-DC converter. The dynamical behaviour of the output
filter capacitor voltage V, can be described by the following equations.

aV, )
Car ==l
di (2.48)
194
L =Vi—"

In order to have a proper LC filter the equations in the section four quadrant chopper LC filtering of [12] are used.

W
Hlimax (2.49)
€= 3zﬁv T
0 (2.50)

Where L is the inductor filter, C is the capacitor filter, Aij,,q, iS the ripple of the current, V,, is the nominal DC
voltage, T is the switching period, AV,is the voltage ripple.

2.2.4 DC capacitors

The DC capacitors act as energy storage and because of that they play a very important role in the HVDC network.
The size of the capacitors determines the dynamic behaviour of the DC circuit [9].

The instantaneous energy stored in a capacitor C charged with voltage v, is given by:

1
W(vc) = ECvCZ

(2.51)
The capacitance value can be estimated, allowing a certain small voltage ripple Av,:
I, T
C~m
Ve (2.52)
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Chapter 3

Control of nonlinear systems

The main objective of this chapter is to explain in a simplified and summarized form some different techniques to
control nonlinear systems.

Nonlinear systems are characterized by the absence of a unifying property, so it is not possible to have a general
and unifying theory [14]. There are many examples of a nonlinear systems, such as, solar collector thermal plants,
chemical reactors, robot arms, phase modulation communication systems, switching power converters and other
examples with interest in engineering field. Whenever there are wide changes in the operating point, the system
presents a nonlinear behaviour. There are some systems whose behaviour can only be understood considering its
nonlinear character, an example of this is meteorology. Nonlinear systems may have a specific characteristic, such
as, the possibility of more than one solution, multiple isolated equilibrium points and singularities in the time
response. However, the purpose of studying nonlinear controllers is to understand techniques to maintain the non-
linear system stable, as the main objective of a control a system is to guarantee stability.

3.1 Stability of Equilibrium Points

For nonlinear systems the notions of equilibrium points and stability are connected through the linearization
procedure. Linearization consists of obtaining a linear model [14].

3.1.1 Equilibrium Points
A nonlinear system can have multiple equilibrium points, an example of that is the following:
X1 = X1 — Xy (3.2)
X, =4 —x1x, (3.2)

To find out the equilibrium points the following system of equations must be solved:

{ x1 - xZ = 0 (33)
4 - x1x2 = 0
The solution of (3.3) have two equilibrium points
_[2 _[2 (3.4)
Xa = [z] €xp = [_2]
With this simple example it is possible to understand that nonlinear systems can have multiple equilibrium points.

3.1.2  Stability

Aleksandr Mikhailovich Lyapunov (1857-1918) was a Russian physicist and mathematician who played a crucial
role in the study of the stability of dynamic systems.

The best way to define stability is to use the definition of Lyapunov. To define stability in Lyapunov sense it is
necessary to consider the following differential equation:

x = f(x) (3.5

In Lyapunov sense the state of equilibrium x = 0 the (3.5) is said to be stable if for any R > 0 there exists r > 0
such that if [|[x(0)|| < r then ||x(0)|| < R for all t = 0. Otherwise the state of equilibrium is said to be unstable
(Fig. 3.1).
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Figure 3.1 — Stability curves
The equilibrium point can also be characterized as asymptotically stable if the following definition is verified.

The equilibrium point x = 0 the (3.5) is asymptotically stable if it is stable and, besides that, if there exists r > 0
such that ||x(0)|| < r implies x(t) - 0 when t — oo.

Asymptotically stable

Figure 3.2 — Asymptotically stable curve

This definition concerns the local behaviour of the system, in other words, the behaviour of state when it is
initialized “close” to the equilibrium point (Fig. 3.2) [14].

If asymptotic stability is valid for any initial state, then the equilibrium point is said to be globally asymptotically
stable (Fig. 3.3).

? Local stability

Global stability

Figure 3.3 — Asymptotic stability concepts [14]

The above concepts of stability apply in general to nonlinear systems but can also apply to a particular case of
linear systems, when described by the following equation.

x = Ax

(3.6)

20



In the case of (3.6) the stability it is dependent on the position of the eigenvalues of A. Thus:

- If all the eigenvalues have negative real part, the origin of state space is asymptotically stable.

- If the linearized system has pure imaginary eigenvalues, nothing can be said about the nonlinear system.

- Ifitexists at least an eigenvalue on right side of semi plane (positive real part), the origin is unstable.

- If it exists non repeated eigenvalues over the imaginary axis, and all the others are in the negative real
semi plane, the origin is stable, but not asymptotically stable.

- If itexists repeated eigenvalues over the imaginary axis, the origin is unstable.

The demonstration that if the eigenvalues have negative real part implies asymptotic stability is made using the
Lyapunov direct method. This method will be discussed in the next section.

3.2 Lyapunov stability

Today Lyapunov stability is used in the control nonlinear systems. The name of Lyapunov is associated to the
direct and indirect methods, but perhaps the principal method to control nonlinear systems is the direct method
also called the second method of Lyapunov.

3.2.1 Direct method of Lyapunov

The second method of Lyapunov allows the demonstration of stability properties in an equilibrium point without
using linearization, that is the reason for the name “direct”, because this method uses the nonlinear equation
directly. According to this method an equilibrium point is stable if it is possible to define a state function so called
“Lyapunov function” in its neighbourhood [14].

3.2.2  Lyapunov functions
Before using the direct method of Lyapunov it is necessary to present some highlights about the state functions.

First, is necessary to consider a function V that transforms the state values x € R™ in real numbers, and a scalar
function V(x): R™ - R. Assuming that V is continuous.

Assume V is continuous. In these conditions the function V is said to be positive definite in R" if:

V(0) =0
V,£0xER"=>V(x)>0 (3.7)
V is said to be positive semi-definite in R™ if:
V(0)=0
V,20:xER*"=> V() =0 (3.8)
V is said to be negative definite in R™ if;
V(0)=0
V20 xER"=V(x) <0 (3.9)
V is said to be negative semi-definite in R™ if:
v({)=0
V,20:xER" =2 V(X)) <0 (3.10)
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Figure 3.4 — State functions examples [14]
For a better understating, Fig. 3.4 illustrates graphically the state functions.

The function V relatively to (3.5) is said to be a “Lyapunov function” if its total derivate in order to time is negative
semi-definite (3.11).
W _,
de (3.11)
3.2.3 Simple Example of Lyapunov method

For better understanding of Lyapunov method, so called second method of Lyapunov, a very simple example will
be presented.

Consider a system that can be represented by the following nonlinear state model:

dx
d_tl = —2X1 - 2X1X22
(3.12)
dx
d_t2 = —2x, — 2x,%,°
(3.13)

The objective of this example is to show that the origin is asymptotically stable equilibrium point.
The origin is an equilibrium point [0 0]7 because both derivates of the state are zero in that point.

To study system stability, the direct method of Lyapunov will be used. Start with considering the following
candidate Lyapunov function.

V(xl,xZ) = x12 + xZZ (314)

This function is continuous and its partial derivatives in order to x components are also continuous; the V function
is also defined positive. The next step to study the stability using the second method of Lyapunov is to write the
time derivative of (3.14):

dV_2 dx1+2 dx,
ac - “Mar 27 (3.15)
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Using (3.12) and (3.13) functions in (3.15):

dv
i —4(x;% + x,% + 2x,%%,%) < 0
(3.16)

Vpeay# 0 (3.17)

X2

For all x # 0, by the local stability of Lyapunov theorem, the equilibrium point [0 0] is asymptotically stable.

3.3 Sliding Mode Control

Sliding mode control (SMC) is a robust nonlinear stabilization technique used to control linear and nonlinear
systems. SMC is characterized by two phases, sliding, and reaching [15]. The main idea of SMC is to use feedback
controllers that operates in opposite sides of a “sliding manifold”. The sliding manifold is independent of the model
uncertainty, and it is designed in a way that the trajectories of the manifold converge to the equilibrium point [16].
The designed controller makes all the trajectories to converge towards the sliding manifold. When this region is
reached, the system remains on it during the future times.

A simple example of the SMC technique will be present for a better understanding. Consider the closed-loop
control application in the Fig. 3.5.

rer 4 ¥ =glet) +hle,Du(e) o

Figure 3.5 — Closed-loop control application

Where xeR™ is the state vector, u € R is the control input, g(x, t) € R™ and h(x,t) € R™ are nonlinear functions.
For this type of application it is better to consider a new state variable, the error (e) instead of the state variable
x[17]. For this reason, consider the following equation:

e=Xpop — X (3.18)

The purpose of this example is to force the error to tend to a neighbourhood of 0 using the SMC method. SMC
used two phases, sliding, and reaching. In phase one it is needed to define a “sliding manifold”.

Sliding manifold can be present as

s(x) = <k + _x) e(x) (319)

Through s(x) the e(x) will approach to 0, to maintain the system state bounded. From a geometric point of view
s(x) = 0 defines the sliding manifold. The s(x) = 0 constructs a suitable manifold to slide while e(x) — 0 as
t - o[15].

For simplicity reasons let’s consider a first-order system n=2. The following equation is obtained from equation
(3.19).

s(x) = ke(x) + é(x) (3.20)
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In the second phase of the process the control input u should be able to enforce the system trajectories into the
sliding manifold and achieve s(x) = 0 in finite time. To fulfil this phase, the direct method of Lyapunov will be
use in the s-dynamics. For this reason, it is needed to have a candidate Lyapunov function, so let’s consider the
following candidate Lyapunov function in the s-dynamics.

V(s) = %52
(3.21)

To guarantee the stability of the system the derivative of Lyapunov function must be negative definite. Therefore,
the time derivative of (3.21) should satisfy the following condition.

V(s)=s5<0 (3.22)
The time derivative of the sliding manifold given in (3.20) is the following:
s=ké+é (3.23)

The accomplishment of the inequality (3.22) guarantees the convergence of the system state trajectories to the
sliding manifold s(x) = 0, if the control input u has the following form:

={1 if s(x)>0As(x) >0Au(t—At) =-1

—1 if s(x) <OAS(x) <O0Au(t—At) =1 (3.24)

Y

N

Figure 3.6 — Typical phase portrait (SMC) [16]

The Fig. 3.6 represents a Typical phase portrait of SMC.

The main disadvantage of SMC is the so called “chattering”. Chattering appears because of switching control part,
and this phenomenon is characterized by undesirable occurrence of oscillations with finite frequency and
amplitude [15]. To overcome this problem in switching converters the input controller u on (3.24) must be
substituted by a hysteresis comparator with a bandwidth of A. In this case the control input u will have the
following form.

_{1 if s(x) >AAs(x)>0Au(t—At) =-1
YISt ifs(r) < —AAS() <0Au(t—At) =1 (3.25)
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Figure 3.7 — Typical phase portrait (SMC) with a boundary layer A
The Fig. 3.7 represents a typical phase portrait with a boundary layer.
3.4 Backstepping Controller Design

Backstepping Controller design is a technique that is commonly used to control nonlinear systems with a triangular
structure. The idea behind this method is to divide the problem in small problems (sub-problems), these sub-
problems have a lower order system than the original problem. In order words the objective is to divide the complex
problem into multiple and easier problems with lower order. It is possible to this because this procedure uses a few
states as “virtual controls” to obtain the intermediate control laws with the control Lyapunov function (CLF) [18].
The advantages of backstepping control that was invented by Krstic, Kanellakopoulos, and Kokotovic are the
assurance global of regional stability, the stress on robustness and computable transient performance [18]. This
method is going to be used for the nonlinear system with the strict-feedback shape.

Consider the following nonlinear system with a strict-feedback form.

9:51 = f1(x1) + g1(x1)x,
Xy = fo(x1,%3) + g2 (x4, X2)%3

: (3.26)
Xn = fu(X1, %2, o, Xne1, Xn) + Gn (X1, X2, oo, Xpp_q, X )U
For the sake of simplicity let’s consider a model of two cascades (3.27) and (3.28).
%1 = f1(x1) + g1 (x1)x;, (3.27)
Xy = fo(xq,%2) + g2 (31, x2)u (3.28)

Where, x,,x, € R™ are the state variables, u € R™ is the control input, f;, g;: R" = R", f5, g,: R" X R* - R™*"
are nonlinear functions.

To explain the basic backstepping design procedure consider the following example that uses (3.27) and (3.28).
The objective of this example is to control (3.27) and (3.28) with backstepping control. It will be necessary two
steps to solve de problem, the first one will consider just (3.27), and the second will consider the (3.27) and (3.28)
together.

Step 1: The first thing to do is to find a suitable virtual control quantity. Consider the virtual control x,, and denote
it x,,. Then, define a candidate Lyapunov function. The candidate Lyapunov function can be the following:

1 2
Vl = E.xl
(3.29)

The derivative of (3.29) must respect the (3.30) condition to be a “Lyapunov function”

Vi =2, (fy (1) + 91 (x)x5,) < 0 (3.30)

The algebraic control equation is given by (3.31)
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fi(x1) + g1 (x)xz = c1(x1) (3.31)
Where ¢;(x;) = —C;x; and C; > 0. Then, it is possible to write the virtual control expression (3.32)
Xy = g1 (e (—f1 () + €1.(x1)) (3.32)
Where c, (x;) guarantees that V; < 0,x; # 0 and the (3.32) solution is continuous.
Step 2: In this step the objective is to use (3.27) and (3.28). To do that a new candidate composite Lyapunov

function is needed. The composite Lyapunov function is illustrated in (3.33)

v, = Exf + E(xz — X3p)°
(3.33)

As was made before the derivate of (3.33) must respect the (3.34) condition to be a “Lyapunov function”
Vo = x1(fi (1) + g1 (x1)x5) + (= x5,) (G — %2,) < O (3.34)
The algebraic control equation is given by (3.35)
fa(x1,x2) + g2 (g, X2)u — Jgp = —Co (23 — x2) — g1 (x1) 2 (3.39)

Where ¢, (xq,x3) = —Cy(xy —v.) — g1(x1) + v, and C, > 0. Finally, it is possible to write the control
expression (3.36)

u =g, (—fo + ky(x1,%)) (3.36)
Where c, (x;, x,) guarantees that V, < 0,x, # x5,

To sum up, the resulting control law u is asymptotically stable if V, < 0,V x1]¢ 0.

X2
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Chapter 4

Nonlinear Controllers

The main objective of this chapter is to design nonlinear controllers that are able to control the DC voltage and
current in the inverter-rectifier and in the DC-DC converter (figures 2.10 and 2.13).

Traditionally, controllers used to control voltage and current in power systems are linear and derived using
linearized models pf the power network. Given the linear controllers simplicity and linear models, they are prone
to fail under large deviations from the equilibrium point, around which the linearized models are obtained.
Therefore, despite the increase in complexity, four nonlinear controllers are going to be designed, two of them to
control voltage and current in the inverter-rectifier and the other two to control the similar quantities in the DC-
DC converter. Hence, to do that the direct method of Lyapunov, backstepping, and sliding mode control are the
techniques to be used.

Considering the four-terminal HVDC line, and the interconnection DC line (Fig.2.1), to control de grid DC voltage
the control strategy considers a voltage controller in thee inverter-rectifier of line 1, while in line 3 a direct power
injection is assumed in the line 3 inverter-rectifier. In this way is it possible to control the grid voltage and the
power dispatched in the network. Therefore, in this chapter it will be explained the design of power and voltage
controllers.

4.1 Inverter-rectifier Controllers

Some techniques to design nonlinear controllers for voltage and current control have been introduced in chapter
3. Therefore, backstepping will be used to control the line voltage [19], while current controllers are based on
sliding mode control, discussed in section 3.3. To control the power to be injected in line 3 (figure 2.1), a power
controller in dqg coordinates will be introduced based on a sliding mode controller.

4.1.1 Nonlinear Voltage Controller of the DC-AC Converter

Ri Lo R Lt e i
ey
A AN~ f AMA— T s
R1 L0 L B3 L1 Three l:“'
_® B WA—TOT- ML._ Phase ci
RI Lo RS Lt Inverter
c AV~ e AT ] [
co
R2 R2
0 co

Figure 4.1 - Output inverter currents representation

Considering the Fig. 4.1 the system model in d-q coordinates is expressed as follows:

dugi 1 (ug . . 1 . .

dtl = Ei(u_c:ld + ldc) = E(Gild +iqc)
dig _ —Giuc — Rig +ug . (4.2)
E = L1 + Wiy

The virtual control input is the inverter-rectifier input current d component G;iy, where G; = ? is the current
Ci

gain.
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The control objective is defined as uc; = uc;yf, to obtain the control law G;uc; = f (umef, uci).
Considering a new variable e,,, the control objective error, defined as:

€y = Uciref — Uci (4.2)
The purpose is to demand e,, = 0. To present steady-state errors add an integral of the objective error by defining:
t
e = J- e, dt =0
T (4.3)

According to Lyapunov the system is asymptotically stable if the candidate Lyapunov function verifies the
following conditions:

Vix=0)=0
V(x #0)>0
V(|x| = o0) = 0 (4.9)
V(x#0)<0
Therefore, the stability condition is defined as:
Vix#0)V(x#0)<0 (4.5)
Hence, it is necessary to define a positive definite candidate Lyapunov function (4.6).

e’ e’
V = kI L + v
2 2 (4.6)
According to direct method of Lyapunov (discussed in the previous chapter), the time derivative of V must be
negative. To guarantee that this condition is verified the virtual input current must obey i; = iy, fork, > 0,=
kI > 0.

A T
o 161 5 T ey — = —Ky€y
dt dt dt @.7)
From the (4.7):
duc; duc;
kere, + eu< ;ref - dCL> = —kye,>
t t (4.8)
Providing:
ducirer (G . lgc
ke, + ( i (E gy + E) = —kyey 4.9)
Therefore, the virtual control action is the following:
Ui dug;
idV = u_a(CL (k,e, + kueu + dc;-:ref) - idC)
Gi (4.10)

Equation (4.10) is the Lyapunov equivalent of a PI controller, since the virtual control action iy, depends on the
e,, and on the integral e, of the error e,,.

Fig. 4.2 presents the block diagram of the nonlinear voltage controller in the inverter-rectifier.
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Figure 4.2 — Nonlinear voltage controller of the inverter-rectifier representation

From (4.10) a nonlinear voltage controller is obtained. This controller will generate a igqore s that will be used in
the nonlinear current controller. However, the nonlinear current controller will work in a8 coordinates hence, the
Lagores Will be transformed in i,z through the following transformation matrix [20]:

cos(wt) —sin(wt) 0
lﬁ sm(wt) cos(wt) H

The Ve present in the figure 4.2 is express as follows:

(4.11)

Veirer = Vo — R P (4.12)

Where R, represents the droop control factor. In this case the droop control is characterized by a voltage variation
rate with the active power transmitted. The R, units will be Volt per Watt.

The droop control is present in Fig. 4.3.

3

Vciref
FI

Figure 4.3 — Droop control representation

4.1.2 Power Controller

For the sake of simplicity, the power controller will be design in dq coordinates. Hence, the measure voltage in
abc coordinates will be transformed in dq coordinates by the transformation matrix present in (4.13) [20]. Thereby,
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it is possible to have a simpler control system, once instead of the three time-dependent signs the system will be
composed by two continuous signals (Vg, ;).

21 4T
cos wt cos (wt — —) cos (wt - —)

‘];d_z_t _<t2n) _(t2n>};a
q| = 3 sin w sSin | w 3 sSin | w 3 Vb (4.13)
Yo 1 1 1 ¢
V2 V2 V2
Therefore, the active and reactive power in dqg coordinates can be calculated as follows [21]:
{P = Vglg + Vyiq
Q = Vgla=Valq (4.14)
After some mathematical manipulation, equation (4.14) can be solved for iy, iy, giving (4.15).
(. Pvy + Quy
M= 2ty
a a (4.15)
— qu = Quqg
qu T

The iy, present in (4.15) will be used in the nonlinear current controller but in a,  coordinates, trough the
transformation matrix (4.11).

4.1.3  Nonlinear Current Controller of the DC-AC Converter
Considering the Fig. 2.10, the AC currents dynamics is (4.16).
di
L=—X =V, —Rix—e,;k€{A4,B,C}

dt (4.16)

Using a, B transformation, and denoting i,z for to represent both i,, and ig, it is possible to rewrite (4.16) as
follows:

di
L~ = Vo = Rigp —eap
(4.17)
Using sliding mode control, the control objective can be defined in the following equation:
Cigp = lapv ~lap =10 (4.18)
Therefore, the time-varying linear surface s(x) is defined as:
S(x) =igpy —lgp = €inp (4.19)

To enforce the sliding surface reaching after a finite time it is needed the use of the second method of Lyapunov
as a stability condition. Hence, the candidate Lyapunov function can be express as:

2
V= ls2 _ Clap

2 2 (4.20)

The stability condition according to Lyapunov is given by:

deiaB
Cinp dt <0 421)
Thus, the control conditions can be express by:
{If eia,ﬁ >0=> l'a”g = Va’,ﬁ > Riaf,ﬁ + ea’ﬁ
If eialB <0= i(x,ﬁ = Va,ﬁ' < Ria,[)’ + ea‘ﬁ (422)
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Where,

lap = lapy T Al/2 (4.23)
lap € [igpy —Ai/2,iqp, + Ai/2]
Considering (4.22) the reaching condition is given by:

Vap > |Riag + eqpl (4.24)

The objective of this control is to achieve a zero error between the reference value and the variables to control.
This would imply an infinite switching frequency which is not possible, because the semiconductors have physical
speed limitations. Hence, to circumvent this issue the error must be bounded. Therefore, the nonlinear current
control based on sliding mode control theory will be given by the following conditions:

Al . . . digp
If e, , > +7 2 8p =12 igpy > lgp = lgp 1= >0=Vap>0
Ai Ai ) . } digp
If =5 <€y <+520ap=0=lqpy ~iap=iepN=>—=~02Vep=0 (4.25)
Ai , , . dig,p
If e, < -5 Oap =12 lgpy <ligp = igp = It <0=2Vep <0

Considering the conditions present in (4.25) the following table 4.1 can be obtained:

Table 4.1 — Vector selection table

Ciq
8o =-1 8, =0 So=1
=1 3 20r3 2
ep 6ﬁ=0 4 Oor7 1
bp=-—1 5 50r6 6

The nonlinear current controller of the inverter-rectifier will be composed by three-level comparators and a table
of truth that are responsible for all possible combinations of the vectors as it possible to see in Fig. 4.4.

The table of truth present in Fig.4.4 was build considering the table 4.1.

»
. delia L alpha I—’ *
Lo i+
i [__, =i
“ | deita N alpha > TI'L'I.ﬂl
Table
I,E’z:
—{) =
iﬂl della L bata |—P *
» -
dedta M bela

Figure 4.4 — Nonlinear current controller of the inverter representation

The i, and iz will provided by the iy, currents (Fig.4.4) transformed in to @80 coordinates trough the following
transformation matrix [20]:
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[ 4 _% _%1
o I IRVE BE [
=10 5 5 i (4.26)
Pl o1 1|

V2 V2 V2

4.2 DC-DC Converter Controllers

As said the multiterminal DC network contains constant power and constant current electronic loads. These
electronic loads will be simulated using three-level DC-DC converters. To control current and voltage in the DC-
DC converters similar nonlinear controllers used earlier (sections 3.3 and 3.4) will be applied. Therefore, in this
section the combination between backstepping and sliding mode control will be the chosen method. First, the
backstepping method is used to control voltage by defining a virtual control current, while a sliding mode current
controller will be used to enforce the DC current to track the virtual current reference.

4.2.1 Nonlinear Voltage Controller of the DC-DC Converter

Appling the same principle of section 4.1.1, considering Fig. 2.13 the dynamic behaviour of the DC currents is the
following:

dUC iL - io

a ¢
di, Vi~V (4.27)
.~ L
In this case the control objective is defined as:
VO = VOref (428)
Moreover, the error (evo) between the reference voltage and the capacitor voltage is express as:
ey, = Vorer — Vo (4.29)
The candidate Lyapunov function is defined as:
e 2
VL = ‘;)
(4.30)

The Lyapunov function (4.30) must verified the (4.4) and (4.5) conditions to be asymptotically stable. Therefore,
V, > 0Vey, # 0andV, — oo for [|t|| - oo.

The candidate Lyapunov function time derivative must be a negative definite as was explained before (4.31).

i de
VL = eVOd_:O = —KV€V02 ’KV >0
(4.31)
According to the second method of Lyapunov the global asymptotic stability is defined as:
dey, - _Kye, = dey, _ dey,. b~
dt 0 dt dt c (432)
Where, ey, # 0, the d::" using (4.27) and (4.29) is defined as:
dey, _ ke, = dey, _ dey,, .. =i
dt 0 dt dt C (4.33)

Thus, replacing in the previous equation (4.33) i, by i;,.r Where, i,,.r is the virtual control variable, it is possible
to control V, by defining i, :
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ey
ore .
s + iy

dt (4.34)

deVoref _ Irer — lo
dt c

= _KVeVO = iLref = CKVeVO + C

Hence, the nonlinear voltage controller will be represented by the Fig. 4.5.

W0
Wiref

=

+
v : g >

At ilref

|
v
"
v

Figure 4.5 — Nonlinear voltage controller Simulink representation of the DC-DC converter
4.2.2  Nonlinear Current Controller of the DC-DC Converter

To design the nonlinear current controller the same principle of section 4.1.2 will be applied, but in this case to a
DC-DC converter [12].

Considering the Fig. 2.13 is possible to write the following dynamic equation:

di

L= =Vi=Vo
(4.35)
Considering equation (2.43) it is possible to rewrite equation (4.35) as follows:
ﬂ _Yu-—="
at L (4.36)
The control objective is given by the following equation:
e, = iprer — i, =0 (4.37)

Moreover, the time-varying linear surface s(x) is defined as:

S(X) = iprep — i, =€ (4.38)

To enforce that the sliding surface is reached after a finite period is needed the use of the second method of
Lyapunov as a stability condition. Therefore, the candidate Lyapunov function can be express as:

1 e; 2
V=c-s2="L
2 2 (4.39)

The stability condition according to the direct method of Lyapunov is satisfied, if ss < 0. Thus:
Ai; .
If,el'L>7 ﬁlLTﬁ]/z 1 If,]/U>V0
; Ai, Aiy _ 0
Lo <eausm == (4.40)

Ai; .
If,el-L<—7 ﬁlLlﬂ)/:—l

Therefore, the nonlinear current controller will be represented by the Fig. 4.5.
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Figure 4.6 — Nonlinear current controller Simulink representation of the DC-DC converter

As it can be seen in figure 4.5, the nonlinear current controller has a decoder that as the following truth table:

Table 4.2 — Truth Table of the figure 4.4

Y1 V2 S S; S3 Sa
0 0 0 1 1 0
0 1 1 0 1 0
1 1 1 0 0 1
1 0 0 1 0 1
Therefore, the driving signals S, to S, of the DC-DC converter (Fig. 2.13) are obtained from table 4.2 as follows:
S1=72
Sa =01
& _ 4.41
S, = 5_1 =72 ( )
S3=8=n"

In the next chapter PI controllers are going to be designed to serve as the reference comparisons for the nonlinear

controllers.
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Chapter 5

Multiterminal Network Linear Control

In this chapter the main objective is to design linear controllers like Proportional-Integral (PI), to control the DC
line voltage and the load currents. Pl controllers are commonly used in power systems especially in voltage-
sourced converter devices. This type of controllers is used in this application because it presents a simple structure,
good overall dynamic behaviour and is intuitive to design [22]. Therefore, a Pl voltage controller will be designed
for the inverter-rectifier while voltage and current Pl controllers will be designed for the DC-DC converters.

5 Hr_,e':t]
Pertubations
g v
Yref K; f elt)dt Y
S I o Process
‘ Measuring

device

Figure 5.1 — Closed loop block diagram of a PI controller modified from [23]

The PI controller (Fig. 5.1) is enclosed in a closed loop system with feedback. The Pl computes the tracking error,
the difference between the reference value and the measure value. Then, the error is processed by the proportional
(P) and integral (1) blocks. The P term is proportional to the error. In the other hand, the | term integrates over time
the error to generate the integral of past errors. When zero tracking error is reached the | term becomes constant.
The I term is responsible to guarantee zero steady state error, even when disturbances occur. The P term helps to
improve the speed of the system [23]. Therefore, the combination of P and | terms is crucial to perform as required.

The PI transfer function of the Fig. 5.1 can be defined as follows:

t

v(t) = Kye(t) + K,f e(t)dt 6.0
0 .

Where, K, is the proportional gain and K; is the integral gain. Usually these gains are constant and have moderate
to low values depending on the system closed loop dynamics. As usually some high frequency poles are neglected,
if K, or K; are too big the system can become unstable or strongly overshoot the reference value. If K; is too small,
the output will slowly converge to the reference.

The transfer function of (5.1) in Laplace domain is defined as:

K(s) = K, +%
(5.2)

The closed loop transfer function in Laplace domain of the block diagram in Fig. 5.1 can be express as follows,
supposing unity feedback gain:

_ K($)H(s)
G(s) = 1+ K(s)H(s) (5.3)

Where, K (s) is the PI transfer function and H(s) is the plant transfer function. If K(s)H(s) = —1 the system is
said unstable, if the term in denominator K (s)H (s) is smaller than 1, the stability is guaranteed [23].
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The Fig. 5.2 represents the adjustments of the proportional and integral terms to produce the best results in the
case of voltage regulation.

High Integral Gain (Ki)
Medium Integral Gain (Ki)

S Sp—

\ " N )

Optimal Integral Gain (Ki)

Set Point

Figure 5.2 — Step response with different coefficients [23]

5.1 Linear Voltage Controller of the Inverter-Rectifier

To design the linear voltage controller the PI method is going to be the chosen [21]. From a simpler point of view,
the controller will be design in dq coordinates instead of abc coordinates because dq is a continuous state and abc
is time dependent.

Considering the Fig. 2.10 the equations of the current dynamics in dq coordinates is express as follows:

di

Ug = L_d+ Rld — (,L)qu + €q
dt
di, (5.4)
Ug = LE+qu +wli; + ey
The active and reactive power in the connection to the three-phase source are defined as:
{ Py = eqiq
fa = —ealq (55)
The current i;,. defined in the Fig. 4.1 is expressed as:
idC = id + ici (56)

Considering a reference frame with e, = 0, the active and reactive power in the connection to the three-phase
source are defined as:

. . . €q . . .
Py = eqiq = Wige = lgc = A = lgc = Gilg
" (5.7)
Vnac
Where, G; = f/—: ,and ey = ﬁf-
The dynamic equation of DC voltage is the following:
dv, . )
C; d_ta =lgc — g
(5.8)

The nonlinear sliding mode current controller (section 4.1.3) is here approximated by the transfer function:
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tac _ _Gi/a
idref Tdvs +1 (5.9)

Where, «; is the current sensor gain, T,,, is the average delay time of the i, current relatively to its reference value
laref - The G;/a; is caracterized by a gain while Tg,s + 1 is the dominant pole (high frequency poles are

neglected).

I,‘
. d r
VCLref K + Kh, ?ef
+ pv
S
T a

Figure 5.3 — Closed loop block diagram of voltage modified from [21]

Considering Fig. 5.3 the closed loop transferer function is express as:
avGi va + SKiv
Vet _ % anly (5.10)

Vciref 3 1 avGiKpu a,G;K;
s3+5s2=—+s VoL LY
Tqy ;TG ;TG

Where, T, is the time delay, «; is the current sensor gain, «,, is the voltage sensor gain, K;, is the integral gain
and K, is the proportional gain.

Considering the ITAE criteria the proportional and integral gains are defined as follows [23]:
_ 2.15Cia'i
v 2 i
1.752a,G; Ty, (5.11)
K = Cia;
v 1.753a,,Gde1,2

Lq"“'ﬁ
A

+ o+
y
Y
.

Veir '
ciraf i+_) » - —b%

Kw|< -t i, > idqOref >

A

Figure 5.4 — Linear voltage controller of the inverter representation

The K,, present in Fig. 5.4 represents the anti-windup gain for big signal variations. An anti- windup system results
in less overshoots in voltage and lower control effort. The omission of this gain can cause a considerable

deterioration of the response.

The anti-windup gain is defined as:
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K, = —Ky (5.12)

The controller present in Fig. 5.4 will generate a i;40y,¢ s that will be used in the nonlinear current controller (section
4.1.3) here represented by the transfer function (5.9)

5.2 Linear Controller of the DC-DC Converter
In this section two linear PI controllers will be designed for the DC-DC converter to control current and voltage.
5.2.1 Linear Current Controller of the DC-DC Converter

From the Fig. 2.13 assuming that the control current is i;, (i, = ijyer).

Figure 5.5 — Equivalent diagram of linear current control modified from [12]

From Fig. 5.5 applying the Kirchhoff laws the following equation in the Laplace domain is obtained:

V: —E,
iL(s) = IS—LO
(5.13)

The block diagram C(s), (figure 5.5), of the linear current controller is represented in the figure 5.6.

i . ;
Lraf sT,+1 K Vi 1
+ > 2 4 d : -
5T, sTa+1 sL

| .

Figure 5.6 — Block diagram of linear current control

A PI controller is used to eliminate static error as the disturbance E, is in the input of the plant integrator. The
closed loop transfer function of Fig. 5.6 is given by:

sT,(1+ sT,)

(1 + STz)iLref(S) - K.a: EO(S)
. a%i
i(s) = T, I, (5.14)
s Kdai+s Kda,-+STZ+1

The criteria b,z = a;by_1 by, ensuring stability is applied to the terms of the denominator of (5.14) so that the
values of T;, and T, can be obtained [12].
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I, =aq faa, T, = a;*Ty
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(LTp )2 LT, T |1, = & a Kat
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Where a; = 3, to have small overshoot at the expense of a slower response.
Substituting T, and T,, in the (5.14) closed loop transfer function:

i,(s) (1 +a;’Tys)

irer(S)  aTy s + a3Ty’s? + a2Tys + 1 (5.16)

The K,,; and K;; gains are given by:
(

.
LKii =

The linear current controller to the DC-DC converter can be represented in the Fig. 5.7.

(5.17)

'Sﬂl ’_‘éﬂlu'ﬂ

el /@

W |—

Figure 5.7 — Linear current controller of the DC-DC converter representation

5.2.2 Linear Voltage Controller of the DC-DC Converter

The objective is to control the voltage in DC-DC converter present in figure 2.13. Therefore, from the Fig. 5.5 to
control the output voltage Ey (E, = Eoyy) is necessary to consider the block diagram in the Fig. 5.8.

ip

Vorer 4 1+ STzv fures Kc - + 1 %)
e

- —_—

» sT,, 2Tzs +1 sC

Figure 5.8 — Block diagram of linear voltage control modified from [12]

The closed loop transfer function of figure 5.8 is:

1+sTzy K¢ 1 1
sT: 2T 45+1sC
— bv d sC ;
Vo(s) = 1 STy _Ke 1 VOref(S) + 1 5Ty Ke 1 iy(s)
sTpy 2Tgs+1sC Y sTpy 2Tgs+1sC Y
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Kc(1+45Tyy) STpyp(2Tgs+1)
e V(s) =5 STV Vorer (8) + 53 ;
$%TpyC(2Tgs+1)+Kcay(1+5Tzp) 25T qTpyC+5°Tpy C+5TzyKcay+Kcay
i(1+ST ) ( )
_ ay zv STpy(2Tgs+1 .
e Vls) = 32TdTpvC, ,TpoC Vorer (s) — 32TdTpoC, ,TpoC, io(s)
S koay VS Koay S o+l S ay koS o+l

io(s) (5.18)

To ensure the design criteria b,*> = a,by_1 by+1, applied to the denominator of (5.18), the values of Ty and Ty,

can be obtained [12].

Tzv2 = av% TPVC = TZVZ
KCa‘U KCaU aU
TWC\o o 2TaTpC | [T\ T2
(m) = Gvizv K.a, ( a, ) = a,T,,2T, a,
4a,*T,* = a, Tou _ 4a,°T,*K.a,
Kea, = 47PY c
T, = 2a,2T, T, = 2a,2T,

Where, a, = 3and K, = 1.

The linear voltage controller of the DC-DC converter can be represented by the Fig. 5.9.

(5.19)

h J

=

Figure 5.9 — Linear voltage controller of the DC-DC converter representation

The current i, present in the Fig. 5.9 will be used in the linear current controller.

iLref
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Chapter 6

Analysis of Simulation Results

The objectives of this chapter are 1) to simulate the nonlinear and linear controllers, explained in the previous
chapters in the context of the described network (chapter 2) and 2) to analyse the obtained results. Moreover, the
purpose is to compare results from nonlinear and linear controllers to figure out which is the best solution.

In order to do the simulation a model of the multiterminal HVYDC network including the before mentioned
controllers was created in MATLAB/Simulink. All the values used in the grid are described in the tables 6.1, 6.2
and 6.3.

Table 6.1 — Simulation parameters of the inverter

Inverter

wglrad | f[Hz]  Sc.[MVA] R.[0] Lo[mH] R[]  Go[uF] Rs[m] | Li[mH]  Vaac[kV]
/5]

60007 50 1500 0.4 9.2 108.8 0.5 1 2.4 66

Table 6.2 — Simulation parameters of the « line
7 Line
r[k2] Ci[uF] Rac[0/km] | Lgc[mH/km] | Cqc[uF/km] d[km] uALY
450 24.178 0.0205 0.352 0.233 220 2.757

Table 6.3 — Simulation parameters of the DC-DC converter

DC-DC Converter
ValkV] I, [A] CluF] L[mH]
150 1088 3 17.5

At t = 0s, the converters and power lines shown in Fig. 2.1 are in steady state with nominal operating values,
except when said otherwise. Moreover, to evaluate the performance of the four terminal HVDC grid under large
variation of power, at t = 0.1s two constant power loads are connected into the grid, (one in each independent
network), each one of them with half of the nominal power.

6.1 Nonlinear Controllers Simulation Results

In this section all the controllers are nonlinear as was explained in the chapter 4. At t = 0.1s two constant power
loads are connected into the grid. All the simulations have the duration of 0.8s.
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Figure 6.1 — Currents measured on the AC side of network one with nonlinear controller

”MWT“T“ NMTN
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Figure 6.2 — Currents measured on the AC side of network two with nonlinear controller

In Fig. 6.1 it is possible to see the evolution of the AC currents over time in the network one. The currents at t =
0s up to t = 0.1s have the same Root Mean Square (RMS) value which is constant. After that, the currents have
a big increase because at that time the constant power loads are connected to the grid, with the system power also
increasing, so that RMS value of AC currents has to increase as well due to the response of the line voltage
controllers that increase the virtual current to maintain the line voltage. The RMS value of AC currents presented
in the Fig. 6.2 don’t increase when the constant power loads are connected, because the network two is power
controlled and the power reference has to be kept constant (for wind or solar applications). Therefore, the increase
of power in the network two due to the electronic load has to be supplied by the interconnecting line two.
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Figure 6.3 — Currents measured on the AC side of network one with nonlinear controller (zoom)

Fig. 6.3 presents a zoom in the AC currents waveform of network one to see their balanced sinusoidal behaviour.
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Figure 6.4 — Voltages measured on the AC side of network one with nonlinear controller
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Figure 6.5 — Voltages measured on the AC side of network two with nonlinear controller
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The evolution of the AC voltages in both networks, at the input of the LCL filter, as shown in figures 6.4 and 6.5,
have constant RMS values over the simulation time and have the nearly the same peak value. This peak value is
computed as follows:
V
Vanpeak = Vbnpeak = Vcnpeak =242

V3 (6.1)

104 AC Voltage Network One
8 T T T T T
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VV]
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t[s]

Figure 6.6 — Voltages measured on the AC side of network one with nonlinear controller (zoom)
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Figure 6.7 — Voltages measured on the AC side of network one with nonlinear controller without the LCL filter (zoom)

For a three-phase system to be balanced, all the source voltages must have the same magnitude and there must be
exactly 120 degrees out of phase with one another, then it must be a 120-degree phase difference. Fig. 6.6 confirms
that the AC source is a balanced three-phase system. The influence of the LCL filter is also shown in the same
figure when compared with Fig. 6.7, because the waveform high frequency harmonics have highly reduced
amplitude, otherwise the waveforms would show higher ripple.
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Figure 6.8 — Currents measured on the output DC side of network one with nonlinear controller

DC Current Network Two
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Figure 6.9 — Currents measured on the output DC side of network two with nonlinear controller

The output currents in the figures 6.8 and 6.9 have the same behaviour as expected, because the two networks have
similar parameters and have the same type of controllers. The output current i, in both networks has average value
equal to 1200A because the constant current load imposes that value. In other hand the ripple current in inductor
L, i, has a triangle waveform as expected. This behaviour is possible to see in Fig. 6.10.
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Figure 6.10 — Currents measured on the output DC side of network one with nonlinear controller (zoom)
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Figure 6.11 — Voltages measured on the DC side of network one with nonlinear controller
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Figure 6.12 — Voltages measured on the DC side of network two with nonlinear controller
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The V; is the DC voltage at the DC side of the inverter-rectifier and the V, is the DC voltage at the output of the
network, as shown in the Fig. 2.13. From figures 6.11 and 6.12 it is seen that the nonlinear controllers, at t = 0.1s,
after a brief transient maintain the grid voltage in droop mode when the constant power loads are connected to the
grid. Hence, the V,; voltage droops, but after that the controller rises the voltage to a value slight lower than the
rated value. However, in the network two (Fig. 6.12) the error is greater. This happens because in this network
only the injected power is controlled not the line voltage. It is possible to minimize this error injecting more power,
but in this case extra power, if available, is not strictly needed as the deviation from the rated voltage is not
significant. In the network one the voltage drops 5.6 kV approximately; in the second network the voltage drops
8.6 kV (= -5%). In other hand, the electronic load voltage V, is always equal to 80 kV as expected, showing no
voltage oscillations. Moreover, in the figures 6.13 and 6.14 is expressed the same test but without the droop control
action. It is seen the line voltage returns to 150 kV not depending on that disturbance.
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Figure 6.13 — Voltages measured on the DC side of network one with nonlinear controller without droop control
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Figure 6.14 — Voltages measured on the DC side of network two with nonlinear controller without droop control

6.2 Linear Controllers Simulation Results

To perform the simulations using linear controllers the multiterminal network has the same topology and
parameters. The controllers are linear, except the current controller of the inverter-rectifier which is a sliding mode
current controller (nonlinear controller). All the simulations have the duration of 0.8s. The computed gains
expressed in the chapter five are shown in the table 6.4 and 6.5.
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Table 6.4 — General gains of the PI controllers

a, Qa; a, a; Kc
1 1 3 3 1

Table 6.5 — PI current and voltage controllers’ gains

Inverter DC-DC Converter
Voltage linear controller Voltage linear controller Current linear controller
K, K; K., K, K; Kpi K;;
-0.094 -50.23 50.23 0.015 25.042 0.012 38.91
g X 10% AC Voltage Network One
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Figure 6.15 — Voltages measured on the AC side of network one with linear controller
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Figure 6.16 — Voltages measured on the AC side of network two with linear controller

From the figures 6.4, 6.5, 6.15 and 6.16 it is seen that the behaviour of the AC voltages in both networks is very
similar because the current controller is nonlinear in both cases. Therefore, for this system the use of the nonlinear
voltage controller does not represent a significant improvement, when using the nonlinear current controller, as
the nonlinear controller is equivalent to a PI controller. The AC currents waveforms are the same as in the previous
section because the current controller used is the nonlinear sliding mode current controller. Nevertheless, slightly
higher distortion on voltages can be seen in Fig. 6.17.
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Figure 6.17 — Voltages measured on the AC side of network one with linear controller (zoom)

Comparing the figures 6.6 and 6.17, the utilization of a linear voltage controller doesn’t introduce significant
harmonic amplitude on high frequencies to the waveform and the system is balanced as well. However, the linear
controller presents less harmonic attenuation of high frequencies compared to the nonlinear one. Therefore, it is
better to use the nonlinear controller. Moreover, from the Fig. 6.18 is possible to see that the presence of the LCL
filter is crucial to attenuate harmonic amplitude on high frequencies of the five levels line to neutral voltages.
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Figure 6.18 — VVoltages measured on the AC side of network one with linear controller without LCL filter (zoom)
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Figure 6.19 — Currents measured on the DC side of network one with linear controller
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Figure 6.20 — Currents measured on the DC side of network two with linear controller
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Considering the figures 6.8, 6.9, 6.19 and 6.20 the behaviour of the DC currents is similar, but the switching
frequency is higher and therefore the ripple is smaller.
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Figure 6.21 — Currents measured on the DC side of network one with linear controller zoom
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Comparing figures 6.10 and 6.21, which are zooms of the DC currents for a better visualization of the behaviour
of the DC currents. It is seen that the currents are controlled independently of the type of the controller, but the
linear voltage controller enables a higher switching frequency, the current showing less ripple.
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Figure 6.22 — Voltages measured on the DC side of network one with linear controller
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Figure 6.23 — Voltages measured on the DC side of network two with linear controller
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Figure 6.24 — Voltages measured on the DC side of network one with linear controller without droop control
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Figure 6.25 — VVoltages measured on the DC side of network two with linear controller without droop control

From figures 6.22 and 6.23 it is seen that the linear controllers are subject to a disturbance at t = 0.1s when the
constant power loads are connected to the grid. First the V; voltage droops but after that the controller rises the
AC RMS current and the voltage almost returns to the original value. The error in the network two is greater as
was explained before. In the network one the voltage drops 2.9 kV approximately; in the second network the
voltage drops 7.5 kV. From the figures 6.24 and 6.25 is possible to see the same controllers but without the droop
control. In other hand, the V, is always equal to 80 kV as expected and does not show voltage oscillations as it is
not subjected to load disturbances. However, despite the linear voltage controller being able to overcome the
disturbance, comparing the nonlinear controller with the linear it is possible to see that the voltage V,; with linear
controller has a slightly more oscillatory behaviour. Therefore, it is better to use the nonlinear controllers for this
type of application. For a better understanding of this oscillatory behaviour, Fig. 6.26 shows a zoom of the V,;
voltage in network one using the linear controller, while in Fig. 6.27 the same test was done using a nonlinear
controller, in order to compare them.
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Figure 6.26 — V; voltage measured on the DC side of network one with linear controller (zoom)
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«10° DC Voltage Network One
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Figure 6.27 — V,; voltage measured on the DC side of network one with nonlinear controller (zoom)

6.3 THD Analysis

The type of network discussed in this dissertation is supplied by high voltage in the AC side, where the total
harmonic distortion (THD) must be smaller than 5%. Therefore, in this section a THD analysis is made to check
if the THD in the multiterminal network presents acceptable values. To perform this analysis the FFT analysis tool
of MATALAB/Simulink is used. All studies were made using a fundamental frequency of 50 Hz with while
sampling 5 cycles.
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Figure 6.28 — AC Voltage FFT analysis network one using nonlinear controllers

53



Signal

%10 FFT window: 5 of 50 cycles of selected signal
T T T

Signal mag.

1 1 1 1
0.2 021 0.22 023 0.24 025 026 027 0.28 028

Time (s)
FFT analysis
Fundamental (50Hz) = 5.204e+04 , THD= 3.87%
0.9 T T T T T T T
0.8 [~ N

=
o
T

=
=
T

ag (% of Fundamental)
(=) (=)
@ o
T T

Ml
o
[
T

o
T

o

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency (Hz)

Figure 6.29 — AC Voltage FFT analysis network one using linear controllers
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From figures 6.28 and 6.29 it is concluded that the THD of the AC voltage in network one is less than 5% and

equal to 3.87% independently of the type of controller.
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Figure 6.30 — AC Voltage FFT analysis network two using nonlinear controllers
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Figure 6.31 — AC Voltage FFT analysis network two using linear controllers

In the case of network two the THD of AC voltage is equal to 3.75% with nonlinear controllers and 3.78% with
linear voltage controller (figures 6.30 and 6.31). Therefore, the THD in both cases is less than 5%, being in this
test marginally smaller for nonlinear controllers.

Performing the FFT analysis of AC current to both cases (nonlinear and linear controllers) may not be significant
because the current controller is nonlinear in both cases. FFT analysis were made to network one and two using
nonlinear controllers.
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Figure 6.32 — AC current FFT analysis network one using nonlinear controllers
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Figure 6.33 — AC current FFT analysis network two using nonlinear controllers

The THD of AC currents of the network one is equal to 1.34%, Fig 6.32 and is equal to 1.88% on network two,
Fig.6.33, which are low values.

The table 6.6 summarizes the above discussed AC voltages THD, while adding corresponding THD results for DC
voltages. It can be seen that the DC voltage THDs are acceptably low.

Table 6.6 — THD values

THD AC THD DC
AC Voltages V,; Voltage
Network 1 Network 2 Network 1 | Network 2
" Nonlinear Control 3.87% 3.75% 0.199% C0.042%
 Linear Control 3.87% 3.78% 0.256% | 0.048%
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Chapter 7

Conclusions

This master degree dissertation has developed nonlinear voltage controllers to implement in a four-terminal VSC-
HVDC standard network. The standard multi-terminal HVDC network is composed by two similar networks that
are interconnected by a third line. To model the multiterminal network, lines were represented by their = models,
while each network constant power load, current constant load, AC/DC inverter-rectifier and DC/DC converters
were modelled using their state-space equations. Due to the topology of the entire network and the presence of
constant power loads, two different nonlinear control techniques were developed and implemented to ensure the
global stability, overcoming the stability issue possibly caused by constant power loads in the HVDC network. To
check the performance of nonlinear controllers, the steadiness of the DC voltage and their transient and dynamic
response were evaluated when the constant power loads were connected.

Results were also obtained using Pl linear controllers to compare with the nonlinear ones. The linear controllers
are more intuitive and simpler to implement than the nonlinear controllers. However, this type of controller
presents more probability to fail when the load has large power deviations. To mitigate the happening of this
situation a very large DC capacitor is needed, to prevent large voltage variations, therefore maintaining the linear
controllers close to their validity region, enabling the reaching of the steady state.

The first nonlinear controller proposed in this dissertation is based on Lyapunov control theory and combines
backstepping control with sliding mode control. These controllers coupled to LCL filters, to attenuate high
frequency harmonics, have shown good performance with voltage variations less than 5% and THD less than 4%.
On the other hand, the PI linear controllers shown also good performances, presenting only slightly higher THDs.

The second nonlinear controller presented in this dissertation is also based on Lyapunov theory but in this case, it
is adapted to DC-DC converters. This controller has shown a good performance in terms of stability and response
speed to attain the steady state after the disturbances. The linear controller has presented a good performance as
well but with a slightly more oscillatory behaviour.

In this dissertation results were obtained with and without droop control. The usual solution for this type of
application is the use of droop control. Thus, the reference voltage is dependent on the required active power,
which enables a better result in terms of stability because in the multiterminal network power and voltage are
controlled.

The AC current THD in network one equals 1.34% while it is 1.88% on network two, using nonlinear current
controllers. On the other hand, the AC voltage THD of network one with nonlinear voltage controller is equal to
3.87% and equal to the THD of network two with linear voltage controller. However, on network two the THD is
equal to 3.75% with nonlinear voltage controller and 3.78% with the PI controller. Therefore, all THD are small
(less than 5 %). Despite the THD being similar in the majority of tests, network two has a smaller AC voltage
THD when using the nonlinear voltage controller. The DC voltage THDs are acceptably low and it can be seen
that the THDs using nonlinear control are lower than using linear control. Hence, the nonlinear controller should
be the chosen.

To sum up, the recommendation of this dissertation is to use nonlinear controllers in four-terminal HYDC network
and in general multiterminal HVDC networks. This statement lies on the fact that this controller deals better with
large load variations and with constant power loads, which are increasingly common in HVDC grids. The use of
nonlinear controller also permits the use of a smaller DC capacitor, which represents savings in costs and volume.

57



7.1 Future Work

For future work, it would be interesting to study adaptative voltage regulation in multilevel DC networks instead
of just study nonlinear voltage regulation in a multiterminal DC network.

It would be also important to develop a multiterminal network with different renewable energy sources with
different levels of voltage and to design and implement controllers capable of control these different voltage levels.

It would also be interesting to study a network with more multiterminal ports and more loads.

Moreover, it is of fundamental importance to make a laboratory prototype to test the developed nonlinear
controllers and compare their performance to linear controllers.
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Appendix A

Table A.1 — MATLAB workspace

Variable Value Variable Value
a; 3 L[mH] 17.5
a; 1 Lo[mH] 9.2
a, 1 L,[mH] 2.4
a, 3 Lgc[mH /km] 0.352
C[uF] 3 P[MW] 163.2
Co[uF] 0.5 r[k2] 450
Cyc[UF/km] 0.233 R, 4596 x 1075
C;[uF] 24.178 R[] 0.415
d[km] 220 R,[2] 36.277
Airmax[A] 142.763 R;[2] 0.001
AL[V] 1500 Ry [2/km] 0.0205
AyolV] 750 T[] 2757.4
flHz] 50 Tp1n[42] 137.87
fc[Hz] 15000 Scc[MVA] 1500
G; -0.359 T[us] 66.667
i [A] 1427.6 T, 3.333x 1075
I,[A] 1088 T 5x107*
K, 1 T, 0.0257
Ky 15000 Ty 0.0399
K; 25.0420 T, 3x107*
K;; 38.915 T, 6x107*
K;, -50.229 Uemax|V] 10
K, 0.0150 Vo[kV] 75
K,; 0.0117 V. [kV] 150
K,, -0.0945 ViaclkV] 66
K, 50.229 ws[Hz/s] 1.885 x 10*

To size the capacitor C; of figure 2.13 the following equation were used [24]:

Where A, itis considered to be 10% of 17,.

(A1)
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Figure A.2 — Four-terminal VSC-HVDC model with droop control and linear controllers MATLAB/Simulink
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