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Resumo

As organizações são frequentemente afetadas por roubos de dados que provocam prejúızos finan-

ceiros e reputacionais. Para eficazmente prevenir este problema, estas necessitam de recolher

informação sobre ameaças informáticas quer internamente, quer externamente, através de comu-

nidades de partilha de informação. Contudo, as organizações continuam relutantes em partilhar

os seus dados, visto que podem revelar informação senśıvel sobre as suas infraestruturas. Uma

das formas de lidar com informação senśıvel é a anonimização, apesar de reduzir a utilidade dos

dados e poder ser vulnerável a uma reidentificação dos parâmetros anonimizados.

Neste trabalho apresentamos o Circle, a segunda componente da plataforma de partilha

de ameaças informáticas PriVeil. Numa primeira fase, os utilizadores submetem os relatórios

de segurança cifrados para o componente Square, o qual faz a correspondência entre eles. Os

utilizadores cujos relatórios têm correspondência são encaminhados para um Circle, onde a

operação de Computação Multipartidária Segura (do inglês, Secure Multiparty Computation) de

Interseção Privada de Conjuntos (do inglês, Private Set Intersection) permite encontrar etiquetas

comums nos relatórios através de uma computação que garante a preservação da privacidade.

Isto permite aos utilizadores confirmarem que outros podem estar a ser afetados por uma ameaça

semelhante.

Nós implementámos e avaliámos o Circle através de nove experiências, nas quais medi-

mos a duração, utilização de processador e memória do programa de um participante, durante

uma sessão. Os resultados mostram que o desempenho do nosso protótipo é adequado à sua

aplicação em situações reais, proporcionando um ambiente onde os utilizadores podem partilhar

informação sobre ameaças informáticas.

Palavras-chave: Partilha de Ameaças Informáticas, Relatórios de Segurança, Privaci-

dade, Computação Multipartidária Segura, Interseção Privada de Conjuntos
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Abstract

Nowadays, data breaches occur frequently in organizations, causing them economical and rep-

utational losses. To prevent them more effectively, organizations need to gather cyber threat

information internally and externally from sharing communities. However, organizations are

still reluctant to share their own cyber threat data, since they are afraid to disclose sensitive in-

formation about their infrastructure. Anonymization of indicators is a commonly used solution

when handling sensitive information, but it reduces the data utility and can be vulnerable to

re-identification of the anonymized parameters.

In this work we present Circle, the second component of the PriVeil cyber threat sharing

platform. In a first phase, users submit their encrypted security reports to the Square component

of the platform, which matches them. Users whose reports matched are forwarded to a Circle

instance, where the Secure Multiparty Computation operation of Private Set Intersection allows

the participants to find the common tags contained in their reports through a privacy-preserving

computation. This allows users to confirm that other users may be subject to a similar cyber

threat described in their reports.

We implemented and evaluated Circle with nine experiments, in which we measured the

duration, CPU and memory usage of a participant program during a session. The results showed

that the performance of our prototype makes it applicable to real-case scenarios, providing an

environment where users can share information about cyber threats.

Keywords: Cyber Threat Sharing, Security Reports, Privacy, Secure Multiparty Com-

putation, Private Set Intersection
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Chapter 1

Introduction

In the Information Age, data is a major asset of every organization. A part of this data is

confidential and, consequently, meant to remain private. According to [CLY17], a data breach

occurs when confidential information from the victim is disclosed to unauthorized parties. If

there is an unauthorized access to confidential data, the organization could suffer financial and

reputational losses. In a report conducted by Ponemon Institute and sponsored by IBM Security

[IS19], it is estimated that the average cost of a data breach between July of 2018 and April of

2019 was USD3,92 million. The same study also states that the average time to identify and

contain a breach is 279 days, i.e. 9 months. Despite the increase in cyber security awareness in

employees and in the skill of cyber security teams, hackers are also becoming craftier, finding

new vulnerabilities and creating complex and destructive exploits. Furthermore, hacking is

made easier by exploits and malware that can be purchased at online anonymous markets.

This commoditization is lowering the capabilities needed to engage in cybercrime activities

[vWTS+18].

As cooperation increases amongst criminals to discover new exploits, it is almost impossi-

ble for a single organization to handle cyber threats. To counter the ever-evolving cybercrime,

governments, organizations and individuals, need to adopt new defensive tactics that also in-

crease their cooperation. In particular, sharing cyber threat data externally is a crucial way to

find new vulnerabilities being exploited by attackers, new threats that affect organizations and

even Indicators of Compromise (IoC) such as known malware hashes and Internet Protocol (IP)

addresses related to threat actors.

The Malware Information Sharing Platform (MISP) [WDWI16] is a well-known platform

where users can share any relevant threat indicator with each other. In MISP, users deploy MISP

instances that can connect with other users MISP instances to allow the sharing of any relevant

threat information. The submitted information is called an event and is the responsibility of
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the event owner to select the information he wants to share and with whom they want to share

it with. Through the use of MISP, users can share threat information in a trusted environment.

As we can observe, organizations have been gathering cyber threat data internally, through

respective security teams, and externally, from open-source and commercial sources and sharing

communities [BGS15]. However, despite the importance of cyber threat information sharing

platforms, there are still obstacles to be addressed. In [JBW+16], the authors highlight the

safeguarding of sensitive information as one of the major challenges to cyber threat information

sharing. In fact, directly sharing sensitive security logs, network information, malware sam-

ples and packet captures could expose the infrastructure of an organization and its defensive

capabilities, leading to the emergence of new cyber threats. As a result, the authors suggest

the anonymization and sanitization of certain parameters when handling and sharing sensitive

information: in network indicators, anonymizing or sanitizing IP addresses of the target systems

and indicators which might reveal the network infrastructure of the organization; in phishing

email samples, anonymizing email addresses belonging to the organization and even removing

any sensitive information contained in the message; in system, network and applications logs

anonymizing IP addresses, timestamps, ports and protocols which might reveal any information

about systems of the organization.

However, in the process of anonymization, relevant information which could be useful when

dealing with a cyber threat can be lost. As stated by Fisk et al. [FAP+15], the process of

anonymization of data in a cyber threat information sharing system often reduces its utility.

Furthermore, the authors also mention that anonymization techniques can be vulnerable to

attacks. In particular, Narayanan and Shmatikov [NS08] developed an algorithm that could

de-anonymize anonymized records with a small amount of background knowledge about them.

They applied their algorithm to the Netflix Prize, a contest which contained anonymized movie

ratings from 500 000 Netflix subscribers, and demonstrated that an attacker with very limited

knowledge could identify the movie rating record of each subscriber.

As a result, we conclude that, when sharing cyber threat information, anonymization is

not an ideal solution to protect organizations sensitive data, since it decreases the shared data

usefulness and it can be vulnerable to attacks, rendering its usage ineffective. These facts incited

us to find a cyber threat sharing solution that prevented the unwilling disclosure of sensitive

information, without the need of anonymization of sensitive information before sharing the data.
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1.1 Approach

PriVeil [Gon19] was designed to be a platform that allows the participants to share threat

information they possess with each other, to create a cooperation environment which allows them

to better deal with cyber threats. PriVeil relies on Homomorphic Encryption (HE) and Secure

Multiparty Computation (SMC) to create a system where users can share information which can

contain sensitive indicators, without having to anonymize them. PriVeil is structured to operate

in two phases: Square and Circle1. In Square, organizations submit their encrypted security

reports describing security events to the platform. HE gave the system the ability to match the

encrypted reports that describe similar cyber threats. HE schemes allow computations to be

performed directly on encrypted data, yielding the same final result as if they were performed

on the plaintext data itself [NLV11]. Afterwards, entities whose reports matched, are notified

and receive a token that authorizes them to engage in a Circle session and are then forwarded

to it.

The Circle component allows participants whose reports matched in Square to engage in a

progressive disclosure of information, where they share information in a privacy-preserving way.

1.2 Objectives

One of the main goals of this work was to develop Circle, the second component of the PriVeil

cyber threat information sharing system. To allow privacy-preserving computations to be per-

formed in Circle, we resorted to the SMC operation of Private Set Intersection (PSI) to allow

the participants to share cyber threat information contained in their security reports. However,

at any point during Circle, they can leave the system without any penalty. This characteris-

tic ensures that the participating organizations retain control over their data, only sharing the

information they are willing to.

The second main objective of this work was to evaluate the performance and effectiveness

of Circle according to realistic scenarios, to prove that this system is applicable in practice and

can be used by real organizations, in order to share cyber threat information.

1In [Gon19], the nomenclature for Square is Concourse and for Circle is Conclave. We changed the Concourse
name to Square to give a better idea of its functionality: it is a “public square”, where users can submit their
encrypted security events which are afterwards matched. The name Conclave was changed to Circle in the sense
that this phase is a more “inner circle”, where users share more granular threat information contained in their
reports.
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1.3 Dissertation Outline

The remainder of the dissertation is structured as follows: in chapter 2 we describe the cryp-

tographic primitives, protocols and tools which were used to implement Circle; in chapter 3 we

explain the requirements of our prototype, how it was designed and implemented, its functional-

ities and characteristics; in chapter 4 we assess whether the requirements of Circle were fulfilled,

we detail the methodology used to evaluate Circle and the results obtained; in chapter 5 we

provide the final remarks on this work and improvements to be addressed in future work.
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Chapter 2

Background & Related Work

In this chapter we provide the theoretical foundations necessary to understand the premisses

and protocols we used to design and implement Circle. We start by providing a summary

of modern cryptography, encryption techniques and their security properties and protocols,

in section 2.1. Moreover, we give a detailed explanation of the cryptographic primitive of

Secure Multiparty Computation (SMC), in section 2.2 and elaborate on its security properties,

foundations, adversaries and protocols. Afterwards, in section 2.3, we provide an overview of a

specific SMC operation, Private Set Intersection (PSI), which we used to implement Circle and

give real-life examples of its application. We conclude this chapter by describing three SMC

frameworks that implement PSI, in section 2.4.

2.1 Cryptography

Cryptography can be traced back to the Egyptians about 4000 years ago. However, according

to [KL14], modern cryptography only emerged around the 1980s. It can be defined as the

science that uses mathematical procedures to secure digital information against unauthorized

third-parties. Modern cryptography is applied when securing communications, authenticating

users and storing information securely.

Menezes et al. [MvOV96] define four main information security goals to be achieved, when us-

ing cryptographic protocols: confidentiality, data integrity, authentication and non-repudiation.

Confidentiality ensures that only authorized parties can access the information. Data integrity

implies that unauthorized parties did not alter the data. Authentication guarantees that parties

can prove that they are who they claim to be and that information comes from where it is

supposed to. Finally, non-repudiation implies that a party cannot deny that certain actions

were done. In order to achieve these information security objectives we can use three crypto-
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graphic primitives: symmetric key cryptography, public key cryptography1 and cryptographic

hash functions.

In symmetric key cryptography, encryption and decryption are performed using the same

key. In the encryption algorithm, the original message, the plaintext, is encrypted into the

encrypted message, the ciphertext, by using a secret key. In the decryption algorithm, the

same key is used to decrypt the ciphertext and recover the plaintext. In subsection 2.1.1 we

describe the Advanced Encryption Standard (AES) algorithm, which is based on symmetric key

cryptography.

A Message Authentication Code (MAC) is a special case of symmetric key cryptography. A

MAC is a code which is computed using a message m and a shared symmetric key K. The sender

of the message computes the MAC M = MAC(K,m) and appends it to the respective message.

Upon arrival, the receiver recomputes the MAC using the message m and the secret shared key

K. If the recomputed MAC coincides with MAC appended to the message, the message was not

changed in transit. However, if the recomputed MAC and and the one appended to the message

differ, the receiver can conclude that the message was changed and its integrity compromised

[Sta10].

In public key cryptography, there is a pair of two different keys: a private (secret) key and

a public key. In the encryption algorithm, the public key is used to transform the plaintext

into the ciphertext. In the decryption algorithm, the private key of the pair is used to recover

the original message from the ciphertext. Furthermore, when using public key cryptography, a

party can combine a message with a secret key to create a digital signature. The paired public

key can then be used to validate that who generated and signed the message is the owner of the

public key. The Rivest-Shamir-Adleman (RSA) [RSA78] algorithm is a widely used public key

cryptography system. This algorithm relies on the high complexity of factoring large numbers

and computing modular logarithms to make brute force attacks to it computationally infeasible.

Nowadays, since RSA is slow, it is not frequently used to encrypt data, but to transmit symmetric

keys over an insecure channel.

As defined in [Zú18], a hash function h is a one-way function which accepts as input a block

of data of variable size M and outputs its hash value H = h(M), an apparently random fixed

size block of data. There are three properties desired for cryptographic hash functions:

1. Preimage resistance: It is computationally infeasible for an attacker with the value H

to find M , such that M = h−1(H).

2. Second-Preimage resistance: It is computationally infeasible for an attacker with the

1Another frequent designation is Asymmetric Key Cryptography.
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message M and its hash value H = h(M), to obtain a different message M1 such that

h(M) = h(M1)

3. Collision resistance: It is very hard for an attacker to find two different messages M

and M1 such that h(M) = h(M1)

In subsection 2.1.2 we describe the Secure Hash Algorithm 2 (SHA-2). We can use crypto-

graphic hash functions to construct a MAC. Such a scheme corresponds to a Hash-based Message

Authentication Code (HMAC). In a HMAC, the message and a secret key are combined and

subsequently put through a hash function to create an authenticated message. HMAC is proven

to be secure as long as the underlying hash function is not broken [BCK96].

2.1.1 Advanced Encryption Standard

In 1997, the National Institute for Standards and Technology (NIST) published an open and

international contest to find a symmetric key cipher for the new standard. After 4 years, in

2001, NIST announced that the Rijndael cipher [DR02], created by John Daemen and Vincent

Rijmen, would become the cipher to be used in the new AES.

AES is based on substitution-permutation networks, which employs the substitution and

permutation operations. In substitution, or S-box, the input, a binary word of x bits is trans-

formed in a binary word of y bits, where x can be different from y. In permutation, or P-box,

a binary word has its bits reordered. This algorithm supports an input block length of 128 bits

and key lengths of 128 bits, for AES-128, 192 bits for AES-192 and 256 bits for AES-256. The

first step in AES is to transform the 128 bits block input into the state array. The state array

can be pictured as a 4x4 square matrix. Similarly, the input key is transformed into a state

array. This state array can be pictured as a matrix with 4 rows, where the number of columns

depends on the key length. For the 128, 192 and 256 bits used in the AES key, the key state

array can be pictured as a 4x4, 4x6 and 4x8 matrix, respectively. The five operations defined

for AES encryption are:

� Key Schedule: The input key state array is, through a series of operations, transformed

in an expanded key of size 1408 bits, 1664 bits and 1920 bits for AES-128, AES-192 and

AES-256, respectively. The expanded key is subsequently split in 11 round keys of 128

bits for AES-128, in 13 round keys of 128 bits for AES-192 and in 15 round keys of 128

bits for AES-256. Each one of these round keys is transformed in a 4x4 state array and

used in each AddRoundKey operation.
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� AddRoundKey : Each byte in the input 4x4 state array is XORed2 with the corresponding

byte of the round key 4x4 state array.

� SubBytes: Each byte of the state array is substituted by the corresponding value of the

S-box.

� ShiftRows: Left shifts the rows of the state array over different offsets. The offsets for the

first, second, third and fourth row of the state array are 0, 1, 2 and 3, respectively.

� MixColumns: Each byte of a column of the state array is transformed into a new value

by operating on all the elements of the column of that byte. The operation performed is

a matrix multiplication.

In figure 2.1 we represent the operations performed in the encryption and decryption phases

of AES.

SubBytes

MixColumns

ShiftRows

AddRoundKeyRound Key

AddRoundKey

ShiftRows

SubBytes

Ciphertext

Round Key

AES-128: 9 rounds

AES-192: 11 rounds

AES-256: 13 rounds

AddRoundKey

Plaintext

Round Key

InvShiftRows

AddRoundKey

InvSubBytes

InvMixColumns

AddRoundKey

InvSubBytes

InvShiftRows

Plaintext

AddRoundKey

Ciphertext

Round Key

Round Key

Round Key

Figure 2.1: AES encryption and decryption phases.

The AES algorithm starts by executing the Key Schedule operation, where all the round keys

are generated, followed by a AddRoundKey operation. Afterwards, for input key lengths of 128,

192 and 256 bits 9, 11 and 13 Rounds are executed, where the functions SubBytes, ShiftRows,

2XOR corresponds to the boolean operation of eXclusive OR.
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MixColumns and AddRoundKey are performed sequentially. The protocol is concluded by a

FinalRound that includes the SubBytes, ShiftRows and AddRoundKey operations.

A characteristic of SubBytes, ShiftRows and MixColumns is that they are invertible. In

[Sta10] we can find an overview of each of the inverse operations. The inverse of SubBytes,

InvSubBytes, uses the inverse S-box. The inverse of ShiftRows, InvShiftRows, shifts the rows

in the opposite direction. Finally, the inverse of MixColumns, InvMixColumns, performs the

inverse operation on the elements of the state. The fact that these functions have an inverse

defined allows to perform the decryption of the ciphertext back to the plaintext.

AES is still considered secure, since there is no known attack that can break the full algo-

rithm. In [BKR11], the authors propose a cryptanalysis method on the full AES, the biclique

attack, that would allow to recover the secret key used in AES-128 with a time complexity of

2126.18 and data complexity of 288. However, as the authors state, their results do not threaten

in any way the usage of AES. Since then, in [TW15], the authors improved biclique attack,

improving the complexity for breaking the AES-128 secret key to a time complexity of 2126.01

and data complexity of 272. Once more, these results do not threaten the wide usage of AES

protocol, so it remains the primary symmetric key cryptography protocol for the foreseeable

future.

2.1.2 Secure Hash Algorithm 2

The first Secure Hash Algorithm, SHA-0, was published by NIST in 1993 and only after two

years, the second Secure Hash Algorithm, SHA-1, was defined. In 2002, the SHA-2 family was

standardized by NIST [NIS02] in order to increase SHA-1 message output size of 160 bits and

improve the underlying algorithm. This new group of SHA hash functions includes the most

commonly used SHA-256 and SHA-512 and the not so frequently used SHA-224 and SHA-384.

The SHA-256 and SHA-224 functions accept message inputs with lengths smaller than 264 bits.

While SHA-256, subsequently, outputs a message digest of 256 bits (32 bytes), SHA-224 outputs

a digest of 224 bits (28 bytes). SHA-512 and SHA-384 accept message inputs with lengths smaller

than 2128 bits. The SHA-512 function outputs a digest of 512 bits (64 bytes), while SHA-384

outputs a digest of 384 bits (48 bytes).

SHA-2 is employed in a wide range of applications: in Federal departments and agencies in

the United States, for the protection of sensitive unclassified information [NIS02], in the mining

process employed by the Bitcoin cryptocurrency3 and, in general, to verify the data integrity of

messages and files.

3https://www.mycryptopedia.com/sha-256-related-bitcoin/, accessed on 25/12/2020.
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2.1.3 Transport Layer Security

The Transport Layer Security Protocol (TLS) is the successor of the Sockets Layer Protocol

(SSL). The aim of TLS is to provide two parties, often a client and a server, with a secure

communication channel. The TLS protocol is complex and supports a variety of cipher suites

and cryptographic protocols that can be used to implement it. The first version, TLS 1.0,

emerged in 1999 as the successor of SSL 3.0 and, since the two are connected, the protocol is

often referred to as TLS/SSL. The most recent version, TLS 1.3, was defined in RFC 8446 [Res18]

in 2018, providing a simpler, faster and more secure protocol than the previous version, TLS

1.2. We can distinguish two different sub-protocols that are used in all TLS implementations:

1. Handshake protocol : A TLS communication starts by the client sending a ClientHello

message to the server with parameters like the supported ciphers and supported TLS

version. The server answers with a ServerHello message containing the chosen protocol

version and cipher suite. We can have three types of authentication during the handshake:

neither party authenticates itself to the other, only the server authenticates itself to the

client, or both parties authenticate themselves to the other party. In the Internet, websites

that use the HTTPS protocol [Res00], usually require a server authentication setting.

However, since in our project, when we used TLS, we relied on a mutual authentication

setting, we will describe in more detail this case. In a mutual authentication setting, both

parties are required to prove their identity to the other party, so, each party needs to send

its certificate to the other. A digital certificate is the document that proves that a certain

party owns the public key contained in it [CSF+08]. Among other fields, a certificate

contains information about the public key contained in it, the entity that owns it and a

signature of a third-party, which confirms that the information contained in the certificate

is valid. In order to be valid, the third-party signature must belong to a trustworthy entity,

a Certification Authority (CA). After the client and server receive each others certificates,

they verify its validity and the validity of the signature of the CA, aborting the handshake

in case one of them is not valid. When both server and client confirm that the certificate of

the other party and signature of the CA contained in it are valid, they use the certificates

public keys and corresponding secret keys to compute the symmetric session keys that will

be used to encrypt and decrypt communications and the secret keys used to compute the

Message Authentication Codes. The computation depends on the cipher suite agreed by

the client and server in the beginning of the handshake.

2. Record protocol : The TLS record protocol is responsible for securing the application data.
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It is responsible for encrypting outgoing and decrypting incoming messages and verifying

the integrity of incoming and applying the MAC to outgoing messages.

When using the TLS protocol to secure communications between two parties, the aim is to

achieve three security properties of the ones defined in section 2.1: authentication, confidentiality

and data integrity [Aum17]. The property of confidentiality is obtained as result of the commu-

nications between the parties being encrypted using symmetric encryption. In the handshake,

the parties compute a symmetric key used to encrypt and decrypt communications, making

them unintelligible to those who do not possess the key. TLS 1.3 introduces a construction

named authenticated encryption with associated data (AEAD), which is applied when client

and server exchange messages. Each message sent contains a MAC computed from a session key

and the message itself. Moreover, the message and appended MAC are subsequently encrypted

with a session key. AEAD provides TLS application data with the properties of authentication,

confidentiality and data integrity.

2.2 Secure Multiparty Computation

SMC is a cryptographic primitive whose theoretical foundations started in the 1980s, although

practical applications only emerged in the last 20 years. As defined by [CDN15], the goal of SMC

is to allow a group of parties that do not trust each other to collectively compute a common

function, without revealing their inputs to the other parties. A simple solution to this problem

would be to find a trusted third party (TTP) that all participants trust: all parties would send

their private inputs to the TTP, which would then compute the function of those inputs and

deliver the output to the parties. The trusted party would afterwards need to forget the private

inputs sent to it. However, this solution requires the parties to completely trust the TTP, thus

giving it access to their private inputs. SMC is an alternative to this approach overcoming the

requirement of a TTP, while still allowing the parties to exchange information and compute a

common function of their inputs, without revealing any information about them to each other.

To mathematically define the problem that SMC tries to solve, let us suppose we have n parties,

P1, ..., Pn, with n ≥ 2, whose secret inputs are x1, ..., xn, respectively. The objective of SMC is

to let the parties collectively compute a function of either the type represented in equation (2.1),

or in equation (2.2):

y = f(x1, ..., xn) (2.1)
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(y1, ..., yn) = f(x1, ..., xn). (2.2)

In the end of the computation, in the case of equation (2.1), all parties receive the output

y, whereas, in the case of equation (2.2), each party Pi receives the output yi, for i = 1, ..., n.

When performing these computations, we want to ensure two conditions:

1. Privacy of inputs: In the end of a SMC operation, the only new information that each of

the participating parties has learnt is the output assigned to it, and what can be inferred

from it. In particular, each party should not be able to learn the other parties inputs nor

any intermediate calculations that can lead to the discovery of other parties inputs.

2. Correctness of the output: In the end of a SMC operation, the output that each of

the participating parties receives is correct.

Performing a computation f such that the properties of Privacy of inputs and Correctness

of the output are guaranteed can be defined as computing f securely.

In general, to create a SMC protocol, the function which is represented by equation (2.1) or

equation (2.2), is defined as a circuit. In [CDN15], Cramer et al. remark that circuits can be

seen as graphs where the vertices correspond to the gates and the edges to the wires connecting

those gates. Circuits are divided in two types: boolean circuits and arithmetic circuits. On one

hand, in boolean circuits, the gates correspond to logic operations like AND, OR and XOR, and

their inputs correspond to bits. On the other hand, in arithmetic circuits, the gates correspond

to arithmetic operations like addition, multiplication and scalar multiplication and the inputs

are elements of a finite field F.

As described in [EKR18], when creating a SMC protocol, one has to differentiate between

the two-party computation (2PC) case, where the number of parties is exactly two, and the

multiparty case, where the number of parties can be equal or greater than two. In general, it

is not trivial to generalize 2PC protocols for the multiparty case, since the assumptions and

techniques which are sufficient to secure the communications between two parties are different

than those needed to secure the communications between multiple parties [GS18]. As a result,

literature usually either focuses on the development of two-party protocols or multiparty proto-

cols. Furthermore, we need to define the adversaries that may target the protocol and those it is

capable to withstand. In subsection 2.2.1 we provide an overview of the adversary model usually

considered for SMC protocols. Finally, according to [Orl11], the implementation of a specific

secure SMC protocol usually relies on either one of these two primitives: Garbled Circuits (GC),

which is used to evaluate boolean circuits in the 2PC setting and is described in subsection 2.2.2;
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Secret Sharing, which is generally used when computing SMC functions as arithmetic circuits

and is described in subsection 2.2.3.

2.2.1 Adversary Model

When creating a SMC protocol we have to consider the type of adversaries that may target it.

In [Can00], three main distinctions are made when considering the adversary model of a SMC

protocol. The first aspect to consider is the ability of the adversary to deviate from the protocol.

We consider two types of adversaries:

1. Semi-honest adversary: Only gathers whatever information it can from the corrupted

parties. Although the corrupted parties can cooperate to gain more information, they still

follow the intended protocol.

2. Malicious adversary: The corrupted parties can deviate from the protocol, executing

actions that are not intended during the normal behaviour of the protocol.

The second aspect to consider is the ability of the adversary to corrupt parties when the

protocol is already being executed. With regard to this ability we can distinguish two types of

adversaries:

1. Static adversary: Can arbitrarily choose which parties to control before the execution

of the protocol. Throughout the protocol, the number of corrupted parties remains fixed.

2. Adaptive adversary: Can choose the parties to corrupt while the protocol is being

executed. This decision can be aided by information obtained during the protocol.

Finally, when developing a SMC protocol, we can have two different of settings in which

information is exchanged:

1. Secure channel setting: Despite an adversary having unlimited computing power, the

point-to-point communication channels are perfectly secure, making it impossible for an

adversary to obtain the parties secret inputs.

2. Computational setting: An adversary can capture all communications between the

parties, although it cannot obtain the parties secret inputs in a feasible amount of time.

2.2.2 Garbled Circuits

In [Yao82], Andrew Yao introduced an illustrative SMC problem, the Millionaire’s problem. In

this problem, we consider two parties, Alice and Bob, who wish to know who is richer, without

13



revealing to the other party how much money they have. In this work, the author presents three

solutions to solve this specific problem, guaranteeing the requirements of Privacy of inputs and

Correctness of the output. Later, Yao proposed GC, a more general solution to approach 2PC

problems, in the semi-honest adversary setting, in the context of this work and [Yao86]. In

GC, two parties, the Garbler, P0, and the Evaluator, P1, want to compute the output y of the

function f(x0, x1). To illustrate how this protocol works, let us use the example from [Yak17].

Let us consider that we want to evaluate the logic AND function between two input bits, as

represented in equation (2.3):

y = f(x0, x1) = x0 ∧ x1. (2.3)

Initially, the Garbler assigns random strings as labels for the two possible values (0 and 1)

of the inputs x0 and x1. The label W 0
x0

is assigned to the case where x0 = 0 and the label W 1
x0

to the case where x0 = 1. Moreover, the label W 0
x1

is assigned to the case where x1 = 0 and

the label W 1
x1

to the case where x1 = 1. The correspondence between these labels and the input

bits x0 and x1 is represented in table 2.1.

Table 2.1: AND gate truth table.

x0 x1 y

0 0 0

0 1 0

1 0 0

1 1 1

x0 x1 y

W 0
x0

W 0
x1

0

W 0
x0

W 1
x1

0

W 1
x0

W 0
x1

0

W 1
x0

W 1
x1

1

Afterwards, the two input labels of each row are used in a key derivation function, H, to

derive a symmetric key which is used to encrypt the output y. The result of this encryption can

be observed in table 2.2.

Table 2.2: Encrypted AND gate.

x0 x1 Encrypted output

W 0
x0

W 0
x1

EncH(W 0
x0

,W 0
x1

)(0)

W 0
x0

W 1
x1

EncH(W 0
x0

,W 1
x1

)(0)

W 1
x0

W 0
x1

EncH(W 1
x0

,W 0
x1

)(0)

W 1
x0

W 1
x1

EncH(W 1
x0

,W 1
x1

)(1)

The rows of table 2.2 are subsequently randomly permuted, so that the output cannot be
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determined from the table row. An example of a possible randomly permuted garbled table is

represented in table 2.3.

Table 2.3: Garbled AND gate.

Permuted Garbled table

EncH(W 1
x0

,W 0
x1

)(0)

EncH(W 0
x0

,W 0
x1

)(0)

EncH(W 1
x0

,W 1
x1

)(1)

EncH(W 0
x0

,W 1
x1

)(0)

After computing the garbled AND gate of table 2.3, the Garbler, P0, sends it to the Evaluator,

P1. In order to compute the output of equation (2.3), the Evaluator needs to decrypt the row

that contains the labels corresponding to the real input values. Consequently, the Garbler needs

to send to the Evaluator these values. Since it knows the real bit value b0 of x0, the Garbler

can send the correspondent label, W b0
x0

, which the Evaluator cannot use to find b0, because the

labels are random, independent and equally distributed. Furthermore, the Garbler also needs to

send the label W b1
x1

corresponding to the real input bit of x1, b1, to the Evaluator. Nevertheless,

the Garbler does not know whether W b1
x1

corresponds to W 0
x1

or W 1
x1

, although a simple solution

would be for the Garbler to send both labels to the Evaluator. However, this would allow the

Evaluator to decrypt two ciphertexts in table 2.3. The solution is for the Garbler and Evaluator

to use 1-out-of-2 oblivious transfer [EGL82], so that the Evaluator receives the correct W b1
x1

from the Garbler. After obtaining the labels W b0
x0

and W b1
x1

of the real inputs, b0 and b1, the

Evaluator decrypts the corresponding ciphertext, obtaining the correct output from table 2.3.

It afterwards communicates the correct output to the Garbler.

However, real-life applications of GC to perform 2PC would imply more complex functions,

represented by not single gates but a whole circuit. In these cases, the Garbler needs to garble the

entire function circuit and, for the gates whose output wire corresponds to the input of another

gate, instead of directly encrypting the output bits, as in table 2.2, the Garbler encrypts a label

W 0
y when y = 0, and W 1

y when y = 1. As an example, in table 2.4, we can observe the encryption

of an AND gate, where its output corresponds to the input of another gate.

The original GC protocol proposed by Yao was highly inefficient to be used in practice. As

a result, over the years, several works developed optimizations for this protocol. Kolesnikov et

al [KS08] proposed an improvement of GC, free XOR, that allows the evaluation of XOR gates,

without the need to create the respective garbled tables and to use symmetric key cryptography.

In [ZRE15], the authors proposed Half-gates, a method that allows to garble AND gates with only
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Table 2.4: Encrypted AND gate in a circuit, where its output corresponds to the input of another
gate.

x0 x1 Encrypted output

W 0
x0

W 0
x1

EncH(W 0
x0

,W 0
x1

)(W
0
y )

W 0
x0

W 1
x1

EncH(W 0
x0

,W 1
x1

)(W
0
y )

W 1
x0

W 0
x1

EncH(W 1
x0

,W 0
x1

)(W
0
y )

W 1
x0

W 1
x1

EncH(W 1
x0

,W 1
x1

)(W
1
y )

two ciphertexts. Furthermore, this work was developed to support compatibility with the free

XOR technique. The improvements to GC described in these works, as well as in others, make

it one of the most used building blocks when constructing SMC protocols, more specifically, in

the 2PC setting and when the function to be computed securely is specified as a boolean circuit.

2.2.3 Secret Sharing

Secret sharing is a technique through which a secret is split into pieces which are distributed to

several parties. When the pieces are combined, they allow the reconstruction of the secret.

In [Sha79], Adi Shamir proposes a way to divide a piece of data D into n shares, such that

D can be recovered by knowing k pieces, where 0 ≤ k ≤ n. This technique was designated a

(k, n) threshold secret-sharing scheme. In this scheme, the original secret, D, can be recovered

by assembling any k shares, whereas the possession of less than k shares reveal no information

about the secret. In this work, the author details a secret sharing scheme, afterwards named

Shamir’s Secret Sharing (SSS), which is based on polynomial interpolation over a finite field.

Let us assume we have: a finite field Fq of size q, where q is a prime and 0 ≤ k ≤ n < q; a secret

number D, where D < q and D = a0; k−1 positive, distinct coefficients, a1+a2+ ...+ak−1x
k−1,

which are randomly chosen from an uniform distribution from the integers in ]0, q[. We can

construct a polynomial of degree k − 1 that satisfies equation (2.4):

p(x) = a0 + a1x+ a2x
2 + ...+ ak−1x

k−1. (2.4)

Furthermore, for i = 1, ..., n we can construct n points Di such that equation (2.5) holds:

Di = p(i) mod q. (2.5)

The n points Di are the shares of the secret D. The points (1, D1), ..., (n,Dn) and the value of

q are, subsequently, distributed to the participants. The participants can reconstruct the original
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secret D by combining any k of the n points distributed and using interpolation to obtain the

coefficients a1, ..., ak−1 of the polynomial. In the end, the secret D can be reconstructed by

computing equation (2.6):

D0 = p(0) mod q = a0. (2.6)

In SSS, the usage of modular arithmetic instead of real arithmetic ensures that an adversary

that possesses up to k − 1 shares of the secret learns nothing more than one with zero shares.

SSS can be applied to SMC problems due to its homomorphic property [Ben87]: operations,

like addition and multiplication, that were to be performed on the secret inputs, can instead

be performed on the secrets shares. The output of these operations is equal whether they were

performed on the shares of the secrets or the secret itself.

Besides SSS, other authors developed different secret sharing schemes. Blakley [Bla79] de-

veloped his own secret sharing scheme in parallel with SSS, focusing on a geometric approach

to also create a (k, n) threshold secret sharing scheme. In this work, the secret is a point in a

k-dimensional plane, and the shares are the coefficients of the hyperplanes whose intersection

is the point that corresponds to the secret. The work of Chor et al. [CGMA85] introduces the

notion of Verifiable Secret Sharing, a secret sharing scheme that gives the parties the ability to

confirm that every party received a valid share of the secret, without needing to know the secret

itself.

The wide application of secret sharing schemes in SMC emerged with the work of Ben-Or

et al. [BOGW88]. The authors use a Secret Sharing scheme similar to SSS to compute a SMC

function of the type of equation (2.2): n parties perform a secure computation, where the i− th

party, with secret input xi, obtains, in the end of the computation, the i−th output yi. Since this

work, Secret Sharing has been greatly adopted in SMC, both in the two-party and multiparty

computation settings.

2.2.4 TinyTable Protocol

In [DNNR17]4, Damg̊ard et al. propose TinyTable, a secure 2PC protocol where the SMC

function is specified as a boolean circuit. This protocol consists of two phases: a preprocessing

phase, where knowledge of the parties inputs is not required, and an online phase, that uses

the parties inputs as well as the output of computations performed in the preprocessing phase.

The usage of public key cryptography primitives is restricted to the preprocessing phase, which

4For a further explanation on the TinyTable protocol, the presentation of this paper at Crypto 2017 conference
can be watched at https://www.youtube.com/watch?v=K5MUbtHFqH0.
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makes it very slow. Furthermore, this phase can be executed any time prior to the online phase

since it does not require the inputs of the parties. The online phase is where the computations

on the inputs of the parties is performed. Due to the usage of public key cryptography being

restricted to the preprocessing phase, the online phase is much faster than the previous one.

With regard to the content of section 2.4.1, we will show the algorithm of the TinyTable

protocol for the semi-honest and static adversary setting, where exactly one of the parties can

be corrupt. The following assumptions are made:

1. We have a boolean circuit C with gates G1, ..., GN and wires w1, ..., wM .

2. The circuit contains arbitrary gates with two input wires and one output wire.

3. Arbitrary fan-out is allowed: a wire leaving a gate can have an arbitrary number of copies

which are all assigned the same wire index.

4. Both parties will learn the circuit evaluation output.

5. The order in which the circuit is evaluated gate by gate is arbitrary and fixed, such that

output gates come last. When we are about to evaluate gate i, its inputs have already

been computed.

6. The function Gi(., .) is the result of computation of gate Gi.

The preprocessing phase in the TinyTable protocol is based in the preprocessing of the

TinyOT protocol described in [NNOB12]. In this work, the authors use Oblivious Transfer to

implement a 2PC protocol which is secure against a malicious adversary. In the preprocessing

phase of TinyTable, the two parties, A and B, respectively get a hold of scrambled versions

of truth-tables, Ai and Bi, for each gate Gi and uniform random mask bits ri, which will be

required, afterwards, in the online phase. The preprocessing phase algorithm for semi-honest

adversary setting is represented in algorithm 1.

In the online phase of the TinyTable protocol, the actual computation involving the parties

inputs is performed. In this phase, the parties perform look-ups on the scrambled tables by using

the bits masked by the previously chosen uniformly random bits. The online phase algorithm

for semi-honest adversary setting security is represented in algorithm 2.

The final result holds because the scrambled tables Ai and Bi are set up such that Ai[eu, ev]

and Bi[eu, ev] are an additive secret sharing of eo: Ai[bu⊕ru, bv⊕rv]⊕Bi[bu⊕ru, bv⊕rv] = bo⊕ro.

The algorithm described allows the computation of the circuit C securely assuming a semi-honest

adversary.
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Algorithm 1: TinyTable protocol preprocessing phase.

foreach wire wj do

Select a random mask bit rj ;

if wj is an input wire then

Give rj to the player that owns it;

else if wj is an output wire then

Send rj to both players;

end

end

foreach gate Gi with input wires wu and wv and output wire wo do

Construct two tables Ai and Bi, each with 4 entries, indexed by bits (c, d);

foreach of the four possible values of (c, d) do

Chose a random bit sc,d;

if both parties are honest or A is corrupt then

Set Ai[c, d] = sc,d;

Set Bi[c, d] = sc,d ⊕ (ro ⊕Gi(c⊕ ru, d⊕ rv));

else if B is corrupt then

Set Bi[c, d] = sc,d;

Set Ai[c, d] = sc,d ⊕ (ro ⊕Gi(c⊕ ru, d⊕ rv));

end

end

Hand Ai to player A;

Hand Bi to player B;

end

In order to evaluate TinyTable, the authors used this protocol to compute a boolean circuit

corresponding to the encryption process of AES-128. In this setting, one of the party inputs

the plaintext and the other the expanded key5, such that, in the end of the computation, both

parties learn the ciphertext. In a LAN setting consisting of two machines, this computation

yielded a total execution time of 3.94 ms.

2.3 Private Set Intersection

In the context of SMC, PSI is a widely researched operation. In this operation, two or more par-

ties, P1, ..., Pn|n ≥ 2, with the respective private sets, S1, ..., Sn want to compute the intersection

5As mentioned in subsection 2.1.1, for AES-128, the expanded key is a 1408 bits key which is generated during
the KeySchedule operation.
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Algorithm 2: TinyTable protocol online phase.

foreach input wire wj do

if A holds this wire with input bit bj then

Send ej = rj ⊕ bj to B;

else if B holds this wire with input bit bj then

Send ej = rj ⊕ bj to A;

end

end

for i = 1, ..., N do

Let Gi have input wires wu and wv and output wire wo (so that eu and ev have been

computed);

A sends Ai[eu, ev] to B;

B sends Bi[eu, ev] to A;

The parties obtain eo = Ai[eu, ev]⊕Bi[eu, ev];

foreach output wire wo do

Both parties output the bits bo = eo ⊕ ro = Gi[bu, bv]

end

end

of those same sets, as represented in equation (2.7):

f(S1, ..., Sn) = S1 ∩ ... ∩ Sn. (2.7)

In the end of this computation, either all parties or a subset of them learn the elements which

are common to all sets, without anything being disclosed about the different ones. In general,

implementations of PSI can be divided into two classes: generic protocols, which specify this

operation as a circuit and rely on a general SMC technique to solve it, and custom protocols,

which are created for the specific structure of the PSI operation [PSTY19].

We will give examples of three protocols that can be used to implement the PSI operation

in the semi-honest adversary setting. Firstly, in subsection 2.3.1, we describe three generic

GC protocols that implement PSI. Secondly, in subsection 2.3.2, we give an overview of a 2PC

specific PSI protocol based on public key encryption. Finally, we describe a multiparty custom

protocol for implementing the PSI operation in subsection 2.3.3

2.3.1 Yao’s Garbled Circuits 2PC PSI

In [HEK12], Huang et al. use Yao’s GC to implement the 2PC PSI operation. The authors de-

velop three different boolean circuits to compute PSI: Bitwise-AND, which consists on perform-
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ing the AND operation on the bitwise representations of the parties sets; Pairwise Comparisons,

which performs equality tests for each pair of items in the parties sets; Sort-Compare-Shuffle,

that starts by sorting the parties sets and saving them into a single list, then performing equality

tests on adjacent elements of the list and finally shuffling the resulting list of common elements.

2.3.2 Public Key Encryption 2PC PSI

In [FNP04], the authors propose a protocol for performing 2PC PSI based on public key en-

cryption. In this protocol the authors use a public key encryption scheme with homomorphic

properties6 together with polynomial interpolation to allow the computation of PSI. In this pro-

tocol, two parties, client and server, want to compute the intersection of their sets, but while

the client learns the intersection of the sets, the server learns nothing. The client defines a

polynomial whose roots are the elements of its set. It, subsequently, sends the homomorphic

encryptions of the coefficients of the polynomial to the server, which uses the homomorphic

properties of the encryption scheme to evaluate the encrypted polynomial at its own inputs.

Afterwards, the server multiplies each result by a random number to get an intermediate result,

which is then added to the encryption of its own result and then sends this result to the client.

For each of the elements in the intersection of the two parties sets, the result of the previous

computation is the value of the common element, while for all other values the result is ran-

dom. The server then sends the resulting intersection ciphertexts to the client, that decrypts all

the ciphertexts received and outputs the elements of its set for which there is a corresponding

decrypted value. These elements are the ones in the intersection of the parties sets.

2.3.3 Multiparty PSI

In [KMP+17], Kolesnikov et al. present the first implementation of a multiparty PSI protocol.

The authors develop an approach which is based on oblivious programmable pseudorandom

function (OPPRF). An oblivious pseudorandom function (OPRF) [FIPR05] is a two-party pro-

tocol in which the sender learns a pseudorandom function (PRF) key k and the receiver learns

F (k, r) where F is a PRF and r is the input of the receiver. In OPPRF, the PRF F allows

the sender to choose the output of F on a limited number of inputs. In a high-level overview,

the authors protocol is divided into two main stages: conditional zero-sharing and conditional

reconstruction. In condition zero-sharing the n parties collectively and securely generate addi-

tive sharings of zero, with each party Pi obtaining, for each of its items xj , a share sij , where

equation (2.8) holds:

6The Paillier cryptosystem [Pai99] is an example of public key encryption scheme with homomorphic properties
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n∑
i=1

sij = 0. (2.8)

If all parties have the element xj in their sets, the sum of their shares is zero. Otherwise, the

sum of the shares is different from zero. In conditional reconstruction each party Pi programs

an instance of OPPRF to output its share sij when evaluated on xj . If all parties evaluate the

OPPRF on the same value xj , the sum that the OPPRF outputs is equal to zero. This result

indicates that all parties have the element xj in their sets. If the sum corresponding to the

output of the OPPRF is a random value, not all parties have the input xj in their sets.

2.3.4 PSI Practical Applications

In [HCE11], the authors develop a prototype of privacy-preserving mobile application for An-

droid devices to demonstrate a practical application of 2PC PSI. The application was based on

the approach to PSI of Yao’s GC, previously described in subsection 2.3.1, more specifically the

Sort-Compare-Shuffle circuit. The developed application, CommonContacts, allows two users

running it to discover contacts they have in common while keeping the contacts which are not

in common private to each party. For a set size of 256 contacts, the total execution time of

CommonContacts was of 9,97 minutes.

In [GKF+06] the authors propose Reliable Email, RE:, a whitelisting system to lower the

rate of false positives in email spam detection. In particular, one characteristic of this system is

that it uses a friend-of-friend query to allow the recipient of an email to determine if one of its

friends has attested to the email sender. To achieve this goal, RE: relies on the two-party public

key based PSI protocol described in subsection 2.3.2. In this context, the recipient of the email

acts as the client and the sender as the server. Both sender and receiver of the email have as

input a set of friends and in the end of the operation, the recipient learns the intersection of the

two sets of friends while the sender learns nothing. The friends in the intersection correspond to

the friends of the recipient who have attested to the sender. From a set of 20 million corporate

emails which did not contain spam messages, normal email spam detection flagged 172 emails as

being spam (false positives). The system developed by the authors, RE:, would have whitelisted

84% of these false positives, thus reducing the number of false positives to 28 emails.

2.4 SMC Frameworks

In this section, we describe three SMC frameworks implementing the PSI operation which was

required for our project. Although a more complete list of SMC frameworks has been com-
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piled, we will provide an overview of the three most promising frameworks that implement PSI:

FRESCO, ABY and Swanky.

2.4.1 FRESCO

FRESCO7 is the FRamework for Efficient Secure COmputation. It is an open-source project

developed and maintained by the Alexandra Institute in Denmark, an organization whose main

focus is IT research. The FRESCO framework is developed in Java and supports computations

in both the two-party and multiparty computation setting. FRESCO is aimed to allow an easy

integration with applications, providing four demonstrations (demos) of secure computations

which are common in SMC: AES Encryption, Sum of Parties Inputs, Distance between Two

Parties Points and PSI. More specifically, the PSI demo provided by FRESCO uses the TinyTable

protocol, which was described in subsection 2.2.4. In this 2PC demo, each party inputs several

values: its own identifier (id), IP address and port, the id, IP address and port of the other

party, the protocol to be used8, the input integer set and the AES-128 secret key. The parties

then use the TinyTable protocol to perform the XOR of their secret keys and afterwards use it

to compute the AES-128 encryption of their inputs. In the end of the computation both parties

obtain the AES-128 encryption of a concatenated list of their inputs. In this list, the first half

of the elements corresponds to the encryption of the input set of the first party and the second

half of the elements corresponds to the encryption of the set of the second party. The parties are

afterwards responsible for identifying the intersecting elements, by looking which encryption of

elements in the first half of the concatenated list match the encryption of elements in the second

half. Despite this demo being called PSI, it does not correspond to the definition of the PSI

operation provided in section 2.3, since the elements in the intersection are not a direct output

of the 2PC computation. It is still necessary to perform a comparison of the elements in each

half.

In figure 2.2, we can observe the result of running the FRESCO PSI demo with the inputs

provided by the developers. From figure 2.2 we can see that the input set of party 1 contains the

integers 2, 3, 4, 5, 8, 9 and 14, while the input set of party 2 contains the integers 2, 3, 4, 6, 7,

12, 14. The intersecting elements of these two sets are the integers 2, 3, 4 and 14. In fact, in the

end of the FRESCO PSI computation, both parties obtain the concatenated list of encrypted

input sets, where the AES-128 encryption of the items in indexes 0 and 7, 1 and 8, 2 and 9 and

6 and 13 match. As a result, both parties know that they have the elements 2 (indexes 0 and

7The source code of FRESCO can be found at https://github.com/aicis/fresco and its documentation at
https://fresco.readthedocs.io/en/latest/.

8In FRESCO, TinyTable is subdivided into two phases: its preprocessing phase, tinytablesprepro, and online
phase, tinytables.
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(a) Output of the PSI demo for party 1. (b) Output of the PSI demo for party 2.

Figure 2.2: FRESCO PSI demo with example input sets.

7), 3 (indexes 1 and 8), 4 (indexes 2 and 9) and 14 (indexes 6 and 13) in common with the other

party, since the first half of the result (indexes 0 to 6) corresponds to the encryption of the input

set of the first party while the second half (indexes 7 to 13) corresponds to the encryption of

the input set of the second party.

2.4.2 ABY

ABY9 [DSZ15] is an open-source framework developed by Daniel Demmler, Thomas Schneider

and Michael Zohner from the ENCRYPTO group, in the TU Darmstadt University in Germany.

This framework is developed in C++ and only supports operations in the 2PC setting. It uses

and combines secret sharing schemes and Yao’s GC to implement a variety of SMC operations

like the Millionaire’s problem, AES Encryption, Euclidean Distance between Two points and

PSI. The PSI example provided by ABY uses the implementation of the Sort-Compare-Shuffle

circuit, which was briefly described in subsection 2.3.1.

2.4.3 Swanky

Swanky is an open-source suite of libraries for SMC operations developed by Galois, an IT

research and consulting company in the United States of America. Swanky is developed in

Rust and provides SMC operations in both the two and multiparty computation settings. It is

9The source code of ABY can be found at https://github.com/encryptogroup/ABY and its documentation
at http://encryptogroup.github.io/ABY/docs/index.html.
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divided in four libraries: fancy-garbling, which implements boolean and and arithmetic circuits;

scuttlebutt, which implements basic SMC primitives like GC; ocelot, which implements OT and

OPRF protocols; popsicle, which implements PSI protocols. The PSI library, popsicle10, contains

PSI implementations of three different protocols in the semi-honest adversary setting: the 2PC

PSI protocol based on OPRF described in [PSZ18] the two-party PSI protocol based on OPPRF

presented in [PSTY19] and the multiparty PSI protocol described in subsection 2.3.3.

2.5 Summary

In this chapter we provided an overview of cryptography, described the SMC cryptographic prim-

itive, defined the PSI operation and, finally, introduced three SMC frameworks that implement

the PSI operation. All the topics discussed are relevant for the implementation of PriVeil Circle

since a variety of the constructions and protocols described were required in the development of

our prototype.

10The source code of Popsicle can be found at https://github.com/GaloisInc/swanky/tree/master/popsicle
and its documentation at https://galoisinc.github.io/swanky/popsicle.
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Chapter 3

PriVeil Circle

In this chapter we describe the design and implementation details of Circle, the second phase of

the privacy-preserving threat information sharing platform PriVeil. This chapter is divided in

the following sections: in section 3.1 we provide an overview of the PriVeil cyber threat sharing

system; in section 3.2 we describe the functional requirements intended for Circle; in section 3.3

we explain the Circle component; in section 3.4 we give an overview of the technologies used

to implement Circle; in section 3.5 we provide a description of the main functionalities of the

Dealer and its implementation details; in section 3.6 we detail the Players functionalities and

implementation details; in section 3.7, we conclude this chapter by showing an example of a

Circle session.

3.1 PriVeil Overview

In PriVeil, the information which is shared to allow cooperation when dealing with cyber threats

is contained in security reports. Security reports are generated by organizations when they

identify a cyber threat and contain information about the threat: a small description of it, its

severity, the data when it was detected and tags which contain keywords associated with the

threat.

PriVeil is structured in two phases, supported by two components: Square and Circle.

Figure 3.1 represents the architecture of the PriVeil platform. In the first phase of PriVeil, users

start by submitting their encrypted security reports describing a cyber threat to the Square

component (step 1 in figure 3.1). The system, subsequently, matches the encrypted security

reports that describe similar cyber threats (2) and notifies the users whose reports matched

(3). This is possible because Square uses a Homomorphic Encryption cryptographic scheme to

allow computations to be performed on ciphered events. Afterwards, these participants receive
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a token which authorizes them to engage in a Circle session and are redirected to it (4).

Circle

PriVeil

HUB

Matcher

Notifier

Square

...

1

1 1

1
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4 4

Client 1 Client 2 Client 3 Client n

Figure 3.1: PriVeil Architecture, adapted from Gonçalves [Gon19].

In Circle, the participants can progressively perform a controlled disclosure of information

about the cyber threats described in the security reports.

3.2 Requirements

In order to develop the second phase of PriVeil we determined that we required two types of

parties in Circle: the Dealer and the Players. The Dealer is the coordinator of a Circle session

and acts as a communications facilitator, asking the Players for necessary information as the

session advances. Although it puts the Players in touch with each other to share threat data,

the Dealer does not have access to the cyber threat information that is being shared. The

Players represent organizations willing to share cyber threat information. They were forwarded

to Circle by Square and act as the clients of the Circle session. They send to the Dealer the

information it requires and communicate with other Players in specific communication rounds,

to share cyber threat data.

We now present the functional requirements for Circle, the Attacker Model considered and

the security requirements.
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3.2.1 Functional Requirements

After discussing the functionalities that we desired Circle to have and how it would fit the overall

PriVeil project, we defined the following functional requirements:

� FR1: Players can at any time leave the Circle session they are participating in, thus

retaining full control over what cyber threat information is shared, and how it is shared.

� FR2: Only parties that received a token from Square to participate in the Circle session

are authorized to participate in it.

� FR3: Allow Players to share cyber threat data contained in their security reports, in a

privacy-preserving manner.

3.2.2 Attacker Model

Due to the fact that our system is a part of a cyber threat information sharing platform, we

need to prevent leakage of data, as well as an unauthorized access to it. To fulfill these goals we

had to define the attackers that could possibly target Circle and those that the system would

be able to withstand:

1. Eavesdropper: Passively listens to all communications.

2. Player Impersonator: Impersonates a Player of Circle.

3. Dealer Impersonator: Impersonates the Dealer of Circle.

4. Tamperer: Modifies the data exchanged between source and destination.

Firstly, an attacker can gain eavesdropping capabilities by positioning itself anywhere in the

route between the data source and destination, reading all the information exchanged. Moreover,

on one hand, an attacker becomes a Player Impersonator if it can pose as a Player, deceiving

other Players and the Dealer into thinking they are communicating with a legitimate Player.

On the other hand, an attacker becomes a Dealer Impersonator if it can trick the Players into

sending it information, as they would in the case of the legitimate Dealer. Finally, a Tamperer is

the type of attacker that can position itself anywhere in the route between source and destination,

modifying the data that is exchanged or even preventing it from reaching its destination.

In PriVeil Circle we had to consider two distinct types of communication to which the

attacker model above defined could be applied to:

� CPD: Bidirectional Player to Dealer communication.
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� CPP : Bidirectional Player to Player communication.

This distinction is necessary because the attackers involved are different for these two types

of communication. In the case of CPD, attackers of all types can target the system, since this is

a Player to Dealer communication, where both the Player and the Dealer can be impersonated,

an Eavesdropper can listen to communications between them, and a Tamperer can alter data

in-transit. However, when we consider a communication of type CPP , the Dealer is not involved

in it, and, as a result, a Dealer Impersonator is not relevant in this situation. Nevertheless, all

the remaining attackers are still viable, for the same reasons described for CPD.

3.2.3 Security Requirements

We defined two security requirements for Circle based on the two types of communications

considered and the attackers that could target them:

� SR1: An attacker with eavesdropping, tampering and Player and Dealer impersonating

capabilities is unsuccessful when targeting a communication of type CPD.

� SR2: An attacker with eavesdropping, tampering and Player impersonating capabilities

is unsuccessful when targeting a communication of type CPP .

3.3 Circle Prototype

When designing our prototype we assumed that each Player had already described a cyber

threat in a security report with the same format as the example illustrated in figure 3.2. As we

can observe, each report is divided in five primary entities: summary, additionalinformation,

metrics, description and another summary. All these, with the exception of the first summary

accept text as values. The first summary is further divided in title, severity, tlp, pap,

assignee, date, tags and closedate. Among these entities, all fields with the exception of

tags entity accept text as values. The tags entity is divided in an arbitrary number of tag

fields which accept text as their values.

Our main focus in this work was to allow Players to share the tags contained in security

reports, while guaranteeing the properties of Privacy of Inputs and Correctness of the output1.

Since the tags contain keywords which can be Indicators of Compromise, like known malware

hash signatures, malicious IP addresses, e-mail addresses, phone numbers or even Common

vulnerability and Exposures (CVE) entries, it is important to share this information in the

context of a cyber threat information sharing platform.

1These two security properties were formally defined in section 2.2
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Figure 3.2: Example of a security report describing a cyber threat.

During the development of our work we used a dataset consisting of images of real cyber

threat security reports from the monitoring systems of NAV. NAV2 is the portuguese company

which is responsible for monitoring the air traffic control in Portugal. This company provided

us the cyber threat security reports, which we first had to strip of the personal data contained in

them, since we did not want to unwillingly leak any personal information during the development

of our prototype.

3.3.1 Circle Private Set Intersection

In Circle we wanted to allow Players (which represent organizations) to share cyber threat

information contained in their security reports. However, as described in chapter 1, organizations

may not be willing to share information that may contain sensitive indicators. Furthermore,

anonymization of these indicators is not a sufficient solution, because it reduces the shared data

utility and may be susceptible to attacks. These reasons encouraged us to search for a solution

that allows a computation to be performed securely on cyber threat data, despite the fact that

it might contain sensitive information.

The solution we found to guarantee a cyber threat sharing environment between parties

who do not trust each other, yet wish to share data that might contain sensitive IoC, was

to resort to the Private Set Intersection (PSI) operation, which was described in section 2.3.

PSI allows distrusting parties to securely compute the intersection of their input sets, without

any information being revealed about the non-intersecting elements. By relying on this Secure

Multiparty Computation (SMC) operation, we decided to design PriVeil Circle to allow Players

to compute the PSI operation on the sets of tags in their security reports. In the end of

this computation, the tags which are equal in the security reports are revealed, without any

2The web page of NAV can be visited at https://www.nav.pt/en/nav-portugal-newhp_en.
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information being leaked about the ones that are different. Since the tags that are not in the

intersection are different, they are not relevant in finding similar cyber threats among parties

and, because they might contain sensitive IoC, we concluded that they needed to remain private

to their respective owners.

Our system is meant to have more than two Players in each session, so we could have relied

on a multiparty PSI solution. However, the output of this solution would be the intersection of

the sets of all parties. If, for example, nine parties had a common element in their set, but the

tenth party did not have it, the output of PSI of these sets would not contain this element. By

applying this example to the sets of tags in Players security reports, only tags which were equal

in all Players security reports would be in the intersection. This is not our objective for Circle,

considering that, as an example, two Players may contain several tags in the intersection of their

sets, which are not equal to those in the remaining Players reports. These two parties should

still be able to know that they have equal tags in their security reports and, because of that,

they might be affected by a similar cyber threat and, consequently, they would benefit from

additional cyber threat information sharing. As a result, we relied on a two-party computation

(2PC) PSI approach, which allows each Player to compute PSI with all the remaining Players

in Circle, over the course of a determined number of one-on-one PSI computations.

Besides the fact that equal tags in the security reports might already indicate the same or a

similar cyber threat, the final goal of performing the PSI operation between all Players in a Circle

session is that, once this phase is terminated, each Player can make a better informed decision

whether it wants to share more information about the cyber threat described in its security

report. For instance, if during a Circle instance, a Player found that it had an acceptable

number of tags in its security report equal to the tags in the security report of other Player,

those two reports could be describing the same or a similar cyber threat. Therefore, these

Players could, afterwards, make a more informed decision whether they wanted to share more

information about the threat.

3.3.2 Circle Operation Overview

In figure 3.3 we can observe the flowchart for a Circle session, where on the left of the dotted

line we have the functionalities executed by the Dealer and on the right the functionalities

executed by each Player. Initially, the Dealer listens for Players looking to connect to Circle,

through the connectionEstablishment function call. During a certain timeframe, Players that

were authorized by Square can join Circle by communicating with the Dealer. The end of this

timeframe is marked by the value of joincircletimeout, while the minimum number of Players
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Figure 3.3: Flowchart of a Circle session.

required for a Circle session to start is the quorum. When the joincircletimeout occurs and

less Players than the quorum have connected, the Circle session is cancelled, the Dealer informs

the Players and then terminates. Otherwise, if the quorum is achieved, the Circle session can
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start, since the minimum number of required Players to engage in this cyber threat information

sharing system was assembled.

For the next step in the session, we defined an abstract event for each Player, the Computa-

tion round, which occurs several times in the same Circle session. The number of Computation

rounds that each Player performs depends not only on the number of Players in Circle but also

on the algorithm that assigns the pairs of Players that will perform PSI in each Computation

round, and is described in subsection 3.5.3. When one of its Computation rounds starts, each

Player has the option to leave the Circle, giving them full control over what security reports

data is shared. If they choose to continue in Circle, they make a call to the psiRound function

of the Dealer and receive the identifier (id) and address of a Player, with whom they are to

perform the two-party PSI operation with, in that Computation round. Nevertheless, a Player

may not have a partner to compute PSI with in certain Computation rounds. This situation

arises if all other Players that have not yet performed the PSI operation with it have already

been assigned as PSI partners to other Players in this Computation round, or if this Player has

already executed the PSI computation with all other Players. In this case, the Dealer sends it

a message indicating that it will not have a partner for this round. Each Player repeats this

Computation round process until it decides to leave the Circle session, the Dealer cancels the

session because there are less than two remaining Players connected or Circle is concluded,

because there are no more PSI operations to be performed.

3.4 Technical Architecture

The architecture of the Circle entities, the Dealer and the Player, is represented side-by-side in

figure 3.4.

3.4.1 Platform

The development of both Circle parties was done with Java, because it is a mature programming

language, it has an extensive online documentation and it has a large collection of libraries and

modules available. In addition, we used the Maven tool to manage the program builds of both

the Dealer and the Players, as it provides an easy way to manage the dependencies of a project

and configure individual phases of the build process, by using plugins.

To describe the Circle session configuration file and the Players security reports we used

Extensible Markup Language (XML). We chose this markup language because it provides a

format that is both human-readable, to allow its easy edition by humans, and machine-readable,

to allow its easier processing by machines. Moreover, as security reports are written in text and
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Figure 3.4: Dealer and Player architectures.

XML is a text-based format, it is fairly trivial to translate security reports into XML format

and back from XML to text.

3.4.2 Remote Communication

To implement the functions connectionEstablishment and psiRound, called by the Players

when communicating with the Dealer, we relied on gRPC, a Remote Procedure Call (RPC)

framework which has support for Java, it supports synchronous and asynchronous calls and it

is open-source and free to use. Furthermore, we used protocol buffers (Protobuf), developed by

Google, as a serializing mechanism for these communications because it is the default serializing

mechanism for gRPC, it is also open-source and provides a very efficient binary encoding for-

mat. Protobuf requires defining the structure of the data to be serialized in a proto file, which

corresponds to a message definition language expressed in a text file with a .proto extension.

Protocol buffer data is structured as messages, where each one is a small logical record of in-

formation containing fields in name-value pairs. To define gRPC services in a proto file, we

specify a service in the file, with RPC method parameters and return types defined as protocol

buffer messages. The gRPC server and client interfaces, for the Dealer and Player, respectively,

were generated from the proto file by using the protocol buffer compiler, protoc. Since Maven

was used to compile and execute the Dealer and Player codes, we used a plugin to generate

these interfaces. The Circle.proto file that we used to specify the RPC services available in

Circle is represented in figure 3.5. From figure 3.5 we can observe that the two RPC func-
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Figure 3.5: Protocol buffers definition for the Dealer (proto file)

tions connectionEstablishment and psiRound, implemented by the Dealer and called by the

Players, were defined in the CircleService service. In all defined messages, ConnectRequest,

ConnectResponse, PsiRequest and PsiResponse, we have two common fields: the message and

the code. The message and code are used in all four messages and are a way for the Dealer and

the Players to decide what their next actions will be. For example, when the quorum is not

achieved and the Circle session is cancelled, the Dealer sends the ConnectResponse with this

information contained in the message and code fields, such that, when each Player receive this

ConnectResponse, it knows that the Circle was cancelled because the quorum was not achieved.

Another example is when a Player decides to leave Circle at the beginning of its Computation

round. In this case, when this Player makes a call to psiRound, it sends this information in

the message and code fields, such that, when the Dealer receives it, it removes the Player from

Circle. The address field sent by the Player to the Dealer, in ConnectRequest and PsiRequest,

contains the IP address and port it will use to compute PSI with the other Players during the

Computation rounds, whereas the address sent by the Dealer to the Players, in PsiResponse,

contains the IP address and port of their PSI partners for that Computation round, in case

there is one available. Finally, the id field in ConnectResponse, PsiRequest and PsiResponse
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messages contains the Circle identifier (id) which was assigned by the Dealer to the current

Player that is making a call to connectionEstablishment or psiRound.

3.4.3 SMC Framework

As previously explained in subsection 3.3.1, we used the 2PC PSI operation to allow the Players

to securely compute the common tags in their cyber threat security reports. However, in order to

securely implement this SMC operation, we did not possess the necessary theoretical background

to design and develop our own PSI protocol. As a result, we concluded that we would need a SMC

framework that provided a secure implementation of PSI and, thus, we extensively researched

frameworks to find those that fulfilled this requirement. The three most promising frameworks

we discovered were: ABY, Swanky and FRESCO. As described in section 2.4, all three of them

provide implementations of PSI but rely on different protocols and techniques to achieve it.

The ABY framework relies on the Sort-Compare-Shuffle circuit protocol to implement 2PC

PSI based on Garbled Circuits. However, the authors themselves state that this work is an

experimental project, that should not be used in real-world applications, and with no guarantees

that its SMC operations provide the desired properties of Privacy of inputs and Correctness of

the output.

Swanky provides implementations of two different state-of-the-art 2PC PSI protocols based

on OPRF functions, through its popsicle library. Nevertheless, the current version of this frame-

work is considered unstable by the authors and its documentation is very limited, which makes

it very hard to integrate with other applications.

At last, FRESCO is a well-known framework that has been used in real-life projects, it has

an extensive documentation and has great interoperability. FRESCO is the only one of the

above frameworks that does not use a 2PC PSI protocol to implement its PSI demo. It relies

on the TinyTable protocol, described in subsection 2.2.4, to provide to both parties, in the end

of the operation, AES-128 encryptions of both input sets. The two parties are, subsequently,

responsible for computing the intersecting elements themselves, by comparing both input sets

encryptions and finding those that are equal. This computation is still secure since the parties

cannot decrypt the AES-128 encryption of the output because they do not possess the secret

key and, as discussed in subsection 2.1.1, AES-128 has no known attacks that can break the

protocol and allow to recover the plaintext from the ciphertext without the secret key.

Due to the pros and cons we presented above for each framework, we chose FRESCO as

the framework to implement 2PC PSI in Circle. FRESCO is written in Java, which allows

an easier integration with the Players programs and, to allow communication between parties
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during computations, it uses KryoNet as its default network communication supplier. KryoNet

is a Java library that provides an API for both TCP and UDP network communication.

3.5 Dealer Implementation

In this section we describe the implementation of the Dealer of Circle. The Dealer is the

entity that organizes a Circle session and communicates with the Players, asking them for the

required information for the progression of the session. It takes as input to its program a XML

configuration file, configuration.xml, which is constructed with the results of a security reports

match that occurred in PriVeil Square. This file contains parameters like the maximum number

of Players allowed in the Circle session, the minimum number of Players required for it to start

and the timeouts to join Circle. An example of a configuration file that was used in a Circle

session is shown in figure 3.6.

Figure 3.6: Example of Dealer configuration.xml file.

In the file of figure 3.6, the quorum represents the minimum number of Players required

to start the Circle session, otherwise it will not occur. The value of this variable is always

bigger than two, since we need at least two Players in order to create a cyber threat sharing

environment. The entities joincircletimeout and psiroundtimeout are the values of the

timeouts for the Players to join a Circle session and answer to the Dealer after making the

psiRound RPC call, respectively. The maxnumberofplayers represents the maximum number

of Players allowed in the Circle session. This value is equal to the number of users whose

security reports matched in the Square and, consequently, were offered access to the Circle

session. It is important to notice that a Circle session can occur when the number of Players is

equal or greater than the quorum, although it only allows up to a number of Players equal to

maxnumberofplayers. At last, the values of the ip and port entities correspond to the IP address

and port where the Dealer will be running the remote functions connectionEstablishment and

psiRound, which will be called by the Players during the session.
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As described in section 3.4, we implemented the Dealer in Java and used gRPC to allow the

communication between the Dealer and the Players. When the server interface is generated from

the Circle.proto file by the protobuf compiler, protoc, called by the Maven tool, a base class for

CircleService is offered, the CircleServiceGrpc.CircleServiceImplBase class. This class

contains the two RPC functions defined in the CircleService service, connectionEstablishment

and psiRound. As required by gRPC, we created the class CircleServiceImpl to extend the

CircleServiceGrpc.CircleServiceImplBase class and override its two methods. The calls to

the connectionEstablishment and psiRound functions are concurrent, as different Players can

simultaneously make a call to the same function. As a result, to avoid the concurrent modifica-

tion of an object shared by different threads, we resorted to the synchronized keyword, provided

by Java, to create synchronized blocks and synchronized methods. These were mainly used

when threads were modifying the Players records and pairs of Players which are assigned to per-

form the PSI operation, during the psiRound function call. In these cases, we did not want other

threads to modify the same variables, at the same time, since race conditions would inevitably

occur. Moreover, to allow simple coordination between the threads handling the RPC calls

of each Player, we used the Java.lang.Object.wait() and Java.lang.Object.notifyAll()

methods. In the remainder of the document, we will simply refer to these two methods as wait()

and notifyAll().

In the next subsections we will provide a more detailed explanation of the important functions

performed by the Dealer. In subsection 3.5.1 we will describe the function connectionEstablishment;

in subsection 3.5.2 we will explain the execution of the psiRound function; in subsection 3.5.3

we will describe how we designed and developed the algorithm that assigned the pairs of Players

that would perform 2PC PSI in their Computation rounds; finally, in subsection 3.5.4 we detail

how we implemented the TLS protocol to secure communications between the Dealer and the

Players.

3.5.1 Connection Establishment

The connectionEstablishment method implemented by the Dealer was defined in the Cir-

cle.proto file, as represented in figure 3.5. This RPC function uses the stream keyword to enable

a server-side streaming RPC, as the client sends a request to the server, the ConnectRequest

message, and gets a stream to read a sequence of ConnectResponse messages back. In figure 3.7

we can observe the flowchart of the call of a Player to the connectionEstablishment function.

When a Player makes a call to this function, the Dealer makes a few verifications on the message

it received: whether the message and code fields have the expected values, if the timeout to join
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Figure 3.7: Flowchart of the call of a Player to connectionEstablishment.

Circle, joincircletimeout, has not occurred and if the maximum number of Players allowed

in the Circle session, maxnumberofplayers, was not already reached. These verifications act

as a basic defensive mechanism to avoid invalid messages from Players and attempts to call

this RPC function at invalid time instants. When the ConnectRequest message sent by the

Player passes all this basic checks, the Dealer sends a ConnectResponse, where the message

and code fields indicate that the Player has to wait for another notification from the Dealer

and, afterwards, the thread serving this Player blocks, with the wait() method, until the time-

out to join Circle occurs or until a thread serving other Player wakes it. The only case when

a thread wakes all other threads with notifyAll() is when the maximum number of Players

for this session is reached, because, in this situation, it is pointless to wait more time, as no

more Players are allowed to join. When the timeout occurs, either the quorum was achieved,

and we have a sufficient number of Players to proceed with the Circle session, or not enough

Players have joined, and the Dealer has to inform the Players about this situation. In the first

case, the Dealer sends a ConnectResponse message to the Players, where the message and code

fields indicate that they can now make calls to the psiRound and with the respective Circle

identifiers assigned to each one, while in the later, it sends a ConnectResponse to the Players

indicating that Circle was cancelled. In the last situation both parties, subsequently, terminate

their programs.
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3.5.2 PSI Round

As shown in figure 3.5, psiRound is a simple RPC function, where the Player sends the

PsiRequest message using the stub and waits for a single PsiResponse to come back. In

figure 3.8 we can observe the flowchart of the call of a Player to the psiRound function. Sim-

Figure 3.8: Flowchart of the call of a Player to psiRound.

ilarly to the connectionEstablishment method, the Dealer makes a few verifications on the

message sent by a Player. First of all, since psiRound is supposed to be called by the Players

only after connectionEstablishment and if the timeout to join the Circle session has occurred

and the quorum was achieved, the Dealer checks if the Player can make a call to this method

at this instant. Since the Dealer simultaneously serves these two RPC methods, it has to guar-

antee that the Players cannot make arbitrary calls to these functions, so it verifies whether the

PsiRequest received has the expected message and code field values. Furthermore, the Dealer

verifies if the IP address and port sent by the Player, in the PsiRequest message, are in the

records of Players that have joined Circle, confirming that this Player belongs to the current
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Circle session. Finally, the PsiRequest sent by the Player can also contain the information, in

the message and code fields, that it wants to leave the session. If this is the case, the Dealer

removes it from the Circle Players records and decrements the number of Players connected.

After all the above verifications, the thread serving the Player calls the function hasPsiResult3,

which is responsible for making the necessary preparations to assign the partners to do PSI in

these Players Computation rounds, before blocking, with wait(). Afterwards, two situations

can occur: either all other Players make the call to psiRound and the thread assigned to the

last Player wakes all others, with the notifyAll() method, or one or more Players have not

made the call to psiRound until the timeout, psiroundtimeout, occurs, in which case, all the

blocking threads also awake. In the last case, to make the Circle session more robust, we con-

sidered that the Players, that did not send the PsiRequest in time, did not want to continue

sharing and, as a result, are removed from the Circle session. The Dealer, subsequently, removes

these Players from the records, proceeding with the session. Moreover, when there is only one

remaining Player connected to the Circle session, Circle is cancelled by the Dealer, as there is

the need for at least two Players to allow the 2PC PSI operation to be performed.

Afterwards, the threads assigned to each of the remaining Players use the getOtherPlayerId4

method to compute the IP address, port and Circle id of the Players with whom they will per-

form PSI with in this Computation round. The values of the IP address, port and Circle identifier

of the PSI partners are sent by the threads to the respective Players, in the PsiResponse mes-

sage. Nevertheless, if a thread serving a certain Player does not find an available PSI partner for

its Computation round, it sends the PsiResponse, where the message and code fields indicate

that that Player will have no pair to do 2PC PSI with.

After Players finish their Computation rounds, whether they had a partner to perform 2PC

PSI with, or not, they make a new call to psiRound function and, consequently, all the process

described above is repeated, in order to find Players that have not yet performed two-party PSI

with each other. This successive calls to the psiRound function is repeated until, as previously

stated, all Players have performed 2PC PSI with every other Player, allowing each one to

discover others that have the same tags in their cyber threat security reports. When this

condition is verified, the Dealer terminates Circle and informs the Players that the session is

concluded.

3The functionality of this method will be discussed in the next subsection
4The procedure used in getOtherPlayerId to allow Players to determine their PSI partners will be discussed

in detail in the next subsection.
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3.5.3 Player Assignment Algorithm

Since we wanted to allow each Player of Circle to perform PSI with every other Player, we had

to create an algorithm that decided which pairs of Players were going to perform PSI in each

Computation round. To avoid the large time execution penalty a Circle session would incur

in, if only a pair of Players was computing PSI at each Computation round, we created the

algorithm described bellow to parallelize PSI operations between different pairs of Players, in

each Computation round.

When the quorum is achieved, the Circle session starts, but, before the Dealer accepts calls to

the psiRound function, three linked lists are defined: psiPlayersEdges, which initially contains

all possible combinations of pairs of Circle Players identifiers and, during the Circle session keeps

track of the pairs of Players ids that have not yet computed PSI; currentPsiPlayersEdges, that

keeps track of the pairs of Players that are performing the two-party PSI operation during their

Computation rounds; notAllowedNumbers, which keeps track of the Circle ids of Players chosen

to compute PSI. In psiPlayersEdges and currentPsiPlayersEdges, the pairs of Players are

pairs of two Integers, the respective Circle ids, with three restrictions: the two Integers in

each pair cannot be equal, since it is impossible for a Player to compute PSI with itself; each

pair of Integers has to be unique, since a pair of Players only needs to compute 2PC PSI once

during Circle; each pair of the form (i, j), where i and j are Players ids, cannot occur with its

Integers in reversed positions, (j, i), since when a pair of Players performs the PSI operation

both obtain the its result. As a consequence, for a total of n Players in a Circle session, the

initial number of pairs in psiPlayersEdges is given by equation (3.1):

#pairs = n+ (n− 1) + (n− 2) + ...+ (n− (n− 1)). (3.1)

We identified equation (3.1) as being an arithmetic series whose convergence value is repre-

sented in equation (3.2):

n−1∑
i=0

n− i =
n(n− 1)

2
. (3.2)

As a result, by applying the result of equation (3.2) to equation (3.1), we can calculate the

initial number of pairs that the psiPlayersEdges list will contain from equation (3.3):

#pairs =
n(n− 1)

2
. (3.3)

Besides the initial number of Players ids pairs that the list psiPlayersEdges contains, the
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result of equation (3.3) also corresponds to the the total number of distinct PSI operations that

will occur in a Circle session.

The assignment of a partner for a Player for the PSI operation in its Computation round is

performed in the function getOtherPlayerId, which is called by each thread serving a Player,

during the psiRound function call. This is a synchronized method because the three linked

lists described above will be modified and we have to ensure that only one thread can modify

them at a time, to avoid race conditions. A thread that calls this method, first checks if the

Player that made this psiRound call has already its id in the notAllowedNumbers list. In

affirmative case, it implies that a thread serving another Player has already removed a pair

containing the id of this Player from psiPlayersEdges and determined that this Player will

be performing PSI with it. Therefore, the thread serving this Player only finds the id of its

partner by looking in the currentPsiPlayersEdges list and exits this method. However, if

the id of this Player is not in the notAllowedNumbers list, it has not yet been assigned a

partner to perform PSI with, in this Computation round. Consequently, the thread searches

the psiPlayersEdges list for a pair that contains the id of this Player, and whose the id of

the other Player is not in notAllowedNumbers. The first pair that fulfills this requirement is

chosen and removed from psiPlayersEdges. This thread then adds both the id of the current

Player and the id of its new partner to the notAllowedNumbers list and their pair to the

currentPsiPlayersEdges. However, in some cases, a given Player may not have a partner

available to do two-party PSI with, in its Computation round. This occurs if the id of this

Player is not in the notAllowedNumbers list, nor in a pair in currentPsiPlayersEdges, and

there are no pairs in psiPlayersEdges whose one of the ids matches the id of this Player and

the other id matches the id of a Player, which was not already chosen for a PSI operation with a

different Player. In this case, the function getOtherPlayerId outputs -1 as the id of the partner

of this Player, which is an invalid id number. As a result of the the output of getOtherPlayerId

being -1, the thread serving this Player sends a PsiResponse, where the message and code fields

indicate that it will not be computing PSI in that Computation round.

When Players finish each Computation round, they begin a new one by deciding whether

to remain in Circle and, subsequently, making a new call to the psiRound function, through

a PsiRequest message. In order to update the three lists for this set of Players Computa-

tion rounds, we created the synchronized method hasPsiResult. When a thread serving the

psiRound function call of a Player reaches this method, it checks if the id of this Player is

contained in the notAllowedNumbers list, implying this Player had performed a PSI operation

in its previous Computation round. In affirmative case, it afterwards checks if there is still a pair
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with its id in the currentPsiPlayersEdges list. If this is the case, the thread serving this Player

is the first one, between the thread handling the call of this Player and the one handling the call

of its partner, to reach this function, so it removes the pair from the currentPsiPlayersEdges

list and the id of this Player from notAllowedNumbers, making it available for the Computation

round. When the thread serving the partner of this Player partner reaches the hasPsiResult

function, it confirms that its id is in notAllowedNumbers but not in currentPsiPlayersEdges.

As a result, the thread then removes its id from the notAllowedNumbers list. Furthermore,

when a thread serving a Player reaches this function and the id of the Player is not contained in

notAllowedNumbers nor there is a pair in currentPsiPlayersEdges with its id, it means this

Player did not have a PSI partner in the previous Computation round, so the thread changes nei-

ther list. After threads exit the hasPsiResult function, they continue executing the psiRound

function, as it was described in subsection 3.5.2.

The algorithm described in this subsection was created to allow a parallelization of the

two-party PSI operations performed by the Players. If we did not use it, operations involving

different pairs of Players would need to be executed sequentially, which would be very inefficient

because it would imply that, while a pair of Players was performing 2PC PSI, the remaining

Players in Circle would be idle, waiting for those two Players to finish. Therefore, by allowing

different pairs of Players to perform two-party PSI simultaneously, we greatly reduce the total

execution time of a Circle session.

3.5.4 Secure Communications

In Circle, we resorted to the TLS protocol, described in subsection 2.1.3, to secure the com-

munications between the Dealer and the Players. This protocol was easily integrated in our

application since gRPC provides native support for TLS.

When using TLS, we used a model of mutual authentication between the server, the Dealer,

and the clients, the Players. In this model, both parties need to authenticate themselves to the

other party, thus proving their identity. In the TLS handshake, the proof of identity if provided

by one party to the other in the form of a digital certificate, which contains the name of the party,

the trusted Certification Authority (CA) that vouches for the authenticity of the certificate, and

the public encryption key of the party. In our project, since it is a prototype, we created our

own CA and used it to sign the digital certificates of both the Players and the Dealer. The

PriVeil system can operate with its own CA or an external one, so, when we designed Circle

as the sequence of Square, we concluded that these certificates could have been delivered to

the Dealer and the Players by the system. Besides the authentication provided by TLS in
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this situation, the fact that its application data has a MAC appended to it also guarantees the

properties of authentication and data integrity of the messages exchanged between the Dealer

and the Players. Furthermore, when using TLS, communications are encrypted with symmetric

key encryption, providing confidentiality to communications of type CPD.

3.6 Player Implementation

In this section we describe the implementation of the clients of Circle, the Players. The Players

make calls to the RPC functions implemented by the Dealer, connectionEstablishment and

psiRound, sending it information as requested. They take as input to their programs the IP

address and port they will use to communicate with other Players during the PSI operation,

their security reports in XML format, as the example of figure 3.2, the IP address and port

of the Dealer and, finally, the AES-128 secret key they will use in the 2PC PSI computation

implemented by FRESCO. When developing our program we used images of ten security reports

from NAV for testing, as described in section 3.3.

Similarly to the Dealer, we implemented the Players programs in Java and used gRPC to

allow communications with the Dealer. When Maven uses protoc to compile the Circle.proto

file through its plugins, it generates the CircleServiceGrpc class. This class contains the stub

class, blockingStub, which we used to create stubs that allowed the communication between the

Players and the Dealer in calls to the RPC functions connectionEstablishment and psiRound.

When Players call the connectionEstablishment method to let the Dealer know they wish

to participate in the Circle session, they send a ConnectRequest request which contains a

message with a code and their IP address and port to use in the two PSI computations with the

other Players.

In the case of the psiRound function calls, the Players send a PsiRequest request with a

text message and a code, their IP address and port and the Circle id assigned to them by Dealer

during the connectionEstablishment function call.

As previously explained, we defined abstract events for the Players, the Computation rounds.

Each Player performs a series of actions in each one of its Computation rounds: it decides

whether to continue in Circle or leave, makes a call to the psiRound function served by the

Dealer, if the Player has a partner for that round, performs the PSI computation with an-

other Player. The Computation rounds of each Player continue until it leaves the Circle ses-

sion, it is removed from Circle because it did not send a PsiRequest to the Dealer until the

psiroundtimeout occurred, or Circle terminates successfully since all Players have computed

2PC PSI with every other Player.
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In the next subsection we will provide a description of an adjustment we had to make when

we integrated the 2PC PSI operation provided by FRESCO with our system.

3.6.1 Integration with FRESCO

As previously mentioned, in Circle, we delegated the PSI operation to the FRESCO frame-

work. However, two adaptations were required to integrate the implementation of the 2PC PSI

operation by FRESCO with Circle.

Since FRESCO only accepts sets of integers as the parties inputs for the intersection opera-

tion and we required to compute this operation between sets of tags, which contain text values

and hence are represented as Strings, we had to find a solution which allowed us to make a con-

version between the Java String tags to Java Integers values. To this end, we resorted to the

hash function SHA-256, which was discussed in subsection 2.1.2. After we compute SHA-256 on

the byte representation of the text value of each tag, we obtain a 32 bytes output. Afterwards,

since each Integer in Java occupies four bytes of space, we decided to truncate the SHA-256

hash value of each tag to its first four bytes and used them to construct an Integer value. From

these first four bytes we have a total of 232 Integers that can be generated, from the value of

-2 147 483 648 to 2 147 483 647. This solution allowed us to be able to compute the two-party

PSI operation between sets of text tags, while still using FRESCO.

The other restriction of the PSI operation implemented by FRESCO is that the input sets of

both parties are required to have the same size. This is a problem because cyber threat security

reports, which belong to different organizations, are very unlikely to contain the the exact same

number of tags in them. However, in the ten different cyber threat security reports from NAV

that we used when developing our platform, the number of tags was never bigger than five. As a

consequence, we considered that, for each Circle session, we would need to establish a maximum

number of tags allowed in Players security reports, which should be always equal or bigger than

ten. When performing 2PC PSI, the first solution we found to address this restriction was for

each Player to provide the actual tags contained in its security report together with empty tags,

until the maximum number of security tags allowed was reached. This solution was not ideal

since, when both parties received the output of the 2PC PSI, they would be able to identify

which was the AES-128 encryption of the empty tags and, consequently, would be able to know

what was the number of actual tags in the security report of the other Player .

A better way to address this restriction of the implementation of PSI provided by FRESCO

is for each Player to provide the actual tags contained in its security report, together with

random tags, until the maximum number of security tags allowed is reached. When Players
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receive the output of the 2PC PSI computation they are not able to distinguish the random tags

from the actual tags in the security report of the other Player. Unlike the empty tag solution,

this solution prevents each Player from knowing the actual number of tags in the report of the

other Player. In Circle, the latter solution was implemented over the previous one, although

the evaluation and results of chapter 4 were obtained for the empty tags implementation. This

change has no significant impact on the performance.

3.7 Circle Example

In this section, to conclude the chapter, we demonstrate a session of Circle with two Players.

In this situation, we assumed that the Players had the security reports of figure 3.9. Both

(a) Player 1 security report. (b) Player 2 security report.

Figure 3.9: Players security reports.

these reports are from the dataset that we obtained from NAV. As described in section 3.1,

the security reports in the NAV dataset were images so, before we could use them as input to

Players in a Circle session, we first had to convert them to XML format. The result of the

conversion of the security reports to XML is represented in figure 3.10.

(a) Player 1 security report described in XML. (b) Player 2 security report described in XML.

Figure 3.10: Players security reports described in XML.

In figure 3.11 we have the most relevant part of the output obtained for each Player, in the

end of the Circle session. We can observe that the Players take as inputs to their programs
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(a) Output of the Circle session for Player 1. (b) Output of the Circle session for Player 2.

Figure 3.11: Output of the Circle session for both Players.

the IP address and port that they want to use when computing PSI with other Players, the

XML security report file, the IP address and port of the Dealer and, finally, the AES-128 secret

key which is used in the implementation of PSI provided by FRESCO. Furthermore, we can

then see the two ConnectResponse messages received from the Dealer, after the Players call the

connectionEstablishment function. The first one is informing the Players to wait for a further

notification and the next one informing the Players that the PSI phase will start5. After these we

can see the first Computation round of the Players, where they are given the choice to continue

in Circle or leave the session. In this example, we instructed both Players to continue in Circle

so, the next message from the Dealer is the PsiResponse containing the address of the respective

Players PSI partners for that Computation round. Since we only have two participants in this

session, they will inevitably have to compute PSI with each other in this Computation round.

We can confirm that in this PsiResponse, each Player receives the IP address, port and Circle

5In this example we set quorum=2 and maxnumberofplayers=2 in the configuration.xml file of the Dealer.
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identifier of the other. The Players then compute the PSI operation implemented by FRESCO.

From comparison with figure 2.2 we can see that the inputs (option “in”) are not Integers

anymore, but rather Strings which correspond to the tags of the reports in figure 3.10. These

Strings are, afterwards converted in Integers, inside the Players program, which the FRESCO

uses in its PSI implementation, as described in subsection 3.6.1. We can also observe that the

concatenated list obtained as the output of the PSI computation contains 20 elements, despite

the first Player only containing one tag in its security report and the second only containing

three tags. This corresponds to the second situation described in section 3.6.1, where the two

parties need to have input sets of the same size so that FRESCO can compute PSI. In this

example, we fixed a maximum number of ten tags allowed in Players security reports. Since the

first half of the output list corresponds to the encryption of the input set of the first Player, the

AES-128 encryption of its three security report tags, Phishing, Phone and social-engineering,

are, respectively, 700f58d21feb31d7b271fce8f63e33f2, 37e9a7eb1a06108f7dd6dfb6379cfd4b and

3d4fe0593520479126b882849f5b31f0 (indexes 0, 1 and 2). Since the second half of the output list

corresponds to the encryption of the input set of the second Player, the AES-128 encryption of

its security report tag, Phishing, is 700f58d21feb31d7b271fce8f63e33f2 (index 0). The AES-128

encryptions at the remaining indexes correspond to the encryption of random tags. From these

results, the two Players know that they both contain the Phishing tag in their security reports,

because the values at indexes 0 and 10 are equal.

After this Computation round, the Players proceed to the next one, where they have again

to decide whether to continue in Circle. We instructed them to continue but, since they were

the only two participants of this Circle session, they receive a PsiResponse from the Dealer

indicating that the session is over. Both Players subsequently terminate their programs.

The simple example provided in this section allows to better understand how a Circle session

works and what is the information that each Player receives in the end of each PSI computation.

3.8 Summary

In this chapter, we described the solution we developed, Circle, the sequence of Square and the

second part of the PriVeil system. We wanted to enable users whose reports matched in Square

to be able to share cyber threat information in a controlled setting. In particular, the tags in the

Players cyber threat security reports can contain information like IoC, malicious IP addresses

and malware hashes. It would be useful to share this information in the context of a cyber

threat sharing platform, to allow organizations to collectively search for a solution. However,

this data also needs to be handled very carefully, since it can contain sensitive information,
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which, if disclosed, could cause enormous financial and reputational losses to its owners. As a

result, we determined that it would be useful to allow Players to compute the tags in their cyber

threat security reports which are equal to other Players security reports tags, by using a secure

computation that guarantees the properties of Privacy of Inputs and Correctness of the Output.

We relied on the two-party PSI operation to achieve this goal: two Players can compute the

tags which are equal in their security reports, without any information being disclosed about

the different ones.
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Chapter 4

Evaluation

In this chapter we present the evaluation of PriVeil Circle, the performed experiments and their

respective results.

We start this chapter by addressing whether the requirements defined for Circle were fulfilled

in section 4.1. In section 4.2 we describe how we designed the set of experiments which we used

to evaluate Circle, the testbed we used to perform the experiments and the metrics we decided

to measure in each test. Furthermore, in section 4.3 we present the results obtained for the

metrics measured during the experiments. We conclude this chapter by providing a discussion

of the experimental results of Circle and how they affect our work, in section 4.4.

4.1 Qualitative Evaluation

In this section we discuss which requirements were fulfilled for Circle, from those that were

defined in section 3.2.

4.1.1 Functional Requirements Assessment

In table 4.1, we can observe the functional requirements from section 3.2.1 that were addressed

by our Circle prototype.

Table 4.1: Assessment of the functional requirements fulfilled.

Requirement Status

FR1 Fulfilled

FR2 Fulfilled

FR3 Fulfilled

The functional requirement FR1 is fulfilled by the fact that the Players can choose whether
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to remain in Circle at the beginning of each one of their Computation rounds. Furthermore,

the Players can also leave the Circle session at any time, without having to notify the Dealer,

since this party is prepared to handle this situation and continue the session. The functional

requirement FR2 states that only parties that received a token to access Circle from the Square

component are authorized to participate in it. Due to the authentication mechanisms provided

by the Transport Layer Protocol, if the Dealer detects that the certificate or message of a Player

is not valid, the Dealer immediately aborts communication with this Player. Furthermore, if

a Player detects that the certificate or message of the Dealer is not valid, the Player also

immediately ceases communication with the Dealer. These two situations fulfill the functional

requirement FR2, because both the Dealer and the Players can detect if they are communicating

with a party which is authorized to participate in the session and, in case they are not, they can

leave the session. The functional requirement FR3 is addressed by the choice of the Private Set

Intersection (PSI) operation to allow Players to share cyber threat information. This operation

allows a privacy-preserving computation to be performed on the sets of tags in the Players

security reports. In the end, the tags which are equal in the security reports are revealed,

without any information being leaked about the ones that are different.

4.1.2 Security Requirements Assessment

In table 4.2, we can observe the security requirements from section 3.2.3 that were addressed by

our prototype.

Table 4.2: Assessment of the security requirements fulfilled.

Requirement Status

SR1 Fulfilled

SR2 Not fulfilled

To fulfill SR1, we used the TLS Protocol to prevent all attackers defined in subsection 3.2.2,

in communications of type CPD. The fact that the messages between the Dealer and Players are

encrypted with symmetric key encryption prevents an Eavesdropper, that is unable to distinguish

the data exchanged. The Player Impersonator and Dealer Impersonator are defeated by the

authentication mechanisms used in the TLS Handshake and in the TLS Records exchanged,

because the Player and the Dealer are able to understand if they are communicating with each

other. Finally, a Tamperer is prevented by the data integrity mechanisms that TLS employs, in

particular, the MAC appended to each TLS record, since both parties can tell whether data was

changed in transit. In this work, the security requirement SR2 was not addressed. FRESCO does
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not natively use TLS to secure communications in its implementation of 2PC PSI. We were also

not able to implement it although, since FRESCO uses KryoNet to create TCP sockets to allow

communications during PSI, we would probably need to resort to classes of the javax.net.ssl

Java module to be able to implement TLS on top of TCP sockets.

4.2 Experimental Design

To evaluate our system, we performed a total of nine experiments, for nine different Circle

sessions. In each session, we measured: the processing time of the most relevant functions

executed by a Player, to assure that our system provided answers in a timely way; the system

CPU and memory usage of the program of the same Player, to show that the required resources

to participate in Circle are reasonable in commodity hardware. Between distinct experiments, we

examined the impact on the aforementioned metrics of different combinations of two parameters:

the number of Players participating in the Circle session and the maximum number of tags

allowed in the Players cyber threat security reports.

4.2.1 Testbed

We used a setup consisting of two machines to conduct the experiments and measure the metrics

mentioned. Their purpose was to execute the program of the Dealer and the Players programs

during the nine Circle sessions. The software and hardware specifications of the machines used

are the following:

1. The first machine was running Ubuntu 20.04.1 LTS OS, with an Hexa Core Intel i5-8400

processor, 16 GB RAM, 1 TB Hard Disk Drive (7200 rpm), 128 GB Solid State Drive and

an internet cable connection with bandwidth of 500 Mbit/s.

2. The second machine was running Ubuntu 20.04.01 LTS OS, with an Octa Core Intel i7-

8565U, 16 GB RAM, 500 GB Hard Disk Drive (7200 rpm), 128 GB Solid State Drive and

an internet cable connection with bandwidth of 500 Mbit/s.

4.2.2 Time Measurements

The measurement of the processing time of the most relevant functions executed by a Player

was performed with the help of the Java method System.nanoTime(). This function can only

be used to measure elapsed time and, as stated in the Java documentation1, its return value

1The documentation for this method can be found at https://docs.oracle.com/javase/7/docs/api/java/

lang/System.html.
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represents the current value of the high-resolution time source of the running Java Virtual

Machine, in nanoseconds. Although it provides nanosecond precision, it does not guarantee

nanosecond resolution. The code below was used to measure how long a specific part of code

takes to execute:

long startTime = System.nanoTime();

\\ Code being evaluated

long endTime = System.nanoTime();

long executionTime = endTime-startTime;

The first time measurement checkpoint starts counting the time since the start of the pro-

gram, in the main function of the Main class, and stops counting when the program is terminated

without errors, in the main function of the Main class. This measurement corresponds to the total

execution time of the program of the Player . The second measurement corresponds to the time

that a Player takes to store information about its security report in variables to be used in the

program at a later moment. This time checkpoint is called Parse report. The third measurement

corresponds to the time measured for the call to the remote function connectionEstablishment,

from the moment the Player sends the ConnectRequest to the Dealer, until the moment the

Player receives the ConnectResponse indicating whether the Circle session will occur, from the

Dealer. This checkpoint is called Circle connection. The fourth time measurement corresponds

to the duration of a Computation round of the Player. This checkpoint measures the time since

a Player is asked whether it wants to continue in Circle, makes a call to psiRound and receives

the ConnectResponse from the Dealer, until the Player ends the PSI operation with its partner,

if there was one available. This checkpoint is called Computation round. Since this checkpoint

measures Players Computation rounds, it can occur several times in the same session. Finally,

the last execution time measurement corresponds only to the PSI operation. This execution

time is a subset of the time measured in the Computation round checkpoint, in the case there

is a PSI operation involved. This checkpoint is called PSI operation.

We applied the time measurement code above to all time checkpoints discussed. Table 4.3

provides a detailed description of all the time measurement checkpoints used to evaluate our

solution.

4.2.3 System Resources Measurements

We created the Python script setup.py to measure the system CPU and memory usage of the

program of a Player. This script can take three different commands and be executed from the

Linux command-line with the following command:
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Table 4.3: Description of time checkpoints introduced in the code of the Player.

Total measured time Time measured from the beginning of the program of the Player until its

successful termination.

Parse report Time taken for the program of the Player to parse the input security

report and store the values in variables to be used afterwards.

Circle connection Time taken for the Player to send its address to the Circle Dealer and

the response of the Dealer indicating if Circle will occur or will be

cancelled.

Computation round Time taken for the Player to decide whether to remain in Circle, send

the ConnectRequest to the Dealer, receive the ConnectResponse from the

Dealer and perform the PSI operation, in case there was a partner

available.

PSI operation Time duration of the PSI operation during the Computation round.

Other All the time that is not included in Parse report, Circle connection and

Computation round checkpoints.

./setup.py <COMMAND>

If this script is executed with the benchmark option, it will need two additional commands:

the keyword to search for a specific process and the sampling period to measure system resources

usage by that process. By using the process keyword provided, the PID of the intended process

can be obtained.

In the case of Circle, the Python script was executed with:

./setup.py benchmark Circle/client 0.5

By using this command, the first process that has “Circle/client” in its name is found and

its PID is returned, and the measurement sampling period is set to 0.5 s.

The Linux command line command top provides a real-time view of the system. It can

list processes and threads being managed by the Linux Kernel at each time instant and the

system resource usage of each process or thread running. When running the setup.py script to

benchmark a Circle session, a single measurement of the system CPU usage and system memory

usage of process with identifier PID was done by using the following command:

top -b -n 1 -p <pid> | tail -n 1 | awk {’print $9 \"\t\" $10’}

By running this command periodically, with the period specified by the user, various samples

of the resources usage of the program of the Player are obtained. Therefore, to benchmark the

whole program of the Player, the setup.py Python script was running periodically while the

process of the Player was running. When the program finished execution, the Python script
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saved all the timestamps and the system CPU and memory usage at the respective timestamp

in a text file.

4.2.4 Experiments Definition

In each one of the nine experiments conducted, we measured the processing time of the most

relevant functions and system CPU and memory usage of a single process of a Player, which

was running on the first machine of the testbed. In all of these Circle sessions we used as input

to the program of this Player the same XML report corresponding to a real-case cyber threat

security report from NAV, with 5 tags contained in it. Since in each test we also had to execute

the program of the Dealer and the remaining Players, we resorted to the second machine in the

testbed to accomplish this objective.

In the first set of three experiments, the number of Players was fixed to 2 and the maximum

number of tags was increasingly set to 10, 25 and 50, between different Circle sessions. In these

group of tests, the number of Players was equal to 2, because this corresponds to the minimum

number of Players required for a two party computation PSI operation to be performed in a

Circle session. Furthermore, this situation also corresponds to the simplest setting possible for

Circle, since a session cannot occur if the number of participants is lesser than 22. For the first

experiment we set the maximum number of tags allowed in Players security reports to 10, since

in all the ten reports we obtained from NAV, the maximum number of tags we observed on a

report was 5. Furthermore, in the work that addresses the Square component of PriVeil, it is

estimated that the security reports have on average 10 tags contained in them. As a result, the

value of 10 seemed like a reasonable value for the lower bound for the maximum number of tags

allowed in the Players reports. On the other hand, to try to include all the cases of security

reports that have a number of tags bigger than 10, we established the value of 50 tags as the

upper bound to the maximum number of tags allowed in security reports. Finally, we concluded

that only performing tests for these two values of this parameter would be insufficient, so, we

also performed experiments for the intermediate value of 25 tags.

In the next set of three experiments, the number of Players was set to 3 and the maximum

number of tags allowed in their reports was also increasingly set to 10, 25 and 50. In this

group of tests, we fixed the number of Players to 3, so that we could observe how the measured

metrics would be affected when the Circle session involved more than one 2PC PSI operation.

In particular, we know from equation (3.3) that, in this case, a total of three PSI computations

would be performed.

2As mentioned in section 3.5, we always require at least 2 Players for a Circle session to occur.
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Finally, in the last group of experiments, the number of Players was fixed to 10, while

the maximum number of tags was also increasingly set to 10, 25 and 50. In this final set of

experiments, we fixed the number of Players to 10, since this is the average number of Players

we expect to have in each Circle session, if we were to employ this project in a real-life cyber

threat information sharing scenario. Furthermore, this value seemed reasonable considering

that, in Circle, we wanted to allow threat information sharing between a more restricted group

of organizations, when compared to the type of sharing that occurs in Square.

The fact that between the three groups of experiments, we measured the mentioned metrics

for 2, 3 and 10 Players in the Circle sessions, while increasing the maximum number of tags

allowed in the reports to 10, 25 and 50 in each individual experiment of each group, allowed

us to obtain results for the processing time and CPU and memory usage of the program of the

Player as a function of the number of tags, for a fixed number of Players, as well as a function

of the number of Players, for a fixed number of tags.

4.3 Experimental Results

In this section we present the results obtained for the experiments defined in the previous sec-

tion. In subsection 4.3.1 we describe the results obtained for the set of experiments performed

in the 2 Players setting. In subsection 4.3.2 we present the results obtained in the 3 Play-

ers setting experiments. In subsection 4.3.3 we discuss the results obtained in the 10 Players

setting. Finally, in subsections 4.3.5 and 4.3.4 we present the average system resources usage

measurements and total execution time measurements as a function of the number Players in

the Circle session.

4.3.1 2 Players Experiments

In the 2 Players setting, one Player was running on the first machine in the testbed, where

the performance metrics were measured, and the Dealer and the other Player were running on

the second machine. With the number of Players fixed to 2, we increasingly set the maximum

number of allowed tags in Players security reports to 10, 25 and 50. For each of these three ex-

periments, we obtained measurements for all the time checkpoints described in subsection 4.2.2.

The results are presented in figure 4.1.

For the 2 Players setting, the total execution time measured for the program of the Player,

for a maximum of 10, 25 and 50 tags allowed in the security reports was 51,195 s, 96,605 s and

179,07 s, respectively. From these results we can conclude that an increase in the number of tags

leads to an increase in the duration of a Circle session. In table 4.4 we present the execution
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Figure 4.1: Time breakdown as a function of the maximum number of tags allowed in the
security reports for 2 Players.

times measured in each checkpoint.

Table 4.4: Time breakdown for 10, 25 and 50 maximum tags allowed in Players security reports
for 2 Players (seconds).

Tags Parse report Circle connection Computation round Computation round Other

10 0,039889 0,23237 43,889 3,0548 3,9789

25 0,040341 0,23457 88,616 3,4184 4,2958

50 0,039889 0,28408 167,42 7,4269 3,8909

From the observation of table 4.4 we can conclude that the time measured on checkpoints

Circle connection and Other does not depend on the maximum number of tags allowed in Players

security reports. This is expectable since the functions measured by these checkpoints include

communications with the Dealer, interacting with local files and local processing. These are not

dependent on the number of tags allowed in the security report of the Player. Although the

time measured in the Parse report checkpoint is dependent on the number of tags in the security

report of the Player, it does not depend on the maximum number of tags allowed. Therefore,

the duration of the Parse report is similar in all experiments. The second Computation round

also has similar durations as the number of tags increases. This is explained by the fact that

in the second Computation round there are no Private Set Intersections operations left to be

computed, as the only PSI operation involved in this Circle session was already performed in

the first Computation round. As a result, in the second Computation round, the Dealer only

informs the Players that there are no more computations left and, consequently, the session will

be terminated. The first Computation round is the checkpoint for which the measured execution
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time significantly depends on the maximum number of tags allowed in Players security reports.

In table 4.2 we can see the time breakdown of the first Computation round, separated in the

time measured in the PSI operation checkpoint and other tasks, which include communication

with the Dealer and local processing.

Computation round

Tags PSI operation Other

10 41,151 2,7386

25 86,405 2,2106

50 165,15 2,2740

Figure 4.2: PSI operation time plot and time breakdown of the first Computation round for 10,
25 and 50 maximum tags allowed in Players security reports for 2 Players (seconds).

From table 4.2 we can observe that, in all three experiments, the part of the Computation

round that refers to communications and local processing does not vary significantly. However,

the PSI operation duration increases significantly. This indicates that the increase in the maxi-

mum number of tags allowed in Players security reports only directly affects the PSI operation.

This is in fact true, because in the context of PSI, the more items in the sets of the parties, the

more time it takes to compute this operation between those sets. Furthermore, from the obser-

vation of figure 4.2 we can conclude that the duration of the PSI operation increases linearly

with an increase in the maximum number of tags allowed in Players security reports.

For the 2 Players setting, the average CPU and memory usage as a function of the number

of tags is represented in figure 4.3.

The results in figure 4.3 concerning the system average CPU usage show an increase of

14,756 % in the average CPU usage when the maximum number of allowed tags in Players

security reports increases from 10 to 25. However, when the number of tags increases from 25

and 50 there is a 3,805 % decrease in the average system CPU usage of the program of the

Player . As observed in figure 4.3, the average system memory usage increases linearly with an

increase in the maximum number of tags allowed in Players security reports.
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(a) Average CPU usage. (b) Average Memory usage.

Figure 4.3: System average CPU and memory usage as a function of the maximum number of
tags allowed in the security reports for 2 Players.

4.3.2 3 Players Experiments

In the 3 Players experiments, 1 Player was running on the first machine of the testbed, while

the remaining 2 Players and the Dealer were running on the second machine of the testbed.

With this configuration, the process of the Player running on the first machine was evaluated,

with concern to the time metrics described in subsection 4.2.2 and the system resource metrics

described in subsection 4.2.3. We performed these evaluations for 10, 25 and 50 maximum

tags allowed in Players security reports. The time breakdown for these three experiments

is represented in figure 4.4. From the results of figure 4.4 we can see that there are four

Figure 4.4: Time breakdown as a function of the maximum number of tags allowed in the
security reports for 3 Players.

Computation rounds involved in this Circle session. The first and last Computation rounds,

the Parse report, Circle connection and Other checkpoints measurements do not depend on the

maximum number of tags allowed in Players security reports because their values are similar

in all these three experiments. In table 4.5 we represented the time spent in each Computation
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round, for the 10, 25 and 50 maximum tags allowed in Players security reports. From the

Table 4.5: Computation rounds duration for 10, 25 and 50 maximum tags allowed in Players
security reports for 3 Players (seconds).

Tags Computation round Computation round Computation round Computation round

10 3,8536 65,356 44,849 4,1041

25 3,6666 131,14 88,190 4,8115

50 3,4605 256,58 162,61 4,5420

observation of the results in table 4.5 we can see that the duration of the first Computation

round is very short when compared to the following two Computation rounds, for all values of

the tags. This is justified by the fact that in the first Computation round, the Player where

the measurements were being made did not have a partner to perform the PSI operation with.

In this first Computation round, the 2 Players running on the second machine of the testbed

were performing the PSI operation among them. Therefore, the time accounted by the first

Computation round in table 4.5 is just the time it takes for Player to decide to remain in

Circle, call the psiRound function and receive a psiResponse indicating that it does not have

a partner for that round. In the last Computation round, all the Players in the Circle session

had already performed PSI with every other Player, so there were no more operations to be

performed. Consequently, in this last Computation round, the Dealer simply informed all the

Players that the Circle session was concluded. Finally, in the second and third Computation

rounds, the Player where the measurements were made was doing PSI with the other 2 Players

in the session, which justifies the much higher durations of these rounds when compared to the

first and last Computation rounds.

To provide a more detailed insight on the PSI operation, in figure 4.5 we can see the duration

of the two PSI computations for a varying maximum number of tags allowed in the Players

reports. From the observation of figure 4.5 we can conclude that the PSI operation duration

increases linearly with an increase in the maximum number of tags allowed in Players security

reports. From the comparison of table 4.5 and figure 4.5 we can determine that the first PSI

operation only occupies 60,019 % of the correspondent Computation round, while the second

PSI operation occupies 87,712 % of the respective round. This difference can be justified by the

fact that the other 2 Players were performing the PSI operation. While the other Players were

computing PSI, the Player where the measurements were made was idle, waiting for the other

2 Players to finish. This waiting time is included in the second Computation round checkpoint.

The system resource metrics measured during the execution of the program of the Player
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Figure 4.5: PSI operation as a function of the maximum number of tags allowed in the security
reports for 3 Players.

, system average CPU usage and memory usage, obtained for the 3 Players experiments are

represented in figure 4.6.

(a) Average CPU usage. (b) Average Memory usage.

Figure 4.6: System average CPU and memory usage as a function of the maximum number of
tags allowed in the security reports for 3 Players.

From the results of figure 4.6 we can observe that there is a 3,9470 % increase in average

system CPU usage from 10 to 25 maximum tags allowed in Players security reports and a

2,2330 % increase from 25 to 50 tags. Similarly to the 2 Players experiments, in this group

of experiments the average system memory usage also increases as a function of the maximum

number of tags allowed in Players reports. We verify that there is an increase of 2,5283 % from

10 to 25 tags and an increase of 1,6671 % from 25 to 50 tags.

4.3.3 10 Players Experiments

In the 10 Players experiments, 5 Players were being executed on the first machine in the

testbed while the remaining 5 Players and the Dealer were running on the second machine
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in the testbed. This distribution of Players was performed to split the load among the two

machines in the testbed, as a Circle session can consume a lot of system resources. With this

setting, we increasingly set the maximum number of tags allowed in Players security reports to

10, 25 and 50. The time breakdown for the 10 Players experiments is represented in figure 4.7.

(a) Time breakdown in seconds. (b) Time breakdown in percentage.

Figure 4.7: Time breakdown as a function of the maximum number of tags allowed in the
security reports for 10 Players.

From the results of figure 4.7 we can notice some differences on the time breakdowns for

each value of the maximum number of tags allowed in Players security reports. The same

Computation round can have very different durations for different number of tags. As described

in subsection 3.5.3, we created an algorithm that searches for pairs of Players that are available

to perform the PSI operation in each round. The order on which the pairs are chosen can change

in each Circle session, leading to a different order in which the PSI operations between Players

are performed. This is confirmed by figure 4.7 where almost all Computation rounds occupy

a very different percentage of the total time for a different number tags. This means that the

PSI operation can be executed in different Computation rounds for different numbers of tags.

However, despite the changing order in which the PSI operations are performed, each Player

still has to do the same number of PSI computations. In fact, for the 10 Players setting there

are nine PSI operations to be performed by each Player during the Circle session.

In table 4.6 we detail the time spent on each PSI operation for 10, 25 and 50 maximum tags

allowed in Players security reports.

From the results of table 4.6 we can observe that for all three values of the maximum number

of tags allowed in Players security reports there are four PSI operations whose times are closer

to each other and another five PSI operations whose times are closer to each other. For example,

in the 10 tags case, the 2nd, 5th, 8th and 9th PSI operations have durations between 22 and 28 s

while the remaining five PSI operations have durations between 38 and 47 s. This discrepancy in
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Table 4.6: Time spent on the PSI operation for 10, 25 and 50 tags for 10 Players (seconds).

Tags 1st PSI 2nd PSI 3rd PSI 4th PSI 5th PSI 6th PSI 7th PSI 8th PSI 9th PSI Mean± σ

10 47,38 26,52 41,43 40,10 25,94 38,99 44,43 22,15 27,34 34,92±8,840

25 59,57 86,72 88,49 46,39 90,69 86,26 51,38 92,77 45,35 71,96±19,49

50 199,2 176,3 172,9 104,6 106,2 102,7 109,8 166,3 190,9 147,7±38,52

the durations of the PSI operations is related to which Players are performing the PSI operation.

During all tests we noticed that Players performing PSI in the same machine, like in the case of

the 2nd, 5th, 8th and 9th PSI operations, took lesser time than when Players performing PSI

were in different machines. This is due to the fact that when performing PSI between different

machines there are network delays that slow the computation, as in the case of the 1st, 3rd, 4th,

6th and 7th PSI operations. We can verify in table 4.6 that this also happens for the 25 and 50

tags cases.

As described in subsection 4.2.3 we measured the system CPU and memory usage for the

10, 25 and 50 maximum number of tags allowed in Players security reports for the 10 Players

setting. The average system CPU and memory usage for these number of tags is represented in

figure 4.8. From the results of figure 4.8 we observe an increase of 1,3800 % in the average CPU

(a) Average CPU usage. (b) Average Memory usage.

Figure 4.8: System average CPU and memory usage as a function of the maximum number of
tags allowed in the security reports for 10 Players.

usage from 10 to 25 maximum tags allowed in Players security reports. There is an increase of

7,1210 % in average system CPU usage from 25 to 50 tags. With respect to the average system

memory usage, we also verify an increase in this system resource metric with the increase of the

maximum number of tags allowed in Players security reports. There is an increase of 5,1567 %

from 10 to 25 tags and an increase of 1,7708 % from 25 to 50 tags. To give an insight on the

system CPU and memory usage during the execution of the program of the Player, for a fixed

number of tags, we present in figure 4.9, the system CPU and memory usage for the 10 Players
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and 10 tags setting.

(a) CPU usage. (b) Memory usage.

Figure 4.9: System CPU and memory usage for 10 tags and 10 Players.

By observing the CPU usage plot in figure 4.9 we can clearly distinguish the periods when

the PSI operation is being performed by the Player where the measurements were made. In

these time intervals there is an increase from near null CPU usage to above 40 %, with several

spikes. These nine time intervals, which correspond to the nine PSI operations this Player

performed, show that PSI is in fact a resource-consuming intensive task, where the CPU usage

greatly increases. Concerning the memory usage in this experiment, it increases until 4,3 %,

approximately in the 75 s mark, and then it remains constant until the 350 s mark, where it

increases to 4,5 %, remaining constant until the end of the end of the program.

4.3.4 Total Measured Time for a Varying Number of Players

In figure 4.10 we represent the total execution time of the program of the Player, for a varying

number of Players, for 10, 25 and 50 maximum tags allowed in Players security reports. From

Figure 4.10: Total time execution as a function of the number of Players.
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the results of figure 4.10 we can conclude that for a fixed number of tags, the total execution

time of the program of a Player scales linearly with the number of Players in the Circle session.

The shortest duration of a Circle session was of 51,195 s, obtained for the experiment with 2

Players and a maximum of 10 tags allowed in Players reports. For the experiment with 10

Players and a maximum of 50 tags allowed in the security reports, the total execution time of

the program of the Player was of 1922,9 s.

4.3.5 System Resources Metrics for a Varying Number of Players

In figure 4.11 we represent the average system CPU and memory usage as a function of the

number of Players for 10, 25 and 50 maximum tags allowed in Players security reports. From

(a) Average CPU usage. (b) Average Memory usage.

Figure 4.11: System average CPU and memory usage as a function of the number of Players.

the results of figure 4.11 we can draw several conclusions: in general, the average CPU usage

decreases as a function of the number of the Players in the Circle session. For all three values

of the maximum number of tags allowed in Players security reports, there is a linear decrease

from 2 to 3 Players and then a softer, but also linear decrease from 3 to 10 Players. This can

be explained by the fact that although the number of PSI operations increases with the increase

in the number of Players, there is more idle time, when the Player is not computing the PSI

operation with any other Player, which significantly lowers the CPU usage during those periods

of time and, consequently, the average CPU usage of the program. In the 2 Players setting

there is almost no idle time, as the Player immediately computes the PSI operation with the

other Player. As the number of Players increases so does the time that the Player has to wait

for other Players to finish their respective Computation rounds. With respect to the average

memory usage, we have seen in subsections 4.3.1, 4.3.2 and 4.3.3 that the memory increases

as the maximum number of tags allowed in Players security reports increase. Furthermore it

also increases as a function of the number of Players in the Circle session, being the highest

average memory usage for the 10 Players with 50 maximum tags allowed in Players security
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reports experiment, with 10,904 % and the lowest for the 2 Players with 10 tags experiment,

with 1,8487 %.

4.4 Discussion

As we have explained in subsection 4.2.4, our experiments were elaborated to address a possible

application of the Circle component of PriVeil in a real-case scenario. Since in the work con-

cerning the Square component the expected number of tags per report is approximately 10, we

considered that this value would be reasonable for the lower-bound of the maximum number of

tags allowed in the Players security reports. The upper-bound of 50 tags was defined to try to

include all the cases where the number of tags in the reports is bigger than the average. In our

experiments, the maximum number of Players we considered for a possible Circle session was

10. This value seemed reasonable to allow cyber threat information sharing between a restricted

group of organizations.

The results obtained for the experiments performed allow us to draw several conclusions.

First of all, we verified that in both the 2 and 3 Players experiments, the time spent on the

PSI operation increases linearly with the maximum number of tags allowed in Players security

reports. Although the plot for the 10 Players case is not presented, table 4.6 shows durations

for the PSI operation very similar to those obtained for the 2 and 3 Players experiments, shown

in figures 4.2 and 4.5. Furthermore, in all experiments we verified that the most intensive task,

both in terms of time consumption and system resources usage is the Computation round which

can include PSI operations, as verified by figures 4.1, 4.4 and 4.7. Secondly, the total time spent

on the program of a Player increases linearly with the number of Players in the Circle session,

for a fixed maximum number of tags allowed in Players security reports. These results allow to

estimate how an increasing number of tags and Players will affect a session duration in future

work.

With regard to the CPU usage, the average system CPU usage, for the 3 and 10 Players

setting increases linearly with the number of tags. However, for the 2 Players setting this is not

verified. The average system CPU usage does not represent the CPU usage over time, as the

standard deviations are rather high, meaning that during time, the CPU usage greatly deviates

from the average value. The result of figure 4.9 confirms this. The results of figure 4.11 show

that the average system CPU usage decreases linearly as a function of the number of Players.

This is justified by the fact that there is more idle time for each individual Player, as the number

of Players increases. This idle time is due to the fact that when the Player in question is not

performing PSI, it is waiting for the other Players to finish, remaining idle.
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Finally, as verified by figures 4.3, 4.6 and 4.8, for all experiments, the average system memory

usage increases with the increase in the maximum number of tags allowed in Players security

reports. This is to be expected, since, as shown in figure 4.9, the memory usage of the process

of a Player generally increases during its duration, remaining constant during periods of time.

Furthermore, in figure 4.11 we verified that the average system memory usage increases with

the number of Circle Players, for a fixed number of tags.

The experiments performed and respective results show that Circle is applicable in a real-case

scenario. The results of these experiments showed a total execution time of 32,05 minutes for

the most intensive experiment with 10 Players and a maximum of 50 tags allowed in the security

reports. Despite this result being high for a cyber threat information sharing system, we conclude

that the results are still acceptable, since we perform a secure computation that preserves the

Privacy of the parties inputs. Regarding the CPU usage of the program of a Player, the results

obtained show that, although the CPU usage heavily increases during the computation of PSI, it

is almost null in the remaining tasks, which allows the program of a Player to be easily executed

in commodity hardware. Finally, we have observed that the average memory usage increases as

a function of both the maximum number of tags allowed in Players reports and the number of

Players in the session. Nevertheless, in all experiments, these results did not have a noticeable

impact on the system of the Player.

4.5 Summary

In this chapter we analyzed the Circle session from the point of view of a Player. A Player

represents a possible organization wanting to share cyber threat information contained in the

security report. The experiments and results obtained are important to assess how the PriVeil

Circle session affects the machine of a Player, both from the point of view of system resources

consumed and time spent on a Circle session.
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Chapter 5

Conclusion

In this work, we designed and implemented a prototype of Circle, the second component of the

cyber threat information sharing system PriVeil. By using cryptographic techniques like Secure

Multiparty Computation (SMC) and Homomorphic Encryption, PriVeil allows participating

organizations to completely control how their information is shared and disclosed to other par-

ticipants. More concretely, in Circle, users whose security reports matched in Square can share

cyber threat information in detail. In order to develop Circle we relied on the SMC operation

of Private Set Intersection (PSI). In PSI, two or more parties want to compute the intersection

of their input sets while guaranteeing the properties of Privacy of inputs and Correctness of

the output. In Circle, each Player progressively computes the PSI operation on the tags on its

security report with the tags in the security reports of every other Player. By the end of this

round all users know the tags in their security reports which are common to other users security

reports, without any information being revealed about the different tags. This information is

useful in the context of a cyber threat sharing platform because each Player will know the Play-

ers whose security reports tags had more matches with its own, as well as what the matched

tags are, and thus those Players might contain the same or a similar cyber threat described in

the security report. Despite not implemented, if they wish to, these parties could afterwards

engage in another sharing stage, where they disclose the remaining fields in the security report

to each other, to facilitate cooperation and find a solution for the described cyber threat(s).

We evaluated Circle by performing nine different experiments with a varying number of

Players and maximum number of tags allowed in the security reports, in which the processing

time, CPU and memory usage of a Player program were measured during a Circle session. The

results show that this prototype can be used in real-life scenarios, since it creates an environment

where participants can securely share the cyber threat information contained in their security

reports.
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5.1 Achievements

In this work, the following contributions were achieved:

� Design and implementation of Circle, the second part of the threat information sharing

platform PriVeil and where users can share cyber threat data in detail, while retaining

full control over their data, only sharing what they are willing to.

� Evaluation of Circle according to possible real use case scenarios, which were based on the

results obtained for the Square component of PriVeil.

5.2 Future Work

The current Circle prototype can be improved in several aspects to increase both its functionality

and performance:

� Improve the Player assignment algorithm (described in subsection 3.5.3). Although this

algorithm is an effective solution to parallelize PSI operations between different pairs of

Players instead of having to do PSI one pair at a time, an heuristic approach could be

used to select the pairs of Players that will compute PSI simultaneously.

� Implement TLS on top of the TCP communications used by FRESCO during the compu-

tation of PSI. This would allow the fulfillment of the security requirement SR2.

� Deploy and test in a real-case scenario with organizations who are willing to participate

in a cyber threat information sharing environment. This feedback is essential to improve

Circle and PriVeil since our project is meant to be used by real organizations who want

to share cyber threat information on their actual security reports.

� Implement additional steps of cyber threat information sharing. After the PSI stage is

terminated, the remaining Players in Circle can jointly perform a progressive disclosure

of the remaining fields in the security reports. This could be achieved by a Layered

Encryption scheme, allowing all Players to concurrently reveal the same field in the security

reports, one by one.

� Integrate the Square and Circle components of PriVeil. Since this work and the work

in which Square was developed were done separately, we have yet to integrate these two

prototypes, in order to conclude the cyber threat information sharing platform PriVeil.
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