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Abstract—Nowadays, data breaches occur frequently in or-
ganizations, causing them economical and reputational losses.
To prevent them more effectively, organizations need to gather
cyber threat information internally and externally from sharing
communities. However, organizations are still reluctant to share
their own cyber threat data, since they are afraid to disclose
sensitive information about their infrastructure. Anonymization
of indicators is a commonly used solution when handling sensitive
information, but it reduces the data utility and can be vulnerable
to re-identification of the anonymized parameters.

In this work we present Circle, the second component of the
PriVeil cyber threat sharing platform. In a first phase, users
submit their encrypted security reports to the Square component
of the platform, which matches them. Users whose reports
matched are forwarded to a Circle instance, where the Secure
Multiparty Computation operation of Private Set Intersection
allows the participants to find the common tags contained in their
reports through a privacy-preserving computation. This allows
users to confirm that other users may be subject to a similar
cyber threat described in their reports.

We implemented and evaluated Circle with nine experiments,
in which we measured the duration, CPU and memory usage of
a participant program during a session. The results showed that
the performance of our prototype makes it applicable to real-
case scenarios, providing an environment where users can share
information about cyber threats.

Keywords - Cyber Threat Sharing, Security Reports, Privacy,
Secure Multiparty Computation, Private Set Intersection

I. INTRODUCTION

In the Information Age, data is a major asset of every orga-
nization. A part of this data is confidential and, consequently,
meant to remain private. According to [1], a data breach occurs
when confidential information from the victim is disclosed
to unauthorized parties. When this occurs, the organization
suffers financial and reputational losses.

Hackers are becoming craftier, finding new new vulnera-
bilities and creating complex and destructive exploits. Fur-
thermore, hacking is made easier by exploits and malware
that can be purchased at online anonymous markets. This
commoditization is lowering the capabilities needed to engage
in cybercrime activities [2]

As cooperation increases amongst criminals to discover new
exploits, it is almost impossible for a single organization to
handle cyber threats. To counter the ever-evolving cybercrime,
organizations need to adopt new defensive tactics that also in-
crease their cooperation. In particular, sharing cyber threat data
externally is a crucial way to find new vulnerabilities being
exploited by attackers, new threats that affect organizations
and even Indicators of Compromise (IoC).

Despite the importance of cyber threat information sharing
platforms, there are still obstacles to be addressed. In [3] the
authors highlight the safeguarding of sensitive information
as one of the major challenges to cyber threat informa-
tion sharing. In fact, directly sharing sensitive security logs,
network information, malware samples and packet captures
could expose the infrastructure of an organization and its
defensive capabilities, leading to the emergence of new cyber
threats. As a result, the authors suggest the anonymization and
sanitization of parameters when handling and sharing sensitive
information. However, as stated by Fisk et al. [4], the process
of anonymization of data in a cyber threat information sharing
system often reduces its utility. Furthermore, anonymization
techniques can be vulnerable to attacks.

The main goal of this work was to develop Circle, the
second component of the PriVeil [5] cyber threat information
sharing system. PriVeil was designed to be a platform that
allows the participants to share threat information they possess
with each other, to create a cooperation environment which
allows them to better deal with cyber threats. PriVeil relies
on Homomorphic Encryption (HE) and Secure Multiparty
Computation (SMC) to create a system where users can share
information which can contain sensitive indicators, without
having to anonymize them. The Circle component allows the
participants whose cyber threat security reports matched in
the fist component, Square, to share cyber threat information
contained in their reports, by relying on the SMC operation
of Private Set Intersection (PSI). However, at any point during
Circle, the participants can leave the system without any
penalty, which ensures that the organizations retain control
over their data, only sharing the information they are willing
to.

II. BACKGROUND & RELATED WORK

Cryptographic protocols are used to ensure four security
goals: confidentiality, data integrity, authentication and non-
repudiation. Three distinct cryptographic primitives can be
used to achieve these objectives: symmetric key cryptography,
which is employed in the AES algorithm [6], public key
cryptography, which is used in the RSA algorithm [7] and
cryptographic hash functions, which are used in the SHA-2
[8].

The Transport Layer Security Protocol (TLS) is a protocol
that relies on different cipher primitives to provide a secure
channel, with the properties of authentication, confidentiality
and data integrity. Despite the different versions of TLS,
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there are two sub-protocols which are common to all: the
Handshake protocol, where the server and the client agree
on the support ciphers, authenticate themselves through the
exchange of digital certificates and compute the symmetric
session keys used to encrypt communications; the Record
protocol, which is responsible for securing TLS application
data.

A. Secure Multiparty Computation

SMC is a cryptographic primitive whose goal is to allow a
group of distrusting parties to collectively compute a function,
without revealing their inputs to each other. In the end of the
computation either all parties receive the output or each party
receives a subset of the it. When performing this computation,
we want to guarantee two conditions:

1) Privacy of inputs: In the end of a SMC operation, each
party should not be able to learn the other parties inputs
nor any intermediate calculations that can lead to the
discovery of other parties inputs.

2) Correctness of the output: In the end of a SMC
operation, the output that each of the parties receives
is correct.

Performing a computation f such that the above properties
are guaranteed can be defined as computing f securely.

When creating a SMC protocol, one has to differentiate
between the two-party computation (2PC) case, where the
number of parties is exactly two, and the multiparty case,
where the number of parties can be equal or greater than
two [9]. The implementation of a specific SMC protocol
usually relies on either one of these two primitives: Garbled
Circuits (GC), which is used to evaluate boolean circuits in the
2PC setting or Secret Sharing, which is generally used when
computing SMC functions as arithmetic circuits.

When creating a SMC protocol we have to consider to
type of adversaries that may target it. In [10], three main
distinctions are made when considering the adversary model
of a SMC protocol. The first aspect to consider is the ability
of the adversary to deviate from the protocol. We consider two
types of adversaries:

1) Semi-honest: Only gathers whatever information it can
from the corrupted parties. The corrupted parties still
follow the intended protocol.

2) Malicious: The corrupted parties can deviate from the
protocol.

The second aspect to consider is the ability of the adversary
to corrupt parties when the protocol is already being executed.
We can distinguish two types of adversaries:

1) Static: Can arbitrarily choose which parties to control
before the execution of the protocol. Throughout the
protocol, the number of corrupted parties remains fixed.

2) Adaptive: Can choose the parties to corrupt while the
protocol is being executed.

Finally, we can have two different of settings in which
information is exchanged:

1) Secure channel setting: Despite an adversary having
unlimited computing power, the point-to-point commu-
nication channels are perfectly secure, making it impos-
sible for an adversary to obtain the parties secret inputs.

2) Computational setting: An adversary can capture all
communications between the parties, although it cannot
obtain the parties secret inputs in a feasible amount of
time.

GC are a solution proposed by Yao [11] [12] to approach
2PC problems in the semi-honest adversary setting. In GC,
two parties, the Garbler, Alice, and the Evaluator, Bob, want
to compute the output of a function which is defined as a
boolean circuit. Alice garbles (obfuscates) the entire circuit
and sends it to Bob together with with her encrypted input.
She also sends to Bob his encrypted input, by using 1-out-of-2
oblivious transfer [13]. Bob, now with both encrypted inputs
and the garbled circuit, is able to consecutively compute the
encrypted outputs, for each gate, until the end of the circuit,
where he is able to obtain the unencrypted output. Afterwards,
he communicates the output to Alice.

Secret sharing is a technique through which a secret is split
into pieces which are distributed to several parties and, when
combined allow the reconstruction of the secret.

Shamir’s Secret Sharing (SSS) [14] is an example of a secret
sharing scheme which can be applied to SMC problems due to
its homomorphic property [15]: operations, like addition and
multiplication, that were to be performed on the secret inputs,
can instead be performed on the secrets shares, yielding the
same output as if they were performed on the secret itself.

In [16], Damgård et al. propose TinyTable, a secure 2PC
protocol where the SMC function is specified as a boolean
circuit. This protocol consists of two phases: a preprocessing
phase and an online phase.

In the preprocessing phase, the two parties, A and B,
respectively get a hold of scrambled versions of truth-tables,
Ai and Bi, for each gate Gi and uniform random mask bits ro,
for each output wire wo. The uniform random mask bits, rj ,
corresponding to each input wire, wj , are given to the party
who owns wj .

In the online phase, the parties perform look-ups on the
scrambled tables Ai and Bi, for each gate Gi, by using the
bits masked by the previously chosen uniformly random bits.
For each input wire, wj , the party who owns this wire, sends
ej = rj ⊕ bj to the other party, where bj corresponds to the
actual input bit at wire wj . For each gate Gi with input wires
wu and wv and output wire wo, A sends Ai[eu, ev] to B and B
sends Bi[eu, ev] to A. Both parties can, subsequently, compute
eo = Ai[eu, ev] ⊕ Bi[eu, ev], for each output wire and, from
this, bo = eo ⊕ ro = Gi[bu, bv], where bo corresponds to the
actual bit at output wire wo.

The final result holds because the scrambled tables Ai

and Bi are set up such that Ai[eu, ev] and Bi[eu, ev] are an
additive secret sharing of e0. The algorithm described allows
the computation of the circuit C securely assuming a semi-
honest adversary.
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B. Private Set Intersection

In the context of SMC, PSI is a widely researched operation.
In this operation, two or more parties, P1, ..., Pn|n ≥ 2, with
the respective private sets, S1, ..., Sn wish to compute the
intersection of those same sets, as represented in equation (1):

f(S1, ..., Sn) = S1 ∩ ... ∩ Sn. (1)

In the end of this computation, either all parties or a subset
of them learn the elements which are common to all sets,
without anything being disclosed about the different ones.
According to [17], implementations of PSI can be divided into
two classes: generic protocols, which specify this operation as
a circuit and rely on a general SMC techniques to solve it, and
custom protocols, which are created for the specific structure
of the PSI operation.

C. SMC Frameworks

We analyzed three promising SMC frameworks that imple-
ment PSI: FRESCO, ABY and Swanky.

FRESCO provides a PSI demonstration (demo) based on the
TinyTable protocol. In this demo, the parties use the TinyTable
protocol to perform the XOR of their input secret AES-128
keys and afterwards use it to compute the AES-128 encryption
of their inputs. In the end of the computation, both parties
obtain the AES-128 encryptions of a concatenated list of their
inputs. In this list, the first half of the elements corresponds to
the encryption of the input set of the first party and the second
half corresponds to the encryption of the set of the second
party. The parties are, subsequently, responsible for identifying
the intersecting elements, by looking which encryption of
elements in the first half of the concatenated list match the
encryption of elements in the second half. Despite this demo
being called PSI, it does not correspond to the definition of the
PSI operation provided in section II-B, since the elements in
the intersection are not a direct output of the 2PC computation.

The ABY framework relies on the Sort-Compare-Shuffle
circuit [18], a generic protocol based on GC, to provide an
implementation of PSI.

Swanky is an open-source suite of libraries for SMC op-
erations. The popsicle library provides implementations of
three different custom PSI protocols: the 2PC protocol based
on OPRF [19] described in [20], the 2PC protocol based on
OPPRF presented in [17] and the multiparty protocol described
in [21].

III. PriVeil Circle

In PriVeil, the information which is shared to allow cooper-
ation when dealing with cyber threats is contained in security
reports. The security reports are generated by organizations
when they identify a cyber threat and contain information
about the threat: a small description of it, its severity, the
data when it was detected and tags which contain keywords
associated with the threat.

PriVeil is structured in two phases, supported by two compo-
nents: Square and Circle. Figure 1 represents the architecture
of PriVeil.

Circle

PriVeil

HUB

Matcher

Notifier

Square

...

1

1 1

1

23

3
4 4

Client 1 Client 2 Client 3 Client n

Fig. 1: PriVeil Architecture, adapted from Gonçalves [5].

Users start by submitting their encrypted security reports
describing a cyber threat to the Square component (step 1 in
figure 1). The system, subsequently, matches the encrypted
security reports that describe similar cyber threats (2) and
notifies the users whose reports matched (3). Afterwards, these
participants receive a token which authorizes them to engage
in a Circle session and are redirected to it (4).

A. Requirements

In order to develop Circle, we determined that we required
two types of parties: the Dealer and the Players. The Dealer is
the coordinator of a Circle session and acts as a communica-
tions facilitator, asking the Players for necessary information
as the session advances. Although it puts the Players in touch
with each other to share threat data, the Dealer does not have
access to the cyber threat information that is being shared. The
Players represent organizations willing to share cyber threat
information. They were forwarded to Circle by Square and act
as the clients of the Circle session. They send to the Dealer the
information it requires and communicate with other Players in
specific communication rounds, to share cyber threat data.

We defined the following functional requirements for Circle:
• FR1: Players can at any time leave the Circle session

they are participating in.
• FR2: Only parties that received a token from Square

to participate in the Circle session are authorized to
participate in it.

• FR3: Allow Players to share cyber threat data contained
in their security reports, in a privacy-preserving manner.

Due to the fact that our system is a part of a cyber threat
information sharing platform, we need to prevent leakage of
data, as well as an unauthorized access to it. To fulfill these
goals we had to define the attackers:

1) Eavesdropper: Passively listens to all communications.
2) Player Impersonator: Impersonates a Player.
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3) Dealer Impersonator: Impersonates the Dealer.
4) Tamperer: Modifies the data exchanged between source

and destination.
We had to consider two distinct types of communication

that the attackers could target:
• CPD: Bidirectional Player to Dealer communication.
• CPP : Bidirectional Player to Player communication.
This distinction is necessary because the attackers involved

are different for these two types of communication. In the case
of CPD, attackers of all types can target the system, whereas,
when we consider a communication of type CPP , the Dealer is
not involved in it, and, as a result, a Dealer Impersonator is not
relevant in this situation. We defined two security requirements
for Circle based on the two types of communications and the
attackers that could target them:

• SR1: An attacker with eavesdropping, tampering and
Player and Dealer impersonating capabilities is unsuc-
cessful when targeting a communication of type CPD.

• SR2: An attacker with eavesdropping, tampering and
Player impersonating capabilities is unsuccessful when
targeting a communication of type CPP .

B. Circle Prototype

In this work we wanted to allow Players to share the
tags contained in their reports in a privacy-preserving way.
During the development of Circle, we used a dataset consisting
of images of real cyber threat security reports from the
monitoring systems of NAV1. However, before using these
reports, we first had to remove the personal data contained
in them, to avoid leaking any personal information.

The solution we found to guarantee a cyber threat sharing
environment between parties who do not trust each other, yet
wish to share data that might contain sensitive parameters,
was to resort to the PSI operation. By relying on this SMC
operation, we designed Circle to allow its participants to
compute PSI on the sets of tags in their security reports. In
the end of this computation, the tags which are equal in the
security reports are revealed, without any information being
leaked about the ones that are different.

Our system is meant to have more than two participants, so
we could have relied on a multiparty PSI solution. However,
the output of this solution would be the intersection of the sets
of all parties. This is not our objective for Circle, considering
that, as an example, two parties may contain several tags in
the intersection of their sets, which are not equal to those in
the remaining Players reports. These two parties should still
be able to know that they have equal tags in their security
reports and, because of that, they might be affected by a similar
cyber threat. As a result, we relied on a 2PC PSI approach,
that allows each Player to compute PSI with all the remaining
Players in Circle, over the course of a determined number of
one-on-one PSI computations.

1NAV is the portuguese company which is responsible for monitoring the
air traffic control in Portugal. The webpage of NAV can be visited at https:
//www.nav.pt/en/nav-portugal-newhp en.

The final goal of performing the PSI operation between
all Players in a Circle session is that, once this phase is
terminated, each Player can make a better informed decision
whether it wants to share more information about the cyber
threat described in its security report.

In Circle, initially, the Dealer listens for Players
looking to connect to the session, through the
connectionEstablishment function call. During
a certain timeframe, Players that were authorized by
Square can join Circle by communicating with the Dealer.
The end of this timeframe is marked by the value of
joincircletimeout, while the minimum number
of Players required for a Circle session to start is the
quorum. When the joincircletimeout occurs and
less Players than the quorum have connected, the Circle
session is cancelled, the Dealer informs the Players and then
terminates. Otherwise, if the quorum is achieved, the Circle
session can start, since the minimum number of required
Players to engage in this cyber threat information sharing
system was assembled.

For the next step in the session, we defined an abstract
event for each Player, the Computation round, which occurs
several times in the same Circle session. When one of its
Computation rounds starts, each Player has the option to
leave Circle, giving the Player full control over what security
reports data is shared. If they wish to continue in Circle, they
make a call to the psiRound function of the Dealer and
receive the identifier (id) and address of a Player, with whom
they are to perform the two-party PSI operation with, in that
Computation round. Nevertheless, a Player may not have a
partner to compute PSI with in certain Computation rounds.
This situation arises if all other Players that have not yet
performed the PSI operation with it have already been assigned
as PSI partners to other Players in this Computation round, or
if this Player has already executed the PSI computation with
all other Players. In this case, the Dealer sends it a message
indicating that it will not have a partner for this round.

Each Player repeats this Computation round process until
it decides to leave the Circle session, the Dealer cancels the
session because there are less than two remaining Players
connected or Circle is concluded, because there are no more
PSI operations to be performed.

C. Technical Architecture

The architecture of the Circle entities, the Dealer and the
Player is represented side-by-side in figure 2.

The development of both Circle parties was done with
Java, because it is a mature programming language, it has an
extensive online documentation and it has a large collection
of libraries and modules available.

To describe the Circle session configuration file and the
Players security reports we used Extensible Markup Language
(XML). We chose this markup language because it provides a
format that is both human-readable, to allow its easy edition by
humans, and machine-readable, to allow its easier processing
by machines.
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Fig. 2: Dealer and Player architectures.

To implement the functions
connectionEstablishment and psiRound, called by
the Players when communicating the Dealer, we relied on
gRPC, a Remote Procedure Call (RPC) framework which
also has support for Java, it supports synchronous and
asynchronous calls and it is open-source and free to use. We
used protocol buffers (Protobuf) as a serializing mechanism
for these communications because it is the default serializing
mechanism for gRPC, it is also open-source and provides
a very efficient binary encoding format. Protobuf requires
defining the structure of the data to be serialized in a proto
file, which corresponds to a message definition language
expressed in a text file with a .proto extension. In our work,
we defined the RPC functions and messages in a Circle.proto
file.

We required a SMC framework that provided a secure
implementation of PSI. As a result, we chose FRESCO from
the frameworks defined in subsection II-C, because it is a well-
known framework that has been used in real-life projects, it
has an extensive documentation and has great interoperability.
The PSI demo provided by FRESCO relies on the TinyTable
protocol to provide to both parties, in the end of the operation,
the AES-128 encryption of both input sets. The two parties
are, subsequently, responsible for computing the intersecting
elements themselves, by comparing both input sets encryptions
and finding those that are equal. This computation is still se-
cure since the parties cannot decrypt the AES-128 encryptions
of the output because they do not possess the secret key. To
allow communication between parties during computations,
FRESCO uses KryoNet as its default network communication
supplier. KryoNet is a Java library that provides an API for
both TCP and UDP network communication.

D. Dealer Implementation

The Dealer takes as input to its program a XML config-
uration file, configuration.xml, which is constructed with the
results of a security reports match that occurred in PriVeil
Square. An example of configuration file that was used in a
Circle session is shown in figure 3.

Fig. 3: Example of Dealer configuration.xml file.

In configuration.xml, the quorum represents the minimum
number of Players required to start the Circle session, oth-
erwise it will not occur. The joincircletimeout and
psiroundtimeout are the values of the timeouts for the
Players to join a Circle session and answer to the Dealer
after making the psiRound RPC call, respectively. The
maxnumberofplayers represents the maximum number
of Players allowed in the Circle session. At last, the values
of the ip and port correspond to the IP address and
port where the Dealer will be running the remote functions
connectionEstablishment and psiRound.

To avoid the large time execution penalty a Circle session
would incur in, if only a pair of Players was computing
PSI at each Computation round, we created an algorithm to
parallelize PSI operations between different pairs of Players.
When each thread serving a Player call to psiRound enters
the getOtherPlayerId function, it searches a possible
partner for PSI from a linked list that contains all the pairs of
Players that have not yet computed PSI in the Circle session.
The only restriction when choosing a partner is that it has
not been already assigned as PSI partner to another Player in
this Computation round. The thread serving the given Player
chooses as PSI partner the first Player that complies with
this restriction. Nevertheless, if there is no other Player that
complies with this restriction, this Player will not have a PSI
partner for this Computation round. After each Computation
round and Players make a new call to psiRound. The
thread serving each Player then reaches the hasPsiResult
function, which is responsible for making the necessary prepa-
rations for the getOtherPlayerId method to be able to
assign new pairs of PSI partners for this new Computation
round.

In Circle, we resorted to the TLS protocol to secure the
communications between the Dealer and the Players. We used
a model of mutual authentication, in which both parties need
to authenticate themselves to the other party, thus proving
their identity. Since our project is a prototype, we created our
own Certification Authority (CA) and used it to sign both the
digital certificates of both the Players and Dealer. However,
the PriVeil system can operate with its own CA or an external
one, so, when we designed Circle as the sequence of Square,
we concluded that these certificates could have been delivered
to the Dealer and the Players by the system.

5



E. Player Implementation
The Players take as input to their programs the IP address

and port they will use to communicate with other Players
during the PSI operation, their security reports in XML format,
the IP address and port of the Dealer and the AES-128 secret
key they will use in the 2PC PSI computation implemented
by FRESCO. When developing our program we used images
of ten security reports from NAV for testing, which we had to
convert to XML, before we could use them.

The implementation of the 2PC PSI operation by FRESCO
only accepts sets of Integers as the parties inputs for
the intersection operation. Since we required to compute this
operation between sets of tags, which contain text values and
hence are represented as Strings, we had to find a solution
which allowed us to make a conversion between the String
tags to Integers values. To this end, we computed the
hash function SHA-256 on the byte representation of the text
value of each tag, obtaining a 32 bytes output. Afterwards,
since each Integer in Java occupies four bytes of space,
we truncated the SHA-256 hash value of each tag to its first
four bytes and used them to construct an Integer value. This
solution allowed us to be able to compute the two-party PSI
operation between sets of text tags, while still using FRESCO.

Another restriction of the PSI operation implemented by
FRESCO is that the input sets of both parties are required to
have the same size. This is a problem because cyber threat
security reports, which belong to different organizations, are
very unlikely to contain the the exact same number of tags. As
a consequence, we considered that, for each Circle session, we
would need to establish a maximum number of tags allowed
in Players security reports. When performing 2PC PSI, the
first solution we found to address this restriction was for each
Player to provide the actual tags contained in its security
report together with empty tags, until the maximum number
of security tags allowed was reached. This solution was not
ideal since, when both parties received the output of the 2PC
PSI, they would be able to identify which was the AES-128
encryption of the empty tags and, consequently, would be able
to know what was the number of actual tags in the security
report of the other Player . A better way to address this
restriction of the implementation of PSI provided by FRESCO
is for each Player to provide the actual tags contained in its
security report, together with random tags, until the maximum
number of security tags allowed is reached. When Players
receive the output of the 2PC PSI computation they are not
able to distinguish the random tags from the actual tags in
the security report of the other Player. In Circle, the latter
solution was implemented over the previous one, although the
evaluation and results of section IV were obtained for the
empty tags implementation. This change has no significant
impact on performance

IV. EVALUATION

A. Qualitative Evaluation
In table I we can observe the functional and security

requirements from section III-A that were addressed by our

Circle prototype.

TABLE I: Assessment of the requirements fulfilled

Requirement Status
FR1 Fulfilled
FR2 Fulfilled
FR3 Fulfilled
SR1 Fulfilled
SR2 Not fulfilled

The functional requirement FR1 is fulfilled by the fact
that the Players can choose whether to remain in Circle
at the beginning of each one of their Computation rounds.
Furthermore, the Players can also leave the Circle session at
any time, without having to notify the Dealer. The functional
requirement FR2 is fulfilled due to the authentication mech-
anisms provided by the TLS protocol: if either the Dealer or
the Players detect that they are communicating with a party
which is not authorized to participate in the session, they can
leave it. The functional requirement FR3 is addressed by the
choice of the PSI operation to allow Players to share cyber
threat information. This operation allows a privacy-preserving
computation to be performed on the sets of tags in the Players
security reports. To fulfill SR1, we used the TLS Protocol to
prevent all attackers defined in subsection III-A, in communi-
cations of type CPD. In this work, the security requirement
SR2 was not addressed. FRESCO does not natively use TLS
to secure communications in its implementation of 2PC PSI
and we were also not able to implement it.

B. Experimental Design

To evaluate our system we performed a total of nine
experiments, for nine Circle sessions. In each session, we
measured: the processing time of the most relevant functions
executed by a Player, to assure that our system provided
answers in a timely way; the system CPU and memory usage
of the program of the same Player, to show that the required
resources to participate in Circle are reasonable in commodity
hardware. Between distinct experiments, we examined the im-
pact on the aforementioned metrics of different combinations
of two parameters: the number of Players participating in the
Circle session and the maximum number of tags allowed in
the Players cyber threat security reports.

In our experiments, we used a setup consisting of two
machines: the first machine was running Ubuntu 20.04.1 LTS
OS, with an Hexa Core Intel i5-8400 processor, 16 GB RAM,
1 TB Hard Disk Drive (7200 rpm), 128 GB Solid State
Drive and an internet cable connection with bandwidth of
500 Mbit/s; the second machine was running Ubuntu 20.04.01
LTS OS, with an Octa Core Intel i7-8565U, 16 GB RAM,
500 GB Hard Disk Drive (7200 rpm), 128 GB Solid State
Drive and an internet cable connection with bandwidth of
500 Mbit/s.

The measurement of the processing time of the most rele-
vant functions executed by a Player was performed with the
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help of the Java method System.nanoTime(). The code
below was used to measure how long a specific part of code
takes to execute:

long startTime = System.nanoTime();
\\ Code being evaluated
long endTime = System.nanoTime();
long executionTime = endTime-startTime;

We applied the time measurement code above to the time
checkpoints specified in table II.

TABLE II: Description of time checkpoints introduced in the
code of the Player.

Total measured time Time measured from the beginning of the
program of the Player until its successful
termination.

Parse report Time taken for the program of the Player
to parse the input security report.

Circle connection Time it takes for the Player to send its
address to the Dealer and the response of
the Dealer indicating if Circle will occur
or will be cancelled.

Computation round Time duration of one of the Computation
rounds of the Player. This measurement
can occur several times in the same session.

PSI operation Time duration of the PSI operation during
the Computation round.

Other All the time that is not included in the first
three checkpoints.

We created the Python script setup.py to measure the
system CPU and memory usage of the program of a Player.
When running the setup.py script to benchmark a Circle
session, a single measurement of the system CPU usage and
system memory usage of process with identifier PID was done
by using the following command:

top -b -n 1 -p <pid> | tail -n 1 | awk {
’print $9 \"\t\" $10’}

To benchmark the whole program of the Player, the
setup.py script was running periodically while the process
of the Player was running.

In all of these Circle sessions we used as input to the
program of this Player the same XML report corresponding
to a real-case cyber threat security report from NAV, with five
tags contained in it.

In the first set of three experiments, the number of Players
was fixed to 2 and the maximum number of tags was increas-
ingly set to 10, 25 and 50. In these group of tests, the number
of Players was equal to 2, because this corresponds to the
minimum number of Players required for a 2PC PSI operation
to be performed in a Circle session. Furthermore, this situation
also corresponds to the simplest setting possible for Circle,
since a session cannot occur if the number of participants is
lesser than 2. For the first experiment we set the maximum
number of tags allowed in Players security reports to 10, since
in all the ten reports we obtained from NAV, the maximum

number of tags we observed on a report was 5. Furthermore,
in the work that addresses the Square component of PriVeil,
it is estimated that the security reports have on average 10
tags contained in them. As a result, the value of 10 seemed
like a reasonable value for the lower bound for the maximum
number of tags allowed in the Players reports. On the other
hand, to try to include all the cases of security reports that
have a number of tags superior to 10, we established the value
of 50 tags as the upper bound to the maximum number of
tags allowed in security reports. Finally, we concluded that
only performing tests for these two values of this parameter
would be insufficient, so, we also performed experiments for
the intermediate value of 25 tags.

In the next set of three experiments, the number of Players
was set to 3 and the maximum number of tags allowed in
their reports was also increasingly set to 10, 25 and 50. In
this group of tests, we fixed the number of Players to 3, so
that we could observe how the measured metrics would be
affected when the Circle session involved more than one 2PC
PSI operation.

Finally, in the last group of experiments, the number of
Players was fixed to 10, while the maximum number of tags
was also increasingly set to 10, 25 and 50. In this final set of
experiments, we fixed the number of Players to 10, since this
is the average number of Players we expect to have in each
Circle session, if we were to employ this project in a real-
life cyber threat information sharing scenario. Furthermore,
this value seemed reasonable considering that, in Circle, we
wanted to allow threat information sharing between a more
restricted group of organizations, when compared to the type
of sharing that occurs in Square.

C. Experimental Results

In the 2 Players setting, one Player was running on the
first machine in the testbed, where the metrics were measured,
and the Dealer and the other Player were running on second
machine. In this set of experiments, the total execution time
measured for the program of the Player, for a maximum of 10,
25 and 50 tags allowed in the security reports was 51,195 s,
96,605 s and 179,07 s, respectively. The results are presented
in figure 4.

We can conclude that the time measured on checkpoints
Circle connection and Other does not depend on the maximum
number of tags allowed in Players security reports. This is
expectable since the functions measured by these checkpoints
include communications with the Dealer, interacting with
local files and local processing. Although the Parse report
checkpoint is dependent on the number of tags in the security
report of the Player, it does not depend on the maximum
number of tags allowed. The second Computation round also
has similar durations as the number of tags increases. This is
explained by the fact that in the second Computation round
there are no PSI operations left to be computed, as the only
PSI operation involved in this Circle session was already
performed in the first Computation round. In the second
Computation round, the Dealer only informs the Players
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Fig. 4: Time breakdown as a function of the maximum number
of tags allowed in the security reports for 2 Players.

that there are no more computations left and, consequently,
the session will be terminated. The first Computation round
is the checkpoint for which the measured execution time
significantly depends on the maximum number of tags allowed
in Players security reports, since it includes a PSI computation.
In this round, we obtained results of 41,151 s, 86,405 s and
165,15 s in the PSI operation checkpoint, for 10, 25 and
50 tags, respectively. This indicates that the increase in the
maximum number of tags allowed in Players security reports
directly affects the time spent in the PSI operation. This is
in fact true, because in the context of PSI, the more items in
the sets of the parties, the more time it takes to compute this
operation between those sets.

In the 3 Players experiments, one Player was running on
the first machine of the testbed, while the remaining 2 Players
and the Dealer were running on the second machine of the
testbed. The time breakdown for these three experiments is
represented in figure 5.

Fig. 5: Time breakdown as a function of the maximum number
of tags allowed in the security reports for 3 Players.

From the results of figure 5 we can see that there are
four Computation rounds involved in this Circle session. The
first and last Computation rounds, the Parse report, Circle
connection and Other checkpoints measurements do not de-
pend on the maximum number of tags allowed in Players
security reports because their values are similar in all these
three experiments.

The first Computation round is very short when compared
to the following two Computation rounds, because the Player
where the measurements were being made did not have a
partner to perform the PSI operation with in this round. The
last Computation round corresponds to the same situation of
the last Computation round of the 2 Players experiments.
Finally, in the second and third Computation rounds, the
Player where the measurements were made was doing PSI
with the other 2 Players in the session. To provide a more
detailed insight on the PSI operations of these rounds, in
figure 6 we can see the duration of the two PSI computations.

Fig. 6: PSI operation duration as a function of the maximum
number of tags allowed in the security reports for 3 Players.

From the observation of figure 6 we can conclude that the
PSI operation duration increases linearly with an increase in
the maximum number of tags allowed in Players security
reports.

In the 10 Players experiments, five Players were being
executed on the first machine in the testbed while the re-
maining five Players and the Dealer were running on the
second machine in the testbed. The time breakdown for the
10 Players experiments is represented in figure 7. From the
results in figure 7 we can notice some differences on the time
breakdowns for each maximum number of tags allowed in
Players security reports. The same Computation round can
have very different durations for a different number of tags.
Since the order on which the PSI pairs are chosen depends on
the algorithm described in subsection III-D, this can lead to
a different order in which the PSI operations are computed,
between different Circle sessions.

In figure 8 we represented the total execution time of the
program of the Player for a varying number of Players. From
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Fig. 7: Time breakdown as a function of the maximum number
of tags allowed in the security reports for 10 Players.

Fig. 8: Total time duration of the program of the Player as a
function of the number of Players in the session.

the observation of figure 8 we can conclude that for a fixed
number of tags, the total execution time of the program of
the Player scales linearly with the number of Players, with
the highest value being obtained for the experiment with 10
Players and 50 maximum tags allowed in the reports.

In figure 9 we represent the average system CPU usage
as a function of the number of Players for 10, 25 and 50
maximum tags allowed in Players security reports. From the
results of figure 9 we conclude that, in general, the average
CPU usage decreases as a function of the number of the
Players in the Circle session. This can be explained by the
fact that although the number of PSI operations increase with
the increase in the number of Players, there is more idle time,
when the Player is not doing the PSI operation with any other
Player, which significantly lowers the CPU usage during those
periods of time and, consequently, the average CPU usage of
the program. For the average CPU usage as a function of the
maximum number of tags allowed in Players reports we cannot
draw any significant conclusions.

Fig. 9: Average CPU usage as a function of the number of
Players in the session.

In figure 10 we represent the average system memory
usage as a function of the number of Players for 10, 25
and 50 maximum tags allowed in Players security reports.
With respect to the average memory usage, we can observe

Fig. 10: Average memory usage as a function of the number
of Players in the session.

that it increases as a function of the number of Players in
the Circle session, being the highest average memory usage
10,904 %, for the 10 Players with 50 tags experiment, and the
lowest 1,8487 %,for the 2 Players with 10 tags experiment.
The average memory usage also increases as a function of the
maximum number of tags allowed in Players security reports.

D. Discussion

The experiments performed and respective results show that
Circle is applicable in a real-case scenario. For the longest
and most resource-consuming experiment, with 10 Players
and a maximum of 50 tags allowed in the security reports,
we obtained a total execution time of 32,05 minutes. Despite
this result being high for a cyber threat information sharing
system, we conclude that the results are still acceptable, since
we perform a secure computation that preserves the Privacy
of the parties inputs. Regarding the CPU usage of the program
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of a Player, the results obtained show that the program of a
Player to be easily executed in commodity hardware. Finally,
we have observed that the average memory usage increases
as a function of both the maximum number of tags allowed
in Players reports and the number of Players in the session.
Nevertheless, in all experiments, these results did not have a
noticeable impact on the system of the Player.

V. CONCLUSION

In this work we designed and implemented a prototype of
Circle, the second component of the cyber threat information
sharing system PriVeil. In Circle, each Player progressively
computes the PSI operation on the tags on his security report
with every other Player. By the end of this round all users
know the tags in their security reports which are common
to other users security reports, without any information being
revealed about the different tags. This information is useful
because each Player will know the Players that might contain
the same or a similar cyber threat described in the security
report. We evaluated Circle by performing nine different
experiments in which the processing time, CPU and memory
usage of a Player program were measured during a Circle
session. The results show that this prototype can be used
in real-life scenarios, since it creates an environment where
participants can securely share the cyber threat information
contained in their security reports.

As future work, our prototype needs improvements in the
PSI partners assignment algorithm, TLS needs to be imple-
mented on top of FRESCO communications during the PSI
operation, Circle needs to be deployed and tested in a real-
life situation and Square and Circle need to be integrated as
a single system.
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