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Resumo

O tema central desta tese é a navegação apoiada em sistemas de base acústica que pressupõem

a aquisição de uma só medida de distância. A dificuldade de se obter, com a precisão adequada, a

velocidade do som, problema especialmente relevante em aplicações marinhas mas também noutras,

como aeroespaciais, é tomada em conta através da consideração de que as medidas de distância

obtidas pelo sistema estão afetadas por um fator multiplicativo desconhecido. A não linearidade do

problema de navegação é contornada através da aumentação do número de estados do sistema. É

mostrado que o sistema linear obtido através desta abordagem é observável e, consequentemente, um

filtro de Kalman é utilizado de forma a obterem-se estimativas dos estados; estas apresentam erros com

decaimento exponencialmente estável para todas as condições iniciais. Posteriormente, são efetuadas

simulações, nas quais se considera a existência de ruı́do, com a finalidade de comparar a solução

proposta com duas técnicas comuns de estimação não linear, nomeadamente os filtros de Kalman

estendido e unscented. Os dois últimos apresentam desempenhos semelhantes à nova solução, mas

são incapazes de o fazer para todas as condições iniciais. São também efetuadas Simulações de Monte

Carlo que fornecem uma perceção mais aprofundada do comportamento de cada um dos processos de

estimação. Finalmente, são executadas experiências num ambiente controlado de modo a comprovar

a aplicabilidade da solução proposta.

Palavras-chave: medida de distância única, navegação subaquática, velocidade do som

desconhecida, filtro de Kalman, Bayesian Cramér-Rao bound, simulações de Monte Carlo
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Abstract

This thesis refers to acoustic navigation systems based on single range measurements. The difficulty

of accurately determining the speed of sound on the propagation medium, a matter of special relevance

in sub aquatic and aeronautic applications, is addressed by considering that the range measurements

acquired by the system are affected by an unknown multiplicative coefficient. The inherent nonlinear

nature of the navigation problem is tackled by performing state augmentation. The discrete-time linear

system obtained with this approach is shown to be observable and a Kalman filter is employed in order

to obtain state estimates with globally exponentially stable error dynamics. Simulations, assuming noisy

environments, are conducted to compare this solution with common nonlinear estimation techniques,

namely the extended Kalman filter and the unscented Kalman filter. The latter are shown to obtain

comparable results, but fail to provide global convergence guarantees. Monte Carlo simulations supply

further insights on filtering performances. Finally, experiments in a controlled environment are carried

out, attesting the applicability of the proposed solution.

Keywords: single range, underwater navigation, unknown speed of sound, Kalman filter, Bayesian

Cramér-Rao bound, Monte Carlo simulations
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Chapter 1

Introduction

1.1 Motivation

The topic of navigation has been around ever since the humankind started to explore new worlds.

From celestial navigation to portable global positioning system (GPS) devices, from the first Polynesian

navigators to nowadays work commuters, the field of navigation has traveled a long way. Nevertheless,

no field of study is ever finished and, like so, neither is the world of navigation.

By the end of the 20th century, great success had already been achieved in the subject of navigation

above sea level. In fact, the development, in the ’70s, of the GPS by the United State’s government

changed forever the paradigm of navigation. Its biggest flaw is, probably, the fact that it could not

address sub aquatic applications. This flaw resulted in the development of new systems capable of

operating under water, and, since the human mind is never satisfied, new flaws were discovered and

newer solutions were invented.

The need for underwater vehicle (UV) positioning has increased in the recent years. Breakthroughs

in the field of artificial intelligence have lead to a significant burst of autonomous UV applications. Other

engineering quests, such as offshore energy production and seafloor mapping, often require the opera-

tion of UVs to achieve prosperous results. Also, the study of the population of marine species and their

migrations can largely benefit from the advancements in underwater positioning.

Nowadays, acoustic systems are the standard for accurate underwater navigation. Three major

classes of systems are available for position determination. These are the long baseline (LBL) systems,

the short baseline (SBL) systems, and the ultra short baseline (USBL) systems. Each of these solutions

comprises its own specific implementation and expected performance, but they all have in common the

fact that, like in the GPS, multiple waves, from multiple transponders, are propagated between the nav-

igation system and the user. From these multiple range measurement systems a series of problems

arise. One of them, and, probably, the most important one is the fact that multiple range measurements,

by requiring multiple transponders, amount to increasing system complexity and deployment costs. An-

other problem is the fact that a fail in one or more transponders might lead to the system being rendered

useless, since common multilateration techniques might become compromised. A way to solve these
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issues is to use just one transponder capable of performing the same task as all the systems mentioned

before.

Having this in mind, acoustic navigation based in single range measurements has attracted the in-

terest of the scientific community in the recent years. It is important to notice that only one range

measurement is obviously not enough to uniquely determine the position of a vehicle, and thus, this

type of approach usually requires the integration of other subsystems capable of acquiring information

regarding vehicle trajectory. This, however, does not tend to pose a conceptual drawback, since ad-

vancements in micro and nanotechnologies have enabled even small vehicles to be equipped with these

types of systems.

The possibility of extending single range measurement navigation to fields other than the sub aquatic

world is also a fact of considerable matter. Progresses in this specific field are, in most cases, applicable

to the aviation and aerospace segments. In fact, the vast majority of airplanes is already equipped with

the systems required to achieve good navigation performance, should this be based on a single range

measurement architecture. The same can be said about spaceships and rockets, which are widely

considered the vehicles that will eventually carry the humankind towards a new era of space exploration.

Due to its clear advantages when compared to multi-measurement solutions, and due to its broad ex-

tendibility to different purposes, single-range systems designed for underwater navigation are a subject

of the utmost importance.

1.2 State of the art

Studies in the field of single-transponder underwater acoustic navigation have diverged into two

classes of solutions. As such, the available literature regarding the subject addresses both moving and

stationary single-transponder solutions.

An early surface-moving transponder approach was pursued in [1], where the authors debate the

utility of sonar readings to determine the motion of an underwater subject. More advanced work on the

matter was carried out by various authors who considered well defined trajectories of the support surface

vehicle in order to estimate target position. Instances of this approach are presented in [2] and [3], where

nonlinear least-mean-square methods and centralized extended Kalman filters, respectively, are used to

overcome the nonlinearities inherent to the localization problem. Still regarding surface moving beacons,

extensive work has been done to determine support ship trajectories that minimize position estimation

errors. To that end, [4] relies on the determination of Fisher information matrices, and [5] extends this

method to noisy scenarios.

One of the first works addressing the concept of underwater navigation based on single range mea-

surements to a stationary beacon dates back to the beginning of the century [6]. The author proposes

a solution to overcome the known limitations of dead-reckoning navigation by combining a high per-

formance dead-reckoning system with an innovative synthetic long baseline; the latter consisting on a

set of consecutive discrete-time range measurements from the moving vehicle to a stationary beacon.

Kalman filtering was applied to a linearized version of the system dynamics. In [7], the navigation prob-
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lem is addressed with special concerns for known current velocities. System linearization is performed

and an extended Kalman filter (EKF) is used to produce state estimates, but no guarantees of global

asymptotically stable error dynamics are provided. The same strategy was then employed in [8] and

[9], where unknown currents are considered. In [10], algebraic methods are used to study system ob-

servability and to perform state estimation. A state augmentation approach, which yields estimates with

globally exponentially stable (GES) error dynamics, is brought forward in [11]. Also motivated by state

augmentation processes, the authors of [12] propose a novel estimator based on the least entropy-like

estimator [13] capable of dealing with unavoidable measurement outliers.

A very important factor when considering acoustic range measurements for navigation purposes

is that the speed of sound needed to obtain those measurements tends to vary according to specific

environment conditions. Temperature, salinity and pressure were considered in the pioneering article

[14] to determine an empirical formula capable of defining the speed of sound underwater. Over the

years, numerous other works have also addressed the problem of characterizing speed of sound profiles

underwater, being the UNESCO algorithm [15] considered the international standard for this purpose.

The domain of underwater navigation has extensively benefited from the determination of the speed of

sound in water, since range measurement devices critically depend on this value. Nevertheless, speed

of sound profiles are sometimes not possible to determine or are ill determined. Having this in mind,

researchers have studied the underwater navigation problem while explicitly considering the speed of

sound as an unknown variable available for estimation. Addressing this particular subject, [16] envisions

a moving LBL positioning algorithm based in uncertain least-squares (ULS). The authors tackle system

singularities by performing state estimation with an ULS-based unscented Kalman filter (UKF). In [17],

system augmentation is used to obtain position, current speed, and speed of sound estimates in a LBL

navigation configuration. A linear Kalman filter (LKF) provides these estimates with global convergence

guaranties. The same strategy is employed in [18], where the author assumes a one-way-travel-time

LBL configuration with unknown speed of sound and possible clock offset between system components.

Studies combining the concept of single range measurement navigation and the difficulties of proper

speed of sound determination have recently emerged. In [19], speed of sound is explicitly estimated in a

single pseudo-range measurement navigation/source localization problem, where state augmentation is

the preferred route. The new system obtained with this technique is inspected for observability purposes

and a LKF provides state estimates with GES error dynamics. The work [20] proposes a solution to

overcome the errors associated with a misidentified effective sound velocity (ESV) in navigation models.

The researchers treat ESV as a model parameter and use the expectation maximization method to

obtain estimates of this unknown parameter. The overall single-transponder navigation method also

incorporates a Kalman filter. To tackle noise sensitivity and initial vehicle position errors, which might

lead to fails in the two previous solutions, [21] treats the ESV as a random variable with unknown

properties. Both the ESV and its statistical properties are estimated resorting to a variational Bayesian

approximation method.

An overview of the concepts presented throughout the previous paragraphs is shown in Fig. 1.1.
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Figure 1.1: Literature overview

1.3 Contributions

In this thesis, the most simple form of underwater navigation in terms of setup and deployment, i.e.,

navigation with a single fixed transponder, is studied. The assumption of an unknown speed of sound

in the medium is also a subject of this work. Along these lines, range measurements acquired from a

transponder system are considered to be affected by an unknown multiplicative factor. Taking this into

consideration, a nonlinear discrete-time system representative of the navigation problem is derived, and

estimates of the position of the vehicle as well as the speed of sound unknown multiplicative coefficient

are obtained with the solution proposed in [19].

In order to compare the novel solution with common nonlinear estimation techniques, an EKF and

an UKF are also employed to provide vehicle and speed of sound estimates. Filtering parameters are

subject to the Bayesian optimization (BO) process.
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Extensive Monte Carlo simulations provide further comprehension of the performance of each filter-

ing solution by allowing the determination of bias in the estimation processes, as well as estimation error

covariance. The latter is then compared to the Bayesian Cramér-Rao bound (BCRB).

Finally, experiments in a controlled environment are performed attesting the applicability of the new

solution.

Fig. 1.2 sums up the work done in this thesis.

Figure 1.2: Thesis contributions

1.4 Thesis Outline

From this point onward, this thesis is organized as follows. Firstly, the problem statement and the

notation used throughout this document are presented in Chapter 2. The novel solution proposed in [19]

and its mathematical formulation are presented in Chapter 3. In order to compare this with extensively

studied nonlinear estimation methods, Chapters 4 and 5 comprise the formulation and implementation

of an extended Kalman filter and an unscented Kalman filter, respectively. An optimization algorithm

called Bayesian optimization is introduced in Chapter 6, where its application to the problem at hand is

explained. Chapter 7 addresses the mathematical formulation of the Bayesian Cramér-Rao bound. In

Chapter 8, simulations regarding the three methods studied are performed and the results obtained are

subject to comparison. Experimental results are found in Chapter 9. Lastly, conclusions related to this

work are deduced in Chapter 10.
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Chapter 2

Notation and problem statement

2.1 Notation

Throughout this thesis the following notation is employed. Vectors are represented in bold with each

component appearing as an upper index. For example, px, py, and pz represent the first, second, and

third components of a vector p ∈ R3. The bold upper case is reserved for matrices such as a n × n

identity matrix, In, or the zeros matrix, 0n. A block diagonal matrix is represented by diag(A1, ...An).

The inner product of p ∈ R3 and q ∈ R3 is denoted by p · q. Finally, the special orthogonal group of

dimension n is represented as SO(n).

2.2 Problem statement

The navigation systems proposed in this thesis foresee the use of a single fixed acoustic transponder

to acquire discrete-time range measurements to an operating vehicle. The aforementioned systems rely

on a basic principle of wave propagation which states that, in the absence of a variable speed of sound,

the distance traveled by the acoustic wave is equal to its speed of propagation in the medium multiplied

by the time it took for the wave to travel said distance. The problem regarding this simple formulation

is that the speed of sound considered to compute distances might not correspond to the true value, be

it from inaccurate determination or complete lack of information. Having this in mind, one can assume

that the range measurements provided by the system are affected by an unknown multiplicative factor. It

is also assumed that these systems comprise the use of other navigation equipment such as a Doppler

velocity log (DVL) and an attitude and heading reference system (AHRS) to determine the inertial speed

of the vehicle and its orientation relative to a reference frame, respectively.

The following section takes an in-depth look at the mathematical formulation of the system under

study.
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2.2.1 System dynamics

As usual in navigation systems, consider the existence of {I}, a local coordinate inertial reference

frame, and {B}, a coordinate frame that moves with the vehicle along its motion through the medium,

the so-called body-fixed frame.

The variation of the inertial position of the vehicle, ṗ(t) ∈ R3, can be written as

ṗ(t) = R(t)v(t), (2.1)

where R(t) ∈ SO3 is the rotation matrix from {B} to {I} and v(t) is the velocity of the vehicle relative to

{I}, expressed in body-coordinates. In this thesis, it is assumed that the vehicle is capable of acquiring

both the rotation matrix R(t) and the velocity v(t). In practice, the first is usually obtained through the

aforementioned AHRS and the second through the DVL, if the later has established bottom-lock.

Discrete-time range measurements to a stationary beacon, r(k), can be obtained through

r(k) = vs(tk) ‖ s− p(tk) ‖ (2.2)

where s ∈ R3 is the inertial position of the beacon, tk is the sampling instant, defined with respect to

the sampling period T > 0 and the initial time t0, as tk := t0 + kT , k ∈ N. Finally, vs(tk) > 0 denotes

the strictly positive scaling factor that accounts for the uncertainties in the speed of propagation of the

acoustic waves.

Considering, for the sake of simplicity, that the velocity of propagation in the medium does not change

over time, the previous equations can be condensed to represent the system dynamics as


ṗ(t) = R(t)v(t)

v̇s(t) = 0

r(k) = vs(tk) ‖ s− p(tk) ‖ .

(2.3)

The above equations depict a continuous nonlinear system that can be discretized as


p(tk+1) = p(tk) + u(tk)

vs(tk+1) = vs(tk)

r(k) = vs(tk) ‖ s− p(tk) ‖,

(2.4)

where the system input, u(tk), accounts for the traveled distance, in inertial coordinates, between con-

secutive pseudo-range measurements. It can be computed through the integral

u(tk) =

∫ tk+1

tk

R(τ)v(τ)dτ. (2.5)

The problem addressed in this thesis is that of estimating p(tk) and vs(tk) assuming that both the

pseudo-range measurements r(k) and the system input u(tk) are available at each time step k.
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Chapter 3

Linear Kalman filter

To perform state estimation on the system under study, a novel solution proposed in [19] is first

implemented. This consists primarily in performing state augmentation, thus obtaining a new augmented

system. The new system is then analyzed for observability purposes and state estimates are obtained

using a simple linear Kalman filter.

3.1 Theoretical foundation

Consider a generic system of the form


x1(k + 1) = x1(k) + u(k)

x2(k + 1) = x2(k)

r(k + 1) = x2(k + 1) ‖ x1(k + 1) ‖ .

(3.1)

This formulation is equivalent to (2.4) if x1(k) and x2(k) are defined as

x1(k) := p(k)− s

x2(k) := vs(k).

(3.2)

Assumption 1: All pseudo-ranges, r(k), are greater than zero, i.e., r(k) > 0 for all k.

By applying the following state augmentation process, new system states are defined as


z1(k) := x22(k)x1(k)

z2(k) := x22(k)

z3(k) := r(k).

(3.3)

Of these three states, only z3(k) requires some attention when deriving its evolution. Regarding z1(k)

and z2(k), these have a very easy-to-infer evolution which, when taking into account (3.1) and (3.3), can

9



be stated as z1(k + 1) := z1(k) + z2(k)u(k)

z2(k + 1) := z2(k).

(3.4)

Concerning the third state, notice that the squared range, r2(k + 1), is

r2(k + 1) = x22(k + 1) ‖ x1(k + 1) ‖2, (3.5)

which, using (3.1) translates to

r2(k + 1) = x22(k) ‖ x1(k) ‖2 +2x22(k)u(k) · x1(k) + x22(k) ‖ u(k) ‖ . (3.6)

Taking a closer look at each term of (3.6), one can infer the following. From (3.1), the first term is

equal to r2(k), and from (3.3), the second term is equal to 2u(k) · z1(k) and the third term is equal to

‖ u(k) ‖2 z2(k). Substituting these equivalences in (3.6) gives

r2(k + 1) = 2u(k) · z1(k)+ ‖ u(k) ‖2 z2(k) + r2(k). (3.7)

Resorting to Assumption 1, which is always true in practical terms, both sides of (3.7) can be divided by

r(k + 1) yielding

r(k + 1) = 2
u(k)

r(k + 1)
· z1(k) +

‖ u(k) ‖2

r(k + 1)
z2(k) +

r(k)

r(k + 1)
r(k). (3.8)

Finally, judiciously replacing r(k) by z3(k) in (3.8) results in

z3(k + 1) = 2
u(k)

r(k + 1)
· z1(k) +

‖ u(k) ‖2

r(k + 1)
z2(k) +

r(k)

r(k + 1)
z3(k). (3.9)

Now, notice that (3.4) and (3.9) linearly describe time-step transitions of z1(k), z2(k), and z3(k) since

both u(k) and r(k) can be viewed as system inputs, which are available over time. Also, notice that

z3(k) := r(k) can be viewed as a system measurement. Having this in mind and defining the state

vector

z(k) :=
[
z1(k) z2(k) z3(k)

]T
, (3.10)

the system dynamics can be written in the form

z(k + 1) = A(k)z(k)

y(k + 1) = Cz(k),

(3.11)

with

A(k) =


I3 u(k) 03×1

01×3 1 0

2 uT (k)
r(k+1)

‖u(k)‖2
r(k+1)

r(k)
r(k+1)

 ∈ R5×5

10



and

C =
[
01×3 0 1

]
∈ R1×5.

3.2 Observability analysis

The two measurements needed to determine the dynamics matrix A(k) can be viewed as discrete

functions of time, since they are assumed to be available at every time instant k. For this reason, the sys-

tem (3.11) can be seen as a discrete-time linear time-varying system from an observability perspective

[17]. Theorem 1 refers to the observability of the system (3.11).

Theorem 1[19]: Assuming that the matrix L(ka), defined for time instant ka ≥ 0 as

L(ka) :=


L0(ka)

...

L3(ka)

 ∈ R4×4,

where

Li(ka) :=

 2
∑i
j=0 u(ka + j)

‖
∑i
j=0 u(ka + j) ‖2

T ∈ R1×4,

is a full rank one, i.e.,

rank(L(ka)) = 4, (3.12)

then the initial state z(ka) is uniquely determined by the input { u(k) : k = ka, ..., ka + 4} and the output

{ y(k) : k = ka, ..., ka + 4}. This means that system (3.11) is observable in the time interval [ka, ka + 5].

Nevertheless, showing that system (3.11) is observable is not enough to prove that state estimates

of this relate to estimates of the original nonlinear system (3.1), since the state augmentation process

required the output r(k) = x2(k)||x1(k)|| to be discarded and new artificial states to be created. The

following theorem proves this relation.

Theorem 2[19]: If (3.12) holds, then :

1. The initial state of the original nonlinear system (3.1), (x1(ka), x2(ka)), is uniquely determined by

the input { u(k) : k = ka, ..., ka + 4} and the output { r(k) : k = ka, ..., ka + 4}. This is the same as

saying that the nonlinear system (3.1) is observable in the time interval [ka, ka + 5].

2. There is a match between the initial conditions of both the augmented (3.11) and the original (3.1)

systems, i.e., 
z1(ka) = x22(ka)x1(ka)

z2(ka) = x22(ka)

z3(ka) = x2(ka)||x1(ka)||

(3.13)

The proof of both Theorem 1 and Theorem 2 is given in [19].
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3.3 Linear Kalman filter

Under the conclusions obtained in the previous sections, a Kalman filter was employed to perform

state estimation on system (3.11). The estimates obtained with this solution will show GES error dy-

namics if the system (3.11) is shown to be uniformly completely observable [22]. In the previous section

it was only shown that the system is observable, but an identical, yet more space consuming, process

could be employed to prove uniform complete observability. A brief description of the Kalman filter, as

first introduced by R. E. Kalman in [23], is now presented.

Consider a linear system in the form

xk = Akxk−1 + Bkuk + wk

yk−1 = Ck−1xk−1 + vk−1,

(3.14)

where xk ∈ Rn represents the system state at time instant k (note the change in notation from paren-

thesis to subscript as it allows for more compact writing), Ak ∈ Rn×n the system dynamics matrix, and

Bk ∈ Rn×n the control matrix for input uk ∈ Rn. Furthermore, a system output, yk ∈ Rm, is considered

to be modeled by the observation matrix Ck ∈ Rm×m. Additive process and measurement noise is

depicted in vectors wk ∈ Rn and vk ∈ Rm, respectively, which represent zero-mean Gaussian variables

with covariance Qk ∈ Rn×n and Rk ∈ Rm×m.

The Kalman filter, unlike other techniques, is able to recursively perform state estimation based

solely on the latest available filter information. This translates into computationally inexpensive opera-

tions. In each iteration, the filter outputs a state estimate and an error covariance matrix, x̂r|s and Pr|s

respectively. These are represented with the subscript r|s, meaning they regard time instant r and are

computed with all information up to time instant s ≤ r. The LKF and, in general, all types of Kalman

filters, operates in a two-step process.

The first step predicts the state and error covariance matrix on the next time instant, taking into

account the system dynamics and input, as well as the process noise. The algorithm associated to this

step is x̂k|k−1 = Akx̂k−1|k−1 + Bkuk

Pk|k−1 = AkPk−1|k−1A
T
k + Qk.

(3.15)

The correction step makes use of the observed system output to correct the predicted state and error

covariance matrix. A measurement residual, ỹk, is computed by comparing the observed output value,

yk, with the expected output value when considering the predicted state. Also, the measurement residual

covariance, Sk, is computed, allowing for the determination of the Kalman gain, Kk. Having these three

quantities, the corrected state estimate and error covariance matrix can be computed, thus ceasing a

filter iteration. Mathematically, the correction step is stated as
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ỹk = yk −Ckx̂k|k−1

Sk = CkPk|k−1C
T
k + Rk

Kk = Pk|k−1C
T
k S−1k

x̂k|k = x̂k|k−1 + Kkỹk

Pk|k = (I−KkCk)Pk|k−1.

(3.16)

It is important to notice that the performance of the LKF is controlled by the initial estimation parame-

ters, x̂0 and P0, as well as the assumed additive noise covariance matrices, Qk and Rk. The initial state

estimate fed by the user ought to be tied to a decent error covariance matrix that demonstrates how

confident one is with the initial estimate. The noise parameters are problem dependent and should, ide-

ally, reproduce the true noise characteristics of the system. In the case at hand, the observation noise,

Rk, should be modeled the same as the noise of the pseudo-range measurement system. Inversely,

the process noise, Qk, is not as simple to determine as it is related to the acquisition of the system

input, which is based in multiple sensor indirect measures. Although mathematical derivations could

have been employed to determine the covariance matrices that lead to the best filter performance, an

optimization process known as Bayesian optimization was used instead. An overview of this algorithm

is presented in Chapter 6.

Finally, recall the augmented system (3.11) for which the LKF provides state estimates. The esti-

mated state z(k) does not correspond directly to the pursued estimates of the vehicle position, p(k),

and the speed of sound multiplicative coefficient, vs(k). To obtain those, the following assumptions are

needed.

Assumption 2: The speed of sound multiplicative factor, vs(k) = x2(k), is comprehended between

a maximum and a minimum value, VM > 0 and Vm > 0, respectively, as given by

Vm ≤ x2(k) ≤ VM . (3.17)

Assumption 3: The state tied to vehicle position, x1(k), is norm-bounded.

Possessing estimates of z(k), the speed of sound multiplicative coefficient estimates, v̂s(k), can be

determined by

v̂s(k) = x̂2(k) =


Vm, ẑ2(k) < V 2

m√
ẑ2(k), V 2

m ≤ ẑ2(k) ≤ V 2
M

VM , ẑ2(k) > V 2
M ,

(3.18)

and the vehicle position estimates, p̂(k), by

p̂(k) = x̂1(k) + s =
ẑ1(k)

x̂2(k)
+ s. (3.19)

Furthermore, it can be shown that, as estimates of z(k) have GES error dynamics, then estimates of
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speed of sound multiplicative coefficient and position also have GES error dynamics. The proof of this

statement is shown in [17, Proposition 1].
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Chapter 4

Extended Kalman filter

In order to compare the novel solution to common existing nonlinear estimation approaches, the

following sections address the theoretical foundation and the implementation of the extended Kalman

filter.

4.1 Theoretical foundation

The EKF adapts the formulation of the LKF to nonlinear systems, such as the one under study in this

thesis.

To sum up the derivation present in [24], consider a system of the form

xk = f(xk−1,uk−1) + wk−1

yk−1 = h(xk−1) + vk−1,

(4.1)

where f : Rn → Rn and h : Rn → Rm represent the nonlinear state transition and observation functions,

respectively. Also, uk ∈ Rn represents the system input, and wk ∈ Rn and vk ∈ Rm the process

and observation noises; the latter two being modeled as zero-mean Gaussian random variables with

covariance Qk ∈ Rn×n and Rk ∈ Rm×m, respectively.

As in the Kalman filter, the state estimation process is performed iteratively resorting to two essential

steps: prediction and correction. The first corresponds to the simple propagation of the previous esti-

mated state, x̂k|k, and the system input, uk, through the nonlinear state transition function f . Also, the

error covariance matrix, Pk|k−1, is updated taking into account the assumed process noise covariance,

Qk. The only difference to the Kalman filter here is that, as there is no dynamics matrix, one must lin-

earize the system dynamics around the latest available state estimate. To achieve this, the Jacobian of

the state transition function is computed and used to update the error covariance matrix. Mathematically,

the prediction step can be formulated as

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk

(4.2)
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where Fk is the Jacobian of the state transition function computed using the latest available state esti-

mate and system input. Formally,

Fk =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk−1

. (4.3)

The correction step is also very similar to that found on the Kalman filter, but, again, using some

linearization procedures. The algorithm for this step can be stated as



Sk = HkPk|k−1H
T
k + Rk

Kk = Pk|k−1H
T
k S−1k

Pk|k = (I−KkHk)Pk|k−1

x̂k|k = x̂k|k−1 + Kk(yk − h(x̂k|k−1)).

. (4.4)

Here, the Sk matrix, commonly known as residual covariance, is computed accounting for the observa-

tion noise covariance matrix, Rk, and making use of the observation model Jacobian, Hk, evaluated at

the predicted state estimate, x̂k|k−1. Formally,

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

. (4.5)

Using this linearization, the Kalman gain, Kk, and the error covariance matrix, Pk|k, can be determined

in the same way as for the LKF. Finally, the new state estimate, x̂k|k, assumes the quantification of the

measurement residual, yk − h(x̂k|k−1), where yk is the observed output of the system at time instant k

and h(x̂k|k−1) is the propagation of the predicted state through the observation function.

4.2 Application

Having shown the basis of the EKF, its application to the system (2.4) is now described.

The state, xk =
[
p(k)T vs(k)

]T
, follows the linear transformation

xk =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

xk−1 + uk−1. (4.6)

Having this in mind, the determination of Fk becomes a trivial process as it is directly equal to the 4× 4

identity matrix, i.e.,

Fk = I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,∀k. (4.7)
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Regarding the observation model, it is described by the nonlinear function

h(xk) = vs(k) ‖ s− p(k) ‖, (4.8)

which, after applying the derivative operator, as stated in (4.5), leads to the matrix

Hk =



−vsk|k−1

2sx−2px
k|k−1

2
√

(sx−px
k|k−1

)2+(sy−py
k|k−1

)2+(sz−pz
k|k−1

)2

−vsk|k−1

2sy−2py
k|k−1

2
√

(sx−px
k|k−1

)2+(sy−py
k|k−1

)2+(sz−pz
k|k−1

)2

−vsk|k−1

2sz−2pz
k|k−1

2
√

(sx−px
k|k−1

)2+(sy−py
k|k−1

)2+(sz−pz
k|k−1

)2√
(sx − pxk|k−1)2 + (sy − pyk|k−1)2 + (sz − pzk|k−1)2



T

. (4.9)

Having identified both matrices Fk and Hk, the EKF can be implemented. Notice that the initial con-

ditions x̂0 and P0, as well as the assumed covariance for both the process noise, Qk, and observation

noise, Rk, will determine the performance of this solution. In parallel to what was done in Chapter 3,

both noise covariance matrices were determined through the optimization process described in Chapter

6.

As a final consideration about the EKF and taking into account its foundation shown in this section,

one can easily infer that using a simple linearization to solve, in this case, a highly nonlinear problem

might not lead to the best possible results. In fact, the EKF works by iteratively propagating state predic-

tions, which correspond to the mean of a Gaussian random variable (GRV), through a nonlinear model

and computing error covariances by linearizing the system dynamics. The problem with propagating

only the mean of the GRV through the nonlinear function is that, unlike with linear systems, nonlineari-

ties will most likely alter the distribution of the propagated variable to something different than a Gaussian

distribution. The EKF does not take this into account.

Having this in mind, the following chapter addresses another solution, which provides a different view

on nonlinear state estimation, the unscented Kalman filter.
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Chapter 5

Unscented Kalman Filter

As stated at the end of the previous chapter, the unscented Kalman filter addresses system nonlin-

earities in a more thought-out way, as it makes use of the unscented transform (UT).

The UT relies on the determination of a finite set of points in a Gaussian distribution, sufficient to

characterize it in terms of mean and covariance. Propagating these points through a nonlinear system

yields a better comprehension of its dynamics. In fact, the UT is able to fully determine the mean and

covariance of the posteriori random variable propagated through a nonlinear function up to the third order

Taylor series expansion [25]. Oppositely, the EKF can only determine the true mean and covariance up

to the first order.

5.1 Theoretical foundation

Regarding the UT, as first introduced in [26], consider f : Rn → Rm, a nonlinear function. Its input is

the random variable x ∈ Rn, with mean x̄ and covariance Px, and its output another random variable,

y ∈ Rm, such that y = f(x).

To compute the mean and covariance of y, a set of 2n+ 1 points, commonly known as sigma points

(χi), is chosen according to the following rules


χ0 = x̄

χi = x̄ + (
√

(n+ λ)Px)i i = 1, ..., n

χi = x̄− (
√

(n+ λ)Px)i i = n+ 1, ..., 2n+ 1.

(5.1)

The index i after the parenthesis represents the i-th row of the matrix square root, which is usually

obtained via the Cholesky decomposition. The scaling parameter, λ = α2(n + k) − n, controls the filter

performance. A good initial assumption is α = 10−3 and k = 0 [25].

To each of the sigma points correspond two weights, W (m) and W (c). These are later used to obtain

the two pursued parameters, mean and covariance, and can be obtained through
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W

(m)
0 = λ

n+λ

W
(c)
0 = λ

n+λ + (1− α2 + β)

W
(m)
i = W

(c)
i = 1

2(n+λ) i = 1, ..., 2n.

(5.2)

The parameter β is directly related to the type of distribution of the random variable being propagated

through f . Considering Gaussian random variables, β = 2 yields optimal results .

All sigma points are then propagated through the nonlinear function f so that a set of outputs,Υi =

f(χi), is obtained. Finally, the mean and covariance of y can be approximated by

ȳ ≈
∑2n
i=0W

(m)
i Υi

Py ≈
∑2n
i=0W

(c)
i [Υi − ȳ][Υi − ȳ]T .

(5.3)

Having described the UT, its application to state estimation purposes is now shown. In this work, an

augmented state version of the UKF is employed as it is considered to yield better results than the non

augmented version [27].

Consider the augmented state

xak = [xTkwT
k vTk ]T ∈ R(n+n+m), (5.4)

where xk ∈ Rn represents the original non augmented state (as formulated in Section 4.2) and wk ∈ Rn

together with vk ∈ Rm account for the process and observation noises, respectively. Also, consider the

augmented error covariance matrix

Pa
k =


Pk 0 0

0 Qk 0

0 0 Rk

 ∈ R(n+n+m)×(n+n+m), (5.5)

which includes the process noise covariance matrix, Qk ∈ Rn×n, and the observation noise covariance

matrix, Rk ∈ Rm×m. The algorithm starts with the computation of the sigma points using (5.1). Note

that, with state augmentation, the number of sigma points increases from 2n + 1 to 2(n + n + m) + 1.

Each sigma point is composed of 3 parts, the first being related to the original non augmented state and

the other two to the noise variables. This is,

χak = [(χxk)T (χwk )T (χvk)T ]T . (5.6)

Having the sigma points determined, the prediction step starts by propagating their process dynamics

components, (χx) and (χw), together with the system input, uk, through the nonlinear state transition

function f . Then, the mean and covariance of the resulting set of outputs is determined as in (5.3).

Formally,
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χxk|k−1 = f(χxk−1|k−1, χ

w
k−1|k−1, uk−1|k−1)

x̂k|k−1 =
∑2n
i=0W

(m)
i χxi,k|k−1

Pk|k−1 =
∑2n
i=0W

(c)
i [χxi,k|k−1 − x̂k|k−1][χxi,k|k−1 − x̂k|k−1]T .

(5.7)

Then, the correction step begins with the propagation of χxk and χvk through the observation function.

Subsequently, the statistical parameters on the output set are determined as in the prediction step. This

time, however, a crossed covariance matrix, Pxkyk
, relating the predicted state and observation is also

computed. Finally, an “unscented version“ of the Kalman gain, Kk, as well as the new state estimate,

x̂k|k, and its error covariance matrix, Pk|k, are computed as in the EKF. Mathematically,



Υk|k−1 = h(χxk−1|k−1, χ
v
k−1|k−1)

ŷk|k−1 =
∑2n
i=0W

(m)
i Υi,k|k−1

Pỹkỹk
=
∑2n
i=0W

(c)
i [Υx

i,k|k−1 − ŷk|k−1][Υy
i,k|k−1 − ŷk|k−1]T

Pxkyk
=
∑2n
i=0W

(c)
i [χxi,k|k−1 − x̂k|k−1][Υy

i,k|k−1 − ŷk|k−1]T

K = Pxkyk
P−1ỹkỹk

x̂k|k = x̂k|k−1 + K(yk|k − yk|k−1)

Pk|k = Pk|k−1 −KPỹkỹk
KT .

(5.8)

Note that the estimated state, x̂k|k, and covariance matrix, Pk|k, are non augmented variables, mean-

ing that, when starting a new iteration of this filtering solution, they must be used to perform state and

covariance matrix augmentation with (5.4) and (5.5).
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Chapter 6

Bayesian optimization

The Bayesian optimization algorithm is commonly used in situations where a set of parameters con-

trols the performance of a hard-to-evaluate system that can be viewed as a black box. In other words,

a computationally expensive system on which there is close to no intuition on what a change on either

parameter might lead to. This is not completely the case with the problem at hand, since Kalman filters

are not computationally expensive algorithms and, as said in Section 3.3, there is some intuition on how

noise covariance matrices should be modeled. Nevertheless, the greatest advantage of the BO algo-

rithm and the reason why it was selected to perform parameter optimization is that, unlike “brute force“

methods which unintelligently sweep lots of parameter combinations to output the best one, Bayesian

optimization works according to reason. The BO algorithm is capable of iteratively harvest information

from previous parameter combinations and their performance to choose a new set of parameters to test.

This saves computational time by reducing the number of tests needed. Another remark on the Bayesian

optimization algorithm is that it is subject to no human intuition in the sense that it cannot be associated

to the belief of the person performing the optimization, unlike manual procedures normally are.

A more in-depth look into the BO algorithm is given below.

6.1 Algorithm

In short, the BO algorithm is a global minimization algorithm that works by creating a surrogate model

[28], SM , of a scalar function, f(x), being subject to minimization. To create the surrogate model, the

algorithm uses all parameter combinations, x, tested until each new iteration, and their outputs, y = f(x).

This surrogate model is then analyzed through the function, a(x|SM), commonly known as acquisition

function, in order to determine the next point to be tested. To better describe the BO algorithm some

notions on Gaussian processes and acquisition functions are given.

To update the surrogate model, a stochastic process (thus the Bayesian term) known as Gaussian

process is often used. This is defined by two parameters: a mean, m(x), and a kernel, k(x,x′). Re-

garding the kernel function, available literature considers various options, being the Matérn 5/2 kernel

the one chosen for this purpose as it tends to be better suited for BO algorithms [29].
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The maximization of the acquisition function yields the next set of parameters to test in each iteration.

Various acquisition functions are also foreseen in the literature, being the expected-improvement (EI) ac-

quisition function [30] the one chosen for its proven good performance when compared to other methods

[31]. Another good advantage of the EI acquisition function is its explicit control of exploitation versus

exploration of new solutions through a single input parameter. Algorithm 1 sums up the BO process.

Algorithm 1: Bayesian Optimization Algorithm
input : Number of iterations
output: Best parameter set

// Choose random parameter set

x1 ← rand(χ);
// Compute system output and store parameter input and output observation to

OBS

y1 = f(x1);
OBS = {x1, y1};
// Create surrogate model from observations

SM ← OBS;
for i← 2 to Number of iterations do

// Maximize acquisition function to choose new test set

xi = arg max a(x|SM);
// Compute system ouput and append parameter input and output observation to

OBS

yi = f(xi);
OBS = append(OBS, {xi, yi});
// Update the surrogate model

SM ← OBS;
end
return xi corresponding to minimum yi

Regarding the application to Kalman filters, parameter optimization was employed to obtain the noise

covariance matrices Rk and Qk which lead to the best filter convergence rate and steady-state behavior.

Note that, in general, optimizing convergence rate and steady-state behavior at the same time is not

possible. This lead to some compromises between the two performance components when applying

this optimization process to the filter inputs.

The parameter optimization results are expressed in Chapters 8 and 9, where they were used to feed

the three filtering solutions proposed in this thesis.
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Chapter 7

Bayesian Cramér-Rao bound

The Bayesian Cramér-Rao bound is an useful tool employed to evaluate the performance of an es-

timator. It is used in this work to provide a lower bound for the error covariance matrix of an unbiased

estimator designed for a system with linear process, but nonlinear output, and corrupted by additive

white Gaussian noise. Since it also addresses a variety of other nonlinear systems besides the afore-

mentioned ones, the BCRB becomes very important in nonlinear estimation, as optimal solutions are

still a subject of study.

Consider the system x(k + 1) = F(k)x(k) + B(k)u(k) + nx(k)

y(k) = h(x(k)) + ny(k),

(7.1)

where F(k) and B(k) represent the typical process matrices, x(k) is the state vector, u(k) the system

input, and h(x(k)) the nonlinear function that modulates the output y(k). The system is also considered

to be corrupted by additive noise, here represented by nx(k) and ny(k), which both follow a zero-mean

Gaussian distribution with covariance Qx(k) and Qy(k), respectively.

The BCRB, PL(k), is obtained through a recursion similar to that of the EKF, that also resorts to

Jacobian matrices [32]. The major difference to the EKF is that Jacobian matrices are evaluated at the

true state, rather than at the estimates of the state. Formally, the BCRB is

PL(k) = J−1(k), (7.2)

where J(k) follows

J(k + 1) =
[
Qx(k) + F(k)J−1(k)FT (k)

]−1
+ Ex(k+1)

{
H̃T (x(k + 1))Q−1y (k + 1)H̃(x(k + 1))

}
. (7.3)

The second part of this sum accounts for the observations and its impact on the error covariance. It

implies the computation of H̃(x(k+ 1)), the Jacobian of the nonlinear observation function, h, evaluated

at the true state x(k + 1), and the expected value of the product H̃T (x(k + 1))Q−1y (k + 1)H̃(x(k + 1)),

typically computed by means of Monte Carlo simulations. Since this thesis studies the performance of

the filtering solutions along a specific nominal trajectory, x̄(k), Monte Carlo simulations are not needed
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to determine the BCRB and (7.3) can be reduced to

J(k + 1) =
[
Qx(k) + F(k)J−1(k)FT (k)

]−1
+ H̃T (x̄(k + 1))Q−1y (k + 1)H̃(x̄(k + 1)). (7.4)

In order to apply this method to the problem under study, the matrix PL should be initialized with the

initial error covariance matrix used to feed the filter, P0. Also, notice that the system (2.4) can be written

in the form expressed in (7.1), which implies that the matrices F(k) and H(x̄(k+1)) are those computed

in (4.3) and (4.5), respectively. The matrices Qx(k) and Qy(k) should be set with the covariance of the

noise that is assumed to model state and observation transitions. Monte Carlo simulations provide error

standard deviations of each filtering solution, which, in turn, can be compared to the square root of the

diagonal of the BCRB, yielding further insights on the filtering performance.

26



Chapter 8

Simulations

Having provided, in the previous chapters, a basic description of the principles of each adopted so-

lution, Chapter 8 pretends to demonstrate and compare the results obtained by applying said solutions.

Results of each filtering solution were obtained through simulations run in the Matlab™ environment.

First, the simulation configuration is presented. Then, the results obtained for each proposed solution

are shown and discussed. Finally, further comprehension of the filtering performance is achieved by

performing Monte Carlo simulations.

8.1 Configuration

The setup of the simulations consisted in the determination of a trajectory to be followed by the

vehicle as well as the creation of the measurements needed to implement either of the three filters.

8.1.1 Trajectory

The trajectory described by the vehicle was created by determining a set of waypoints in the three-

dimensional space. The aforementioned set was obtained by consecutively adding inertial position

variations to the trajectory already described. In order to avoid valueless results of the filtering solutions,

a rich trajectory, i.e., one without straight lines and lack of changes in direction, was preferred. The

variation of each position component (∆px,∆py,∆pz), in meters, was modeled as


∆px(k) = cos

(
2π
30 kT

)
∆py(k) = cos

(
π
10kT + π

6

)
∆pz(k) = cos

(
2π
45 kT + π

9

)
,

(8.1)

where k ∈ N represents the time step and T the update rate used to compute the position variations.

Assuming new positions are determined at a frequency of 1 Hz, it follows that T = 1s. Each trajectory

was limited to 4000 seconds (approximately one hour). The initial inertial position of the vehicle was

set to the origin of the inertial reference frame, i.e., p̄0 =
[
0 0 0

]T
. A tree-dimensional view of the
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trajectory is presented in Fig. 8.1. Note that the method used to create the trajectory resembles the

Figure 8.1: Vehicle trajectory

first equation of the system dynamics presented in (2.4), where a new position, p(k + 1), is assumed

to be equal to the last one, p(k), plus a variation, u(k). This will become helpful when creating the

measurements and comparing the estimated values with the real trajectory.

8.1.2 Measurements

Recall the discrete-time system that mathematically formulates the navigation problem


p(tk+1) = p(tk) + u(tk)

vs(tk+1) = vs(tk)

r(k) = vs(tk) ‖ s− p(tk) ‖,

(8.2)

where

u(tk) =

∫ tk+1

tk

R(τ)v(τ)dτ. (8.3)

Regarding this formulation, two quantities are needed to implement the estimation processes, the

pseudo-ranges to the transponder, r(k), and the position variation integral, u(tk).

The first quantity was obtained by computing the euclidean distance between the true vehicle po-

sition, p̄(tk), and the position of the fixed beacon, s, and then multiplying it by the coefficient vs(tk).

The latter was initialized with a value of 1.1, and, although it is not expressed in (8.2), its evolution was

assumed to be corrupted by additive zero-mean white Gaussian noise with a standard deviation of 0.01

for BCRB determination purposes. This difference concerns the fact that (8.2) is a deterministic model,

whereas in practice one aims to be able to estimate slowly time-varying parameters. Formally,

r(tk) = vs(tk)
√

(sx − p̄x(tk))2 + (sy − p̄y(tk))2 + (sz − p̄z(tk))2. (8.4)
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This quantity is assumed to be available at a frequency of 1 Hz, the same frequency used to create the

trajectory waypoints.

The position variation integral, u(k), was assumed as equal to the position variations used to deter-

mine the trajectory of the vehicle, ∆p(k). This implies that, with the exception of measurement noise, the

integral would be perfectly determined by the sensors on board the vehicle. Estimation results assuming

the computation of the position variation integral through measured rotation matrices, R(t), and vehicle

velocities, v(t), are later addressed in Chapter 9.

Finally, both measurements were assumed to be corrupted with additive zero-mean white Gaussian

noise with the standard deviations present in Table 8.1. Having generated both the position variations,

u(k), and the pseudo-range measurements, r(k), any of the three filtering solutions can be materialized.

Measure Standard deviation [m]

r(k) 10−2

u(k) 5× 10−2

Table 8.1: Standard deviation of the noise

8.2 Linear Kalman filter

Concerning the LKF, the initial estimation parameters x̂0 and P0 were arbitrarily chosen to exemplify

the goodness of the solution. Furthermore, noise covariance matrices, Qk and Rk , were obtained via

the BO algorithm presented in Chapter 6. All the parameters, except for the initial state estimate, are

portrayed in Table 8.2.

Parameter Value

P0 I5

Qk diag(0.20655I3, 6.4659× 10−5, 0.87563)

Rk 0.5332

Table 8.2: LKF parameters

Two initial state estimate vectors, x̂0 =
[
0 6 8 1.0 5

]T
and x̂0 =

[
100 141.42 141.42 1.0 100

]T
,

were used to feed the filter. The first corresponds to an initial estimate where the norm of the position

of the vehicle is incorrect by 10 meters, the sound speed multiplicative factor by 0.1, and the range by 5

meters. The second vector ”pushes” the initial guess even farther away from the true state by having the

position of the vehicle misjudged by approximately 200 meters and range measurement by 100 meters,

while keeping the same speed of sound multiplicative coefficient. The initial convergence of the position

and speed of sound coefficient errors, as well as steady-state performance of the LKF are shown in

Figures 8.2 and 8.3. As can be seen, the novel solution is able to lead, in both cases, the estimation

errors to zero quite rapidly, while showing a good steady-state performance, with the norm of position

error being consistently below 0.5 meters. Due to space limitations, no more results regarding even
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higher initial condition errors are shown. Nevertheless, it was observed that, for the noise properties

assumed and within the considered simulation length, error convergence was guaranteed up to initial

absolute position errors of more than 1000Km.

Figure 8.2: LKF state estimation error with low initial error

Figure 8.3: LKF state estimation error with high initial error
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8.3 Extended Kalman filter

Similarly to what was done in the previous section, two initial conditions were used to feed the EKF.

The tuning of the parameters was also performed resorting to the BO algorithm, being the results of this

process shown in Table 8.3, along with the initial error covariance matrix.

Parameter Value

P0 I4

Qk diag(0.98339I3, 0.00015631)

Rk 0.99992

Table 8.3: EKF parameters

Figures 8.4 and 8.5 show two distinct results of the EKF. In the first set of results, the initial state

estimate was set to x̂0 =
[
0 6 8 1.0

]T
. This represents an initial error of 10 meters in terms of

position estimate and 0.1 in terms of the unknown coefficient estimate. As can be inferred, these initial

conditions lead to a result fairly similar to that of the LKF, since both initial convergence and steady-state

performance are comparable. Oppositely, a divergence in the state estimation process can be found in

the second set of figures. This was a result of changing the norm of the initial position error to 30 meters,

while maintaining the speed of sound multiplicative coefficient error at 0.1. The initial assumption that

lead to the diverging result was x̂0 =
[
20 20 10 1.0

]T
.

As demonstrated in this section, the EKF is a valid solution to solve the state estimation required

for the navigation problem, since it yields converging results, although these can only be obtained when

setting the initial state estimate close to the true initial state. Therefore, the EKF fails to provide global

convergence guarantees.

8.4 Unscented Kalman filter

The results of state estimation performed by the UKF are shown in this section. Similarly to what

was done for the LKF and the EKF, the process and measurement noise covariance matrices were

determined resorting to the Bayesian optimization process. The parameters used to feed the UKF are

presented in Table 8.4.

Parameter Value

P0 I4

Qk diag(0.032846I3, 0.0052031)

Rk 0.98731

α 0.001

k 0

β 2

Table 8.4: UKF parameters

As in the previous section, two sets of figures represent two distinct results obtained when using

31



Figure 8.4: EKF state estimation error convergence

Figure 8.5: EKF state estimation error divergence

the UKF. Firstly, the initial condition which ultimately lead to diverging state estimate errors when using

the EKF, x̂0 =
[
20 20 10 1.0

]T
, now results in a valid output as depicted in Fig. 8.6. This confirms

that the UKF exhibits better performance than the EKF. Notice, however, that the transients take longer,

increasing by a factor of ten when compared to the transients of the EKF. Secondly, Fig. 8.7 shows the

results obtained after simulating the filter with the initial condition x̂0 =
[
100 141.42 141.42 1.0

]T
. This

time, although the UKF manages to attain error convergence, this happens at a very slow rate. In fact,
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convergence was only achieved after extending the simulation length to 100000 seconds (approximately

27 hours). Although this result does not depict a diverging estimation process, it shows that the UKF is

rendered useless for some initial filter conditions.

To sum up, the UKF, like the EKF, is able to obtain valid estimation results, but lacks the capability to

offer, in an acceptable time span, convergence guarantees for all initial conditions.

Figure 8.6: UKF state estimation error convergence

Figure 8.7: UKF state estimation error slow convergence
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8.5 Monte Carlo Simulations

To better determine the performance of the filtering solutions, Monte Carlo simulations were per-

formed. This method is useful to detect possible filter bias. Also, Monte Carlo simulations allow for the

determination of error standard deviations which, when compared to the BCRB, grant further insights of

filter performance.

Each simulation comprised its own randomly generated noise signal and initial state, the later being

portrayed by a Gaussian distribution centered about the true initial state and with covariance equal to the

initial error covariance of the filter, P0. Covariance matrices used for each Kalman filter are expressed

in Table 8.5. Note, in particular, that the variation allowed for the initial unknown coefficient, σ2
vS = 1, is

LKF EKF UKF

Error Covariance I5 I4 I4

Table 8.5: Initial state error covariance in the Monte Carlo simulations

a very liberal one. This makes for a very broad-scenario of initial vs conditions when performing Monte

Carlo simulations. A total of 1000 runs of each filtering process were performed.

The evolution of the mean estimation error of each state when using all three solutions is shown in

Figures 8.8, 8.9, and 8.10. Further analysis of the mean error was performed by computing its steady-

Figure 8.8: LKF Monte Carlo estimation average error

state (t > 500s) average. Results are shown in Table 8.6. All three filters show some bias, especially in

the third position component, pz, and in the speed of sound multiplicative coefficient, vs.

Finally, the standard deviations of the estimation errors were determined and compared to the BCRB.

Fig. 8.11 shows the evolution of the standard deviations over time, focusing both on transient and steady-
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Figure 8.9: EKF Monte Carlo estimation average error

Figure 8.10: UKF Monte Carlo estimation average error

Filter px[m] py[m] pz[m] vs

LKF −0.0072 −0.0035 0.0133 1.9× 10−3

EKF −0.0020 0.0029 0.0024 4.5× 10−4

UKF −0.0266 −0.0072 0.0131 1.51× 10−2

Table 8.6: Monte Carlo steady-state estimation average error
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Figure 8.11: Monte Carlo standard deviation of the estimation error

state performance. Notice that the evolution, over time, of each curve demonstrates a certain periodicity.

This is due to the fact that the trajectory used to compute these simulations also has a periodical nature,

as stated before. The ”valleys” of the curves, where the standard deviations decrease considerably,

are also deeply related to shape of the trajectory in the sense that, in those time intervals, the inertial

variations of the position of the vehicle are more pronounced affecting the observability of the system. It

is clear that all filters perform fairly close to the lower bound provided by the BCRB. Going into further

detail, it can be seen that the EKF tends to consistently over-perform the BCRB. Also, for the third
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position component, pz, and for vs, the standard deviation of the LKF is often below the BCRB. The

same conclusions can be drawn from Table 8.7, where steady-state error standard deviations appear

averaged. These odd observations are explained by the biased nature of the filters. Since the BCRB

only sets a lower limit on the error standard deviations for unbiased estimators, a biased estimator is

allowed to achieve such results.

Filter px[m] py[m] pz[m] vs

LKF 0.2864 0.2595 0.1796 0.0088

EKF 0.1992 0.1842 0.1091 0.0065

UKF 0.2908 0.2503 0.2083 0.0189

BCRB 0.2392 0.2165 0.1757 0.0173

Table 8.7: Monte Carlo steady-state averaged standard deviation of the estimation error
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Chapter 9

Experiments

Experiments were performed to further test the filtering solutions presented throughout this work.

These were carried out at the Institute for Systems and Robotics’ installations, and consisted of a drone

autonomously describing a trajectory inside the flight arena depicted, with the chosen inertial frame of

reference, in Fig. 9.1. Throughout the length of the experiment, flight measurements were acquired for

a posteriori analysis. The configuration of the experiment, measurement acquisition, and results are

presented in the following sections.

Figure 9.1: Test arena
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9.1 Configuration

The test arena is equipped with a motion capture system (MOCAP) and off-board computers capable

of performing drone position control [33]. The specifics of the aforementioned system are out of the

scope of this work, although it is known that it can establish a link with the drone in order to control its

position to an inputted continuous-time trajectory. As the trajectory presented in Chapter 8 exceeded

arena bounds, it was modified to

p′(t) =


1.6cos

(
2π
30 t
)

2.6cos
(
π
10 t+ π

6

)
1.2 + 0.6cos

(
2π
45 t+ π

9

)
,

 , (9.1)

where t > 0 ∈ R is the continuous variable representative of the time elapsed since the start of the tra-

jectory. The full experiment lasted for approximately five minutes. This included the movement between

the initial position, set by hand close to the center of the reference frame, and p′(0), and that between

the final point of p′(t) and the stopping point on the ground. A plot of the trajectory is shown in Fig. 9.2.

Figure 9.2: Experimental trajectory

Two completely independent systems were used to acquire both measurements needed to imple-

ment either of the three filters discussed in the previous chapters. The pseudo-ranges, r(k), were

acquired by an off-the-shelf acoustic ”Indoor Positioning and Navigation System” offered by Marvel-

mind Robotics™ [34]. The basic version of this system consists of four stationary beacons, a moving

transponder (physically equal to the stationary beacon), and a modem to connect all the modules of the

system to a computer. All of these components are shown in Fig. 9.3. Although the aforementioned

system was not originally designed to provide the distance between one stationary beacon and a mov-

ing transponder, it can be programmed to that end. By making use of the C programming language

code distributed by Marvelmind Robotics™ [35], one can set the moving transponder to output the dis-

tance between each of the stationary beacons and itself. Using only one stationary beacon, the moving
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Figure 9.3: Marvelmind™ ”Indoor Positioning and Navigation System” set

transponder outputs the essential range measurements needed to implement the filters. Notice that, as

these measurements can only be obtained via the moving transponder, a connection between it and a

data processor is needed. In order to reduce the complexity of the implemented solution and not have

the transponder connected to the drone, the stationary beacon was embarked on the drone and the mov-

ing transponder was fixed to the arena floor and connected to a computer. Although counter-intuitive,

this solution does not affect the obtained results as only range measurements are being collected from

this system.

Regarding the position variations, u(k), these were obtained through the MOCAP system present in

the arena. Although discrete-time inertial position variations could have been obtained directly from the

MOCAP system, a more realistic approach was implemented. This consisted on both Euler angles and

vehicle inertial velocity, expressed in body coordinates, being acquired in order to compute said position

variations. Notice that, in realistic cases, such as underwater navigation, these quantities are generally

obtained by systems like DVLs and AHRSs. Also, for airborne vehicles, orientation and velocity can be

determined by inertial measurement units and pitot tubes, respectively. The MOCAP system is therefore

mimicking the existence of similar devices embarked on the drone.

A more in-depth look into measurement acquisition and computation is provided in the following

section.

9.2 Measurements

As said before, pseudo-range measurements were acquired by implementing a simple solution based

on an off-the-shelf product. The non embarked beacon was placed on the floor of the arena in the inertial

coordinates s ≈
[
−2.31 −0.10 0.01

]T
[m]. Regarding the update rate of these measurements, this

was set to 1 Hz. Finally, since all data analysis was done after the physical experiments took place, the

system output comprised a .csv file where each row contained the pseudo-range, in meters, followed
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by a timestamp, in milliseconds. An example of the .csv file is shown in Table 9.1. Notice that the

Range [m] Timestamp [ms]

4.847 1892191
4.722 1893189
4.134 1894188
3.245 1896187
1.497 1897185
2.587 1898184
4.349 1899183
3.847 1900181

... ...

Table 9.1: Pseudo-range measurements acquisition system output example.

variation between timestamps is never exactly 1000 milliseconds as it should be. This corresponds to

an unavoidable system limitation, which must be taken into account when analyzing the results. Also,

some range measurements are missing from the output file, as can be seen between the third and

fourth measurements. To tackle this randomly occurring problem, one can take into consideration that

Kalman filters are based on a prediction-correction algorithm. This means that, if there are no range

measurements available in one or more time intervals, then state estimates corresponding to these time

intervals can be computed with the predictive step only, which, in turn, can be done using the inertial

position variation measurements only.

To determine the position variations, u(k), the MOCAP system was used. Having finalized the au-

tonomous trajectory, this system outputs another .csv file, which contains various flight parameters sam-

pled at a frequency of 30 Hz. An example of the output .csv file is presented in Appendix A. Although

more trajectory parameters are measured, only the following were used:

• Velocity (x, y, z), [ms−1]

• Euler angles (ψ, φ, θ), [rad]

• Position (x, y, z), [m].

The set of measurements comprises vehicle inertial velocity, expressed in body-coordinates, and ori-

entation, given in terms of roll (φ), pitch (ψ), and yaw (θ), more commonly known as Euler angles.

Furthermore, the system also outputs the actual position of the drone along the trajectory, which can be

considered as the ground truth. This latter information is of great importance, since it allows to analyze

the filter performance in what concerns the determination of position estimation errors. The position

variations, sampled at a frequency of 1 Hz (to match the pseudo-range measurements frequency), were

computed as given by (2.5). The rotation matrix R(tk) is a function of the Euler angles (ψ,φ,θ), which

can be computed using

R(tk) = R(ψ(tk))R(φ(tk))R(θ(tk)) =
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R(tk) =


cos(ψ(tk)) −sin(ψ(tk)) 0

sin(ψ(tk)) cos(ψ(tk)) 0

0 0 1



cos(φ(tk)) 0 sin(φ(tk))

0 1 0

−sin(φ(tk)) 0 cos(φ(tk))




1 0 0

0 cos(θ(tk)) −sin(θ(tk))

0 sin(θ(tk)) cos(θ(tk))

 .
(9.2)

As both rotation matrices and velocities needed to determine the integral are available in discrete-time

instants, the latter can only be approximated through a sum. To that end, the trapezoidal rule was

employed as described by

u(k) ≈ T+

T−
T+−1∑
n=0

R(tk + nT+)v(tk + nT+) + R(tk + (n+ 1)T+)v(tk + (n+ 1)T+)

2
, (9.3)

where the period T+ corresponds to the frequency at which rotation matrices and vehicle velocities were

obtained, and T− to the pseudo-range measurements update rate. In this case, we have T+ = 1
30Hz

and T− = 1
1Hz .

A very important aspect regarding these experiments has to do with the fact that the MOCAP system

tends to provide flight information very precisely. Accounting for this, and to achieve more realistic

results, zero mean white Gaussian noise with the standard deviations present in Table 9.2 was added to

the Euler angles and velocities acquired by the MOCAP system.

Measure Standard deviation

Roll (φ) 0.03°
Pitch (ψ) 0.03°
Yaw (θ) 0.3°
Velocity 0.01m/s

Table 9.2: Standard deviation of the noise

Another point worth mentioning is the synchronization between the two measurement acquisition

systems. As there was no relation between system time-stamps, synchronization was done manually

with the help of the ground truth values provided by the MOCAP system. Having the true positions of

the drone, the expected distance between it and the stationary beacon fixed in the ground can be de-

termined. Then, by simultaneously plotting both experimental and expected values, a synchronization

process consisting in the attempt of overlapping both lines, as shown in Fig.9.4, provides system syn-

chronization. Although this process might introduce some errors in the final results, it was selected as it

is a simple and expedite way of synchronizing the two independent systems.

9.3 Results

Having acquired the measurements described in the previous section, filtering solutions can be em-

ployed to perform state estimation.
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Figure 9.4: Synchronization process visualization

All three filters were tested using different settings. Each filter was initialized with a position error

on coordinate x. Input parameters of each filter were subject to the optimization process described in

Chapter 6. Table 9.3 summarizes all input parameters. Notice that, besides covariance matrix inputs

LKF EKF UKF

Qk diag(0.2405I3, 0.0021, 0.0125) diag(0.7264I3, 00120) diag(0.8172I3, 0.0020)

Rk 0.6922 0.9982 0.2535

P0 I5 I4 I4

p̂0 − p0

[
100 0 0

]T
[m]

[
10 0 0

]T
[m]

[
10 0 0

]T
[m]

Table 9.3: Experimental filter input parameters

being different for each filter, also the initial state estimate differs from the LKF to both the EKF and UKF,

since too large initial state errors lead to non-converging results in the latter two, as seen in Sections 8.3

and 8.4.

The results of position estimation error are shown in Figures 9.5, 9.6 and 9.7. The better performing

solution is clearly the LKF since, even having started with an initial error an order of magnitude above that

of the competing solutions, it leads to fast estimation convergence while attaining remarkable steady-

state performance, with errors contained within a margin of 50 centimeters. It can also be seen that

the EKF performs worse than the LKF. However, it could be used as a viable way to perform estimation

in situations where there is a good knowledge of the true initial position. Finally, the UKF represents

the worst performing solution since, within the time span of the experience (approx. 5 min), it could not

manage to lead state estimates to their true values. Notice, however, this result is in accordance with

what was concluded on Section 8.4 about the convergence rates of the UKF.

Aiming at the completeness of this experiment, estimates of the speed of sound unknown multiplica-

tive coefficient using the LKF are shown in Fig. 9.8. No error can be computed to evaluate this particular
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Figure 9.5: LKF position estimation error

Figure 9.6: EKF position estimation error

estimate as true speed of sound in the arena is not available; only rough estimates based on tempera-

ture could have been performed. Nevertheless, it is clear that the coefficient estimates tend to a value

of approximately 1.05, thus confirming the expected operation of the filter. To further confirm the proper

functioning of the speed of sound multiplicative coefficient estimation, an artificial multiplicative error of

1.1 was applied to the pseudo-range measurements acquired by the Marvelmind™system. The results

presented in Fig. 9.9 show an approximate 10% increase in the steady-state speed of sound multiplica-
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Figure 9.7: UKF position estimation error

Figure 9.8: LKF sound speed multiplicative coefficient estimation results

tive coefficient estimates in comparison to those obtained without artificial pseudo-range inputs. Hence,

the proper functioning of the LKF is confirmed.
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Figure 9.9: LKF sound speed multiplicative coefficient estimation results with artificial pseudo-range
input
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Chapter 10

Conclusions

In this thesis a new solution is employed to tackle the nonlinear estimation problem of underwater

acoustic navigation with an unknown speed of sound in the medium. This novel solution provides po-

sition and unknown speed of sound multiplicative coefficient estimates with errors that tend rapidly to

zero, while achieving respectable steady-state performance. Its major advantage is the fact that it has

mathematically proven globally exponentially stable error dynamics. This is something that neither one

of the common nonlinear estimation techniques used to compare this approach to, namely the EKF and

the UKF, is able to provide.

A very interesting result is that, even though the system derived to model the navigation problem

did not assume a variable unknown speed of sound multiplicative coefficient, all the filters were able to

accurately estimate it when a slow variation was introduced.

It was also seen, through Monte Carlo simulations, that the average steady-state position and speed

of sound coefficient estimation errors are well condensed within a thin margin. Nevertheless, a small bias

in all three filters was found. Regarding optimal performance, all the solutions showed error standard

deviations close to the lower bound given by the Baeysian Cramér-Rao bound. In fact, due to the biased

nature of the filters, error standard deviations were sometimes bellow the optimal bound provided by the

BCRB.

The experiments carried out in the test arena showed that the new solution can be seen as a viable

method to perform vehicle navigation, even when the initial position of the vehicle is poorly determined.

Also, the experimental results proved that an unknown speed of sound in the propagation medium does

not pose an impediment to the correct work of the proposed solution.

Due to the installation and equipment limitations found when preparing the experimental procedure

of this thesis, the inertial measurements needed to implement the estimation processes could not be

obtained from sensors specifically designed for that purpose, instead, a motion capture system was

used to mimic the existence of these sensors. Also an underwater vehicle had to be substituted by a

drone flying in a test arena, which showed the broad applicability of the solution. With this in mind, further

work on this subject could be done by projecting and executing a new experiment with real underwater

vehicles equipped with inertial measurement units. This configuration would unequivocally demonstrate
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the true potential of the new solution when applied to real-life situations. Although it might be difficult to

achieve, an experimental procedure could also be devised in order to accurately determine the errors

associated with the estimation of the speed of sound multiplicative coefficient.
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Appendix A

MOCAP .csv file example

Timestamp[ms] vx[ms−1] vy[ms−1] vz[ms−1] p̂x[m] p̂y[m] p̂z[m] φ[rad] ψ[rad] θ[rad]
1603131593 -0.6111 -0.2553 -0.2863 2.2503 1.6566 1.4416 0.0984 -0.1644 -3.1240
1603131593 -0.5418 -0.2126 -0.2808 2.2706 1.6635 1.4558 0.0972 -0.1649 -3.1252
1603131593 -0.4906 -0.1751 -0.2747 2.2829 1.6677 1.4653 0.0963 -0.1644 -3.1260
1603131593 -0.4347 -0.1452 -0.2690 2.2966 1.6713 1.4768 0.0953 -0.1653 -3.1271
1603131593 -0.3764 -0.1147 -0.2728 2.3105 1.6747 1.4897 0.0938 -0.1643 -3.1278

... ... ... ... ... ... ... ... ... ..
1603131594 0.2216 0.1404 -0.1095 2.2356 1.5766 1.6386 -0.0106 0.0059 3.1203
1603131594 0.2208 0.1348 -0.1147 2.2278 1.5717 1.6429 -0.0119 0.0072 3.1187
1603131594 0.2114 0.1335 -0.1062 2.2219 1.5682 1.6455 -0.0125 0.0086 3.1171
1603131594 0.2027 0.1220 -0.1052 2.2147 1.5645 1.6476 -0.0126 0.0102 3.1154
1603131594 0.1987 0.1176 -0.0993 2.2074 1.5608 1.6515 -0.0127 0.0114 3.1147

... ... ... ... ... ... ... ... ... ..
1603131595 0.0397 0.0047 -0.0536 2.1098 1.5337 1.6938 0.0038 0.0139 3.1314
1603131595 0.0329 0.0038 -0.0545 2.1088 1.5340 1.6948 0.0040 0.0135 3.1320
1603131595 0.0260 0.0071 -0.0470 2.1077 1.5336 1.6954 0.0049 0.0136 3.1327
1603131595 0.0225 0.0037 -0.0505 2.1072 1.5341 1.6960 0.0050 0.0135 3.1333
1603131595 0.0134 0.0066 -0.0414 2.1064 1.5340 1.6970 0.0052 0.0129 3.1335

Table A.1: MOCAP system output example
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