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Abstract

Object tracking using video is an important tool that has applications in many different areas. In
this work, we focus on tracking fishes, using videos recorded in the tanks of Oceanário de Lisboa, an
aquarium that recreates real-life underwater conditions of different habitats. Having a reliable tracking
system can help automate the monitoring of the tanks and allows the development of more complex
systems like anomalous behaviour detection. We present a system that detects and tracks fish of different
species in two tanks with different characteristics. There are many challenges that complicate this task
like the frequent occlusion of the targets, the presence of schools or high visual similarities between
different individuals. Several state-of-the-art detectors were tested to assess their performance in the
two different tanks and a tracker based on color and position was developed to associate detections
to existing tracks. We evaluate different variants of the system and optimize the parameters for each
environment. New datasets were manually built using one video for each environment.
Keywords: Object tracking, Object detection, Fish, Video

1. Introduction
In order to study the behaviour of known fish
species, it is important to observe them through
long periods of time to identify patterns and reoc-
curring actions. Some of the behaviours that the
fish exhibit may happen more regularly than others
and vary between different species. How fish feed
themselves, how they reproduce or which mecha-
nisms they use to avoid their predators are all im-
portant behaviours that biologists are interested in
studying to better comprehend the aquatic wildlife
ecosystem. There are some difficulties in observ-
ing these animals given that they live underwater,
and sometimes at very low depths, which limits the
time that specialists can spend in direct contact
with them.

Another very important topic related to marine
wildlife is species extinction risk and endanger-
ment. It is important to preserve all species and
their habitats to avoid reaching a point where
species disappear forever, particularly if the cause
of extinction is human. If we combine extinction
with big decreases in population of marine species
we get a phenomenon called marine defaunation.

In this work we focus on video based tracking
of animals captive in tanks that try to replicate the
maritime environment. The recorded videos are
automatically processed and then computer vision
techniques are used to locate and track the fish.
This tracking approach has the benefit of being

able to track every fish that swims in the view field
of the cameras, and is less invasive to the fish
as they can move freely without any attachments.
Oceanário de Lisboa has a public aquarium with
more than 30 tanks and has more than 500 species
of animals and plants from different habitats. It is
important that the biologists continuously observe
and monitor the tanks to make sure all animals
are well and safe, and not showing anomalous be-
haviour. But having that many tanks makes it dif-
ficult to keep track of everything. Having a system
that can automatically keep track of the fish could
be an important tool in the observation task. This
would make the work of specialists more efficient,
since they would not need to spend as much time
observing the tanks.

Problem Scope and Challenges. They two en-
vironments in which the videos were recorded have
different characteristics. The first environment is
the main tank, which consists in a large open
space with different types of fish, from medium
sized to big ones, including sharks, tunas and rays,
among others. Given the large size of the tank,
both in depth, width and length, it is difficult to cap-
ture everything, and also the distance which the
camera is able to capture is relatively short mean-
ing that fish swimming away from the camera will
get lost. The fish present in this tank share a lot of
similarities in their colors, being mainly gray, and
their movement is also slow and without abrupt
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changes in direction. There is also the presence of
very big schools swimming around that can make
the tracking process difficult. The coral reef tank is
a lot smaller and the distance between the glass
and the back of the tank is very short meaning
the fish do not disappear in the distance. The fish
in this tank are small in size and their movement
patterns are less predictable as they change direc-
tions easily. They can also appear to be very quick
given that they are closer to the camera due to the
smaller size of this tank. There is a lot more color
present in this environment, both in the coral reefs
and in the fish.

As already mentioned, these specific environ-
ments present different challenges to tracking.
First, there is the problem of occlusion, that hap-
pens when fish cross paths and momentarily hide
behind other fish/objects. Then, there is the pres-
ence of schools which is heavily linked with the
occlusion problem but can bring other problems in
detecting other fish, as we will see later. Having
a big group of fish swimming very close to each
other is one of the main obstacles for the main
tank. Next, we have the movement of the coral
reefs with the currents, that could be mistaken as
fish moving around. There are other generic prob-
lems of tracking like target rotations and scale vari-
ations or movement unpredictability.

We want to develop a system that tracks fish in-
side tanks. The target fish is manually identified
in a frame and the system must track the fish in
the following frames until it swims out of the field of
view. The tracking system has to be robust in order
to track fish of different sizes, colors, shapes and
also has to be able to handle different tank con-
ditions. Additionally, some of the challenges like
occlusion, light variations, fish swimming at differ-
ent speed and acceleration, changes in apparent
size of the target have to be handled in order to ad-
equately track the chosen target. In this work, we
assume that each tank has a single camera.

Contributions. We develop a simple fish track-
ing system using video and computer vision tech-
niques, that can work with multiple species of fish
and in different types of habitats. First, it can equal-
ize the colors of the underwater frames, if neces-
sary. Next, it is able to detect fish using two dif-
ferent methods that can be used alternatively, one
using background subtraction and the other using
bounding box prediction. Then, it tracks the fish
through data association, by matching each de-
tected object with an existing track after compar-
ing their similarities in position and color distribu-
tion. The tracking mechanism uses three tracking
features that give more robustness to the tracker:
color history, temporary tracks and movement pre-
diction. A simplified system architecture of the pro-

Figure 1: Simplified overview of the proposed system architecture.

posed system is shown in Figure 1.
We also present a comparative study on multiple

state-of-the-art object detection approaches to un-
derstand which one works better in the two consid-
ered underwater scenarios. It includes traditional
background subtraction approaches as well as one
using deep learning.

Finally, two small datasets were manually cre-
ated, one regarding fish detection and the other re-
garding fish trajectories.

1.1. Outline
In Section 2, we review the state of the art ap-
proaches relevant to our problem. Then, in Sec-
tion 3, we present the implementation of the sys-
tem developed, that details all modules of the
pipeline. In Section 4, we explain the evaluation
procedures, the metrics and the datasets used in
each evaluation. Next, in Section 5, we present
the results and then finally in Section 6, we make a
summary of our work and suggest additional steps
that could be implemented in future work.

2. Related Work
In this section, a revision of the state-of-the-art will
be made, divided into three categories: image pre-
processing, object detection and tracking.

Pre-processing techniques might be important
to use in some scenarios where the colors may
change due to specific conditions of the work-
ing environment. This happens because of the
way water absorbs light. Colors with bigger wave-
lengths, like red, are absorbed at shorter depths
than colors with shorter wavelengths, like blue.

Through histogram equalization we can improve
the contrast of the images. There are some
works on color equalization for underwater images.
In [17] is presented a video based system to de-
tect fish. The authors of that work transformed
the color space and apply a histogram equalization
technique called Contrast Limited Adaptive His-
togram Equalization (CLAHE). This approach was
used in a similar context to ours, in underwater
recordings, although in their videos the water was
more blurred. Another approach explained in [14],
named UCM, also tries to enhance the quality of
underwater images. They first make some correc-
tions while using RGB and then again in HSI.

There are two object detection approaches that
we considered relevant: either using background
subtraction (using classical methods or deep learn-
ing) or object detectors based on a neural network.
So, in this section we will review some works in
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those three categories.
There are many background subtraction algo-

rithms using classical methods, like GMM [10] [33]
[37] that tries to model the background using a mix-
ture of Gaussians and then comparing the new
pixel colors with the model created to see if it
is a close representation. KNN [9] [38] instead
uses density estimation to model the background.
Sigma-Delta [21] uses two Σ-∆ filters providing in-
formation about how motion likelihood and color
variance. Then, based on these values classifies
each pixel as foreground/background. ViBE [2]
stores for each pixel multiple colors seen previ-
ously, know as background samples, and uses
those values to compare with new pixel colors.
There are update mechanisms that can propagate
updates to the pixel neighbours. PBAS [13], Lob-
ster [30], PAWCS [31] and SubSENSE [32] used
the same concepts as ViBE and added more fea-
tures to make it more dynamic like using auto-
matic thresholds adjustments. GSOC is another
approach based on background samples but has
no paper associated to it and is included in the
OpenCV contrib package.

There are also some works on background sub-
traction using deep learning. More recently, the
study of Convolutional Neural Networks (CNN) ap-
plied to background subtraction has gained rele-
vance. Instead of the low-level or hand-crafted
features used so far, like the values of the color
or the binary similarity patterns, this technique
learns spatial features automatically through train-
ing. One of the first approaches was [6]. The algo-
rithm is separated into several parts. It is a scene-
specific approach meaning it has to be trained for
each new scenario. A background image estima-
tion is made using the first 150 frames by apply-
ing a temporal median over each pixel. Then,
a scene-specific dataset is generated using pairs
of input and background patches and calculating
their target values through other background sub-
traction algorithms or manual labelling. The au-
thors of [1] also propose an algorithm using CNNs
that can be applied to different scenarios without
retraining. They extract background samples us-
ing SubSENSE algorithm [32] to make an array of
colors corresponding to the background for each
pixel. This array is fixed in length and old sam-
ples are replaced by the more recent ones. To
build the background image, an average of the
values is computed. Then the network is trained
using patches of the frames and the estimated
background. FgSegNet neural network presented
in [20] uses an encoder-decoder approach to seg-
ment the foreground. The encoder outputs feature
maps F that are then fed into a feature pooling
module (FPM) before going into the decoder. In

the FPM, the features F go through multiple dilated
convolutions with increasing dilation rates, where
the resulting features of each convolution are con-
catenated with the original features F before apply-
ing the next convolution. A new feature map F ′ is
obtained by concatenating all the resulting multi-
scale features. At the end, F ′ is used as input
to the decoder that outputs a probability for each
pixel, which is then thresholded to obtain the fore-
ground mask. One interesting aspect of this ap-
proach is that the authors were able to train the
network with a small number of frames.

Besides background subtraction techniques,
there are also deep learning based detectors that
can locate objects and classify them. YoloV3 [27] is
a CNN that is trained to predict object classes and
bounding boxes in an image. It is an improved ver-
sion from the original YoloV1 network [25] and also
YoloV2 [26]. The way YoloV1 approaches object
detection and classification by dividing the image
in a S × S grid. Each cell is responsible for de-
tecting the objects whose centers fall inside them.
YoloV2 [26] was developed to improve the original
approach, regarding localization errors and recall.
The changes include the use of batch normaliza-
tion, a higher resolution classification training for
the last epochs, multi-scale training and a different
model network called Darknet-19 with 19 convo-
lutional layers. Another important difference from
the previous approach is the use of anchor boxes
(or priors) to predict the bounding boxes, inspired
by the anchor boxes in [28]. The Yolov3 allows
for multi-label predictions for each box as some
labels are not mutually exclusive and also makes
predictions at three different scales, which means
there are priors for each scale. This time, three pri-
ors were used per cell in a total of nine across all
scales. Additionally, a new model (Darknet-53) is
used.

Tracking algorithms can be split into two main
groups: single target trackers and multiple object
trackers. One approach to track a single target is
by using correlation filters like the Kernelized Cor-
relation Filter (KCF) proposed in [12]. Using the
properties of the Fourier Domain, circulant matri-
ces and Gaussian kernels, it is possible to com-
pute a very fast correlation filter to identify the tar-
get in the following frame. This is done by train-
ing a target regression using the sample from the
current frame and in the following frame trying to
find the location that better matches the filter cre-
ated. Once the area with the maximum response
is found, a new training is done in order to keep the
target model updated. To deal with the scale varia-
tions, a scale-adaptive KCF was introduced in [19].
A scaling pool S = {t1, ..., tk} with different scale
variations is used and multiple patches of different
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sizes of the current frame are extracted according
to each element in S.

One typical approach in multiple target tracking
is through data association using methods like the
Hungarian Algorithm [18]. Considering that we
have a set T of tracks from the previous frame, and
a set d of detected objects using some kind of ob-
ject detector, one can try to associate each track
Ti to a detected object dj . To do this, we have to
use a similarity measure to compare each object
from the current frame to the ones from the exist-
ing track set of the previous frame. After that, the
Hungarian algorithm is used to maximize the simi-
larity value for each association between the tracks
and the objects. One possible feature to use in the
similarity metric is based on the position of the tar-
get, by using its last known position or alternatively
an estimation of the position of where the target is
believed to be according to past movement. This is
the approach used in [3]. After the objects are de-
tected, a Kalman filter [15] is applied to predict the
position of the previous targets in the current frame.
Kalman filter is an estimator that is commonly used
to predict future positions of the target in a linear
movement. For each object, the position and ve-
locity (vertically and horizontally) are used to make
a prediction and then, after associating the tracks
with the new objects the measured position is used
to update the model. For each existing target, a
bounding box is computed using the predicted po-
sition, and Intersection-over-Union is computed as
a metric of similarity between the bounding boxes
of the detected objects and the bounding boxes of
the current targets to afterwards apply the Hun-
garian algorithm. In [36], an Interactive Multiple
Model (IMM) is used which combines more than
one model to cover different types of trajectories
and conditions. They include a constant velocity
model (CV) for the cases of non-maneuvering mo-
tion, constant acceleration model (CA) and con-
stant turn model (CT) for maneuvering motion.

In [8], the problem of tracking big crowds is ap-
proached. For the targets being tracked, several
candidate locations are sampled and the best lo-
cations are chosen through an objective function.
The first part of the function corresponds to the
appearance of the target. Next comes the tar-
get motion where the authors use a Kalman filter
model to predict the targets locations. The third
component tries to model the motion of the neigh-
bouring targets, clustering the targets into different
groups The fourth component is a spatial proximity
soft constraint which tries to discourage the tracker
from selecting locations that are too close. The last
part is a grouping constraint where groups of peo-
ple with similar movement are formed.

3. Implementation
We want the system to track specific fish, so the
first procedure is the manual initialization of the
tracks for the fish that the user wants to track, al-
lowing selection of multiple targets. The initial-
ization is made by selecting the bounding boxes
around the targets, which are saved together with
the corresponding frame numbers.

Our approach consists of three main compo-
nents working in a pipeline: color equalization, ob-
ject detection and tracking. A frame F t is retrieved
from a video at time t, and first goes through the
color equalization module to possibly be altered in
an attempt to improve the colors displayed. This
module outputs the processed frame F ′t that is
used in the next module of object detection. In the
object detection step, we try to identify where the
objects are present in the frame. The objects are
detected either through background subtraction or
deep learning. With background subtraction, we
are able to retrieve both the mask (pixels inside the
shape corresponding to the object) and the bound-
ing box for the objects, while with deep learning,
we can only get the bounding boxes. Either way,
this module outputs a list of detected objects to be
used later. The final module is related to the track-
ing step. Here, we use the list of detected objects
as well as a list of currently tracked objects and try
to pair a detected object with a track. Since both
the detections and the tracks may not always get
a match with one another, we need a fourth com-
ponent, the track manager, that is responsible for
the creation and deletion of tracks. The track man-
ager also updates the tracks in case of a success-
ful match between an object and a track.

In the following sections, each component is de-
scribed in more detail.

3.1. Color equalization
This module is optional and depends on the envi-
ronment displayed in the video. The colors cap-
tured in the coral reef tank video are clear enough
as everything in that tank is closer to the camera
and is well illuminated, so no color equalization is
needed for that video. The idea behind this module
was to improve the color displayed by the video of
the main tank so it would be easier to later iden-
tify the fish. As this environment is not close to the
surface, the lighting is poor and makes it harder to
detected some of the fish that are far away from
the camera as well as the ones swimming in areas
where their colors are similar to those of the back-
ground. The type of transformation chosen to try
to improve the frames was the one reviewed in the
related work using CLAHE [17]. In that work, the
authors also tried to improve the contrast of under-
water images and it seemed suitable to apply in the
video sequences of our main tank.
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We convert the frame from its original color
space RGB to CIELAB. Next, we apply the CLAHE
operation included in the OpenCV library in the L
channel, that represents the lightness of the color.
Following the work of [17], we used a 16 × 16 grid
with a clip limit of 2. After the transformation, we
convert the frame back to RGB to be used in the
following modules.

3.2. Object Detection
This module is responsible for identifying and locat-
ing fish in a given frame. We included two different
types of approaches in the detection process that
can be used alternatively. The first one is through
background subtraction where the objects are ob-
tained using a segmentation of the predicted fore-
ground pixels. Each pixel is classified individually
and then pixels that are close together form a blob
that is considered to be a fish detection. There are
many background subtraction algorithms that could
be used, so a comparative study was performed
on frames of our videos using different algorithms.
This study, that is presented in the sections ahead,
showed that the best performing algorithm for our
environments was the GSOC, therefore it was the
one chosen to be used in our system. The alterna-
tive to background subtraction is an object detector
using a CNN that is trained to locate the fish. We
use the YoloV3 net that is one of the best object
detectors currently and has showed good results
in other domains.

The implementation of GSOC is available in
OpenCV contrib repository1, and it has no paper
associated to it. It uses a background model that
is built and updated over time which is then com-
pared with new frames from the video to decide
for each pixel if it is in the background or in the
foreground. In this particular approach, the model
is based on color samples, meaning that for each
pixel, a buffer of color samples is stored. The sam-
ple of this model has three important elements: the
color intensity for three channels of RGB, a refer-
ence to the last frame this color was seen on in
that pixel location and how many times it was seen
in the past, also referred to as a hit.

The first step of GSOC is to initialize the back-
ground model. The initialization takes the first
frame and creates, for each pixel position, multi-
ple samples using the color of the corresponding
pixel in that first frame and both the reference to
last frame and the number of hits are set to zero.
The number of background samples stored can be
defined by the user.

Once the model is initialized, we can start the
pixel classification process. First, we compare
each pixel color with the colors from each back-

1https://github.com/opencv/opencv_contrib

ground sample to determine what is the closest
one. This comparison is made using the squared
Euclidean Distance, that computes the distance D
between two colors c1 and c2 as

D(c1, c2) = (c1R−c2R)2+(c1G−c2G)2+(c1B−c2B)2

(1)
Then, we compute the color threshold cthr to de-
cide if it is background or foreground that is given
by

cthr = α ∗M t + β (2)

where α and β are given by the author as 0.01 and
0.0022, respectively, and M t, which is used as an
automatic manager of the threshold value and is
initialized at 0.005, is given by

M t = δM t−1 + (1− δ)Dt (3)

using δ equal to 0.1. If the minimum distance be-
tween the new pixel color and the background sam-
ples stored for that position is higher than cthr, the
pixel is classified as foreground. But even if it is
classified as foreground, there is still a chance that
this color is used to create a new background sam-
ple, with probability Preplace defined by the user.
When a new sample is created, it replaces the
oldest one (the one that has not been seen the
longest). If the minimum distance is lower than
cthr, that position is classified as background. In
that case, the color of the sample that was the most
similar to the new pixel value is updated (average
between the color stored and the new color) as well
as the timestamp of the last hit and the number of
hits. On top of that, there is also the possibility that
this sample that got a match with the new color is
going to replace one of the samples from the neigh-
bours sample set. For this to happen, there is a
probability given by Ppropagation and the number of
hits of the sample has to be higher than the hits
threshold hthr.

The last step of the algorithm is to remove the
noise in the segmentation. A connected compo-
nents algorithm is applied to label the pixels into
groups, where pixels from the segmentation mask
that are connected get the same label. Then we
change the classification of the very small areas.
Then, a Gaussian Blur is applied to the final seg-
mentation mask and the values are thresholded for
final classification. After getting a final segmenta-
tion mask with each pixel classified, we apply again
the connected components algorithm to extract a
list of foreground objects that is used as fish detec-
tions d for the tracking part.

The use of an object detector like YoloV3 results
in a different working flow and a different type of
output. Instead of having a background model that
is initialized and then continuously updated as the
frames are processed, we have a network that is
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trained beforehand using ground truth examples of
real targets (fish in our case). The network used
in this work had already been trained to detect a
single class of objects: fish. There is no distinc-
tion between different species or groups/families.
More information on the network and training can
be found in Section 4. Once the training is done,
we can start running the frames through the net-
work and getting its predictions. As it was a bit
slow and would take too much time to evaluate the
experiments, the bounding box predictions for ev-
ery frame are made previously and saved. Then
for each frame, a list is created with the bounding
boxes and corresponding areas of the frame. This
is where the output can have some differences be-
tween approaches: using GSOC the module out-
puts a list of blobs that can have multiple shapes
and using Yolo the outputs are always rectangular.

3.3. Tracking

Our approach is a multi-target approach instead of
a single-target one, as we create tracks for every
new fish detected in the video instead of only cre-
ating a track for the selected fish. Having tracks
for every fish can help us prevent incorrect associ-
ations, as we have to maximize the association of
all tracks.

The first important element in this module is the
track. A track Tk corresponds to a trajectory of a
detected fish. In this case, a trajectory is the tem-
porally ordered list of frame coordinates of where
the fish has been detected and the corresponding
frame numbers of when those detections occurred.
We want to allow tracking fails for a certain amount
of frames before terminating the track instead of
terminating as soon as the tracking fails, as we
need to account for the detection fails. So, each
track will not have a corresponding detection in ev-
ery frame and will have some jumps along the tra-
jectory. In addition to the position and frame num-
ber, there are other elements stored that are im-
portant to tracking. Each track has a different ID so
we can tell them apart and understand if the asso-
ciations are being successful and consistent over
time. We also store an image of the target and use
it to build an RGB histogram that is used in the as-
sociation step. Then we have a variable indicating
if the track was initialized by the user or not so we
can end the tracking when there are no more ac-
tive tracks T̂ selected by the user. An active track
has an indicator to show that it is still being used for
the tracking. There is also a counter for the num-
ber of consecutive frames in which the track did not
match with any detected object, that will be used to
turn active tracks into inactive ones.

The next component is the track manager. It is
responsible for adding new tracks and update them

over time as well. When there is a new detection
that was not associated in an existing track, a new
track has to be created by the track manager. Ev-
ery time there is a new frame to be tracked, the
track manager looks up in the list of all tracks, the
ones that are still active. After the association be-
tween detected objects and existing tracks, the up-
date step occurs. Every track with a successful
match is updated to include the new bounding box,
build a new histogram for the new image and set
the counter of consecutive fails to 0. For every
detection that that did not match with an existing
track, a new track is initialized. For every existing
track without a match, the consecutive fails counter
is increased. If the counter becomes higher than
the maximum allowed (set to 48 frames), the track
becomes inactive.

Once we have the list of detected objects and
the list of active tracks T̂ , we can progress on the
tracking procedure. To perform the data associa-
tion we need to compute the similarities between
each element of one set with the elements of the
other, obtaining a similarity matrix. There are two
components used to compute the similarity S be-
tween a active track T̂k and a detection dj , color
and position, and is given by

S(T̂k, dj) = Sc(T̂k, dj) + Sp(T̂k, dj) (4)

where Sc is the color similarity and Sp is the posi-
tion similarity. To compute Sc, we use the track’s
RGB histogram H and build one for the detection.
Then we compute the Hellinger distance DH be-
tween the two, that returns a value between 0 and
1, and is given by

DH(HT̂k
, Hdj ) =

√
1− 1√

HT̂k
Hdj

∑
I

HT̂k
(I) ∗Hdj

(I)

(5)
and we use this value to compute Sc

Sc(T̂k, dj) = 1−DH(HT̂k
, Hdj

) (6)

The position similarity is computed as

Sp(T̂k, dj) = 1−

√
(T̂kx

− djx)2 + (T̂ky
− djy )2

Dmax
(7)

where Dmax is equal to 866, which is the approx-
imate maximum possible Euclidean distance be-
tween two pixels in a 720 × 480 frame. We con-
vert the similarity matrix to a cost matrix and apply
the Hungarian algorithm, that optimizes the asso-
ciations between all tracks and detections. Then,
there is a final step where we verify if the associ-
ations should be allowed or not. So, for each pair
of detection and track, we verify if the color or the
distance is not too different, and if it is, we discard
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that pair. The color similarity should be higher than
the color threshold cthr and the distance should be
smaller than distance thresholds dthr. This is what
the baseline of our tracking approach consisted of.
While testing the system and evaluating possible
improvements based on the failures happening on
the validation dataset, three new tracking features
where added in order to try to solve those issues.

Color history. This feature was motivated by
the fact that when fish are close together or even in
front of each other, the detection mask, or bound-
ing box, will contain features from both fish. If the
other fish have different colors, the histograms will
get corrupted and it may prevent the correct asso-
ciation later on, after they are detected separately.
To solve this, instead of only using the last image
to create the histogram, we compute an average
of the histograms allowing us to have some kind of
color history. This average using γ as the weight of
the new histogram is computed according to

Ht
T̂k

= (1− γ) ∗Ht−1
T̂k

+ γ ∗Hdj
(8)

Temporary tracks. We noticed that there were
times when the segmentation was fragmented,
producing more than one bounding box for the
same fish or additional bounding boxes were in-
correctly being predicted in areas around the fish.
In these cases, new tracks will be created for the
extraneous detections and it can prevent correct
associations. To avoid this, we added a tempo-
rary track mechanism. When a track is created
for a new detection, it is initialized as a tempo-
rary track. Next, we make a first application of
the Hungarian algorithm only using the permanent
tracks, and then remake the association step us-
ing the unmatched detections and the temporary
tracks. This way the permanent tracks will have
priority over the temporary ones. Once a tempo-
rary track gets 5 successful matches, it turns into a
permanent track.

Movement prediction. Sometimes fish are not
detected because they go behind other fish or sim-
ply because the detection failed. So it is important
that the track does not use the last known location
for the position similarity, as the fish will eventu-
ally get too far away if there are many consecutive
matching fails. This is where the Kalman Filter can
be used in order to predict the movement of the
fish based on the past positions and predictions.
For each frame, the position of each tracked fish
is predicted. This value is then used in the posi-
tion similarity computations instead of the position
of the last bounding box of the track. Once there is
a successful association, the prediction is updated
to include the position of the new detection. If there
is no associated detection for a track in a certain
frame, there is no update step to the movement

Table 1: Background subtraction dataset
Environment Description Quantity Usage

Main tank Pairs of frames
and segmentations 8 Testing

Coral reef
tank

Pairs of frames
and segmentations 8 Testing

Main tank Pairs of augmented
frames and segmentations 25 CNN training

Coral reef
tank

Pairs of augmented
frames and segmentations 25 CNN training

Table 2: Tracking dataset
Environment Quantity Shortest

trajectory
Longest

trajectory Usage

Main tank 15 152 827 Validation

Coral reef tank 17 58 1687 Validation

Main tank 4 197 385 Testing

Coral reef tank 4 192 264 Testing

prediction, but the Kalman Filter will keep predict-
ing new positions.

4. Evaluation
To test and evaluate our approach, one video for
each of the environments was used. Both videos
were recorded at Oceanário de Lisboa using a
stationary camera positioned outside the tanks,
so there is a glass wall between the camera and
the water. Each environment, which were already
described in Section 1, presented different chal-
lenges

Using those two videos mentioned, two different
datasets were built. The first one, in Table 1, is for
the detection tests and the second one,in Table 2,
was built for the tracking evaluation. Both of them
were manually created.

To evaluate the object detection, we separate
the experiment in two parts: background subtrac-
tion and bounding box prediction. For the back-
ground subtraction, each variant of the test is de-
scribed in Table 3.

Table 3: The different variants of the background subtraction tests using
the testing dataset and in which tanks they are used.

Variant Description Tanks

Single-pass The base variant where each algorithm
is applied to the video once. Both

Two-pass First run build background model,
and in second evaluate. Both

Color
equalization

Verify if color equalization
helps the algorithms. Main tank

To train the NN FgSegNetv2, we follow the same
procedure as the authors [20]. To evaluate object
detector YOLO we compare the outputs with man-
ually labeled bounding boxes. To have some simi-
larities with the previous part of the experiment, the
same eight frames were considered. In these eight
frames of each environment, the fish present in
them were manually selected by drawing a bound-
ing box around it but the selection varied between
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environments. In the coral reef tank, all fish were
selected and in the main tank, the selection was
made carefully, so when comparing the results of
the two tanks, one should take this into account.
The network used was already trained and is avail-
able online 2 as well as the training dataset used.

Then we evaluate the tracking performance.
First, the validation dataset will be used and the
tests will allow us to tune the parameters of the
tracking module as well as understand the influ-
ence of each feature. Each test will consist of one
run per trajectory and the tracker will be initialized
using the first bounding box of the ground-truth tra-
jectories that were manually labeled. We will run
these tests on the validation dataset using two dif-
ferent object detection techniques to tune the pa-
rameters. The variants of the tracking test for each
video is described in Table 4. After that, we will
use the testing dataset to directly compare both
approaches in each environment and get our final
results from there.

Table 4: The different variants of the algorithm to be tested using the
validation dataset for each tannk. In each variant, the corresponding
parameters are tuned.

Variant Description

Baseline Hungarian algorithm using color and position

1 Addition of the color history feature

2 Addition of the temporary tracks feature

3 Addition of the movement prediction feature

5. Results
In this chapter, we will present the results of the ex-
periments described previously, obtained in a com-
puter equipped with Intel Core i7-8750H @ 2.20
GHz CPU and GeForce GTX 1050 Ti GPU.

Background subtraction. In this experiment
we started by testing multiple algorithms in both
environments (main tank and coral reef tank) and
measuring the time it took to process the entire
videos as well as computing the F1-Score for the
selected frames. The results are presented in Fig-
ure 2 for the coral reef tank on the top and for main
tank on the bottom. For the coral reef, the ap-
proach with the best F1-Score was the FgSegNet
with 0.8326 followed by PAWCS, Lobster and Sub-
SENSE. But between all these, there is not one
that can perform above 7 FPS making them very
slow in comparison with the speed of our videos
(24 FPS). Despite not having a requirement to run
the system in real time, we still want it to be as
fast as possible while being very accurate. The
next best algorithm is GSOC scoring 0.6353 at 37
FPS which is a very decent performance. On the
main tank, the results are a bit worse. FgSegNet
is again the best algorithm with 0.6918 of F1-Score

2https://github.com/rocapal/fish_detection
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Figure 2: F1-score testing results for the algorithms in the coral reef tank
on the left and the main tank on the right.

followed by GSOC with 0.5179. Every single algo-
rithm performed better in the coral reef tank than
in the main one. This was expected given that the
main is at more depth causing more blur, there are
schools present and the colors are more similar.
This makes the object subtraction task a lot more
difficult, resulting in worse results.

The results of the two-pass variant and compar-
ison with the single-pass variant are presented in
Figure 3 with the coral reef tank at the top and
the main tank at the bottom. In the coral reef
tank, there was no global evidence of improve-
ment in terms of F1-Score. Still, we were able to
achieve better top performances than what we had
while running only once. The PAWCS was the top
scorer with 0.8220 and GSOC came in second with
0.7414. We have to take into consideration the ex-
tra time that is spent doing an extra pass through
the entire video. In the main tank, there was a clear
indication of improvements while running the video
twice, as all algorithms benefited from it. The best
algorithms were GSOC scoring 0.5354 at 18 FPS
and KNN scoring 0.527 at an impressive speed of
109 FPS. The main tank is still performing worse
than the coral reef tank.

The results of the last variant of this experience
(color equalization on versus off for the main tank)
can be seen in Figure 4. The processing speed
was decreased a bit as it also includes the equal-
ization part. Once again, the best algorithms were
FgSegNet with the best score but low FPS followed
by GSOC.

GSOC Tuning. Overall, GSOC was one of
the best algorithms with a good trade-off between
speed and F1-Score in most of the experiment vari-
ants, for both the main tank and the coral reef one.
Therefore, that was the chosen algorithm to be
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ants for the coral reef tank at the top and for the main tank at the bottom.
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Figure 4: F1-score comparison for the use of color equalization for the
main tank. The variant without equalization used with FgSegNet is the
single-pass variant and the rest of them use the two-pass variant.

used and now follows the tuning of its parameters.
This parameter tuning was performed on the same
testing dataset that was used in the previous tests.
For the coral reef tank, we use the GSOC variant
that runs the video twice. For the main tank, we
go with the variant that applies the color equaliza-
tion and runs the video twice. We studied each
parameter individually, and obtained the following
configurations: the coral reef uses 80 samples per
pixel, 0.005 propagation rate, 0.001 replace rate
and 40 hits threshold; the main tank uses 20 sam-
ples, 0.005 propagation rate, 0.005 replace rate
and 32 hits threshold. The final F1-Score for the
coral reef tank is 0.8721 and for the main tank is
0.5969.

Bounding box prediction. The results of this
experiment are presented in Table 5. In the coral
reef tank there are almost as many good detections
as fish missed by the detector, leading to a lower
Recall (0,5063). In terms of Precision (0,6896), it

Table 5: Performance of YOLO object detector for both environments
Main Coral

reef

TP 36 40

FP 7 18

FN 26 39

Main Coral
reef

Precision 0,8372 0,6896

Recall 0,5806 0,5063

scored higher as there were less detections that
did not correspond to a real fish than good detec-
tions. Overall, most misses corresponded to the
smaller fish that were not detected and also the
ones that were under the coral in an area with
low light and most bad detections were consis-
tently around the same areas of the coral reef. In
the main tank there were even less bad detections
resulting in a high Precision (0.8372) while Re-
call was again low (0.5806). In this scenario, the
very few bad detections were mainly on high ar-
eas where the far away fish and the lights mixed
together.

Now, we present the tracking results using two
different object detection techniques, where we
first tune the parameters using each one and then
compare their final performance using the testing
dataset.

Tracking using GSOC. The results of tracking
in the coral reef tank using GSOC for the validation
dataset are presented in Figure 5, on the top row.
In this tank, the performance was considered to be
good, with good prediction for the majority of the
frames. The best configuration obtained was us-
ing color threshold cthr and distance threshold dthr
set to 30% and 65, respectively, using color history
with weight 20% for the new histogram, temporary
tracks and movement prediction. In the coral reef
tank tank, some of the fish move quickly some-
times so having movement prediction helped the
system recover tracks after failing for some frames,
as the movement kept being predicted and kept
lower distance than the one allowed for an asso-
ciation. The temporary tracks also helped in some
cases were the segmentation was fragmented for
the same fish and prevented a newly created tag
for one of those segments ”stealing” the correct
match for the fish we were following when the seg-
mentation was unified again.

In the main tank, the overall performance of the
system is worse. The results are presented in Fig-
ure 5 on the bottom row. The best configuration ob-
tained was using cthr and dthr set to 20% and 65,
respectively, using color history with weight 20% for
new histogram, temporary tracks and movement
prediction. The addition of the last two features
separately made it worse, but together the results
improved. So, overall the main tank was a lot more
difficult to track and one of the main reasons is the
poor object detection obtained by using the GSOC
background segmentation technique. Also the fish
have a lot more similarities in color, with a few be-
ing different, and they also blend in with the blue
background, which is one of the reasons why the
segmentation performed poorly too. We were still
able to track correctly some of the trajectories.

Tracking using YOLO. The results for the track-
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Figure 5: Precision and Success plots using GSOC for the training
dataset for the different system implementations; top: coral reef tank;
bottom: main tank; left: as a function of location error; right: as a func-
tion of overlap. B - baseline, H - average histogram, T - temporary tracks,
K - kalman filter.

ing using YOLO for the validation dataset are pre-
sented in Figure 6. For the coral reef tank (top row
of the figure), we can immediately see a big de-
cline of the results compared to the background
subtractor GSOC. The best configuration for this
variant was tuning cthr and dthr to 20% and 65, re-
spectively, using color history with weight 20% for
new histogram, temporary tracks and without using
movement prediction. Comparing the overall re-
sults in the validation dataset, it was clearly better
to use the background subtractor GSOC instead of
the object detector YOLO in the coral reef tank.

As for the results for the main tank (bottom row
of same figure), there is a much smaller difference
between using the two types of detection. The con-
figuration for YOLO was using cthr and dthr set
to 30% and 80, respectively, using color history
with weight 90% for new histogram (even though
there were not noticeable improvements), tempo-
rary tracks and without using movement prediction
once again. So, like in the coral reef tank, the sys-
tem performed better when using histogram aver-
ages and temporary tracks but with the movement
prediction turned off, while using Yolo as the object
detection technique.

Tracking: GSOC vs YOLO. This experiment
uses the testing dataset so we can get the final re-
sults and make direct comparison between the use
of both detectors, using the configurations from the
last tests. The final results for the coral reef tank
are laid out in the top row of Figure 7. We can see
that GSOC achieved the best results in the tracks
of this small testing dataset in both metrics. With
YOLO, there was a noticeable decrease in the re-
sults but overall it was still a good performance. For
all 4 tracks of this testing dataset, both versions
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Figure 6: Precision and Success plots using YOLO for the training
dataset in the coral reef tank for the different system implementations;
top: coral reef tank; bottom: main tank; left: as a function of location
error; right: as a function of overlap. B - baseline, H -average histogram,
T - temporary tracks, K - kalman filter.
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Figure 7: Precision and Success plots for the system implementations
with each object detection technique for the testing dataset in the coral
reef tank; top: coral reef tank; bottom: main tank; left: as a function of
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were able to track them from the start to the end,
meaning that the difference in results is probably
caused by more failed detections or failed associ-
ations in some frames along the way by the YOLO
version than by the GSOC version. For the main
tank, the results are shown in the bottom row. The
results in the main tank are worse, like what hap-
pened using the validation dataset. This time the
best tracking was achieved while using YOLO as
object detector. These values can be explained by
the loss of the targets being tracked in both sys-
tem versions. Using YOLO, there were 2 tracks
followed from start to end, 1 track that was lost
near the end and the last one failed around the
end of the first half of the track. As for GSOC, it
also tracked 2 tracks from start to finish, but one
track failed really early on and the other did not get
to half way too.

So, overall, is better to use the background sub-
traction algorithm in cases like the coral reef tank,
where the fish are not always together (but can still
cross paths) and are smaller. As the segmenta-
tion is not dependent on the form of the fish, they
can still be detected in very different shapes and
orientations as long as the detection algorithm can
discriminate the fish’s colors from the background
ones. On the other hand, in environments like the
main tank, with a huge number of fish present,
where they frequently swim close together, it is bet-
ter to use an object detector like YOLO that is ca-
pable of identifying fish separately even if they are
touching each other in the frame space. In terms
of tracking features, all the best versions used his-
togram averaging, that was used as a history of
the recent histograms, and temporary tracks, that
gave less priority to tracks that were recently cre-
ated. As for movement prediction, it was an im-
provement while using background subtraction but
it decreased the performance while using the ob-
ject detector YOLO.

6. Conclusions

In this work, we attempted to solve the problem
of video based tracking applied to fish. There are
many difficulties imposed by the natural conditions
of the marine life such as multiple fish present in
the same area, the camouflage behaviour that the
animals use, a lot of visual similarities between dif-
ferent individuals of the same species and some-
times between different species, that are hard to
be detected by non-specialists. A tracking system
was presented that includes a color equalization
module, a detection module and the tracking mod-
ule. There were used two different detection ap-
proaches. The tracking is done through data asso-
ciation using color and position, with three added
features: color history, temporary tracks and move-

ment prediction. Overall, the results were satisfac-
tory, but there are some limitations to our approach
like the inability to handle the big fish schools swim-
ming around as they make it very hard to track
each individual fish. The detection does not work
well with fish that are very far away or the very
small ones in the coral reef tank so tracking these
is not possible.

In the future, research can be done to improve
the detection module like combining both types of
detection approaches or developing a mechanism
to detect fragmentation in the segmentation of the
fish. For the tracking module, could be also im-
portant to study the integration of CNN features in
similarity matrix computations.
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