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Resumo 

 
A utilização das redes de corrente continua (DC do inglês Direct Current), incluindo a transmissão de energia em 

corrente contínua a alta tensão HVDC, tornou-se uma realidade nestes últimos anos, com o avanço muito 

acentuado da eletrónica de potência. Quando comparado com a tradicional transmissão de energia em corrente 

alternada a alta tensão HVAC, o sistema HVDC para longas distâncias apresenta vantagens ao nível ambiental, 

custo, peso, perdas, saúde pública e permite a ligação entre duas redes AC assíncronas independentes diretamente. 

 

O objetivo desta tese é modelar e controlar uma rede DC multiterminal padrão, contendo a interligação de duas 

redes independentes. Cada uma destas redes é constituída por uma fonte AC, inversor-rectificador, conversor DC-

DC, cargas resistivas e cargas eletrónicas, (potência constante e corrente constante). Foram criadas duas estratégias 

de controlo não lineares incluindo estatismo. Estes controladores têm de ser capazes de controlar a tensão da linha 

em regime permanente, independentemente de perturbações. 

 

Os controladores desenvolvidos para o inversor-rectificador trifásico e para conversores DC-DC partem de dois 

métodos de controlo não linear baseados na teoria de estabilidade de Lyapunov, e combina a teoria do backstepping 

com a teoria do controlo por modo de deslizamento (BSMC). 

 

Para comparação de desempenho foram desenhados e implementados controladores PI lineares na mesma rede e 

os resultados foram comparados com os dos controladores não lineares. 

 

As duas estratégias referidas anteriormente foram comparadas em termos de resposta a transitórios e 

sobretensões/subtensões através das simulações MATLAB/Simulink. Foi possível concluir que o desempenho 

melhora quando se utilizam os controladores não lineares desenvolvidos. 

 

Palavras chave: HVDC, HVAC, Rede DC multiterminal, BSMC, Controladores não lineares, Controladores 

Lineares. 
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Abstract 

 
The use of DC networks including the transmission of energy using DC current at high voltage HVDC has become 

a reality with the advancement of power electronics. The HVDC system, for long distances has advantages in 

terms of the environment, cost, weight, losses, public health when compared to the traditional HVAC, while 

allowing the interconnection of two independent asynchronous AC networks directly. 

 

The purpose of this dissertation is to model and control a standard multiterminal DC network which consists in 

the interconnection of two independent networks. Each of these networks have an AC source, inverter, DC-DC 

converter, resistive loads, and electronic loads (constant power and constant current). Two nonlinear control 

strategies were created including droop control. These controllers must be able to control the voltage steady state 

regardless of disturbances. 

 

The developed controllers for the three-phase inverter-rectifier and for the DC-DC converters are based on two 

nonlinear control methods based on the theory of Lyapunov stability and combine the theory of the backstepping 

and the theory of sliding mode control (BSMC).  

 

For performance assessment, linear PI controllers were designed and implemented using the network models and 

the results were compared with nonlinear controllers. 

 

The two strategies mentioned above were compared in terms of response to transients and 

overvoltage/undervoltage through MATLAB/Simulink simulations. Results show that nonlinear controllers 

outperform their linear counterparts, as expected. 

 

Keywords: HVDC, HVAC, Multiterminal DC network, BSMC, Nonlinear controllers, Linear controllers. 
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Chapter 1  

 

 

Introduction  

 
1.1 Background  

 

Nowadays, the AC network is commonly used to transmit and distribute electrical energy. This methodology was 

adopted at the end of 19thcentury when Nikola Tesla “won” the war of currents. Back then, Tesla supported 

alternating current (AC) to distribute power and Thomas Edison claimed that direct current (DC) was the best and 

safest system for electric power distribution. At that time, AC won the battle mainly because the invention of 

transformers. With this important electrical machine it was possible to convert the voltage to higher or lower levels 

with high efficiency and lower implementation costs [1]. 

 

However, in the last years with advancement in Electronics, especially in semiconductor technology that allowed 

to step-up or step-down DC voltage conversion, DC networks became a possible solution to replace or complement 

the AC distribution system [2]. 

 

The main reason to motivate the use of DC distribution instead of AC relies in the fact that transmission capacity 

can be increased due to the increased voltage allowed by the low voltage directive [3]. Another important 

motivation is the fact that less AC/DC and DC/AC conversions are needed which improves the total efficiency of 

the system. Finally, is also relevant to say that DC network including the distributed energy generation provides 

an environment that can guarantee outage free, better power quality to consumers[3]. 

 

With the recent growth in renewable energy (RE) the DC links became more interesting, because a considerable 

amount of RE electricity is produced using direct current. Recent studies have shown that for long distances the 

best way to transmit power from offshore wind farms to the coast is by high voltage direct current (HVDC) links. 

This fact led a new interest in the HVDC grids, especially in the study of stability and the voltage control. In this 

type of RE an HVDC transmission usually results in a multi-terminal network. It is possible to control this network 

with voltage source converters connected in its terminals (VSCs), Fig.1.1. These converters permit the transfer of 

the power from the DC side to AC grids where the consumers are connected. The importance of control in this 

multi-terminal network is to guarantee that DC voltage remains almost stable while damping out any oscillations 

that results from the change in the incoming power and by faults in the AC side [4]. 

 

Multi-terminal HVDC structure brings a lot of advantages such as cost maintenance and weight reduction, but also 

have disadvantages. The main problem is stability in DC voltage and input filters due to the presence of the 

constant power loads [5]. 

 

The biggest challenge of using multi-terminal DC grid is the interconnection between the grid and electronic loads. 

There are three types of electronic loads, constant voltage loads that maintains the value of the voltage constant 

regardless the current, constant current loads that imposes a fixed current value and finally constant power loads 

that maintaining a constant power regardless of the line voltage are responsible for stability issues. A possible 

solution to overcome the stability problem, may need the insertion of a suitable capacitor in parallel to the constant-

power load converter [5]. 

 

Regardless the stability issue with constant power loads, HVDC transition system is the better method to solve the 

problems between the interconnection of power networks, because DC power do not show frequency or phase 

angles incompatibilities, so it’s possible to connect two separately asynchronous AC systems. For long distances 

HVDC system is also better because it can use underground and submarine cables. This type of system permits 
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more power transfer with fewer cables compared to AC system. For long distances HVAC systems have more 

losses than HVDC and reactive power compensation is needed and a bigger investment cost as it shown in Fig.1.2. 

Finally, for environment reasons HVDC is the optimal choice because it shows almost zero induction or alternating 

electro-magnetic fields [6].  

 
Figure 1.1 - Typical HVDC multi-terminal network [4] 

 

 

 

Figure 1.2 - HVDC-HVAC cost [6] 

Commonly, linear controllers like proportional integral (PI) are used to regulate voltages and currents in an 

electronic converter. But in some cases, the use of these controllers becomes less robust against the system 

disturbances. To solve these cases, nonlinear controllers where developed to improve the behaviour of equipment. 

With nonlinear controllers such as hysteresis, sliding mode control (SMC) it is possible to control just-in time 

while providing a precise control action [7]. 

 

1.2 Dissertation Objectives and Motivation  

 

This dissertation has four main objectives: 

1) To derive a dynamic model for a standard multi-terminal DC network; 

2) To simulate the network in a computational environment; 

3) To develop control strategies for the multi-terminal DC network; 
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4) To evaluate the developed control strategies. 

 

To fulfil these objectives, the standard multi-terminal DC network it will be composed by two equal circuits and 

a third one that connects the first ones (Fig.1.3). Basically, the system has two identical networks that are connected 

by a line that can be represented by a 𝜋 model. Each network has a constant power load, current constant load and 

AC/DC, DC/DC converters. After obtaining the DC network model, the objective is to design nonlinear (and 

linear) controllers able to track the DC voltage at a certain value. These controllers should also guarantee the 

stability of all system in a way that the all network always is stable independently of the load type in use. In 

addition to this the second line of the DC network will have a power controller responsible for the injection of 

power into to the DC grid. To conclude the description of the DC network it is also relevant to refer that both grids 

will have low-pass filters to attenuate the amplitude of high frequency harmonics and all strategies of control the 

DC voltage in inverter will have droop control.  

The main idea of testing both nonlinear and linear controllers is to verify if the both types have the same behaviour 

in similar conditions. Theoretically, it is expected that the presence of constant power loads affects the performance 

of the linear controllers, at least presenting larger oscillations in the DC voltage, showing probably that the best 

controller should be the nonlinear. 

MATLAB/Simulink is the computation program chosen to carry out all the simulations and trials. The choice lies 

on the fact that it is an extremely reliable program in all mathematical computations, and it is recognized by all the 

community in this field.  

One of the main purposes of this dissertation is to contribute in a significant way to develop control strategies in a 

DC multiterminal network because only a few works have addressed the control in this type of network. In the 

present years, more than ever, there is a big concern about our planet. Human activities (footprint) are responsible 

for the destruction of several habitats and for the greenhouse effect. Fortunately, the world community are finally 

doing efforts to minimize those problems and one of the solutions being implemented is the utilization of RE 

instead of fossil fuels. The energy produced with RE is in the DC form so the idea of use a DC network instead of 

using an AC one becomes more interesting. 

However, just the idea isn´t enough, for that to happen the DC network must be a better solution than AC networks. 

As said before, considering the progress in semiconductor technology, the implementation cost, and the fact that 

for long distances the HVDC is advantageous regarding HVAC, makes the idea a solution for the present and 

future. Nevertheless, is important to refer that for the present the best way is to implement a DC multiterminal 

network that connects several independent grids that have AC and DC combined. For those reasons this 

dissertation can be an important contribute for the new and sustainable world. 

 

Figure 1.3 - Equivalent circuit of a four-terminal VSC-HVDC network (Constant Power Loads)  
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1.3 Dissertation Structure 

 

This master dissertation is divided into seven chapters plus bibliography and appendix. 

 

In chapter 1, the background was presented, followed by the dissertation objectives, motivation, and the 

dissertation structure. 

 

In chapter 2, the dynamic model of the standard multiterminal DC network is present step-by-step together with 

the design of network key components. 

 

In chapter 3, the state of art will be presented, including a brief explanation of nonlinear systems Lyapunov stability 

theory. Based on that, develop two nonlinear methods to design nonlinear controllers. These nonlinear methods 

are backstepping and sliding mode control. 

 

In chapter 4 the objective is to design four nonlinear controllers, based on the methods explained in the previous 

chapter. Two of them to control voltage and current in the inverter-rectifier and the other two to control the same 

quantities, in the DC-DC converter (constant power loads.) This chapter also explains the power control and droop 

control.  

 

In the chapter 5, linear PI theory is briefly explained and used to design controllers that control the voltages of the 

previous chapter. All the controllers in this chapter are linear with exception of the current controller of the inverter 

that is nonlinear same as in the chapter 3. These controllers are used as reference for comparison with the nonlinear 

controllers.  

 

In the chapter 6, the simulations results are present and analysed using all the control approaches explained before. 

 

In the chapter 7, the principal conclusions of this master dissertation are presented together with possible ideas for 

future work. 
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Chapter 2 

 

 

Modelling the Standard Multiterminal DC Network 

 
The standard multiterminal DC network will be modelled considering the π model of lines in Fig 1.3, shown in 

Fig. 2.1. 

 
Figure 2.1- Equivalent circuit of a four-terminal VSC-HVDC network with 𝜋 model 

In the Fig 2.1 the DC lines are modelled by an equivalent circuit of four terminals. For the analysis each one of 

the three-line equivalent circuits will be considered separately. For each one of the tree line equivalent circuits the 

model equations are represented hereafter.  

 
Figure 2.2 – Equivalent 𝜋 model of the line one 

The equations of the equivalent 𝜋 model of the line one (Fig. 2.1) are: 
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[
𝐸1
𝐼1
] = [

1 + 𝑍𝑑𝑐1
𝑌𝑇
2

𝑍𝑑𝑐1

𝑌𝑇 (1 + 𝑍𝑑𝑐1
𝑌𝑇
4
) 1 + 𝑍𝑑𝑐1

𝑌𝑇
2

] [
𝐸3
𝐼3
] 

 

 
 

(2.1) 

 

Or: 

 

[
𝐸3
𝐼3
] = [

1 + 𝑍𝑑𝑐1
𝑌𝑇
2

−𝑍𝑑𝑐1

−𝑌𝑇 (1 + 𝑍𝑑𝑐1
𝑌𝑇
4
) 1 + 𝑍𝑑𝑐1

𝑌𝑇
2

] [
𝐸1
𝐼1
] 

 

 

 
(2.2) 

Where: 

 𝑍𝑑𝑐1 = 𝑅𝑑𝑐1 + 𝑗𝐿𝑑𝑐1 
 

(2.3) 

 𝑌𝑇

2
= Transverse admittance (2.4) 

  

𝐼𝐿1 =
𝐸1 − 𝐸3
𝑍𝑑𝑐1

 

 

 
(2.5) 

 

Figure 2.3 - Equivalent 𝜋 model of the line two 

The equations of the equivalent 𝜋 model of the line two (Fig. 2.3) are: 

 

[
𝐸1
𝐼1
] = [

1 + 𝑍𝑑𝑐2
𝑌𝑇
2

𝑍𝑑𝑐2

𝑌𝑇 (1 + 𝑍𝑑𝑐2
𝑌𝑇
4
) 1 + 𝑍𝑑𝑐2

𝑌𝑇
2

] [
𝐸2
𝐼2
] 

 

 

 
(2.6) 

Or: 

 

[
𝐸2
𝐼2
] = [

1 + 𝑍𝑑𝑐2
𝑌𝑇
2

−𝑍𝑑𝑐2

−𝑌𝑇 (1 + 𝑍𝑑𝑐2
𝑌𝑇
4
) 1 + 𝑍𝑑𝑐2

𝑌𝑇
2

] [
𝐸1
𝐼1
] 

 

 

 
(2.7) 

Where: 

𝐼𝐿2 =
𝐸1 − 𝐸2
𝑍𝑑𝑐2

 

𝑍𝑑𝑐2 = 𝑅𝑑𝑐2 + 𝑗𝐿𝑑𝑐2 

 
(2.8) 
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Figure 2.4 - Equivalent 𝜋 model of the line three 

The equations of the equivalent 𝜋 model of the line three (Fig.2.4) are: 

 

[
𝐸2
𝐼2
] = [

1 + 𝑍𝑑𝑐3
𝑌𝑇
2

𝑍𝑑𝑐3

𝑌𝑇 (1 + 𝑍𝑑𝑐3
𝑌𝑇
4
) 1 + 𝑍𝑑𝑐3

𝑌𝑇
2

] [
𝐸4
𝐼4
] 

 

 

 
(2.9) 

Or: 

 

[
𝐸4
𝐼4
] = [

1 + 𝑍𝑑𝑐3
𝑌𝑇
2

−𝑍𝑑𝑐3

−𝑌𝑇 (1 + 𝑍𝑑𝑐3
𝑌𝑇
4
) 1 + 𝑍𝑑𝑐3

𝑌𝑇
2

] [
𝐸2
𝐼2
] 

 

 

 
(2.10) 

Where: 

𝐼𝐿3 =
𝐸2 − 𝐸4
𝑍𝑑𝑐3

 

𝑍𝑑𝑐3 = 𝑅𝑑𝑐3 + 𝑗𝐿𝑑𝑐3 
 

 
(2.11) 

 

The above equations are used in the simulations of the multiterminal network lines. 

2.1 AC Grid Configuration 

For the purpose of this dissertation the AC side powering the DC grids will be represented by a three-phase system 

with internal short-circuit impedance connected to a 3-phase inverter-rectifier. The AC sources short circuit 

resistive and inductive components of the impedances cannot be neglected due to the power levels transmitted. 

These sources are connected to inverter-rectifiers in the multiterminal HVDC system. The inverter-rectifier 

switching action injects high frequency harmonics in the current waveforms. The amplitude of the harmonics 

decreases with the harmonic order relative to the switching frequency but still require to be further attenuated. 

Therefore, in the AC side the use of a filter that acts like a low pass-filters to minimize the harmonics amplitude 

especially in high frequencies is required. LCL filter is going to be used instead of a traditional LC filter because 

presents a better performance in this type of system. 

2.1.1 LCL Filter  

The high frequency harmonics produced by the inverter-rectifier may cause ripple in the power system variables. 

The ripple can create resonance problems at the harmonic frequencies [8]. Therefore, the design and utilization of 

an AC filter is crucial to minimize the harmonics problems. The AC filter basically acts as a low-pass filter. This 

filter is installed between the three-phase voltage source and the inverter-rectifier. Thus, the high frequencies are 

strongly attenuated, while the fundamental harmonic are almost not affected [9]. The filter has a T shape with two 

inductors (and their parasitic resistances) and a capacitor in series with a damping resistance connected in a triangle 

form (Fig.2.5). The use of high order LCL filter improves the attenuation in the high frequencies compared to the 

traditional LC filter. The weight and size of the LCL components are reduced, using smaller values of inductors 

and capacitors while guaranteeing a good performance [10]. 
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Figure 2.5 – LCL filter representation 

To size the filter inductance values it is considered an equivalent single phase LCL filter circuit (Fig 2.6) in which 

the damping resistance is neglected. 

 

Figure 2.6 – Equivalent single phase LCL filter circuit neglecting the damping resistance 

The dynamic behaviour of the circuit (Fig 2.6) can be described in the following form: 

 

{
  
 

  
 

𝑑𝑣𝐶0´
𝑑𝑡

=
1

𝐶0´
(𝑖 − 𝑖𝑎𝑐)

𝑑𝑖

𝑑𝑡
=
1

𝐿1
(𝑉𝑎𝑐 − 𝑣𝐶0´ − 𝑅3𝑖)

𝑑𝑖𝑎𝑐
𝑑𝑡

=
1

𝐿0
(𝑣𝐶0´ − 𝐸𝑎𝑐 − 𝑅1𝑖𝑎𝑐)

 

 

 

(2.12) 

Rewriting the 2.12 into matrix form to obtain the state model �̇� = 𝐴𝑥 + 𝐵𝑢 

 

[
 
 
 
 
 
𝑑𝑖

𝑑𝑡
𝑑𝑖𝑎𝑐
𝑑𝑡
𝑑𝑣𝐶0´
𝑑𝑡 ]

 
 
 
 
 

=

[
 
 
 
 
 
 −
𝑅3
𝐿1

0 −
1

𝐿1

0 −
𝑅1
𝐿0

1

𝐿0
1

𝐶0´
−
1

𝐶0´
0
]
 
 
 
 
 
 

[
𝑖
𝑖𝑎𝑐
𝑣𝐶0´

] +

[
 
 
 
 
1

𝐿1
0

0 −
1

𝐿0
0 0 ]

 
 
 
 

[
𝑉𝑎𝑐
𝐸𝑎𝑐

] 

 

 

(2.13) 

 

𝐴 =

[
 
 
 
 
 
 −
𝑅3
𝐿1

0 −
1

𝐿1

0 −
𝑅1
𝐿0

1

𝐿0
1

𝐶0´
−
1

𝐶0´
0
]
 
 
 
 
 
 

 , 𝐵 =

[
 
 
 
 
1

𝐿1
0

0 −
1

𝐿0
0 0 ]

 
 
 
 

 

 

 

(2.14) 

The filter transfer function is the following: 

 𝐼𝑎𝑐(𝑠)

𝑉𝑎𝑐(𝑠)
=

1

(𝐿1𝐿0𝐶0´)𝑠3 + 𝑎𝑠2 + 𝑏𝑠 + (𝑅3 + 𝑅1)
 

(2.15) 
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Where,  

 𝑎 = 𝐿1𝐶0´𝑅1 + 𝐿0𝐶0´𝑅3 

𝑏 = 𝐶0´𝑅3𝑅1 + 𝐿1 + 𝐿0 

 

(2.16) 

The denominator of the transfer function (2.15) can be factorized into two factors as demonstrated in (2.17). 

 𝐼𝑎𝑐(𝑠)

𝑉𝑎𝑐(𝑠)
=

𝑐

(1 + 𝑠𝑑)(1 + 𝑏1𝑠 + 𝑎1𝑠2)
 

 

(2.17) 

Where, 

 
𝑐 =

1

𝑅3 + 𝑅1
 

𝑑 =
𝐶0´𝑅3𝑅1 + 𝐿1 + 𝐿0

𝑅3 + 𝑅1
 

𝑏1 =
𝐿1𝐶0´𝑅1 + 𝐿0𝐶0´𝑅3
𝐶0´𝑅3𝑅1 + 𝐿1 + 𝐿0

 

𝑎1 =
𝐿1𝐿0𝐶0´

𝐶0´𝑅3𝑅1 + 𝐿1 + 𝐿0
 

 

 

 

(2.18) 

From the second order term the resonant frequency of the circuit can be written in the following form: 

 
𝜔𝑓 = √

𝐶0´𝑅3𝑅1 + 𝐿1 + 𝐿0
𝐿1𝐿0𝐶0´

 

 

(2.19) 

If the resistances of inductances are neglected the resonant frequency is expressed in the following form: 

 
𝜔𝑓 = √

𝐿1 + 𝐿0
𝐿1𝐿0𝐶0´

 
 

(2.20) 

Taking into account (2.20) the capacitor 𝐶0 is expressed in the following form: 

 
𝐶0´ =

𝐿0 + 𝐿1
𝐿1𝐿0𝜔𝑓2

 
 

(2.21) 

To smooth the overall response a resistance in series with filter capacitance is placed to damp out resonance, this 

resistance (𝑅2´) behaves like a passive damping (Fig. 2.7). The 𝑅2´ in series with 𝐶0´ attenuates the gain and 

improve the stability of the system.  

 

Figure 2.7 – Equivalent single phase LCL filter circuit with the damping resistance R2´ 

The dynamic behaviour of the circuit (Fig. 2.7) can be described in the following form: 
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{
  
 

  
 

𝑑𝑣𝐶0´
𝑑𝑡

=
1

𝐶0´
(𝑖 − 𝑖𝑎𝑐)

𝑑𝑖

𝑑𝑡
=
1

𝐿1
(𝑉𝑎𝑐 − 𝑣𝐶0´ − 𝑅3𝑖 − 𝑅2´(𝑖 − 𝑖𝑎𝑐))

𝑑𝑖𝑎𝑐
𝑑𝑡

=
1

𝐿0
(𝑣𝐶0´ − 𝐸𝑑𝑐 − 𝑅1𝑖𝑎𝑐 + 𝑅2´(𝑖 − 𝑖𝑎𝑐))

 

 

 

(2.22) 

Rewriting the 2.22 into matrix form to obtain the state model �̇� = 𝐴𝑥 + 𝐵𝑢 

 

[
 
 
 
 
 
𝑑𝑖

𝑑𝑡
𝑑𝑖𝑎𝑐
𝑑𝑡
𝑑𝑣𝐶0´
𝑑𝑡 ]

 
 
 
 
 

=

[
 
 
 
 
 
 −
𝑅3 + 𝑅2´

𝐿1

𝑅2´

𝐿1
−
1

𝐿1
𝑅2´

𝐿0
−
𝑅1 + 𝑅2´

𝐿0

1

𝐿0
1

𝐶0´
−
1

𝐶0´
0
]
 
 
 
 
 
 

[
𝑖
𝑖𝑎𝑐
𝑣𝐶0´

] +

[
 
 
 
 
1

𝐿1
0

0 −
1

𝐿0
0 0 ]

 
 
 
 

[
𝑉𝑎𝑐
𝐸𝑎𝑐

] 

 

 

(2.23) 

 

𝐴 =

[
 
 
 
 
 
 −
𝑅3 + 𝑅2´

𝐿1

𝑅2´

𝐿1
−
1

𝐿1
𝑅2´

𝐿0
−
𝑅1 + 𝑅2´

𝐿0

1

𝐿0
1

𝐶0´
−
1

𝐶0´
0
]
 
 
 
 
 
 

 , 𝐵 =

[
 
 
 
 
1

𝐿1
0

0 −
1

𝐿0
0 0 ]

 
 
 
 

 

 

 

(2.24) 

The filter transfer function with the damping resistance is the following: 

 𝐼(𝑠)

𝑉𝑎𝑐(𝑠)
=

(𝐿0𝐶0´)𝑠
2 + (𝑅1𝐶0´ + 𝑅2´𝐶0´)𝑠 + 1

(𝐿1𝐿0𝐶0´)𝑠3 + 𝑎2𝑠2 + 𝑏2𝑠 + (𝑅1 + 𝑅3)
 

 

(2.25) 

Where,  

 𝑎2 = 𝐿0𝐶0´𝑅3 + 𝐿1𝑅1𝐶0´ + 𝐿1𝑅2´𝐶0´ + 𝐿0𝑅2´𝐶0´ 

𝑏2 = 𝑅3𝑅1𝐶0´ + 𝐿1 + 𝑅3𝑅2´𝐶0´ + 𝐿0 + 𝑅2´𝐶0´𝑅1 

 

(2.26) 

The value of the resistance 𝑅2´ can be defined as follows:  

 
𝑅2´ =

1

𝜔𝑓𝐶0
 

 

(2.27) 

 

Figure 2.8 – Bode diagram without the damping resistance  
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Figure 2.9 – Bode diagram with the damping resistance  

Comparing the bode diagram of figures 2.8 and 2.9 is possible to observe that including the damping resistance 

the gain at the resonant frequency is strongly reduced. 

The impedance of a RC branch is defined as follows: 

 
𝑍𝑅𝐶 = 𝑅 − 𝑗

1

𝑥𝐶
 

 

(2.28) 

However, the RC filter in the figure 2.5 is connected in a triangle form being defined as 𝑍△ = 3𝑍𝑅𝐶 where, 𝑍𝑅𝐶 is 

connected in star form. 

Therefore, the filter RC in triangle form will be defined as: 

 
𝐶0 =

𝐿0 + 𝐿1

3(𝐿1𝐿0𝜔𝑓2)
 

𝑅2 =
3

𝜔𝑓𝐶0
 

 

(2.29) 

Considering the Fig. 2.5 the internal impedance of the AC can be written in the following form [11]: 

 
𝐿0 =

𝑉𝑛𝑎𝑐
2

𝑆𝑐𝑐

1

𝜔
 

 

(2.30) 

 
𝑅1 =

𝜔𝐿0
7

 
 

(2.31) 

Where 𝐿0 and 𝑅1 are the internal impedance of the AC source, 𝑉𝑛𝑎𝑐 is the phase-to-phase voltage, 𝑆𝑐𝑐 is the short-

circuit power, 𝜔 is angular frequency of the network, and X/R ratio = 7. 

The maximum current ripple of the inverter-rectifier is given by [12]: 

 
∆𝑖𝐿𝑚𝑎𝑥 =

𝑉𝑛

3(𝐿𝑒𝑞)
𝛿𝑇 

 

(2.32) 

Where 𝐿𝑒𝑞 is the equivalent inductor filter, 𝛿 is the duty-cycle, ∆𝑖𝐿𝑚𝑎𝑥 is the ripple of the current, 𝑉𝑛 is the nominal 

DC voltage, T is the period. 
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The current that goes to the RC branch is very low so the inductors 𝐿0 and 𝐿1 are practically in series. Hence, the 

𝐿𝑒𝑞 is approximately equal to the sum of 𝐿0 and 𝐿1 (2.33), with that is possible to reduce the filter size. 

 𝐿𝑒𝑞 = 𝐿0 + 𝐿1 (2.33) 

The maximum peak-to-peak current ripple happens at 𝛿 = 0.5, then [12]: 

 
∆𝑖𝐿𝑚𝑎𝑥 =

𝑉𝑛
6(𝐿1 + 𝐿0)

𝑇 
 

(2.34) 

From (2.34) the expression of 𝐿1 is given by: 

 
𝐿1 =

𝑉𝑛
6∆𝑖𝐿𝑚𝑎𝑥

𝑇 − 𝐿0 
 

(2.35) 

 𝑅3 = 0.01𝛺 (2.36) 

Where, 𝑅3 is the resistance connected in series with the inductor 𝐿1 and its value is computed considering the 

efficiency of the inverter-rectifier and the losses. The current ripple will be 10% of the inductor 𝐿1  current 

(∆𝑖𝐿𝑚𝑎𝑥 = 0.1𝐼𝐿1). The current 𝐼𝐿1 is computed assuming a near unity efficiency in the inverter-rectifier. Hence, 

the  𝐼𝐿1 is computed as follows: 

 
𝐼𝐿1 =

𝑉𝑛𝐼𝑛

√3𝑉𝑛𝑎𝑐
 

 

(2.37) 

2.1.2 Three-Phase Inverter Rectifier  

To model the inverter-rectifier shown in the Fig. 2.10 it is assumed the 𝐿𝑒𝑞 is approximately equal to the sum of 

𝐿0 and 𝐿1, so that the LCL filter is seen as an RL circuit by the inverter-rectifier. 

 

Figure 2.10 – AC grid representation modified from [12] 

Each inverter branch can be controlled using a binary variable 𝛾𝑘 to define the branch status. 

 
𝛾
𝑘
= {

1 → 𝑆1𝑘 𝑂𝑁 ∧ 𝑆2𝑘  𝑂𝐹𝐹

0 → 𝑆1𝑘 𝑂𝐹𝐹 ∧ 𝑆2𝑘 𝑂𝑁
 , 𝑘 ∈ {𝐴, 𝐵, 𝐶} 

(2.38) 

 

  

𝑉𝑘 = 𝛾
𝑘
𝑉𝑛 

 

(2.39) 

From Fig. 2.11 is possible to see all the possible combinations of the semiconductors. 
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Figure 2.11 – Possible combinations of semiconductors [12] 

 

Figure 2.12 – 𝛼, 𝛽Cartesian plane modified from [12] 

To fully understand the operation mode of the inverter is necessary to build the following table with 𝛾
𝑘
and𝛼, 𝛽 

notation. The table 2.1 was build considering the Fig. 2.12 and the (2.40) equation [12]. 

 
𝑉𝐴𝑁 =

(2𝛾𝐴 − 𝛾𝐵 − 𝛾𝐶)𝑉𝑛
3

 

𝑉𝐵𝑁 =
(2𝛾𝐵 − 𝛾𝐶 − 𝛾𝐴)𝑉𝑛

3
 

𝑉𝐶𝑁 =
(2𝛾𝐶 − 𝛾𝐴 − 𝛾𝐵)𝑉𝑛

3
 

 

 

(2.40) 
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Table 2.1 - 𝛾𝑘 and 𝛼, 𝛽 vector table modified from [12] 

Vetor 𝜸𝑨 𝜸𝑩 𝜸𝑪 𝑽𝑨𝑵 𝑽𝑩𝑵 𝑽𝑪𝑵 𝑽𝜶 𝑽𝜷 

0 0 0 0 0 0 0 0 0 

1 1 0 0 2𝑉𝑛
3

 −
𝑉𝑛
3

 −
𝑉𝑛
3

 
√
2

3
𝑉𝑛 

0 

2 1 1 0 𝑉𝑛
3

 
𝑉𝑛
3

 −
2𝑉𝑛
3

 
𝑉𝑛

√6
 

𝑉𝑛

√2
 

3 0 1 0 
−
𝑉𝑛
3

 
2𝑉𝑛
3

 −
𝑉𝑛
3

 −
𝑉𝑛

√6
 

𝑉𝑛

√2
 

4 0 1 1 
−
2𝑉𝑛
3

 
𝑉𝑛
3

 
𝑉𝑛
3

 
−√

2

3
𝑉𝑛  

0 

5 0 0 1 
−
𝑉𝑛
3

 −
𝑉𝑛
3

 
2𝑉𝑛
3

 −
𝑉𝑛

√6
 −

𝑉𝑛

√2
 

6 1 0 1 𝑉𝑛
3

 −
2𝑉𝑛
3

 
𝑉𝑛
3

 
𝑉𝑛

√6
 −

𝑉𝑛

√2
 

7 1 1 1 0 0 0 0 0 

The 𝑉𝛼,𝑉𝛽 matrix is given by the transformation matrix Clark-Concordia: 

 

[

𝑉𝛼
𝑉𝛽
𝑉0

] = √
2

3

[
 
 
 
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2
1

√2

1

√2

1

√2 ]
 
 
 
 
 
 

[

𝑉𝐴𝑁
𝑉𝐵𝑁
𝑉𝐶𝑁

] 

 

 
(2.41) 

 

 

The transformation matrix that allows the conversion𝛼𝛽to ABC is the following: 

 

[

𝑉𝑎
𝑉𝑏
𝑉𝑐

] =

[
 
 
 
 
 
 1 0

1

√2

−
1

2

√3

2

1

√2

−
1

2
−
√3

2

1

√2]
 
 
 
 
 
 

[

𝑉𝛼
𝑉𝛽
𝑉0

] 

 

 

(2.42) 

 

2.2 HVDC Grid Configuration 

The HVDC transmission grid will be loaded by constant power loads and with DC-DC converters feeding constant 

current loads.  

 

Figure 2.13 – HVDC transmission grid representation 



15 
 

The DC-DC converter (Fig. 2.13) is here illustrated with a four-quadrant chopper, because this converter has three 

operating modes:  

 

𝛾 = {

1,   𝐼𝑓 𝑆1 ∧  𝑆4 𝑂𝑁

0,   {
𝐼𝑓 𝑆1 ∧  𝑆3 𝑂𝑁
𝐼𝑓 𝑆2 ∧  𝑆4 𝑂𝑁

−1, 𝐼𝑓 𝑆2 ∧  𝑆3 𝑂𝑁

 

 

(2.43) 

 

 

 

 

𝑉𝑖 = 𝛾𝑈 = {
+𝑈
0
−𝑈

 

 

 

(2.44) 

Fig. 2.14 shows an example of the 𝑉𝑖 waveform, while the DC output current is assumed nearly constant. 

 

Figure 2.14 – Wave forms representation  

2.2.1 Constant Current Load 

 

Figure 2.15 – Constant current load representation  

From Fig. 2.15, supposing the load resistor is big enough to absorb negligible power, the load power 𝑃 is: 

 𝑃 = 𝑉𝑑𝑐𝐼𝑐𝑡𝑒 (2.45) 

The load power 𝑃 depends on the value of 𝐼𝑐𝑡𝑒 in (2.45).  

2.2.2 Constant Power Load 
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Figure 2.16 – Constant power load representation  

From Fig. 2.16, supposing the represented resistor is big enough to absorb negligible power, the load constant 

power 𝑃 is: 

 𝑃𝑐𝑡𝑒 = 𝐼𝑑𝑐𝑉𝑑𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 (2.46) 

For constant 𝑃𝑐𝑡𝑒, the load current is obtained solving (2.46) for 𝐼𝑑𝑐.  

Constant power load exhibit negative incremental resistance (2.47) and this behaviour is the responsible for 

stability issues in transmission lines [13].   

 
𝑑𝑃𝑐𝑡𝑒 = 𝑉𝑑𝑐𝑑𝐼𝑑𝑐 + 𝐼𝑑𝑐𝑑𝑉𝑑𝑐 = 0 ⇔

𝑉𝑑𝑐
𝐼𝑑𝑐

=
𝑑𝑉𝑑𝑐
𝑑𝐼𝑑𝑐

= −𝑟𝑐𝑝𝑙 
(2.47) 

As it shown in Fig. 2.17 the voltage decreases with increase in current and vice-versa. The negative impedance 

characteristic of constant power load is also shown. 

 

Figure 2.17 – V-I curve of constant power load and the negative impedance characteristic [13]  

2.2.3 DC-DC converter LC Output Filter 

 

Figure 2.18 – LC filter 
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The Fig. 2.18 represents the output filtering stage of the DC-DC converter. The dynamical behaviour of the output 

filter capacitor voltage 𝑉0 can be described by the following equations. 

 

{
𝐶
𝑑𝑉0
𝑑𝑡

= 𝑖𝐿 − 𝐼0

𝐿
𝑑𝑖𝐿
𝑑𝑡

= 𝑉𝑖 − 𝑉0

 

 

(2.48) 

In order to have a proper LC filter the equations in the section four quadrant chopper LC filtering of [12] are used.  

 
𝐿 =

𝑉𝑛
4∆𝑖𝐿𝑚𝑎𝑥

𝑇 
 

(2.49) 

 
𝐶 =

𝑉𝑛
32𝐿∆𝑉0

𝑇2 
 

(2.50) 

Where L is the inductor filter, C is the capacitor filter, ∆𝑖𝐿𝑚𝑎𝑥 is the ripple of the current, 𝑉𝑛 is the nominal DC 

voltage, T is the switching period, ∆𝑉0is the voltage ripple. 

2.2.4 DC capacitors 

The DC capacitors act as energy storage and because of that they play a very important role in the HVDC network. 

The size of the capacitors determines the dynamic behaviour of the DC circuit [9]. 

The instantaneous energy stored in a capacitor C charged with voltage 𝑣𝐶 is given by: 

 
𝑊(𝑣𝐶) =

1

2
𝐶𝑣𝐶

2 
 

(2.51) 

The capacitance value can be estimated, allowing a certain small voltage ripple Δ𝑣𝐶: 

 
𝐶 ≈

𝐼0𝑇

4∆𝑣𝑐
 

 

(2.52) 

 

  



18 
 

  



19 
 

Chapter 3 

 

 

Control of nonlinear systems  

 
The main objective of this chapter is to explain in a simplified and summarized form some different techniques to 

control nonlinear systems. 

Nonlinear systems are characterized by the absence of a unifying property, so it is not possible to have a general 

and unifying theory [14]. There are many examples of a nonlinear systems, such as, solar collector thermal plants, 

chemical reactors, robot arms, phase modulation communication systems, switching power converters and other 

examples with interest in engineering field. Whenever there are wide changes in the operating point, the system 

presents a nonlinear behaviour. There are some systems whose behaviour can only be understood considering its 

nonlinear character, an example of this is meteorology. Nonlinear systems may have a specific characteristic, such 

as, the possibility of more than one solution, multiple isolated equilibrium points and singularities in the time 

response. However, the purpose of studying nonlinear controllers is to understand techniques to maintain the non-

linear system stable, as the main objective of a control a system is to guarantee stability. 

 

3.1 Stability of Equilibrium Points  

For nonlinear systems the notions of equilibrium points and stability are connected through the linearization 

procedure. Linearization consists of obtaining a linear model [14].  

3.1.1 Equilibrium Points  

A nonlinear system can have multiple equilibrium points, an example of that is the following:  

 �̇�1 = 𝑥1 − 𝑥2 (3.1) 

 �̇�2 = 4 − 𝑥1𝑥2 (3.2) 

To find out the equilibrium points the following system of equations must be solved: 

 {
𝑥1 − 𝑥2 = 0
4 − 𝑥1𝑥2 = 0

 
(3.3) 

The solution of (3.3) have two equilibrium points 

 𝑥𝐴 = [
2
2
]  e 𝑥𝐵 = [

−2
−2
] (3.4) 

With this simple example it is possible to understand that nonlinear systems can have multiple equilibrium points. 

3.1.2 Stability 

Aleksandr Mikhailovich Lyapunov (1857-1918) was a Russian physicist and mathematician who played a crucial 

role in the study of the stability of dynamic systems. 

The best way to define stability is to use the definition of Lyapunov. To define stability in Lyapunov sense it is 

necessary to consider the following differential equation: 

 �̇� = 𝑓(𝑥) (3.5) 

In Lyapunov sense the state of equilibrium 𝑥 = 0 the (3.5) is said to be stable if for any 𝑅 > 0 there exists 𝑟 > 0 

such that if ‖𝑥(0)‖ < 𝑟 then ‖𝑥(0)‖ < 𝑅 for all 𝑡 ≥ 0. Otherwise the state of equilibrium is said to be unstable 

(Fig. 3.1).  
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Figure 3.1 – Stability curves  

The equilibrium point can also be characterized as asymptotically stable if the following definition is verified.  

The equilibrium point 𝑥 = 0 the (3.5) is asymptotically stable if it is stable and, besides that, if there exists 𝑟 > 0 

such that ‖𝑥(0)‖ < 𝑟 implies 𝑥(𝑡) → 0 when 𝑡 → ∞. 

 

Figure 3.2 – Asymptotically stable curve  

This definition concerns the local behaviour of the system, in other words, the behaviour of state when it is 

initialized “close” to the equilibrium point (Fig. 3.2) [14].  

If asymptotic stability is valid for any initial state, then the equilibrium point is said to be globally asymptotically 

stable (Fig. 3.3).  

 

Figure 3.3 – Asymptotic stability concepts [14]  

The above concepts of stability apply in general to nonlinear systems but can also apply to a particular case of 

linear systems, when described by the following equation. 

 �̇� = 𝐴𝑥 (3.6) 
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In the case of (3.6) the stability it is dependent on the position of the eigenvalues of A. Thus: 

- If all the eigenvalues have negative real part, the origin of state space is asymptotically stable. 

- If the linearized system has pure imaginary eigenvalues, nothing can be said about the nonlinear system. 

- If it exists at least an eigenvalue on right side of semi plane (positive real part), the origin is unstable. 

- If it exists non repeated eigenvalues over the imaginary axis, and all the others are in the negative real 

semi plane, the origin is stable, but not asymptotically stable. 

- If it exists repeated eigenvalues over the imaginary axis, the origin is unstable. 

The demonstration that if the eigenvalues have negative real part implies asymptotic stability is made using the 

Lyapunov direct method. This method will be discussed in the next section. 

 

3.2 Lyapunov stability 

Today Lyapunov stability is used in the control nonlinear systems. The name of Lyapunov is associated to the 

direct and indirect methods, but perhaps the principal method to control nonlinear systems is the direct method 

also called the second method of Lyapunov. 

3.2.1 Direct method of Lyapunov  

The second method of Lyapunov allows the demonstration of stability properties in an equilibrium point without 

using linearization, that is the reason for the name “direct”, because this method uses the nonlinear equation 

directly. According to this method an equilibrium point is stable if it is possible to define a state function so called 

“Lyapunov function” in its neighbourhood [14]. 

3.2.2  Lyapunov functions 

Before using the direct method of Lyapunov it is necessary to present some highlights about the state functions.  

First, is necessary to consider a function V that transforms the state values 𝑥 ∈ ℝ𝑛 in real numbers, and a scalar 

function 𝑉(𝑥):ℝ𝑛 → ℝ. Assuming that V is continuous. 

Assume V is continuous. In these conditions the function V is said to be positive definite in ℝ𝑛 if: 

 𝑉(0) = 0 

∀𝑥≠ 0: 𝑥 ∈ ℝ
𝑛 ⇒ 𝑉(𝑥) > 0 

 

(3.7) 

V is said to be positive semi-definite in ℝ𝑛 if: 

𝑉(0) = 0 

∀𝑥≠ 0: 𝑥 ∈ ℝ
𝑛 ⇒ 𝑉(𝑥) ≥ 0 

 

(3.8) 

V is said to be negative definite in ℝ𝑛 if: 

𝑉(0) = 0 

∀𝑥≠ 0: 𝑥 ∈ ℝ
𝑛 ⇒ 𝑉(𝑥) < 0 

 

(3.9) 

V is said to be negative semi-definite in ℝ𝑛 if: 

𝑉(0) = 0 

∀𝑥≠ 0: 𝑥 ∈ ℝ
𝑛 ⇒ 𝑉(𝑥) ≤ 0 

 

(3.10) 
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Figure 3.4 – State functions examples [14] 

For a better understating, Fig. 3.4 illustrates graphically the state functions.  

The function V relatively to (3.5) is said to be a “Lyapunov function” if its total derivate in order to time is negative 

semi-definite (3.11). 

 𝑑𝑉

𝑑𝑡
≤ 0 

 

(3.11) 

3.2.3 Simple Example of Lyapunov method  

For better understanding of Lyapunov method, so called second method of Lyapunov, a very simple example will 

be presented. 

Consider a system that can be represented by the following nonlinear state model: 

 𝑑𝑥1
𝑑𝑡

= −2𝑥1 − 2𝑥1𝑥2
2 

 

(3.12) 

 𝑑𝑥2
𝑑𝑡

= −2𝑥2 − 2𝑥2𝑥1
2 

 

(3.13) 

The objective of this example is to show that the origin is asymptotically stable equilibrium point. 

The origin is an equilibrium point [0 0]𝑇 because both derivates of the state are zero in that point. 

To study system stability, the direct method of Lyapunov will be used. Start with considering the following 

candidate Lyapunov function.  

 𝑉(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 (3.14) 

This function is continuous and its partial derivatives in order to 𝑥 components are also continuous; the V function 

is also defined positive. The next step to study the stability using the second method of Lyapunov is to write the 

time derivative of (3.14):  

 𝑑𝑉

𝑑𝑡
= 2𝑥1

𝑑𝑥1
𝑑𝑡

+ 2𝑥2
𝑑𝑥2
𝑑𝑡

 
 

(3.15) 
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Using (3.12) and (3.13) functions in (3.15): 

 𝑑𝑉

𝑑𝑡
= −4(𝑥1

2 + 𝑥2
2 + 2𝑥1

2𝑥2
2) < 0 

 

(3.16) 

 ∀
[
𝑥1
𝑥2
]
≠ 0 (3.17) 

For all 𝑥 ≠ 0, by the local stability of Lyapunov theorem, the equilibrium point [0 0]𝑇 is asymptotically stable. 

    

3.3 Sliding Mode Control 

Sliding mode control (SMC) is a robust nonlinear stabilization technique used to control linear and nonlinear 

systems. SMC is characterized by two phases, sliding, and reaching [15]. The main idea of SMC is to use feedback 

controllers that operates in opposite sides of a “sliding manifold”. The sliding manifold is independent of the model 

uncertainty, and it is designed in a way that the trajectories of the manifold converge to the equilibrium point [16]. 

The designed controller makes all the trajectories to converge towards the sliding manifold. When this region is 

reached, the system remains on it during the future times.  

A simple example of the SMC technique will be present for a better understanding. Consider the closed-loop 

control application in the Fig. 3.5. 

 

Figure 3.5 – Closed-loop control application  

  
Where 𝑥𝜖ℝ𝑛 is the state vector, 𝑢 ∈ ℝ is the control input, 𝑔(𝑥, 𝑡) ∈ ℝ𝑛 and ℎ(𝑥, 𝑡) ∈ ℝ𝑛 are nonlinear functions. 

For this type of application it is better to consider a new state variable, the error (𝑒) instead of the state variable 

𝑥[17]. For this reason, consider the following equation: 

 𝑒 = 𝑋𝑟𝑒𝑓 − 𝑋 (3.18) 

The purpose of this example is to force the error to tend to a neighbourhood of 0 using the SMC method. SMC 

used two phases, sliding, and reaching. In phase one it is needed to define a “sliding manifold”.  

Sliding manifold can be present as  

 
𝑠(𝑥) = (𝑘 +

𝑑𝑥

𝑑𝑡
)
𝑛−1

𝑒(𝑥) 
 

(3.19) 

 

Through 𝑠(𝑥) the 𝑒(𝑥) will approach to 0, to maintain the system state bounded. From a geometric point of view 

𝑠(𝑥) = 0 defines the sliding manifold. The 𝑠(𝑥) = 0 constructs a suitable manifold to slide while 𝑒(𝑥) → 0 as 

𝑡 → ∞[15]. 

For simplicity reasons let’s consider a first-order system n=2. The following equation is obtained from equation 

(3.19). 

 𝑠(𝑥) = 𝑘𝑒(𝑥) + �̇�(𝑥) (3.20) 
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In the second phase of the process the control input u should be able to enforce the system trajectories into the 

sliding manifold and achieve 𝑠(𝑥) = 0 in finite time. To fulfil this phase, the direct method of Lyapunov will be 

use in the s-dynamics. For this reason, it is needed to have a candidate Lyapunov function, so let’s consider the 

following candidate Lyapunov function in the s-dynamics. 

 
𝑉(𝑠) =

1

2
𝑠2 

 

(3.21) 

To guarantee the stability of the system the derivative of Lyapunov function must be negative definite. Therefore, 

the time derivative of (3.21) should satisfy the following condition. 

 �̇�(𝑠) = 𝑠�̇� < 0 (3.22) 

The time derivative of the sliding manifold given in (3.20) is the following: 

 �̇� = 𝑘�̇� + �̈� (3.23) 

The accomplishment of the inequality (3.22) guarantees the convergence of the system state trajectories to the 

sliding manifold 𝑠(𝑥) = 0, if the control input u has the following form:  

 
𝑢 = {

1   𝑖𝑓 𝑠(𝑥) > 0 ∧ �̇�(𝑥) > 0 ∧ 𝑢(𝑡 − ∆𝑡) = −1 

−1   𝑖𝑓 𝑠(𝑥) < 0 ∧ �̇�(𝑥) < 0 ∧ 𝑢(𝑡 − ∆𝑡) = 1
 

 

(3.24) 

 

Figure 3.6 – Typical phase portrait (SMC) [16]  

The Fig. 3.6 represents a Typical phase portrait of SMC. 

The main disadvantage of SMC is the so called “chattering”. Chattering appears because of switching control part, 

and this phenomenon is characterized by undesirable occurrence of oscillations with finite frequency and 

amplitude [15]. To overcome this problem in switching converters the input controller u on (3.24) must be 

substituted by a hysteresis comparator with a bandwidth of ∆. In this case the control input u will have the 

following form. 

𝑢 = {
1   𝑖𝑓 𝑠(𝑥) > ∆ ∧ �̇�(𝑥) > 0 ∧ 𝑢(𝑡 − ∆𝑡) = −1

−1   𝑖𝑓 𝑠(𝑥) < −∆ ∧ �̇�(𝑥) < 0 ∧ 𝑢(𝑡 − ∆𝑡) = 1
 

 

(3.25) 
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Figure 3.7 – Typical phase portrait (SMC) with a boundary layer ∆ 

The Fig. 3.7 represents a typical phase portrait with a boundary layer.  

3.4 Backstepping Controller Design 

Backstepping Controller design is a technique that is commonly used to control nonlinear systems with a triangular 

structure. The idea behind this method is to divide the problem in small problems (sub-problems), these sub-

problems have a lower order system than the original problem. In order words the objective is to divide the complex 

problem into multiple and easier problems with lower order. It is possible to this because this procedure uses a few 

states as “virtual controls” to obtain the intermediate control laws with the control Lyapunov function (CLF) [18]. 

The advantages of backstepping control that was invented by Krstic, Kanellakopoulos, and Kokotovic are the 

assurance global of regional stability, the stress on robustness and computable transient performance [18]. This 

method is going to be used for the nonlinear system with the strict-feedback shape.  

Consider the following nonlinear system with a strict-feedback form. 

 �̇�1 = 𝑓1(𝑥1) + 𝑔1(𝑥1)𝑥2 
�̇�2 = 𝑓2(𝑥1, 𝑥2) + 𝑔2(𝑥1, 𝑥2)𝑥3 

⋮ 
�̇�𝑛 = 𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛) + 𝑔𝑛(𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛)𝑢 

 

 

(3.26) 

For the sake of simplicity let’s consider a model of two cascades (3.27) and (3.28). 

 �̇�1 = 𝑓1(𝑥1) + 𝑔1(𝑥1)𝑥2 (3.27) 

 �̇�2 = 𝑓2(𝑥1, 𝑥2) + 𝑔2(𝑥1, 𝑥2)𝑢 (3.28) 

Where, 𝑥1, 𝑥2 ∈ ℝ
𝑛 are the state variables, 𝑢 ∈ ℝ𝑛 is the control input, 𝑓1, 𝑔1: ℝ

𝑛 → ℝ𝑛, 𝑓2, 𝑔2: ℝ
𝑛 × ℝ𝑛 → ℝ𝑛×𝑛 

are nonlinear functions. 

To explain the basic backstepping design procedure consider the following example that uses (3.27) and (3.28). 

The objective of this example is to control (3.27) and (3.28) with backstepping control. It will be necessary two 

steps to solve de problem, the first one will consider just (3.27), and the second will consider the (3.27) and (3.28) 

together. 

Step 1: The first thing to do is to find a suitable virtual control quantity. Consider the virtual control 𝑥2, and denote 

it 𝑥2𝑣. Then, define a candidate Lyapunov function. The candidate Lyapunov function can be the following: 

 
𝑉1 =

1

2
𝑥1
2 

 

(3.29) 

The derivative of (3.29) must respect the (3.30) condition to be a “Lyapunov function” 

 �̇�1 = 𝑥1(𝑓1(𝑥1) + 𝑔1(𝑥1)𝑥2𝑣) ≤ 0 (3.30) 

The algebraic control equation is given by (3.31) 
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 𝑓1(𝑥1) + 𝑔1(𝑥1)𝑥2𝑣 = 𝑐1(𝑥1) (3.31) 

Where 𝑐1(𝑥1) = −𝐶1𝑥1 and 𝐶1 > 0. Then, it is possible to write the virtual control expression (3.32) 

 𝑥2𝑣 = 𝑔1
−1(𝑥1)(−𝑓1(𝑥1) + 𝑐1(𝑥1)) (3.32) 

Where 𝑐1(𝑥1) guarantees that �̇�1 < 0, 𝑥1 ≠ 0 and the (3.32) solution is continuous. 

Step 2: In this step the objective is to use (3.27) and (3.28). To do that a new candidate composite Lyapunov 

function is needed. The composite Lyapunov function is illustrated in (3.33) 

 
𝑉2 =

1

2
𝑥1
2 +

1

2
(𝑥2 − 𝑥2𝑣)

2 
 

(3.33) 

 As was made before the derivate of (3.33) must respect the (3.34) condition to be a “Lyapunov function” 

 �̇�2 = 𝑥1(𝑓1(𝑥1) + 𝑔1(𝑥1)𝑥2) + (𝑥2 − 𝑥2𝑣)(�̇�2 − �̇�2𝑣) ≤ 0 (3.34) 

The algebraic control equation is given by (3.35) 

 𝑓2(𝑥1, 𝑥2) + 𝑔2(𝑥1, 𝑥2)𝑢 − �̇�2𝑣 = −𝐶2(𝑥2 − 𝑥2𝑣) − 𝑔1(𝑥1)𝑥1 (3.35) 

Where 𝑐2(𝑥1, 𝑥2) = −𝐶2(𝑥2 − 𝑣𝑐) − 𝑔1(𝑥1) + �̇�𝑐  and 𝐶2 > 0 . Finally, it is possible to write the control 

expression (3.36) 

 𝑢 = 𝑔2
−1(−𝑓2 + 𝑘2(𝑥1, 𝑥2)) (3.36) 

Where 𝑐2(𝑥1, 𝑥2) guarantees that �̇�2 < 0, 𝑥2 ≠ 𝑥2𝑣. 

To sum up, the resulting control law u is asymptotically stable if �̇�2 < 0, ∀[𝑥1𝑥2]
≠ 0. 
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Chapter 4 

 

 

Nonlinear Controllers 
 

The main objective of this chapter is to design nonlinear controllers that are able to control the DC voltage and 

current in the inverter-rectifier and in the DC-DC converter (figures 2.10 and 2.13). 

Traditionally, controllers used to control voltage and current in power systems are linear and derived using 

linearized models pf the power network. Given the linear controllers simplicity and linear models, they are prone 

to fail under large deviations from the equilibrium point, around which the linearized models are obtained. 

Therefore, despite the increase in complexity, four nonlinear controllers are going to be designed, two of them to 

control voltage and current in the inverter-rectifier and the other two to control the similar quantities in the DC-

DC converter. Hence, to do that the direct method of Lyapunov, backstepping, and sliding mode control are the 

techniques to be used. 

Considering the four-terminal HVDC line, and the interconnection DC line (Fig.2.1), to control de grid DC voltage 

the control strategy considers a voltage controller in thee inverter-rectifier of line 1, while in line 3 a direct power 

injection is assumed in the line 3 inverter-rectifier. In this way is it possible to control the grid voltage and the 

power dispatched in the network. Therefore, in this chapter it will be explained the design of power and voltage 

controllers. 

  

 

4.1 Inverter-rectifier Controllers 

Some techniques to design nonlinear controllers for voltage and current control have been introduced in chapter 

3. Therefore, backstepping will be used to control the line voltage  [19], while current controllers are based on 

sliding mode control, discussed in section 3.3. To control the power to be injected in line 3 (figure 2.1), a power 

controller in dq coordinates will be introduced based on a sliding mode controller.  

4.1.1 Nonlinear Voltage Controller of the DC-AC Converter  

 

Figure 4.1 - Output inverter currents representation 

Considering the Fig. 4.1 the system model in d-q coordinates is expressed as follows: 

 𝑑𝑢𝐶𝑖
𝑑𝑡

=
1

𝐶𝑖
(
𝑢𝐺𝑖
𝑢𝐶𝑖

𝑖𝑑 + 𝑖𝑑𝑐) =
1

𝐶𝑖
(𝐺𝑖𝑖𝑑 + 𝑖𝑑𝑐) 

𝑑𝑖𝑑
𝑑𝑡

=
−𝐺𝑖𝑢𝐶𝑖 − 𝑅3𝑖𝑑 + 𝑢𝐺𝑖

𝐿1
+𝜔𝑖𝑞 

 

 

(4.1) 

The virtual control input is the inverter-rectifier input current d component 𝐺𝑖𝑖𝑑, where 𝐺𝑖 =
𝑢𝐺𝑖

𝑢𝐶𝑖
 is the current 

gain. 
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The control objective is defined as 𝑢𝐶𝑖 = 𝑢𝐶𝑖𝑟𝑒𝑓, to obtain the control law 𝐺𝑖𝑢𝐶𝑖 = 𝑓(𝑢𝐶𝑖𝑟𝑒𝑓 , 𝑢𝐶𝑖). 

Considering a new variable 𝑒𝑢, the control objective error, defined as: 

 𝑒𝑢 = 𝑢𝐶𝑖𝑟𝑒𝑓 − 𝑢𝐶𝑖 (4.2) 

The purpose is to demand 𝑒𝑢 = 0. To present steady-state errors add an integral of the objective error by defining: 

 
𝑒𝐼 = ∫ 𝑒𝑢𝑑𝑡 = 0

𝑡

0

 
 

(4.3) 

According to Lyapunov the system is asymptotically stable if the candidate Lyapunov function verifies the 

following conditions: 

 𝑉(𝑥 = 0) = 0 

𝑉(𝑥 ≠ 0) > 0 

𝑉(|𝑥| → ∞) → ∞ 

�̇�(𝑥 ≠ 0) < 0 

 

 

(4.4) 

Therefore, the stability condition is defined as: 

 𝑉(𝑥 ≠ 0)�̇�(𝑥 ≠ 0) < 0 (4.5) 

Hence, it is necessary to define a positive definite candidate Lyapunov function (4.6). 

 
𝑉 = 𝑘𝐼

𝑒𝐼
2

2
+
𝑒𝑢

2

2
 

 

(4.6) 

According to direct method of Lyapunov (discussed in the previous chapter), the time derivative of V must be 

negative. To guarantee that this condition is verified the virtual input current must obey 𝑖𝑑 = 𝑖𝑑𝑣 for 𝑘𝑢 > 0,⇒

𝑘𝐼 > 0. 

 𝑑𝑉

𝑑𝑡
< 0 ⇒  𝑘𝐼𝑒𝐼

𝑑𝑒𝐼
𝑑𝑡

+ 𝑒𝑢
𝑑𝑒𝑢
𝑑𝑡

= −𝑘𝑢𝑒𝑢
2 

 

(4.7) 

From the (4.7): 

 
𝑘𝐼𝑒𝐼𝑒𝑢 + 𝑒𝑢 (

𝑑𝑢𝐶𝑖𝑟𝑒𝑓
𝑑𝑡

−
𝑑𝑢𝐶𝑖
𝑑𝑡

) = −𝑘𝑢𝑒𝑢
2 

 

(4.8) 

Providing: 

 
𝑘𝐼𝑒𝐼 + (

𝑑𝑢𝐶𝑖𝑟𝑒𝑓
𝑑𝑡

− (
𝐺𝑖
𝐶𝑖
𝑖𝑑𝑣 +

𝑖𝑑𝑐
𝐶𝑖
)) = −𝑘𝑢𝑒𝑢 

 

(4.9) 

Therefore, the virtual control action is the following: 

 
𝑖𝑑𝑣 =

𝑢𝐶𝑖
𝑢𝐺𝑖

(𝐶𝑖 (𝑘𝐼𝑒𝐼 + 𝑘𝑢𝑒𝑢 +
𝑑𝑢𝐶𝑖𝑟𝑒𝑓
𝑑𝑡

) − 𝑖𝑑𝑐) 
 

(4.10) 

Equation (4.10) is the Lyapunov equivalent of a PI controller, since the virtual control action 𝑖𝑑𝑣 depends on the 

𝑒𝑢 and on the integral 𝑒𝐼 of the error 𝑒𝑢. 

Fig. 4.2 presents the block diagram of the nonlinear voltage controller in the inverter-rectifier.  
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Figure 4.2 – Nonlinear voltage controller of the inverter-rectifier representation 

From (4.10) a nonlinear voltage controller is obtained. This controller will generate a 𝑖𝑑𝑞0𝑟𝑒𝑓 that will be used in 

the nonlinear current controller. However, the nonlinear current controller will work in 𝛼𝛽 coordinates hence, the 

𝑖𝑑𝑞0𝑟𝑒𝑓 will be transformed in 𝑖𝛼𝛽 through the following transformation matrix [20]: 

 

[

𝑖𝛼
𝑖𝛽
𝑖0

] = [
cos(𝜔𝑡) −sin(𝜔𝑡) 0
sin(𝜔𝑡) cos(𝜔𝑡) 0
0 0 1

] [

𝑖𝑑
𝑖𝑞
𝑖0

] 

 

 

(4.11) 

The 𝑉𝑐𝑖𝑟𝑒𝑓 present in the figure 4.2 is express as follows: 

 𝑉𝑐𝑖𝑟𝑒𝑓 = 𝑉𝑛 − 𝑅𝑒𝑃 (4.12) 

Where 𝑅𝑒 represents the droop control factor. In this case the droop control is characterized by a voltage variation 

rate with the active power transmitted. The 𝑅𝑒 units will be Volt per Watt. 

The droop control is present in Fig. 4.3. 

 

Figure 4.3 – Droop control representation 

4.1.2 Power Controller 

For the sake of simplicity, the power controller will be design in dq coordinates. Hence, the measure voltage in 

abc coordinates will be transformed in dq coordinates by the transformation matrix present in (4.13) [20]. Thereby, 
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it is possible to have a simpler control system, once instead of the three time-dependent signs the system will be 

composed by two continuous signals (𝑉𝑑 , 𝑉𝑞). 

 

[

𝑉𝑑
𝑉𝑞
𝑉0

] = √
2

3

[
 
 
 
 
 
 cos𝜔𝑡 cos (𝜔𝑡 −

2𝜋

3
) cos (𝜔𝑡 −

4𝜋

3
)

−sin𝜔𝑡 −sin (𝜔𝑡 −
2𝜋

3
) −sin (𝜔𝑡 −

2𝜋

3
)

1

√2

1

√2

1

√2 ]
 
 
 
 
 
 

[
𝑉𝑎
𝑉𝑏
𝑉𝑐

] 

 

 

(4.13) 

Therefore, the active and reactive power in dq coordinates can be calculated as follows [21]: 

 
{
𝑃 = 𝑣𝑑𝑖𝑑 + 𝑣𝑞𝑖𝑞
𝑄 = 𝑣𝑞𝑖𝑑−𝑣𝑑𝑖𝑞

 
 

(4.14) 

After some mathematical manipulation, equation (4.14) can be solved for 𝑖𝑑, 𝑖𝑞, giving (4.15). 

 

{
 
 

 
 𝑖𝑑 =

𝑃𝑣𝑑 +𝑄𝑣𝑞
𝑣𝑑2 + 𝑣𝑞2

𝑖𝑞 =
𝑃𝑣𝑞 − 𝑄𝑣𝑑
𝑣𝑑2 + 𝑣𝑞2

 

 

(4.15) 

The 𝑖𝑑𝑞  present in (4.15) will be used in the nonlinear current controller but in 𝛼, 𝛽  coordinates, trough the 

transformation matrix (4.11). 

4.1.3 Nonlinear Current Controller of the DC-AC Converter 

Considering the Fig. 2.10, the AC currents dynamics is (4.16). 

 
𝐿
𝑑𝑖𝑘
𝑑𝑡

= 𝑉𝑘𝑁 − 𝑅𝑖𝐾 − 𝑒𝑘 ; 𝑘 ∈ {𝐴, 𝐵, 𝐶} 
 

(4.16) 

Using 𝛼, 𝛽 transformation, and denoting 𝑖𝛼,𝛽  for to represent both 𝑖𝛼, and 𝑖𝛽, it is possible to rewrite (4.16) as 

follows: 

 
𝐿
𝑑𝑖𝛼,𝛽

𝑑𝑡
= 𝑉𝛼,𝛽 − 𝑅𝑖𝛼,𝛽 − 𝑒𝛼.𝛽   

 

(4.17) 

Using sliding mode control, the control objective can be defined in the following equation: 

 𝑒𝑖𝛼,𝛽 = 𝑖𝛼,𝛽𝑣 − 𝑖𝛼,𝛽 = 0 (4.18) 

Therefore, the time-varying linear surface 𝑠(𝑥) is defined as: 

 𝑠(𝑥) = 𝑖𝛼,𝛽𝑣 − 𝑖𝛼,𝛽 = 𝑒𝑖𝛼,𝛽 (4.19) 

To enforce the sliding surface reaching after a finite time it is needed the use of the second method of Lyapunov 

as a stability condition. Hence, the candidate Lyapunov function can be express as: 

 
𝑉 =

1

2
𝑠2 =

𝑒𝑖𝛼,𝛽
2

2
 

 

(4.20) 

The stability condition according to Lyapunov is given by: 

𝑒𝑖𝛼,𝛽

𝑑𝑒𝑖𝛼,𝛽
𝑑𝑡

< 0 
 

(4.21) 

Thus, the control conditions can be express by:  

 
{
𝐼𝑓 𝑒𝑖𝛼,𝛽 > 0 ⇒ 𝑖𝛼,𝛽 ↑⇒ 𝑉𝛼,𝛽 > 𝑅𝑖𝛼,𝛽 + 𝑒𝛼,𝛽  

𝐼𝑓 𝑒𝑖𝛼,𝛽 < 0 ⇒ 𝑖𝛼,𝛽 ↓⇒ 𝑉𝛼,𝛽 < 𝑅𝑖𝛼,𝛽 + 𝑒𝛼,𝛽
  

 

(4.22) 
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Where, 

 𝑖𝛼,𝛽 = 𝑖𝛼,𝛽𝑣 ± ∆𝑖/2 

𝑖𝛼,𝛽 ∈ [𝑖𝛼,𝛽𝑣 − ∆𝑖/2 , 𝑖𝛼,𝛽𝑣 + ∆𝑖/2]   

(4.23) 

 Considering (4.22) the reaching condition is given by: 

 𝑉𝛼,𝛽 > |𝑅𝑖𝛼,𝛽 + 𝑒𝛼.𝛽| (4.24) 

The objective of this control is to achieve a zero error between the reference value and the variables to control. 

This would imply an infinite switching frequency which is not possible, because the semiconductors have physical 

speed limitations. Hence, to circumvent this issue the error must be bounded. Therefore, the nonlinear current 

control based on sliding mode control theory will be given by the following conditions: 

 

{
 
 

 
 𝐼𝑓 𝑒𝑖𝛼,𝛽 > +

∆𝑖

2
⇒ 𝛿𝛼,𝛽 = 1 ⇒ 𝑖𝛼,𝛽𝑣 > 𝑖𝛼,𝛽 ⇒ 𝑖𝛼,𝛽 ↑⇒

𝑑𝑖𝛼,𝛽

𝑑𝑡
> 0 ⇒ 𝑉𝛼,𝛽 > 0

𝐼𝑓 −
∆𝑖

2
< 𝑒𝑖𝛼,𝛽 < +

∆𝑖

2
⇒ 𝛿𝛼,𝛽 = 0 ⇒ 𝑖𝛼,𝛽𝑣 ≈ 𝑖𝛼,𝛽 ⇒ 𝑖𝛼,𝛽 ↑↓⇒

𝑑𝑖𝛼,𝛽

𝑑𝑡
≈ 0 ⇒ 𝑉𝛼,𝛽 = 0

𝐼𝑓 𝑒𝑖𝛼,𝛽 < −
∆𝑖

2
⇒ 𝛿𝛼,𝛽 = −1 ⇒ 𝑖𝛼,𝛽𝑣 < 𝑖𝛼,𝛽 ⇒ 𝑖𝛼,𝛽 ↓⇒

𝑑𝑖𝛼,𝛽

𝑑𝑡
< 0 ⇒ 𝑉𝛼,𝛽 < 0

  

 

 

(4.25) 

Considering the conditions present in (4.25) the following table 4.1 can be obtained: 

Table 4.1 – Vector selection table 

  𝒆𝒊𝜶 

  𝛿𝛼 = −1 𝛿𝛼 = 0 𝛿𝛼 = 1 

 

𝒆𝒊𝜷 

𝛿𝛽 = 1 3 2 or 3 2 

𝛿𝛽 = 0 4 0 or 7 1 

𝛿𝛽 = −1 5 5 or 6 6 

The nonlinear current controller of the inverter-rectifier will be composed by three-level comparators and a table 

of truth that are responsible for all possible combinations of the vectors as it possible to see in Fig. 4.4. 

The table of truth present in Fig.4.4 was build considering the table 4.1.  

 

Figure 4.4 – Nonlinear current controller of the inverter representation 

The 𝑖𝛼 and 𝑖𝛽 will provided by the 𝑖𝑎𝑏𝑐 currents (Fig.4.4) transformed in to 𝛼𝛽0 coordinates trough the following 

transformation matrix [20]: 
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[

𝑖𝛼
𝑖𝛽
𝑖0

] =

[
 
 
 
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2
1

√2

1

√2

1

√2 ]
 
 
 
 
 
 

[
𝑖𝑎
𝑖𝑏
𝑖𝑐

] 

 

 

(4.26) 

4.2 DC-DC Converter Controllers 

As said the multiterminal DC network contains constant power and constant current electronic loads. These 

electronic loads will be simulated using three-level DC-DC converters. To control current and voltage in the DC-

DC converters similar nonlinear controllers used earlier (sections 3.3 and 3.4) will be applied. Therefore, in this 

section the combination between backstepping and sliding mode control will be the chosen method. First, the 

backstepping method is used to control voltage by defining a virtual control current, while a sliding mode current 

controller will be used to enforce the DC current to track the virtual current reference. 

4.2.1 Nonlinear Voltage Controller of the DC-DC Converter 

Appling the same principle of section 4.1.1, considering Fig. 2.13 the dynamic behaviour of the DC currents is the 

following: 

 

{

𝑑𝑣𝑐
𝑑𝑡

=
𝑖𝐿 − 𝑖0
𝐶

𝑑𝑖𝐿
𝑑𝑡

=
𝑉𝑖 − 𝑉0
𝐿

 

 

(4.27) 

In this case the control objective is defined as: 

 𝑉0 = 𝑉0𝑟𝑒𝑓 (4.28) 

Moreover, the error (𝑒𝑣0) between the reference voltage and the capacitor voltage is express as: 

 𝑒𝑉0 = 𝑉0𝑟𝑒𝑓 − 𝑉0 (4.29) 

The candidate Lyapunov function is defined as: 

 
𝑉𝐿 =

𝑒𝑉0
2

2
 

 

(4.30) 

The Lyapunov function (4.30) must verified the (4.4) and (4.5) conditions to be asymptotically stable. Therefore, 

𝑉𝐿 > 0 ∀𝑒𝑉0 ≠ 0 and 𝑉𝐿 → ∞ 𝑓𝑜𝑟 ‖𝑡‖ → ∞.  

The candidate Lyapunov function time derivative must be a negative definite as was explained before (4.31). 

 
�̇�𝐿 = 𝑒𝑉0

𝑑𝑒𝑉0
𝑑𝑡

= −𝐾𝑉𝑒𝑉0
2   , 𝐾𝑉 > 0  

 

(4.31) 

According to the second method of Lyapunov the global asymptotic stability is defined as: 

 𝑑𝑒𝑉0
𝑑𝑡

= −𝐾𝑉𝑒𝑉0 ⇒
𝑑𝑒𝑉0
𝑑𝑡

=
𝑑𝑒𝑉0𝑟𝑒𝑓
𝑑𝑡

−
𝑖𝐿 − 𝑖0
𝐶

 
 

(4.32) 

Where, 𝑒𝑉0 ≠ 0, the 
𝑑𝑒𝑉0

𝑑𝑡
 using (4.27) and (4.29) is defined as: 

 𝑑𝑒𝑉0
𝑑𝑡

= −𝐾𝑉𝑒𝑉0 ⇒
𝑑𝑒𝑉0
𝑑𝑡

=
𝑑𝑒𝑉0𝑟𝑒𝑓
𝑑𝑡

−
𝑖𝐿 − 𝑖0
𝐶

 
 

(4.33) 

Thus, replacing in the previous equation (4.33) 𝑖𝐿 by 𝑖𝐿𝑟𝑒𝑓 where, 𝑖𝐿𝑟𝑒𝑓 is the virtual control variable, it is possible 

to control 𝑉0 by defining 𝑖𝐿𝑟𝑒𝑓: 
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 𝑑𝑒𝑉0𝑟𝑒𝑓
𝑑𝑡

−
𝑖𝐿𝑟𝑒𝑓 − 𝑖0

𝐶
= −𝐾𝑉𝑒𝑉0 ⇒ 𝑖𝐿𝑟𝑒𝑓 = 𝐶𝐾𝑉𝑒𝑉0 + 𝐶

𝑑𝑒𝑉0𝑟𝑒𝑓
𝑑𝑡

+ 𝑖0 
 

(4.34) 

Hence, the nonlinear voltage controller will be represented by the Fig. 4.5. 

 

Figure 4.5 – Nonlinear voltage controller Simulink representation of the DC-DC converter 

4.2.2 Nonlinear Current Controller of the DC-DC Converter 

To design the nonlinear current controller the same principle of section 4.1.2 will be applied, but in this case to a 

DC-DC converter [12]. 

Considering the Fig. 2.13 is possible to write the following dynamic equation: 

 
𝐿
𝑑𝑖𝐿
𝑑𝑡

= 𝑉𝑖 − 𝑉0 
 

(4.35) 

Considering equation (2.43) it is possible to rewrite equation (4.35) as follows: 

 𝑑𝑖𝐿
𝑑𝑡

=
𝛾𝑈 − 𝑉0

𝐿
 

 

(4.36) 

The control objective is given by the following equation: 

 𝑒𝑖𝐿 = 𝑖𝐿𝑟𝑒𝑓 − 𝑖𝐿 = 0 (4.37) 

Moreover, the time-varying linear surface 𝑠(𝑥) is defined as: 

 𝑠(𝑥) = 𝑖𝐿𝑟𝑒𝑓 − 𝑖𝐿 = 𝑒𝑖𝐿 (4.38) 

To enforce that the sliding surface is reached after a finite period is needed the use of the second method of 

Lyapunov as a stability condition. Therefore, the candidate Lyapunov function can be express as: 

 
𝑉 =

1

2
𝑠2 =

𝑒𝑖𝐿
2

2
 

 

(4.39) 

The stability condition according to the direct method of Lyapunov is satisfied, if 𝑠�̇� < 0. Thus: 

 
𝐼𝑓, 𝑒𝑖𝐿 >

∆𝑖𝐿
2
 ⇒ 𝑖𝐿 ↑ ⇒ 𝛾 = 1   𝐼𝑓, 𝛾𝑈 > 𝑉0  

𝐼𝑓, −
∆𝑖𝐿
2
< 𝑒𝑖𝐿 <

∆𝑖𝐿
2
 ⇒ 𝛾 = 0  

𝐼𝑓, 𝑒𝑖𝐿 < −
∆𝑖𝐿
2
 ⇒ 𝑖𝐿 ↓ ⇒ 𝛾 = −1  

 

 

 

(4.40) 

Therefore, the nonlinear current controller will be represented by the Fig. 4.5. 



34 
 

 

Figure 4.6 – Nonlinear current controller Simulink representation of the DC-DC converter 

As it can be seen in figure 4.5, the nonlinear current controller has a decoder that as the following truth table: 

Table 4.2 – Truth Table of the figure 4.4 

𝜸𝟏 𝜸𝟐 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 

0 0 0 1 1 0 

0 1 1 0 1 0 

1 1 1 0 0 1 

1 0 0 1 0 1 

Therefore, the driving signals 𝑆1 to 𝑆4 of the DC-DC converter (Fig. 2.13) are obtained from table 4.2 as follows: 

 𝑆1 = 𝛾2  
𝑆4 = 𝛾1 

𝑆2 = 𝑆1̅ = 𝛾2̅  
𝑆3 = 𝑆4̅ = 𝛾1̅  

 

 

(4.41) 

In the next chapter PI controllers are going to be designed to serve as the reference comparisons for the nonlinear 

controllers.  
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Chapter 5 

 

 

Multiterminal Network Linear Control 

 
In this chapter the main objective is to design linear controllers like Proportional-Integral (PI), to control the DC 

line voltage and the load currents. PI controllers are commonly used in power systems especially in voltage-

sourced converter devices. This type of controllers is used in this application because it presents a simple structure, 

good overall dynamic behaviour and is intuitive to design [22]. Therefore, a PI voltage controller will be designed 

for the inverter-rectifier while voltage and current PI controllers will be designed for the DC-DC converters. 

 
Figure 5.1 – Closed loop block diagram of a PI controller modified from [23] 

The PI controller (Fig. 5.1) is enclosed in a closed loop system with feedback. The PI computes the tracking error, 

the difference between the reference value and the measure value. Then, the error is processed by the proportional 

(P) and integral (I) blocks. The P term is proportional to the error. In the other hand, the I term integrates over time 

the error to generate the integral of past errors. When zero tracking error is reached the I term becomes constant. 

The I term is responsible to guarantee zero steady state error, even when disturbances occur. The P term helps to 

improve the speed of the system [23]. Therefore, the combination of P and I terms is crucial to perform as required. 

The PI transfer function of the Fig. 5.1 can be defined as follows: 

 
𝑣(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝐼∫ 𝑒(𝑡)𝑑𝑡

𝑡

0

 
 

(5.1) 

Where, 𝐾𝑝 is the proportional gain and 𝐾𝐼 is the integral gain. Usually these gains are constant and have moderate 

to low values depending on the system closed loop dynamics. As usually some high frequency poles are neglected, 

if 𝐾𝑝 or 𝐾𝐼 are too big the system can become unstable or strongly overshoot the reference value. If 𝐾𝐼 is too small, 

the output will slowly converge to the reference. 

The transfer function of (5.1) in Laplace domain is defined as: 

 
𝐾(𝑠) = 𝐾𝑝 +

𝐾𝐼
𝑠

 
 

(5.2) 

The closed loop transfer function in Laplace domain of the block diagram in Fig. 5.1 can be express as follows, 

supposing unity feedback gain: 

 
𝐺(𝑠) =

𝐾(𝑠)𝐻(𝑠)

1 + 𝐾(𝑠)𝐻(𝑠)
 

 

(5.3) 

Where, 𝐾(𝑠) is the PI transfer function and 𝐻(𝑠) is the plant transfer function. If 𝐾(𝑠)𝐻(𝑠) = −1 the system is 

said unstable, if the term in denominator 𝐾(𝑠)𝐻(𝑠) is smaller than 1, the stability is guaranteed [23]. 
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The Fig. 5.2 represents the adjustments of the proportional and integral terms to produce the best results in the 

case of voltage regulation.  

 

Figure 5.2 – Step response with different coefficients [23] 

5.1 Linear Voltage Controller of the Inverter-Rectifier  

To design the linear voltage controller the PI method is going to be the chosen [21]. From a simpler point of view, 

the controller will be design in dq coordinates instead of abc coordinates because dq is a continuous state and abc 

is time dependent. 

Considering the Fig. 2.10 the equations of the current dynamics in dq coordinates is express as follows: 

 

{
𝑢𝑑 = 𝐿

𝑑𝑖𝑑
𝑑𝑡

+ 𝑅𝑖𝑑 −𝜔𝐿𝑖𝑞 + 𝑒𝑑

𝑢𝑞 = 𝐿
𝑑𝑖𝑞
𝑑𝑡

+ 𝑅𝑖𝑞 +𝜔𝐿𝑖𝑑 + 𝑒𝑞

 

 

(5.4) 

The active and reactive power in the connection to the three-phase source are defined as: 

 {
𝑃𝑑 = 𝑒𝑑𝑖𝑑
𝑃𝑞 = −𝑒𝑑𝑖𝑞

 
 

(5.5) 

The current 𝑖𝑑𝑐 defined in the Fig. 4.1 is expressed as:  

 𝑖𝑑𝑐 = 𝑖𝑑 + 𝑖𝑐𝑖 (5.6) 

Considering a reference frame with 𝑒𝑞 = 0, the active and reactive power in the connection to the three-phase 

source are defined as: 

 𝑃𝑑 = 𝑒𝑑𝑖𝑑 = 𝑉𝑛𝑖𝑑𝑐 ⇒ 𝑖𝑑𝑐 =
𝑒𝑑
𝑉𝑛
𝑖𝑑 ⇒ 𝑖𝑑𝑐 = 𝐺𝑖𝑖𝑑  

(5.7) 

Where, 𝐺𝑖 =
𝑒𝑑

𝑉𝑛
 , and 𝑒𝑑 = √2

𝑉𝑛𝑎𝑐

√3
. 

The dynamic equation of DC voltage is the following: 

 
𝐶𝑖
𝑑𝑣𝑐𝑖
𝑑𝑡

= 𝑖𝑑𝑐 − 𝑖𝑑 
 

(5.8) 

The nonlinear sliding mode current controller (section 4.1.3) is here approximated by the transfer function: 
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 𝑖𝑑𝑐
𝑖𝑑𝑟𝑒𝑓

=
𝐺𝑖/𝛼𝑖
𝑇𝑑𝑣𝑠 + 1

 
 

(5.9) 

Where, 𝛼𝑖 is the current sensor gain, 𝑇𝑑𝑣 is the average delay time of the 𝑖𝑑 current relatively to its reference value 

𝑖𝑑𝑟𝑒𝑓 . The 𝐺𝑖/𝛼𝑖  is caracterized by a gain while 𝑇𝑑𝑣𝑠 + 1  is the dominant pole (high frequency poles are 

neglected). 

 

Figure 5.3 – Closed loop block diagram of voltage modified from [21]   

Considering Fig. 5.3 the closed loop transferer function is express as: 

 
𝑉𝑐𝑖
𝑉𝑐𝑖𝑟𝑒𝑓

=

𝛼𝑣𝐺𝑖
𝛼𝑖

𝐾𝑝𝑣 + 𝑠𝐾𝑖𝑣
𝑇𝑑𝑣𝐶𝑖

𝑠3 + 𝑠2
1
𝑇𝑑𝑣

+ 𝑠
𝛼𝑣𝐺𝑖𝐾𝑝𝑣
𝛼𝑖𝑇𝑑𝑣𝐶𝑖

+
𝛼𝑣𝐺𝑖𝐾𝑖𝑣
𝛼𝑖𝑇𝑑𝑣𝐶𝑖

 

 

(5.10) 

Where, 𝑇𝑑𝑣 is the time delay, 𝛼𝑖 is the current sensor gain, 𝛼𝑣 is the voltage sensor gain, 𝐾𝑖𝑣 is the integral gain 

and 𝐾𝑝𝑣 is the proportional gain. 

 Considering the ITAE criteria the proportional and integral gains are defined as follows [23]: 

 
𝐾𝑝𝑣 =

2.15𝐶𝑖𝛼𝑖
1.752𝛼𝑣𝐺𝑖𝑇𝑑𝑣

 

𝐾𝑖𝑣 =
𝐶𝑖𝛼𝑖

1.753𝛼𝑣𝐺𝑖𝑇𝑑𝑣
2 

 

(5.11) 

 

Figure 5.4 – Linear voltage controller of the inverter representation 

The 𝐾𝑤 present in Fig. 5.4 represents the anti-windup gain for big signal variations. An anti- windup system results 

in less overshoots in voltage and lower control effort. The omission of this gain can cause a considerable 

deterioration of the response. 

The anti-windup gain is defined as: 
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 𝐾𝑤 = −𝐾𝑖𝑣 (5.12) 

The controller present in Fig. 5.4 will generate a 𝑖𝑑𝑞0𝑟𝑒𝑓 that will be used in the nonlinear current controller (section 

4.1.3) here represented by the transfer function (5.9) 

5.2 Linear Controller of the DC-DC Converter 

In this section two linear PI controllers will be designed for the DC-DC converter to control current and voltage. 

5.2.1 Linear Current Controller of the DC-DC Converter 

From the Fig. 2.13 assuming that the control current is 𝑖𝐿 (𝑖𝐿 = 𝑖𝐿𝑟𝑒𝑓). 

 

Figure 5.5 – Equivalent diagram of linear current control modified from [12] 

From Fig. 5.5 applying the Kirchhoff laws the following equation in the Laplace domain is obtained: 

 
𝑖𝐿(𝑠) =

𝑉𝑖 − 𝐸0
𝑠𝐿

 
 

(5.13) 

The block diagram C(s), (figure 5.5), of the linear current controller is represented in the figure 5.6. 

 

Figure 5.6 – Block diagram of linear current control 

A PI controller is used to eliminate static error as the disturbance 𝐸0 is in the input of the plant integrator. The 

closed loop transfer function of Fig. 5.6 is given by: 

 

𝑖𝐿(𝑠) =
(1 + 𝑠𝑇𝑧)𝑖𝐿 𝑟𝑒𝑓(𝑠) −

𝑠𝑇𝑝(1 + 𝑠𝑇𝑑)

𝐾𝑑𝛼𝑖
𝐸0(𝑠)

𝑠3
𝐿𝑇𝑑𝑇𝑝
𝐾𝑑𝛼𝑖

+ 𝑠2
𝐿𝑇𝑝
𝐾𝑑𝛼𝑖

+ 𝑠𝑇𝑧 + 1
 

 

(5.14) 

The criteria 𝑏𝑘2 = 𝑎𝑖𝑏𝑘−1𝑏𝑘+1 ensuring stability is applied to the terms of the denominator of (5.14) so that the 

values of 𝑇𝑝 and 𝑇𝑧 can be obtained [12]. 
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{
 
 

 
 𝑇𝑧

2 = 𝑎𝑖
𝐿𝑇𝑝
𝑘𝑑𝛼𝑖

(
𝐿𝑇𝑝
𝐾𝑑𝛼𝑖

)
2

= 𝑎𝑖𝑇𝑧
𝐿𝑇𝑝𝑇𝑑
𝐾𝑑𝛼𝑖

⇒ {

𝑇𝑧 = 𝑎𝑖
2𝑇𝑑

𝑇𝑝 =
𝑎𝑖
3𝑇𝑑

2𝐾𝑑𝛼𝑖
𝐿

 

 

(5.15) 

Where 𝛼𝑖 = 3, to have small overshoot at the expense of a slower response.    

Substituting 𝑇𝑧 and 𝑇𝑝 in the (5.14) closed loop transfer function: 

 𝑖𝐿(𝑠)

𝑖𝐿𝑟𝑒𝑓(𝑠)
=

(1 + 𝑎𝑖
3𝑇𝑑𝑠)

𝑎𝑖3𝑇𝑑
3𝑠3 + 𝑎𝑖3𝑇𝑑

2𝑠2 + 𝑎𝑖2𝑇𝑑𝑠 + 1
 

 

(5.16) 

The 𝐾𝑝𝑖 and 𝐾𝑖𝑖 gains are given by: 

 

{
 
 

 
 𝐾𝑝𝑖 =

𝑇𝑧
𝑇𝑝

𝐾𝑖𝑖 =
1

𝑇𝑝

 

 

(5.17) 

The linear current controller to the DC-DC converter can be represented in the Fig. 5.7. 

 

Figure 5.7 – Linear current controller of the DC-DC converter representation 

5.2.2 Linear Voltage Controller of the DC-DC Converter 

The objective is to control the voltage in DC-DC converter present in figure 2.13. Therefore, from the Fig. 5.5 to 

control the output voltage 𝐸0 (𝐸0 = 𝐸0𝑟𝑒𝑓) is necessary to consider the block diagram in the Fig. 5.8. 

 

Figure 5.8 – Block diagram of linear voltage control modified from [12] 

The closed loop transfer function of figure 5.8 is: 

 
𝑉0(𝑠) =

1+𝑠𝑇𝑧𝑣
𝑠𝑇𝑝𝑣

𝐾𝑐
2𝑇𝑑𝑠+1

1

𝑠𝐶

1+
1+𝑠𝑇𝑧𝑣
𝑠𝑇𝑝𝑣

𝐾𝑐
2𝑇𝑑𝑠+1

1

𝑠𝐶
𝛼𝑣
𝑉0𝑟𝑒𝑓(𝑠) +

1

𝑠𝐶

1+
1+𝑠𝑇𝑧𝑣
𝑠𝑇𝑝𝑣

𝐾𝑐
2𝑇𝑑𝑠+1

1

𝑠𝐶
𝛼𝑣
𝑖0(𝑠)  
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⇔ 𝑉0(𝑠) =
𝐾𝑐(1+𝑠𝑇𝑧𝑣)

𝑠2𝑇𝑝𝑣𝐶(2𝑇𝑑𝑠+1)+𝐾𝑐𝛼𝑣(1+𝑠𝑇𝑧𝑣)
𝑉0𝑟𝑒𝑓(𝑠) +

𝑠𝑇𝑝𝑣(2𝑇𝑑𝑠+1)

2𝑠3𝑇𝑑𝑇𝑝𝑣𝐶+𝑠
2𝑇𝑝𝑣𝐶+𝑠𝑇𝑧𝑣𝐾𝑐𝛼𝑣+𝐾𝑐𝛼𝑣

𝑖0(𝑠) 

⇔ 𝑉0(𝑠) =

1

𝛼𝑣
(1+𝑠𝑇𝑧𝑣)

𝑠3
2𝑇𝑑𝑇𝑝𝑣𝐶

𝐾𝑐𝛼𝑣
+𝑠2

𝑇𝑝𝑣𝐶

𝐾𝑐𝛼𝑣
+𝑠𝑇𝑧𝑣+1

𝑉0𝑟𝑒𝑓(𝑠) −
𝑠𝑇𝑝𝑣(2𝑇𝑑𝑠+1)

𝑠3
2𝑇𝑑𝑇𝑝𝑣𝐶

𝐾𝑐𝛼𝑣
+𝑠2

𝑇𝑝𝑣𝐶

𝐾𝑐𝛼𝑣
+𝑠𝑇𝑧𝑣+1

𝑖0(𝑠) 

(5.18) 

To ensure the design criteria 𝑏𝑘
2 = 𝑎𝑣𝑏𝑘−1𝑏𝑘+1, applied to the denominator of (5.18), the values of 𝑇𝑝𝑣 and 𝑇𝑧𝑣 

can be obtained [12]. 

 

{
 
 

 
 𝑇𝑧𝑣

2 = 𝑎𝑣
𝑇𝑝𝑣𝐶

𝐾𝑐𝛼𝑣

(
𝑇𝑝𝑣𝐶

𝐾𝑐𝛼𝑣
)
2

= 𝑎𝑣𝑇𝑧𝑣
2𝑇𝑑𝑇𝑝𝑣𝐶

𝐾𝑐𝛼𝑣

⇒

{
 
 

 
 

𝑇𝑝𝑣𝐶

𝐾𝑐𝛼𝑣
=
𝑇𝑧𝑣

2

𝑎𝑣

(
𝑇𝑧𝑣

2

𝑎𝑣
)

2

= 𝑎𝑣𝑇𝑧𝑣2𝑇𝑑
𝑇𝑧𝑣

2

𝑎𝑣

⇒ 

{
4𝑎𝑣

4𝑇𝑑
2 = 𝛼𝑣

𝑇𝑝𝑣𝐶

𝐾𝑐𝛼𝑣
𝑇𝑧𝑣 = 2𝑎𝑣

2𝑇𝑑

⇒ {𝑇𝑝𝑣 =
4𝑎𝑣

3𝑇𝑑
2𝐾𝑐𝛼𝑣
𝐶

 

𝑇𝑧𝑣 = 2𝑎𝑣
2𝑇𝑑

  

 

 

 

 

(5.19) 

Where, 𝛼𝑣 = 3 and 𝐾𝑐 = 1. 

The linear voltage controller of the DC-DC converter can be represented by the Fig. 5.9. 

 

Figure 5.9 – Linear voltage controller of the DC-DC converter representation 

The current 𝑖𝐿𝑟𝑒𝑓 present in the Fig. 5.9 will be used in the linear current controller.  
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Chapter 6 

 

 

Analysis of Simulation Results 

 
The objectives of this chapter are 1) to simulate the nonlinear and linear controllers, explained in the previous 

chapters in the context of the described network (chapter 2) and 2) to analyse the obtained results. Moreover, the 

purpose is to compare results from nonlinear and linear controllers to figure out which is the best solution. 

In order to do the simulation a model of the multiterminal HVDC network including the before mentioned 

controllers was created in MATLAB/Simulink. All the values used in the grid are described in the tables 6.1, 6.2 

and 6.3. 

Table 6.1 – Simulation parameters of the inverter 

Inverter 

𝝎𝒇[𝒓𝒂𝒅

/𝒔] 

𝑓[𝐻𝑧] 𝑆𝑐𝑐[𝑀𝑉𝐴] 𝑅1[𝛺] 𝐿0[𝑚𝐻] 𝑅2[𝛺] 𝐶0[𝜇𝐹] 𝑅3[𝑚𝛺] 𝐿1[𝑚𝐻] 𝑉𝑛𝑎𝑐[𝑘𝑉] 

6000𝝅 50 1500 0.4 9.2 108.8 0.5 1 2.4 66 

 

Table 6.2 – Simulation parameters of the 𝜋 line 

𝝅 Line 

𝒓[𝒌𝜴] 𝐶𝑖[𝜇𝐹] 𝑅𝑑𝑐[𝛺/𝑘𝑚] 𝐿𝑑𝑐[𝑚𝐻/𝑘𝑚] 𝐶𝑑𝑐[𝜇𝐹/𝑘𝑚] 𝑑[𝑘𝑚] 𝑟𝑃𝐿[𝑘𝛺] 

450 24.178 0.0205 0.352 0.233 220 2.757 

 

Table 6.3 – Simulation parameters of the DC-DC converter 

DC-DC Converter 

𝑽𝒏[𝒌𝑽] 𝐼𝑛[𝐴] 𝐶[𝜇𝐹] 𝐿[𝑚𝐻] 

150 1088 3 17.5 

At 𝑡 = 0𝑠, the converters and power lines shown in Fig. 2.1 are in steady state with nominal operating values, 

except when said otherwise. Moreover, to evaluate the performance of the four terminal HVDC grid under large 

variation of power, at 𝑡 = 0.1𝑠 two constant power loads are connected into the grid, (one in each independent 

network), each one of them with half of the nominal power. 

 

6.1 Nonlinear Controllers Simulation Results 

In this section all the controllers are nonlinear as was explained in the chapter 4. At 𝑡 = 0.1𝑠 two constant power 

loads are connected into the grid. All the simulations have the duration of 0.8s. 

 



42 
 

 
Figure 6.1 – Currents measured on the AC side of network one with nonlinear controller 

 
Figure 6.2 – Currents measured on the AC side of network two with nonlinear controller 

In Fig. 6.1 it is possible to see the evolution of the AC currents over time in the network one. The currents at 𝑡 =

0𝑠 up to 𝑡 = 0.1𝑠 have the same Root Mean Square (RMS) value which is constant. After that, the currents have 

a big increase because at that time the constant power loads are connected to the grid, with the system power also 

increasing, so that RMS value of AC currents has to increase as well due to the response of the line voltage 

controllers that increase the virtual current to maintain the line voltage. The RMS value of AC currents presented 

in the Fig. 6.2 don’t increase when the constant power loads are connected, because the network two is power 

controlled and the power reference has to be kept constant (for wind or solar applications). Therefore, the increase 

of power in the network two due to the electronic load has to be supplied by the interconnecting line two.  
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Figure 6.3 – Currents measured on the AC side of network one with nonlinear controller (zoom) 

Fig. 6.3 presents a zoom in the AC currents waveform of network one to see their balanced sinusoidal behaviour. 

 

Figure 6.4 – Voltages measured on the AC side of network one with nonlinear controller   

 

Figure 6.5 – Voltages measured on the AC side of network two with nonlinear controller 
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The evolution of the AC voltages in both networks, at the input of the LCL filter, as shown in figures 6.4 and 6.5, 

have constant RMS values over the simulation time and have the nearly the same peak value. This peak value is 

computed as follows: 

 
𝑉𝑎𝑛𝑝𝑒𝑎𝑘 = 𝑉𝑏𝑛𝑝𝑒𝑎𝑘 = 𝑉𝑐𝑛𝑝𝑒𝑎𝑘 =

𝑉𝑛𝑎𝑐

√3
√2 

 

(6.1) 

 
Figure 6.6 – Voltages measured on the AC side of network one with nonlinear controller (zoom) 

 
Figure 6.7 – Voltages measured on the AC side of network one with nonlinear controller without the LCL filter (zoom) 

For a three-phase system to be balanced, all the source voltages must have the same magnitude and there must be 

exactly 120 degrees out of phase with one another, then it must be a 120-degree phase difference. Fig. 6.6 confirms 

that the AC source is a balanced three-phase system. The influence of the LCL filter is also shown in the same 

figure when compared with Fig. 6.7, because the waveform high frequency harmonics have highly reduced 

amplitude, otherwise the waveforms would show higher ripple. 
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Figure 6.8 – Currents measured on the output DC side of network one with nonlinear controller 

 

Figure 6.9 – Currents measured on the output DC side of network two with nonlinear controller 

The output currents in the figures 6.8 and 6.9 have the same behaviour as expected, because the two networks have 

similar parameters and have the same type of controllers. The output current 𝑖0 in both networks has average value 

equal to 1200A because the constant current load imposes that value. In other hand the ripple current in inductor 

L, 𝑖𝐿 has a triangle waveform as expected. This behaviour is possible to see in Fig. 6.10. 
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Figure 6.10 – Currents measured on the output DC side of network one with nonlinear controller (zoom) 

 

Figure 6.11 – Voltages measured on the DC side of network one with nonlinear controller  

 
Figure 6.12 – Voltages measured on the DC side of network two with nonlinear controller  
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The 𝑉𝐶𝑖 is the DC voltage at the DC side of the inverter-rectifier and the 𝑉0 is the DC voltage at the output of the 

network, as shown in the Fig. 2.13. From figures 6.11 and 6.12 it is seen that the nonlinear controllers, at 𝑡 = 0.1𝑠, 
after a brief transient maintain the grid voltage in droop mode when the constant power loads are connected to the 

grid. Hence, the 𝑉𝑐𝑖 voltage droops, but after that the controller rises the voltage to a value slight lower than the 

rated value. However, in the network two (Fig. 6.12) the error is greater. This happens because in this network 

only the injected power is controlled not the line voltage. It is possible to minimize this error injecting more power, 

but in this case extra power, if available, is not strictly needed as the deviation from the rated voltage is not 

significant. In the network one the voltage drops 5.6 kV approximately; in the second network the voltage drops 

8.6 kV (≈ -5%). In other hand, the electronic load voltage 𝑉0 is always equal to 80 kV as expected, showing no 

voltage oscillations. Moreover, in the figures 6.13 and 6.14 is expressed the same test but without the droop control 

action. It is seen the line voltage returns to 150 kV not depending on that disturbance. 

 

Figure 6.13 – Voltages measured on the DC side of network one with nonlinear controller without droop control 

 
Figure 6.14 – Voltages measured on the DC side of network two with nonlinear controller without droop control 

 

6.2 Linear Controllers Simulation Results 

To perform the simulations using linear controllers the multiterminal network has the same topology and 

parameters. The controllers are linear, except the current controller of the inverter-rectifier which is a sliding mode 

current controller (nonlinear controller). All the simulations have the duration of 0.8s. The computed gains 

expressed in the chapter five are shown in the table 6.4 and 6.5. 
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Table 6.4 – General gains of the PI controllers 

𝜶𝒗 𝜶𝒊 𝒂𝒗 𝒂𝒊 𝑲𝒄 

1 1 3 3 1 

 

Table 6.5 – PI current and voltage controllers’ gains 

Inverter DC-DC Converter 

Voltage linear controller Voltage linear controller Current linear controller 

𝑲𝒑𝒗 𝐾𝑖𝑣 𝐾𝑤 𝐾𝑝 𝐾𝑖 𝐾𝑝𝑖 𝐾𝑖𝑖 

-0.094 -50.23 50.23 0.015 25.042 0.012 38.91 
 

 

Figure 6.15 – Voltages measured on the AC side of network one with linear controller 

 
Figure 6.16 – Voltages measured on the AC side of network two with linear controller  

From the figures 6.4, 6.5, 6.15 and 6.16 it is seen that the behaviour of the AC voltages in both networks is very 

similar because the current controller is nonlinear in both cases. Therefore, for this system the use of the nonlinear 

voltage controller does not represent a significant improvement, when using the nonlinear current controller, as 

the nonlinear controller is equivalent to a PI controller. The AC currents waveforms are the same as in the previous 

section because the current controller used is the nonlinear sliding mode current controller. Nevertheless, slightly 

higher distortion on voltages can be seen in Fig. 6.17. 
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Figure 6.17 – Voltages measured on the AC side of network one with linear controller (zoom) 

Comparing the figures 6.6 and 6.17, the utilization of a linear voltage controller doesn’t introduce significant 

harmonic amplitude on high frequencies to the waveform and the system is balanced as well. However, the linear 

controller presents less harmonic attenuation of high frequencies compared to the nonlinear one. Therefore, it is 

better to use the nonlinear controller.  Moreover, from the Fig. 6.18 is possible to see that the presence of the LCL 

filter is crucial to attenuate harmonic amplitude on high frequencies of the five levels line to neutral voltages. 

 
Figure 6.18 – Voltages measured on the AC side of network one with linear controller without LCL filter (zoom) 
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Figure 6.19 – Currents measured on the DC side of network one with linear controller 

 
Figure 6.20 – Currents measured on the DC side of network two with linear controller  

Considering the figures 6.8, 6.9, 6.19 and 6.20 the behaviour of the DC currents is similar, but the switching 

frequency is higher and therefore the ripple is smaller. 

 
Figure 6.21 – Currents measured on the DC side of network one with linear controller zoom 
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Comparing figures 6.10 and 6.21, which are zooms of the DC currents for a better visualization of the behaviour 

of the DC currents. It is seen that the currents are controlled independently of the type of the controller, but the 

linear voltage controller enables a higher switching frequency, the current showing less ripple. 

 
Figure 6.22 – Voltages measured on the DC side of network one with linear controller  

 
Figure 6.23 – Voltages measured on the DC side of network two with linear controller  

 
Figure 6.24 – Voltages measured on the DC side of network one with linear controller without droop control 
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Figure 6.25 – Voltages measured on the DC side of network two with linear controller without droop control  

From figures 6.22 and 6.23 it is seen that the linear controllers are subject to a disturbance at 𝑡 = 0.1𝑠 when the 

constant power loads are connected to the grid. First the 𝑉𝑐𝑖 voltage droops but after that the controller rises the 

AC RMS current and the voltage almost returns to the original value. The error in the network two is greater as 

was explained before. In the network one the voltage drops 2.9 kV approximately; in the second network the 

voltage drops 7.5 kV. From the figures 6.24 and 6.25 is possible to see the same controllers but without the droop 

control. In other hand, the 𝑉0 is always equal to 80 kV as expected and does not show voltage oscillations as it is 

not subjected to load disturbances. However, despite the linear voltage controller being able to overcome the 

disturbance, comparing the nonlinear controller with the linear it is possible to see that the voltage 𝑉𝑐𝑖 with linear 

controller has a slightly more oscillatory behaviour. Therefore, it is better to use the nonlinear controllers for this 

type of application. For a better understanding of this oscillatory behaviour, Fig. 6.26 shows a zoom of the 𝑉𝑐𝑖 
voltage in network one using the linear controller, while in Fig. 6.27 the same test was done using a nonlinear 

controller, in order to compare them. 

 

Figure 6.26 –  𝑉𝑐𝑖 voltage measured on the DC side of network one with linear controller (zoom)  
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Figure 6.27 –  𝑉𝑐𝑖 voltage measured on the DC side of network one with nonlinear controller (zoom)  

6.3 THD Analysis 

The type of network discussed in this dissertation is supplied by high voltage in the AC side, where the total 

harmonic distortion (THD) must be smaller than 5%. Therefore, in this section a THD analysis is made to check 

if the THD in the multiterminal network presents acceptable values. To perform this analysis the FFT analysis tool 

of MATALAB/Simulink is used. All studies were made using a fundamental frequency of 50 Hz with while 

sampling 5 cycles.  

 

 

Figure 6.28 – AC Voltage FFT analysis network one using nonlinear controllers 
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Figure 6.29 – AC Voltage FFT analysis network one using linear controllers 

From figures 6.28 and 6.29 it is concluded that the THD of the AC voltage in network one is less than 5% and 

equal to 3.87% independently of the type of controller. 

 

Figure 6.30 – AC Voltage FFT analysis network two using nonlinear controllers 
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Figure 6.31 – AC Voltage FFT analysis network two using linear controllers 

In the case of network two the THD of AC voltage is equal to 3.75% with nonlinear controllers and 3.78% with 

linear voltage controller (figures 6.30 and 6.31). Therefore, the THD in both cases is less than 5%, being in this 

test marginally smaller for nonlinear controllers. 

Performing the FFT analysis of AC current to both cases (nonlinear and linear controllers) may not be significant 

because the current controller is nonlinear in both cases. FFT analysis were made to network one and two using 

nonlinear controllers. 

 

Figure 6.32 – AC current FFT analysis network one using nonlinear controllers 
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Figure 6.33 – AC current FFT analysis network two using nonlinear controllers 

The THD of AC currents of the network one is equal to 1.34%, Fig 6.32 and is equal to 1.88% on network two, 

Fig.6.33, which are low values. 

The table 6.6 summarizes the above discussed AC voltages THD, while adding corresponding THD results for DC 

voltages. It can be seen that the DC voltage THDs are acceptably low. 

Table 6.6 – THD values  

 THD AC THD DC 

 AC Voltages 𝑉𝑐𝑖 Voltage 

 Network 1 Network 2 Network 1 Network 2 

Nonlinear Control 3.87% 3.75% 0.199% 0.042% 

Linear Control 3.87% 3.78% 0.256% 0.048% 
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Chapter 7 

 

 

Conclusions 

 
This master degree dissertation has developed nonlinear voltage controllers to implement in a four-terminal VSC-

HVDC standard network. The standard multi-terminal HVDC network is composed by two similar networks that 

are interconnected by a third line. To model the multiterminal network, lines were represented by their 𝜋 models, 

while each network constant power load, current constant load, AC/DC inverter-rectifier and DC/DC converters 

were modelled using their state-space equations. Due to the topology of the entire network and the presence of 

constant power loads, two different nonlinear control techniques were developed and implemented to ensure the 

global stability, overcoming the stability issue possibly caused by constant power loads in the HVDC network. To 

check the performance of nonlinear controllers, the steadiness of the DC voltage and their transient and dynamic 

response were evaluated when the constant power loads were connected. 

 

Results were also obtained using PI linear controllers to compare with the nonlinear ones. The linear controllers 

are more intuitive and simpler to implement than the nonlinear controllers. However, this type of controller 

presents more probability to fail when the load has large power deviations. To mitigate the happening of this 

situation a very large DC capacitor is needed, to prevent large voltage variations, therefore maintaining the linear 

controllers close to their validity region, enabling the reaching of the steady state.  

 

The first nonlinear controller proposed in this dissertation is based on Lyapunov control theory and combines 

backstepping control with sliding mode control. These controllers coupled to LCL filters, to attenuate high 

frequency harmonics, have shown good performance with voltage variations less than 5% and THD less than 4%. 

On the other hand, the PI linear controllers shown also good performances, presenting only slightly higher THDs. 

 

The second nonlinear controller presented in this dissertation is also based on Lyapunov theory but in this case, it 

is adapted to DC-DC converters. This controller has shown a good performance in terms of stability and response 

speed to attain the steady state after the disturbances. The linear controller has presented a good performance as 

well but with a slightly more oscillatory behaviour. 

 

In this dissertation results were obtained with and without droop control. The usual solution for this type of 

application is the use of droop control. Thus, the reference voltage is dependent on the required active power, 

which enables a better result in terms of stability because in the multiterminal network power and voltage are 

controlled. 

 

The AC current THD in network one equals 1.34% while it is 1.88% on network two, using nonlinear current 

controllers. On the other hand, the AC voltage THD of network one with nonlinear voltage controller is equal to 

3.87% and equal to the THD of network two with linear voltage controller. However, on network two the THD is 

equal to 3.75% with nonlinear voltage controller and 3.78% with the PI controller. Therefore, all THD are small 

(less than 5 %). Despite the THD being similar in the majority of tests, network two has a smaller AC voltage 

THD when using the nonlinear voltage controller. The DC voltage THDs are acceptably low and it can be seen 

that the THDs using nonlinear control are lower than using linear control. Hence, the nonlinear controller should 

be the chosen.  

 

To sum up, the recommendation of this dissertation is to use nonlinear controllers in four-terminal HVDC network 

and in general multiterminal HVDC networks. This statement lies on the fact that this controller deals better with 

large load variations and with constant power loads, which are increasingly common in HVDC grids. The use of 

nonlinear controller also permits the use of a smaller DC capacitor, which represents savings in costs and volume.  

 



58 
 

7.1 Future Work 

For future work, it would be interesting to study adaptative voltage regulation in multilevel DC networks instead 

of just study nonlinear voltage regulation in a multiterminal DC network. 

It would be also important to develop a multiterminal network with different renewable energy sources with 

different levels of voltage and to design and implement controllers capable of control these different voltage levels. 

It would also be interesting to study a network with more multiterminal ports and more loads. 

Moreover, it is of fundamental importance to make a laboratory prototype to test the developed nonlinear 

controllers and compare their performance to linear controllers.  
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Appendix A 

 
Table A.1 – MATLAB workspace 

Variable Value Variable Value 

𝒂𝒊 3 𝐿[𝑚𝐻] 17.5 

𝜶𝒊 1 𝐿0[𝑚𝐻] 9.2 

𝜶𝒗 1 𝐿1[𝑚𝐻] 2.4 

𝒂𝒗 3 𝐿𝑑𝑐[𝑚𝐻/𝑘𝑚] 0.352 

𝑪[𝝁𝑭] 3 𝑃[MW] 163.2 

𝑪𝟎[𝝁𝑭] 0.5 𝑟[𝑘𝛺] 450 

𝑪𝒅𝒄[𝝁𝑭/𝒌𝒎] 0.233 𝑅𝑒 4.596 × 10−5 

𝑪𝒊[𝝁𝑭] 24.178 𝑅1[𝛺] 0.415 

𝒅[𝒌𝒎] 220 𝑅2[𝛺] 36.277 

∆𝒊𝑳𝒎𝒂𝒙[𝑨] 142.763 𝑅3[𝛺] 0.001 

∆𝒖[𝑽] 1500 𝑅𝑑𝑐[𝛺/𝑘𝑚] 0.0205 

∆𝑽𝟎[𝑽] 750 𝑟𝑝𝑙[𝛺] 2757.4 

𝒇[𝑯𝒛] 50 𝑟𝑝𝑙1[𝛺] 137.87 

𝒇𝒄[𝑯𝒛] 15000 𝑆𝑐𝑐[𝑀𝑉𝐴] 1500 

𝑮𝒊 -0.359 𝑇[𝜇𝑠] 66.667 

𝒊𝑳[𝑨] 1427.6 𝑇𝑑 3.333 × 10−5 

𝑰𝒏[𝑨] 1088 𝑇𝑑𝑣 5 × 10−4 

𝑲𝒄 1 𝑇𝑝 0.0257 

𝑲𝒅 15000 𝑇𝑝𝑣 0.0399 

𝑲𝒊 25.0420 𝑇𝑧 3 × 10−4 

𝑲𝒊𝒊 38.915 𝑇𝑧𝑣 6 × 10−4 

𝑲𝒊𝒗 -50.229 𝑢𝑐𝑚𝑎𝑥[𝑉] 10 

𝑲𝒑 0.0150 𝑉0[𝑘𝑉] 75 

𝑲𝒑𝒊 0.0117 𝑉𝑛[𝑘𝑉] 150 

𝑲𝒑𝒗 -0.0945 𝑉𝑛𝑎𝑐[𝑘𝑉] 66 

𝑲𝒘 50.229 𝜔𝑓[𝐻𝑧/𝑠] 1.885 × 104 

To size the capacitor 𝐶𝑖 of figure 2.13 the following equation were used [24]: 

  

𝐶𝑖 =
𝐼𝑛𝑇

2∆𝑢
 

 

 

(A.1) 

Where ∆𝑢  it is considered to be 10% of 𝑉𝑛. 
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Figure A.1 – Four-terminal VSC-HVDC model with droop control and nonlinear controllers MATLAB/Simulink 

 

Figure A.2 – Four-terminal VSC-HVDC model with droop control and linear controllers MATLAB/Simulink 
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