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Resumo
Até ao momento a procura por Matéria Escura (ME) tem sido inconclusiva. O uso da asterosismologia

tem vindo a ser explorado para assistir neste esforço. Agindo como uma sonda do interior estelar, a

asterosismologia permite-nos estudar as regiões mais afectadas por ME nas estrelas. Como a ME é

capturada e acumulada no núcleo da estrela, irá produzir maiores efeitos nessa zona, podendo mudar

a sua estrutura.

Nesta dissertação, fazemos uso de modelos de evolução estelar para, pela primeira vez, estudar os

efeitos da ME Assimétrica (MEA) numa estrela subgigante. Por comparação directa com observações

e modelos estelares sem contribuição de ME, estabelecemos a existência de dois regimes que se

apresentam dependendo da intensidade das interacções ME-barião no interior da estrela.

Numa segunda fase do trabalho, descobrimos que modelos com uma secção eficaz de interacção

dependente do spin entre 10−40 e 10−38 cm2 tendem a concordar melhor com os dados observa-

cionais do que modelos sem presença de ME. Estas descobertas foram corroboradas com o uso de

diagnósticos asterosı́smicos relevantes, definidos para uma melhor análise da estrutura do núcleo da

estrela e, portanto, demonstram que a presença de MEA em estrelas deste tipo não é incompatı́vel

com a realidade. Estes limites definidos no espaço de parâmetros de ME complementam os estab-

elecidos por detecção directa. Os métodos apresentados possibilitam a construção de diagramas de

exclusão para a massa das partı́culas de ME e secção eficaz. Espera-se que as próximas missões

asterosı́smicas possam proporcionar dados ainda mais precisos que certamente serão valiosos neste

contexto.
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Abstract

As of now, the search for Dark Matter (DM) has been inconclusive. Asteroseismology has been

pursued in hopes of helping in this endeavour. By acting as a probe into the stellar interior, stellar

oscillations allow us to study the most affected regions by DM in stars. Since DM is captured and

accumulated in a star’s core it will produce greater effects there, possibly changing its structure.

In this work, we make use of stellar evolution models to study for the first time the effects of Asym-

metric DM (ADM) in a subgiant star. By direct comparison with observations and stellar models with no

DM contribution, we establish the existence of two different regimes that are present depending on the

strength of DM-baryon interactions inside the star.

In a second phase of the work, we find that models with a spin-dependent interaction cross section

between 10−40 and 10−38 cm2 tend to better agree with the observational data than models with no DM

presence. These findings were corroborated via the use of relevant asteroseismic diagnostics defined to

better infer on the core’s structure and, thus, showcase that the presence of ADM in stars of this type is

not incompatible with reality. These limits in DM parameter space complement the ones established by

direct detection experiments. The methods displayed in this work open the possibility to draw exclusion

diagrams for DM particle mass and cross section. Future asteroseismic missions are expected to provide

even more precise data which will be valuable in this context.

Keywords

Dark Matter; Asteroseismology; Subgiant Stars; Stellar Modelling
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In the last century, the existence of additional energy density and mass contributions to the con-

tent of the universe has presented itself as one of the biggest conundrums to the scientific community.

Stemming from our lack of knowledge, those contributions are rightfully called Dark Energy and Dark

Matter (DM) (e.g., [1]).

In 1933, Fritz Zwicky inferred the existence of the ”missing matter” by analysing the velocity disper-

sion of galaxies in the Coma Cluster [2], which was greater than it could be if only luminous matter was

present. Later, in the 1970s, Rubin & Ford [3] extended this notion when they found that the rotation

curves of galaxies were not in agreement with their visible matter content: the stars farther from the

galactic centre are moving faster than expected, hinting towards the presence of some form of invisible

matter.

Since those discoveries, the efforts to find this exotic matter have not stopped. More recently, in

2018, the Planck Collaboration [4] released their results on the Lambda Cold Dark Matter (ΛCDM) model

parameters from measurements of the Cosmic Microwave Background (CMB) temperature anisotropies.

They revealed a matter density parameter of Ωm = 0.315 ± 0.007, with the baryonic density Ωbh
2 =

0.0224 ± 0.0001 and dark matter density Ωch
2 = 0.120 ± 0.001, which points towards baryonic matter

having a contribution of about 5% of the density and Cold Dark Matter (CDM) contributing around 26%.

The dark contributions then comprise close to 95% of the total density of the universe. It is then pivotal for

the understanding of the universe that we get to know more about this unknown sector. This work aims

to partake in that endeavour, by using asteroseismology to study DM and its effects on a subgiant star.

From that, our goal is to find new ways to constrain DM properties by applying appropriate asteroseismic

diagnostics.

This chapter marks the introduction to this thesis. Firstly, we cover the state-of-the-art of DM re-

search as well as pertinent historical findings, while also discussing the relevant DM candidates and

the exclusion limits found for those by direct detection experiments. Then, we establish the connection

between stars and the search for DM. We also introduce asteroseismology as a tool to analyse stars

and give a brief overview of past, current and future missions that help in that analysis. Finally, the thesis

goals and outline are presented as well as the original contributions that accompany this dissertation.

1.1 Dark Matter candidates and established limits

DM is often subdivided into three thermal types: hot, warm and cold. The non-relativistic CDM

is regarded as the largest content of total DM since it can account for most relic density and repro-

duces observations in numerical simulations of large scale structures [5, 6]. Besides, this type of DM

is preferred by the properties of the CMB [7]. However, CDM also has its flaws like the apparent lack

of predicted substructures – the so-called missing satellites problem [8, 9] – or it predicting too dense
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regions towards the centre of the largest simulated DM sub-halos when comparing to the brightest ob-

served dwarf satellite galaxies – the too-big-to-fail problem [10, 11]. A straight forward solution is to

consider DM to be mostly cold but also have warm or hot components. Thus, the DM candidate particle

problem spans quite a range of possibilities.

The current belief is that DM interacts weakly with itself and ordinary matter, except through gravity.

The term ”weak” is not only referring to the strength of the interactions but also their nature (the weak

nuclear force). DM candidate research has yielded possibilities within more than 30 orders of magnitude

in DM particle mass (mχ) and about 40 in DM-nucleon interaction cross section (σχn). Figure 1.1

showcases this wide range of prospects, by plotting the most relevant candidates in DM parameter

space, with colour coding for hot, warm and cold DM as red, pink and blue, respectively. It is noticeable

that there is a heavily populated region holding most of the candidates between masses 10−9 and 106

GeV and cross section below 101 pb (10−35 cm2).

Figure 1.1: DM candidates in parameter space (mχ, σ), taken from Baer et al. [12].

Recent reviews and studies (see, e.g., [1, 7, 13, 14]) discuss this wide array of possible candidates

and focus on a particular type of particles which stand out as one of the primary choices: the Weakly
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Interactive Massive Particle (WIMP) [15]. WIMP production is mostly explained by the freeze-out mech-

anism where DM particles decoupled from the early hot Universe plasma by freezing out of equilibrium

due to the expansion and cooling of the Universe. While still in equilibrium with standard particles, DM

particle production from annihilation balanced each other out. These are particularly favoured when

compared to other possibilities due to their appearance in many theoretically well-motivated models.

Besides, WIMPs are a promising target for direct detection experiments since their expected detection

rates fall on the current (and future) detectors’ spectrum (e.g., [16, 17]) and so they are naturally more

interesting by being testable by experiment.

Naturally, many of these experiments have been held in the hope of finding these elusive particles

(see e.g., [18, 19] and references therein). Despite no detection yet being confirmed (e.g., [20]), a

vast number of constraints on the mass and cross section of interactions of WIMPs with baryons have

been set [21]. These interactions are usually treated in two separate components: spin-dependent

(SD), σSD, and spin-independent (SI), σSI [22]. For WIMP masses around mχ ' 5 GeV, recent upper

limiting constraints on σSD (WIMP-proton interactions) have been placed at slightly below 10−37 cm2 by

PICASSO [23] and at around 10−39 cm2 by PICO-60 [24]. The XENON-100 experiment [25] placed a

limit for σSD at ∼ 2.5× 10−36 cm2 for mχ ∼ 9 GeV, while LUX [26] reported an exclusion limit around σSD

= 10−36 cm2 at mχ = 5 GeV. For σSI (WIMP-nucleon interactions) the upper limits were found to be at

around 5 × 10−41 cm2 (from both PICASSO and PICO-60). Figure 1.2 displays these results and other

relevant ones in what is the state-of-the-art of WIMP direct detection experiments.

Recently, the term WIMP has branched out into somewhat different definitions. Historically, WIMPs

require a non-negligible self-annihilation cross section to produce, via a thermal mechanism, the correct

abundance of dark matter measured today. However, much like baryons in baryogenesis, it has been

hypothesised that a relic asymmetry may have been produced by parent WIMPs in a process often called

darkogenesis (e.g., [27]). Succinctly, it is possible to construct a minimal weakly coupled dark sector

which generates a matter-antimatter asymmetry that does not disagree with transfers of asymmetry to

the standard model sector [28]. Moreover, this Asymmetric Dark Matter (ADM) scenario can be obtained

by assuming that one component of the DM relic density from freeze-out is accompanied by one which

is set by an initial asymmetry between DM and their anti-particles [29, 30]. Therefore, asymmetric

WIMPs, or WIMPs in an ADM scenario, although not used historically, is a widely employed term for

ADM particles that comply with all the WIMP requirements except the symmetry. In this work we will

consider this type of matter and formalism, hereby referencing the objects of our study as ADM particles.

In the ADM framework, the DM and anti-DM densities are unbalanced and make the present-day DM

self-annihilation negligible. This choice of framework is mainly interesting in the standpoint of the DM

influence on stars: since DM self-annihilation does not occur, the number of DM particles inside a star

will naturally be larger than it would be otherwise, making the star more sensible to its effects, which

4



Figure 1.2: Direct detection experiments’ latest results, taken from Schumann [20]. Top: Spin-independent WIMP-
nucleon cross sections. Bottom: Spin-dependent coupling in WIMP-proton interactions.
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allows for a better study of DM phenomena.

1.2 Stars as Dark Matter laboratories

Large astronomical bodies are now viewed as valuable DM laboratories since, if existent, DM par-

ticles are gravitationally attracted and captured by those bodies if their velocity can decrease to below

the escape velocity by scattering off of the body’s matter (e.g., [31]). As seen before, in the case of

WIMPs, DM particles interact (even if feebly) with baryonic matter, thus new or amplified phenomena

are expected to appear in those bodies. In the specific case of stars, DM particles will interact stochas-

tically with the plasma, transferring energy from hotter regions to colder ones (from the core outwards).

Analogous to the capture, the reverse process may also occur: evaporation. In this case, particles that

were already trapped inside the star gain energy from scattering off of the local particles, such that they

escape the gravitational pull. Depending on the theoretical framework, DM annihilation may also occur

in the stellar core. Naturally, these three processes – capture, evaporation and annihilation – govern

the rate of change of the number of DM particles in a star. Since our work is exploring the ADM sce-

nario, annihilation will be neglected, leaving us with the remaining two processes. However, it has been

found that, for sun-like stars, the DM mass above which evaporation is also negligible is close to 3.3

GeV (e.g., [32, 33]). Thus, in some specific regimes it would be acceptable to consider capture as the

sole process that dictates accumulation of DM particles inside a star. Later on in this document these

phenomena will be delved into with more detail.

It is now clear that analysing stars can help in bringing conclusions to the DM field. This analysis can

range from observational to stellar modelling or a combination of the two. This field of study has been

growing and, particularly for stars, these endeavours have ranged from the study of solar models affected

by DM (e.g., [34]) to asteroseismic analysis (e.g., [35–37]) also including neutrino flux constraints (e.g.,

[38, 39]). The results have been exciting, with distinct and plausible processes happening inside stars

that can be explained by the presence of DM particles.

However, using stars and stellar models as an object of study of DM also has its shortcomings,

which are mostly inherited from standard stellar modelling. A notable example among these is the

so-called solar composition problem or solar abundance problem. Standard solar models using the

most recent photospheric abundances (AGSS09 [40]) as inputs present a contradictory prediction of

the Sun’s internal structure when compared to high-precision results from helioseismology (e.g., [41,

42]). This discrepancy between predictions coming from spectroscopy and helioseismology renders

the determination of stellar properties (such as the sound speed profile) through stellar modelling more

problematic and affects not only the modelling of the Sun but also other stars since they rely on solar

inputs for some quantities, like the relative metallicity (Z/X)�. In a recent discussion of this problem,
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Capelo & Lopes [43] have shown that measuring neutrino fluxes from the carbon-nitrogen-oxygen (CNO)

cycle with a precision that could be achieved by the next generation of experiments could help resolve

this issue. While this problem can hinder the ability of using stellar modelling to probe DM properties,

DM itself can also be an answer to the abundance problem since it introduces different physics in the

interior of stars. Particularly, Lopes et al. [44] proposed that the accretion of DM in the Sun’s core could

lead to a better agreement between helioseismic and neutrino data. In a follow up with a more detailed

analysis, Vincent et al. [45] show that the solar abundance problem could be solved by the presence of

a light asymmetric dark matter particle. The solar abundance problem is then both a hindrance and a

motivation to our work. With more precise measurements coming from future spectroscopic missions,

abundance calculations will certainly improve in precision. Missions like the Gaia-ESO survey [46], which

complements the massive Gaia [47] effort by providing high-resolution spectra for more than 100000

stars, are certainly valuable for the study of stellar chemical abundance and will help in debunking this

issue.

Figure 1.3: Relative difference in sound-speed (c) and density (ρ) profiles for 2 solar chemical compositions, taken
from Bergemann & Serenelli [48].

1.3 Asteroseismology as a stellar probing tool

Much alike to what is done on Earth by seismologists, the use of seismic techniques to study stars

has been responsible for much of the current knowledge on their interior. For example, helioseismol-

ogy (asteroseismology applied to our Sun) has delivered remarkable results (see, e.g., Turck-Chièze &

Couvidat [49] and references therein). The amount of observed acoustic modes (more than 8000) and

the precision of their measurement (up to ∼ 10−4%) has enabled many conclusions and inferences on

the inner regions of the Sun. In particular, a detailed picture of rotation in the solar interior has been

achieved by a precise analysis of the oscillation frequencies (e.g., [50, 51]). Additionally, by applying
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inversion techniques it was shown that the solid-body-like profile of the Sun is present down to at least

r ∼ 0.2 R� (e.g., [52]). An extensive review on the topic of asteroseismology is given by Chaplin &

Miglio [53].

Interestingly, asteroseismology has been thoroughly exploited in an attempt to find constraints for the

properties of DM while using stars as laboratories (e.g., [54]). The premise is fairly straightforward: by

analysing oscillation frequencies of stars we can extract valuable information of their interior structure.

This is useful for studies related to DM since, as seen before, these particles accumulate inside the

star and introduce an additional energy transport mechanism. This can naturally lead to changes in the

structure of the star, which can be probed via asteroseismic diagnostics (e.g., [54,55]).

Understandably, observational data is pivotal to improve this analysis. In that front, missions like

CoRoT [56,57], Kepler [58,59] and TESS [60] have made progress in obtaining the oscillation frequen-

cies of many main-sequence (MS), subgiant (SG) and red giant (RG) stars with great precision, making

it possible to study the asteroseismology of stars other than the Sun. Taking full advantage of this di-

versity of data, seismic diagnostics can be formulated for several stars in different stages of evolution,

broadening the spectre of DM laboratories.

Future missions are expected to increase the asteroseismic data both in number and precision. With

the primary goal of discovering habitable extra-solar planets, the PLAnetary Transits and Oscillations

of stars (PLATO) mission [61], to be launched in 2026, will extend this effort and enable more precise

studies by the determination of accurate stellar masses, radii, and ages from asteroseismic data. The

oscillation frequency measurements are expected to improve in precision upon those of Kepler while

also extending the catalogue to include brighter stars. Thus, this will enable the study of the effects of

DM on the stellar structure with both greater precision and for a considerably larger number of stars.

These are obviously exciting news for asteroseismic studies and in particular for probing the impact of

DM in stars.

Since stellar oscillations are well documented and understood, many seismic diagnostics have been

defined from an asymptotic standpoint as to study specific regions or phenomena inside the star. Some

of these diagnostics are covered in this work since these can be used to infer the impact of DM, expected

to be more prevalent in the inner core. The general idea to perceive this impact is to model a known

star, usually its whole evolution, and retrieve the oscillation frequencies at the current age. Then the

referred diagnostics can be applied and compared to the ones calculated from the observational data of

the same star. As it might be expected, the choice of framework and diagnostic will heavily impact the

results. As it will be shown, diagnostics weighted towards the stellar core (and thus with less influence

from the outer envelope) are particularly useful for this task.
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1.4 Thesis Objective and Outline

This work focuses on studying, for the first time, the impact of ADM in a SG star. The object of our

study is included in the Kepler Input Catalog (KIC) and is the star KIC 8228742. To study the ADM

impact in it, we use a robust calibration and diagnostic method giving special attention to asteroseismic

diagnostics. These allow us to build DM parameter space sensitivity diagrams and can lead to the setting

of exclusion limits in mχ and σSD.

The structure of this thesis is as follows: Chapter 1 holds the introduction of this work, contextualising

it within the current research status of DM and asteroseismology. Following that, Chapter 2 describes

the theoretical background regarding stellar evolution and sun-like oscillations, converging onto the as-

teroseismology of SG stars, the object of our study. In Chapter 3 we continue the theoretical description

by introducing with detail the asymmetric dark matter interactions happening inside a star and defining

the framework we use.

Chapter 4 presents the new methodology used in this work. The calibration of stellar models is

thoroughly explained and the most suitable asteroseismic diagnostics for the task at hand are chosen.

The results of this work are presented in two separate parts. In Chapter 5 we showcase and discuss

the impact of ADM in KIC 8228742, by calibrating a set of models with and without DM interactions

and comparing both to observations. Chapter 6 contains an asteroseismic analysis of 100 models of

the same star with the objective of mapping in DM parameter space (mχ, σSD) the sensitivity of the

chosen diagnostics to these quantities. Ultimately, it allows us to suggest exclusion limits for the mass

and spin-dependent interaction cross-section of an ADM particle.

Finally, in Chapter 7 we conclude this work by discussing the general picture of the previous chapters

and what these results and methodology could mean for future endeavours.

From the work displayed in this thesis, an article was written in collaboration with José Lopes &

Ilı́dio Lopes and is included in Appendix A. It is currently pending review for publication in the Monthly

Notices of the Royal Astronomical Society, with the title ”On asymmetric dark matter constraints from the

asteroseismology of a subgiant star ”.
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With an increase in spectroscopic and asteroseismic data, stars are now more understood than ever.

For obvious reasons, our extensive knowledge of the Sun has proved valuable in understanding other

stars, from their energy transport processes to the causes of stellar oscillations. These oscillations

are a central part of our work and will be used to classify the performance of stellar models with ADM

interactions taken into account.

This chapter marks the beginning of the theoretical background description. We start by covering the

relevant stages of stellar evolution and then focus on the formalism of asteroseismology.

2.1 Stellar evolution and energy equations

As our work focuses on SG stars, it is crucial to understand what differs that stage of evolution from

others and how a sun-like star reaches that stage.

Initially as massive gaseous clouds, stars are formed when gravitational attraction induces collapse.

These clouds are rich in hydrogen and helium and may have other heavier elements if they belong to

a newer population, like our Sun (e.g., [62]). Succinctly, the collapsing cloud becomes more opaque

and hotter since, through accretion, more material is gathered into it. In this stage, the cloud turns into a

proto-star and, if the necessary pressure and temperature conditions (met if the mass exceeds 0.08 M�)

allow for the ignition of hydrogen fusion in its core, a star is born (e.g., [63]). This new energy production

mechanism will eventually balance the gravitational attraction, creating an hydrostatic equilibrium, and

the star is effectively in the MS phase. In this stage the star will continue hydrogen fusion into helium in

its core.

Even though this fusion is transversal to all stars, the process in which it occurs depends on their

mass. For stars with masses less than or close to the Sun’s, the pp-chain (proton-proton) reaction

dominates the energy production. In this process, four hydrogen nuclei (protons) produce helium through

two branches of reactions, with each pair of two protons fusing into deuterium at first and then fusing

once again with an additional proton to create a helium light isotope (32He). By joining the two branches,

through a fusion of these two isotopes, the final 4
2He appears. For more massive stars, a process called

carbon-nitrogen-oxygen (CNO) cycle takes over. As the name suggests, this mechanism converts H into

He by utilising C, N and O isotopes as catalysts. The energy produced in either one of these processes

is obviously present in the star’s energy equation. Assuming spherical symmetry in a quasi-static star,

the energy equation can be defined as (e.g., [63])

∂l

∂m
= εnuc − εν −

∂u

∂t
+

p

ρ2

∂ρ

∂t
, (2.1)

where l is the net energy per unit time travelling outward a sphere of enclosed mass m, which is related

to the shell radius r by
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∂m

∂r
= 4πr2ρ. (2.2)

εnuc is the nuclear energy rate (energy per unit mass per second), εν is the rate at which neutrinos

take away energy per unit mass through processes not accounted for in nuclear reactions (e.g., weak

interaction processes). As usual, the internal energy change is denoted as δu, p is the pressure and ρ

the density. The time derivative terms may also be rewritten with respect to the entropy of the gas s in a

term often denoted εgr for its relation with gravitational work

εgr = −T ∂s
∂t

= −∂u
∂t

+
P

ρ2

∂ρ

∂t
, (2.3)

such that the energy equation may be defined by 3 distinct components,

∂l

∂m
= εnuc − εν + εgr. (2.4)

One can see that in case of contraction, the shell will release energy and εgr > 0. On the contrary,

εgr < 0 represents expansion and will have a negative contribution to the outflow of energy. It also

possible that εgr = 0, in which we have thermal equilibrium, and energy outflow is dominated by the

two remaining mechanisms. In this formalism, the enclosed mass m and time t are the Lagrangian

independent variables.

The two different MS energy production processes (pp-chain and CNO cycle), which are dependent

on mass and thus temperature, lead to differences in the mechanisms of energy transport. In less

massive stars, the energy produced in the core is transported outwards via radiative diffusion (as is the

case of the Sun) whilst in more massive stars convection is preferred. This is a clear way of distinguishing

the two types of stars. Less massive stars exhibit radiative cores and convective outer layers, while a

more massive star has a convective core and a radiative envelope [62]. In the first case, the temperature

gradient required to carry the luminosity l by radiation is ( [63])

∂T

∂m
= − 3

64π2ac

kl

r4T 3
, (2.5)

with a being the radiation constant, k the opacity and c the speed of light. It is obvious then that the

larger the luminosity l there is to be carried, the larger the temperature gradient is required. However,

there is an upper limit to this since an instability in the gas appears if the temperature gradient is too

high. These instabilities are what leads to convection. To describe energy transport in this case, there

is the need to rely on detailed convection theory which will not be addressed in this work. Nevertheless,

one useful simplified approach is the mixing length theory, a one-dimensional formalism based on rough

estimates. This theory is the standard use in one-dimensional stellar evolution codes, like Modules for
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Experiments in Stellar Astrophysics (MESA) [64–68] which is the backbone of the numerical part of this

thesis and that solves the equations of stellar structure, such as Equations (2.1), (2.2) and (2.5), utilising

different modules to treat various stellar phenomena.

The MS stage reaches an end when hydrogen is exhausted in the stellar core. Once again, mass

dictates what happens next and, since our object of study has a mass around 1.3 M�, we will focus

on the evolutionary path that concerns that case. With the core being deprived of hydrogen and mostly

containing helium, it does not have the necessary temperature and pressure conditions to proceed right

away with helium fusion into heavier elements (like carbon). Instead, hydrogen burning continues in a

shell surrounding the core. Now, the core’s energy production is not sufficient to counter balance the

gravitational pull and it contracts, leading to a release of gravitational energy, which in turn increases

the temperature of the H-burning shell [62]. This naturally incites more nuclear reactions in that region

and rises the global luminosity of the star. From that, the increasing radiation pressure will expand the

star’s envelope and cool it down, decreasing the effective temperature accordingly. Thus, the star is

now moving rightwards in the Hertzsprung-Russell (HR) diagram and populates the so-called subgiant

branch (SGB) (see Figure 2.1: horizontal line after TAMS).

The SG phase is rather short when compared to the length of the MS. The entrance of the star in the

next stage, the red giant branch (RGB) (see Figure 2.1: upwards ascension after the horizontal SGB), is

marked by the formation of a convective region near the surface due to the expansion and cooling of the

envelope. From that, the luminosity increases because helium is still being produced in the hydrogen

shell and being accreted onto the core, increasing its mass. Consequently, temperature and pressure

rise, which once again galvanises the reaction rate in the shell. This cyclic behaviour will eventually

come to a stop when temperature and (degenerative) pressure conditions are sufficient to ignite helium

fusion in the core via the triple-alpha process [62].

All the stages of evolution referred to in this section are represented in the evolutionary track of a

1M� star, modelled in MESA (Figure 2.1). Additional post-subgiant phases are mentioned there but will

not be covered in detail as they are not pivotal for the scope of our work.

2.2 Theory of stellar pulsations

2.2.1 Perturbative analysis of the equations of hydrodynamics

Before diving into the specifics of asteroseismology of SG stars it is important to get an overview of

the theory of stellar oscillations. A detailed description is given by, for example, Aerts et al. [70]. The

formalism relies on treating the oscillations as the result of small perturbations to the equilibrium state,

provided by the general equations of hydrodynamics.

These equations are the continuity equation, the equation of motion or momentum conservation
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Figure 2.1: Evolutionary track of a 1M� sun-like star MESA model in a HR diagram, adapted from Choi et al. [69].
This covers the star’s life, in order, from pre-main sequence (PMS), zero age main sequence (ZAMS),
intermediate age main sequence (IAMS), start of the subgiant branch (SGB) or terminal age main
sequence (TAMS), tip of the red giant branch (RGBTip), zero age core helium burning (ZACHeB),
terminal age core helium burning (TACHeB), thermally pulsating asymptotic giant branch (TPAGB),
post asymptotic giant branch (post-AGB) finally to white dwarf cooling sequence (WDCS) which is not
explicitly represented and corresponds to a decrease in luminosity and temperature starting from the
horizontal line on the top left.

equation, the Poisson equation and the first law of thermodynamics, respectively,

∂ρ

∂t
+∇ · (ρv) = 0, (2.6)

ρ
∂v

∂t
+ ρ(v · ∇v) = −∇p− ρ∇Φ, (2.7)

∇2Φ = 4πGρ, (2.8)
dq

dt
=

dE

dt
− p

ρ2

dρ

dt
, (2.9)

where v is the fluid velocity, Φ is the gravitational potential, dq/dt is the heat gain term, E the

internal energy and the remaining variables retain their usual meaning. For the equation of motion, the

external forces were neglected as is the usual practice in the linear adiabatic formalism. An additional

approximation that can be made is to take Equation (2.9) in this adiabatic regime, in which we assume

no energy transfer between the waves and the gas (e.g. [63,70]). This means that the heating term can
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be overlooked and we end up with (by applying thermodynamic identities)

dp

dt
= Γ1

p

ρ

dρ

dt
, (2.10)

where Γ1 =

(
∂ ln p

∂ ln ρ

)
ad

. (2.11)

Obtaining an analytical (and even numerical) solution for Equations (2.6) to (2.8) and (2.10) is a

complex task and, as such, the preferred workaround is to apply the already mentioned perturbation

analysis. This is valid since the amplitudes of the oscillations are of a much smaller order than that of

the stellar dimension scale. With this approach, we can redefine the scalar quantities as their values

at equilibrium plus a small perturbative contribution. For example, in Lagrangian description, a scalar

quantity φ would be

φ(r + ξ, t) = φ0(r) + δφ(r, t), (2.12)

where ξ is a displacement from the equilibrium configuration and δφ the perturbation to the fluid. Analo-

gously, in a stationary observer’s frame (Eulerian description),

φ(r, t) = φ0(r) + φ′(r, t), (2.13)

with φ′ denoting the perturbation to the fluid in this description. By rearranging Equations (2.12)

and (2.13), we arrive to

δφ = φ′ + ξ · ∇φ0. (2.14)

Moreover, applying the total time derivative to the scalar field one would get

dφ

dt
=
∂φ

∂t
+ v · ∇φ =

∂φ′

∂t
+ v · ∇φ0 =

∂φ′

∂t
+
∂ξ

∂t
· ∇φ0 =

∂δφ

∂t
, (2.15)

where the relation v = ∂ξ
∂t was used, by neglecting higher order terms.

Applying these identities to the relevant scalar quantities of Equations (2.6) to (2.8) and (2.10) and

integrating the first and last equations in time, yields

ρ′ +∇ · (ρ0ξ) = 0, (2.16)

ρ0
∂2ξ

∂t2
= −∇p′ − ρ0∇Φ′ − ρ′∇Φ0, (2.17)

∇2Φ′ = 4πGρ′, (2.18)

p′ + ξ · ∇p0 = Γ1,0
p0

ρ0
(ρ′ + ξ · ∇ρ0). (2.19)
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Furthermore, since, once again, the amplitudes of the oscillations are small when compared to the

dimensions of the stellar body, we can consider a spherical symmetric equilibrium state around which

these oscillations occur. The usual procedure is then to apply separation of variables to the displace-

ment, in its radial and horizontal components, such that

ξ = ξrer + ξh, (2.20)

where ξh = ξθeθ + ξϕeϕ, with ei the unitary vector in the respective direction. Thus, by separating

the angular variables and introducing spherical harmonics, Y m` (θ, ϕ), where the spherical degree ` and

azimuthal order m obey |m| 6 `, we get [70]

ξ =

(
ξr(r)Y

m
` , ξh(r)

∂Y m`
∂θ

, iξh(r)
m

sin θ
Y m`

)
e−iωt, (2.21)

where ξr(r) and ξh(r) are radial dependent amplitude factors and ω is the frequency.

This formalism is analogously applied to the dependent variables and, after algebraic manipulation,

the equations of linear adiabatic stellar oscillation can be written as

dξr
dr

= −
(

2

r
+

1

Γ1p0

dp0

dr

)
ξr +

1

ρ0c2

(
S2
`

ω2
− 1

)
p′ +

`(`+ 1)

ω2r2
Φ′, (2.22)

dp′

dr
= ρ0(ω2 −N2)ξr +

1

Γ1p0

dp0

dr
p′ − ρ0

dΦ′

dr
, (2.23)

1

r2

d

dr

(
r2 dΦ′

dr

)
= 4πG

(
p′

c2
+
ρ0ξr
g
N2

)
+
`(`+ 1)

r2
Φ′, (2.24)

where

c2 =
Γ1p0

ρ0
is the adiabatic sound speed squared, (2.25)

S2
` =

`(`+ 1)c2

r2
is the Lamb frequency (acoustic frequency) squared and (2.26)

N2 = g

(
1

Γ1

d ln p0

dr
− d ln ρ0

dr

)
is the Brunt-Väisäla (buoyancy) frequency squared. (2.27)

As we will see, these two last quantities are relevant to understand the oscillation regime. Equa-

tions (2.22) to (2.24) represent an eigenvalue problem where the variables are ξr, p′ and Φ′ and the

eigenvalues are the squared frequencies ω2 of the modes. As usual, these frequencies will be identified

by the respective n, ` and m of the modes, where n is the radial order. It is possible that n is negative

and this simply means that the mode has |n| nodes in the region between the centre of the star and the

considered radius. The reverse happens for n > 0. Additionally, the azimuthal order m is irrelevant for

the eigenfrequencies in the absence of a magnetic field.

To solve the system, we must provide suitable boundary conditions. Because outside the star there
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are no density perturbations, we can match the exterior vacuum field with the gravitational potential and

its derivative in the interior of the star, such that we get the condition

dΦ′

dr
+
`+ 1

r
Φ′ = 0 as r → R. (2.28)

Additionally, a second constraint comes from the star’s surface. In that region the perturbation in

pressure (δp) must vanish since the star is isolated,

δp = 0 ⇐⇒ p′ + ξr
dp

dr
= 0 as r → R. (2.29)

This is a simplified description since the stellar surface is a lot more complicated, with atmosphere

also playing a role [70,71]. Nevertheless, this approximation is sufficient to understand the formalism in

light of the scope of the work done in this thesis.

The remaining constraints come from the centre of the star. Expanding the equations near r = 0 it

can be shown that

dξr
dr

=
`− 1

r
ξr as r → 0, (2.30)

dδp

dr
=
`

r
δp as r → 0, (2.31)

dδΦ

dr
=
`

r
δΦ as r → 0. (2.32)

Even with these conditions, Equations (2.22) to (2.24) are only solvable for a number of particular

cases.

2.2.2 Asymptotic theory of stellar oscillations

An alternative approach was presented by Cowling [72]. By considering modes with higher n (which

happen to be the most observed ones) and applying an asymptotic analysis, the equations can be

approximated and simplified and can still describe the physical phenomena at a high accuracy.

The first step is to neglect the Eulerian perturbation in the gravitational potential (Φ′) and its derivative

(dΦ′/dr). The argument behind this assumption is that if n and ` are large, then the gravitational potential

perturbation is small in comparison to the density perturbation. The system is then reduced to

dξr
dr

= −
(

2

r
+

1

Γ1p0

dp0

dr

)
ξr +

1

ρ0c2

(
S2
`

ω2
− 1

)
p′, (2.33)

dp′

dr
= ρ0(ω2 −N2)ξr +

1

Γ1p0

dp0

dr
p′. (2.34)

Furthermore, since the eigenfunctions vary more rapidly than the equilibrium quantities when at high
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radial order, we can neglect the derivatives of such quantities. Thus dp0/dr is dropped. Additionally, one

can also drop the first term of Equation (2.33) (−2ξr/r) since high radial order modes penetrate less.

This leaves us with

dξr
dr

=
1

ρ0c2

(
S2
`

ω2
− 1

)
p′, (2.35)

dp′

dr
= ρ0(ω2 −N2)ξr, (2.36)

which, by direct substitution, leads to

d2ξr
dr2

+
ω2

c2

(
1− S2

`

ω2

)(
1− N2

ω2

)
ξr = 0 =⇒ d2ξr

dr2
+K2ξr = 0. (2.37)

It is easily seen that the regime of oscillations will depend on the sign of K2. If K2 > 0 the solutions

are oscillatory, while in the reverse case they are exponential. Turning points are expected at the radii

where K2 = 0. The sign of this quantity is heavily dependent on the Lamb and Brunt-Väisälä frequen-

cies, S` and N , respectively. If ω is simultaneously larger or smaller than both characteristic frequencies

we get the oscillatory case, whereas if ω is in-between S` and N we are in the damping case. The

turning points (the radii where ω = S` or ω = N ) define propagation regions inside the star which are

related to the nature of the mode. As seen before, S` is related to the acoustic regime, whilst N relates to

buoyancy (and thus gravity). In fact, stellar oscillations are standing waves driven by restoring pressure

and/or gravity forces. Acoustic modes, or pressure modes (p-modes), are excited by pressure and, on

the contrary, gravity modes (g-modes) appear through buoyancy. The p-mode and g-mode propagation

regions are schematised in Figure 2.2, for a 1 M� and 7 R� model. Understandably, the black curve

that delimits the blue g-mode region is the line for ω = N while the dashed (dot-dashed) line that bounds

the orange p-mode region is obtained for ω = S1 (ω = S2). It is also visible that for certain values of

frequency we could have mixed modes. These are modes that have both p and g character, depending

on the region of the star. An example of that are the modes within the red band shown in the figure,

which showcase a p-mode behaviour in the convective envelope and g-mode behaviour in the stellar

interior. Pressure modes are trapped between the surface and the turning point (where ω = S`) where

they reflect.

2.3 Asteroseismology of subgiant stars and relevant diagnostics

In this thesis, we want to study the impact of ADM on KIC 8228742 which is expected to be felt in

terms of structural changes and to be more intense in the inner regions of the star. The fact that the

character of the modes is intertwined with the region they propagate in is a great starting point for stellar
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Figure 2.2: Representation of the p and g mode propagation cavities of a red giant star (1 M� and 7 R�) taken
from Christensen-Dalsgaard et al. [73].

probing techniques. Naturally, one can study different depths of the star by analysing the most suitable

modes for that task. Additionally, one can define specific diagnostics that enhance the sensitivity in the

required regions.

The observational data coming from the already mentioned missions (CoRoT, Kepler, TESS, etc.) is

often treated through spectrum analysis, with the use of Fourier transforms. This allows one to directly

obtain the oscillation frequencies (νn,`) and their associated quantities. For instance, the frequency of

maximum power (νmax) is naturally the highest peak in the spectrum. It is specially useful as it obeys

the scaling relation [74]

νmax =
Mstar

M�

(
R�
Rstar

)2(
T�
Teff

)1/2

νmax� (2.38)

and can, thus, bring insights into some of the fundamental parameters of a star.

Despite the experimental advances made by the aforementioned missions, SG stars are more difficult

to find than MS or giant stars since that stage has a relatively shorter lifetime. Another interesting aspect

when studying the asteroseismology of SG stars is the lack of detected non-radial acoustic modes

(` > 0). Usually, SG and RGs’ most visible oscillations are gravity-dominated mixed modes [75,76]: due
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to the rapid core contraction, the g and acoustic p mode trapping cavities are closer to each other when

the stars move off the MS, which results in the coupling of the acoustic and gravity modes. These are the

already mentioned mixed modes, which have p-mode characteristics in the convective stellar envelope

and g-mode characteristics in the dense radiative stellar core. However, our star, KIC 8228742, exhibits

many simple modes (or pure acoustic p-modes) like the sun [77]. This is due to gravity-dominated mixed

modes having lower amplitudes than pressure-dominated ones [78,79], so observing them is not always

easy. As such, we will first direct our focus to the acoustic simple modes.

Since acoustic waves of low ` propagate throughout the entire star, their frequencies encode informa-

tion of the stellar structure, spanning from the star’s core to its surface. Thus, as stated before, obtaining

them is pivotal to understand the underlying physics of the internal structure of a star. Naturally, other

quantities besides νmax can be derived from these frequencies to better probe the stellar structure. The

frequencies of acoustic modes with `� n can be obtained by expanding with the asymptotic approach,

yielding [80]

νn,` = ∆ν(n+ `/2 + ε)− ∆ν2

νn,`
[α(`(`+ 1))− β] , (2.39)

where ε, α and β are small parameters and the large frequency separation ∆ν = 〈∆νn,l〉 is defined

with the help of (e.g., [80,81])

∆νn,` = νn,` − νn−1,` ' 〈∆νn,l〉 =

(
2

∫ R

0

dr

c(r)

)−1

, (2.40)

where R is the total radius of the star and c(r) represents the sound speed profile inside the star.

Thus, ∆νn,` is deeply related to the sound speed profile of a star and is useful as a global measure of

that quantity [82]. From its definition in Equation (2.40) one can see that it can be directly obtained from

the usual spectrum analysis, since it is the difference between peaks with consecutive n and same `.

Additionally, from the noticeable n+`/2 degeneracy in Equation (2.39), a small frequency separation

can also be defined by [80,81]:

δνn,` = νn,` − νn−1,`+2 ' −(4`+ 6)
∆ν

4π2νn,`

∫ R

0

dc

dr

dr

r
, (2.41)

which is particularly sensitive to the thermodynamic conditions of the stellar core.

From this, Roxburgh & Vorontsov [83] defined the useful small to large separation ratio,

r02(n) =
δνn,0
∆νn,1

=
νn,0 − νn−1,2

νn,1 − νn−1,1
. (2.42)

This ratio is particularly interesting for this work since in stars other than the Sun it is difficult to
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observe modes with ` > 2 due to partial cancellation (e.g., [70]). Furthermore, it aims to give better

insights on the stellar core, where the most significant DM influence is expected, since the near-surface

effects that highly affect individual frequency separations nearly cancel by applying this ratio. This means

that r02(n) is independent of the structure of the outer layers of a star and thus works as a probe into

the stellar interior [83].

As discussed before, SG and RG stars often exhibit gravity dominated modes. From these, the

period separation ∆Π` is a useful quantity to extract, since g-modes are uniformly separated in period.

In the asymptotic limit, it is given by [80]

∆Π` =
2π2√
`(`+ 1)

(∫ r2

r1

N
dr

r

)−1

=
Π0√
`(`+ 1)

, (2.43)

where r1 and r2 correspond to the lower and upper boundaries of the g-mode cavity, respectively,

which extends through the radiative region of the star. Since, in SG stars, r1 coincides with the interface

between the inner convective zone (if there is one) and the radiative region, it follows that ∆Π` directly

relates to the size of the convective core.

The link between these diagnostics and the effects of ADM in our star will be clearer with the next

chapter, where we discuss the asymmetric dark matter interactions with a stellar body.
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The previously mentioned asteroseismic diagnostics are relevant since it is our goal to infer on the

impact ADM particles have in stars and then draw conclusions from it. This is because that impact is ex-

pected to be felt structurally, more significantly in the stellar core. We now have the means to probe that

impact but it is pivotal to know what produced it. Thus, a detailed description of the interactions between

these particles and stellar matter is crucial. By modifying evolution codes, like the already mentioned

MESA, we can build stellar models that include these phenomena and that enable the comparison be-

tween models with and without DM along with observations.

This chapter contains the description of the main DM processes happening with and within stars,

like capture and energy transport, and closes with a contextualisation of those phenomena in stellar

evolution codes.

3.1 Accumulation of DM particles in a star

By virtue of being massive, particles in the dark matter halo can be attracted by a star. If they

become gravitationally bound to it then they are considered successfully captured and will contribute to

the buildup of large concentrations of particles within the centre of the star. The capture process is the

main driver of the accumulation of DM particles in stars. Besides that, one has to account for processes

that decrease the number of trapped particles. The most relevant of these are the self-annihilation and

evaporation. The expression that regulates the number of trapped DM particles Nχ is then

dNχ
dt

= C − ENχ −AN2
χ, (3.1)

where C is the capture rate due to the scattering of DM particles off nucleons, E is the evaporation

rate and A the self-annihilation rate (annihilation cross section times the relative DM velocity per unit

volume). However, Equation (3.1) is only valid in a framework of self-conjugate DM (the historical con-

cept of WIMPs, see Section 1.1) and, in our ADM scenario, self-annihilation is negligible. Furthermore,

evaporation—the inverse process of capture in which DM particles that were already trapped inside the

star scatter to velocities larger than the local escape velocity— can also be safely neglected since it has

been found that, for sun-like stars, the DM mass above which evaporation is negligible is close to 3.3

GeV (e.g., [32,33]), and in this work we explore larger mass values of ADM particles (mχ > 4).

Then, in our ADM case, these assumptions reduce Equation (3.1) to

dNχ
dt

= C. (3.2)

As stated before, the process of capture consists in the gravitational trapping of DM particles from the

galactic halo by losing enough kinetic energy when scattering off stellar matter. It is then mainly defined
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by the DM mass (mχ), the DM–nucleon cross-section (σχn), the gravitational potential of the star (φ)

and the local DM density (ρχ). In our case, KIC 8228742 is just 0.17 kpc away from the Sun, therefore

we assume a local DM density corresponding to what is found in the solar neighbourhood, ρχ = 0.38

GeV/cm3 [84]. The capture rate formalism adopted in this work is the one derived by Gould [85] and it is

fairly complex in its standard form. A simplified form, which helps giving clearer insight into the process,

was given by Zentner [86] for DM capture in the Sun,

Cn '
√

3

2

ρχ
mχ

σχnvesc(R�)
vesc(R�)

v
fn

M�
mn
〈φ̂n〉

erf(η)

η
, (3.3)

where Cn is the capture rate calculated for the nuclear species n (C =
∑
n Cn), vesc(R�) is the

escape speed from the surface of the star, v is the local three-dimensional velocity dispersion of DM

particles in the halo, fn is the fraction of the solar mass in nucleus n such that fn
M�
mn

is the number of

that nuclei, 〈φ̂n〉 is the average (dimensionless) potential experienced by those nuclei and, finally, η is a

dimensionless speed that defines the Sun’s movement through the galactic halo: η =
√

3/2v�/v, with

v� being the speed of the star relative to the DM halo. By examining Equation (3.3), one sees that overall

the capture rate scales as C ∝ m−1
χ . This is coherent because heavier DM particles are expected to

require more interactions to slow their speed down to less than the escape velocity.

One interesting factor is the treatment of the DM-nucleon cross-section. In most model-independent

DM studies it is usual to assume the already mentioned spin-independent σSI and spin-dependent σSD

effective constant cross sections to describe the ADM particles’ interactions with the baryons in the

stellar plasma. However, in this work we are mainly interested in spin-dependent scatterings, effectively

setting σSD � σSI → 0. This, in the case of solar-like stars, essentially means that the relevant nuclear

species for scattering with DM particles are mostly reduced to hydrogen.

3.2 Energy transport via ADM interactions with stellar matter

After accumulating and thermalising within the star, captured DM particles interact with baryons in

the stellar interior. In scatterings such as these, energy is naturally transferred from one particle to

the other. Since both the baryonic density and temperature are higher in the inner regions of the star,

the nucleons there have higher energy than the ones inhabiting the outer regions. Consequently, DM

particles are expected to, on average, gain energy upon colliding with nucleons in the inner layers of

the star and lose energy after scattering off nucleons in the outer regions. Additionally, as a result of

the high density of both DM and baryonic matter, there are also more DM-baryon interactions in central

regions. As such, these phenomena create an additional mechanism for transporting energy from the

core outwards, adding an extra term to the standard equation of energy transport in stars, already
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discussed in Section 2.1. It is expected that the inclusion of this process creates substantial differences

in the structure and evolution of a star.

The formalism used to define the additional energy transport term depends on the regime of the

Knudsen number K. In this case,

K ≡ `χ,0
rχ

, (3.4)

where `χ,0 denotes the mean-free-path of an ADM particle in the centre of the star and rχ is the

typical scale radius of the ADM distribution in the stellar core,

rχ =
3

2
√
π

(
kBTc
Gρcmχ

)1/2

(3.5)

with index c referring to a core quantity.

In a limit where K → 0, the energy transfer is local since the ADM particles travel short distances

before interacting again. In this regime, particles are in local thermodynamic equilibrium and, by deter-

mining their number density it is possible to compute the energy transported by ADM particles [87,88],

lK→0(r) = 4πr2κ(r)nχ(r)`χ,r

(
kBT (r)

mχc2

)1/2

kB
dT

dr
, (3.6)

where κ(r) is a dimensionless thermal conductivity, nχ(r) is the number density of ADM particles at

radius r and the time dependence is dropped but is implicit in all quantities.

However, in the so-called Knudsen limit where K � 1, particles orbit the stellar core many times

between interactions with the plasma. Therefore, their mean-free-path is large when compared with the

typical dimensions of the system (rχ). In this regime, energy transfer is non-local and ADM particles

have an isothermal (Boltzmann) distribution, rendering the treatment of the energy transport term in this

limit highly non-trivial. An analytical approximation was first obtained by Spergel & Press [89] and Gould

& Raffelt [90] followed that endeavour by numerically replicating the results by essentially modifying the

ADM luminosity in the limit K → 0 with a multiplicative suppressing factor, which naturally depends on

K,

lχ ∝ S(K)lK→0. (3.7)

The energy balance of the star will then have an additional term of the form

εχ =
∂lχ
∂m

, (3.8)

which is negative where energy is carried from the sphere of mass m outwards and positive where
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DM particles lose (and thus deposit) energy by interacting with less energetic stellar matter. The term in

Equation (3.8) is then to be included in Equation (2.4).

As a matter of fact, the mean-free-path of an ADM particle in a common MS star is several times

larger than the typical dimensions of the system and so, the Knudsen limit applies. In this work, we

chose this direction since a large K was also observed.

3.3 Stellar models with DM contribution: previous findings and

integration within MESA

In the preceding section we discussed the fact that ADM interactions introduce a new energy transport

mechanism. This indicates that it is possible that ADM presence in stars impacts their structure and

evolution. Previous studies regarding the impact of ADM in the Sun showed that due to the flux of

energy carried outwards from the innermost regions of the star by ADM particles with a mass of 7 GeV

and σSD ' 10−36 cm2, the stellar core exhibited a decrease in temperature when compared to the

standard (non-DM) case, while the reverse happened with the (baryonic) density [34] (see Figure 3.1).

This effect, whose intensity is naturally related to the interaction cross-section, is in fact counter-intuitive

given that any transport of energy away from the core should lead to its contraction, which would in turn

lead to an increase in temperature. This however is not the case, since the energy transported away

by the ADM particles is of a higher order of magnitude than the one released by the core contraction,

countering its heating effects.

Another well-known consequence of the extra energy transport by DM is the suppression of convec-

tion – generally in the centre of the star – which was firstly proposed by Renzini [91] and Bouquet &

Salati [92] and later studied by Casanellas & Lopes [36] and Casanellas et al. [93], particularly for stars

with masses between 1.1 and 1.3 M�. This suppression is directly related to the decrease in the tem-

perature gradient, which prevents the arise of convection as it would in cases where there is no energy

transport by DM.

In this work, to study the effects of the interactions between ADM and the stellar plasma during

the evolution of star KIC 8228742 we use the new modifications to the MESA stellar evolution code

presented by Lopes [37,94]. These include the processes described before, namely capture and energy

transport. We consider DM Capture as described by Gould [85], and the energy transport is computed

taking into account the numerical results by Gould & Raffelt [90]. During the stellar evolution, the capture

rate is computed at each time step, and the total number of ADM particles inside the star is updated

accordingly. This information is then used to compute the extra energy term, which is fed to the usual

set of differential equations that govern stellar evolution, already defined in MESA. The detailed process

of the stellar modelling carried out throughout this work will be given in the next chapter.
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Figure 3.1: Impact of ADM energy transfer on the temperature and baryonic density profiles of the Sun, for different
σSD, taken from Taoso et al. [34].
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As our work focuses on finding ways to constrain ADM properties through asteroseismic analysis,

comparing observational data with model data is pivotal to, e.g., better probe the DM parameter space

(mχ, σSD). Furthermore, obtaining stellar models that match the observed star is obviously crucial to

validate our conclusions. Therefore, a great portion of this thesis is focused on building and analysing

relevant stellar models for our problem.

Stellar modelling has been extremely helpful in allowing us to better understand the physics at play

inside stars. The already mentioned Modules for Experiments in Stellar Astrophysics (MESA) [64–68],

an open-source 1-D stellar evolution code, is a powerful tool in this regard. Combining various modules

that aim to precisely describe different stellar phenomenology, MESA allows the user to model a wide

variety of stars, given a set of stellar parameters as inputs. By virtue of being a robust open-source and

community-driven stellar evolution code, MESA is widely used in the astrophysical scientific community.

Our work uses MESA extensively and, as seen before, even exploits different modifications and additions

to it that treat the DM phenomena.

In this chapter, a more detailed view on the methodology used throughout this work to obtain the

results appearing in following chapters is given.

4.1 Process of star selection

As presented in Chapter 1 and Section 3.3, the use of stars, namely the Sun, to study DM properties

is nothing new. In fact, the Sun proves to be a valuable DM laboratory since our understanding of it is

much more refined than that of any other star. However, our intent with this work is not only to advance

the techniques of building exclusion diagrams for DM parameters through the use of seismic diagnostics

but also to explore the impact of ADM in a different set of stellar data. With that in mind, we decided to

perform this study on a SG star for the first time.

We chose to focus on the Kepler mission catalogue [58, 59] since it offers precise asteroseismic

measurements. Appourchaux et al. [77] determined the oscillation mode frequencies for a Kepler subset

of 61 MS and SG stars and, thus, that constitutes our candidate set.

To be considered a good candidate for this study a star ought to have enough observed individual

oscillation modes and good estimations for its fundamental properties (luminosity, effective temperature,

etc.). Moreover, a star that has been modelled before grants the opportunity to compare our models and

infer on their perceived quality. All these arguments pointed our choice towards KIC 8228742, a F9IV-V

spectral type star [95] with a previously modelled mass of ∼1.27 M� [96] and 32 detected individual

oscillation modes [77].
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4.2 Observables and Calibration

Modelling the SG star KIC 8228742 comes down to a calibration procedure which aims to find the

optimal input parameters that produce the closest outputs to the observed quantities of this star. This

constitutes an optimisation problem which, in the case of MESA, is handled by the astero module [65].

Using this module as a starting point, we produce a high precision stellar model calibration process

which allows for both seismic and spectroscopic calibrations by taking as inputs {M , Yi, [Fe/H]i, α,

fov} (stellar mass, initial helium abundance, initial metallicity, mixing-length parameter and overshooting

parameter, respectively) and then producing an evolutionary model from pre-MS to current-day which

is compared head-to-head with observations. This comparison is accomplished by computing a χ2
star

value at every step of the simulation that has weighted contributions from both spectroscopic (χ2
spec) and

seismic (χ2
seis) observables. In this work we use the default 2/3 weight on the seismic contribution and

1/3 on the spectroscopic counterpart, i.e., χ2
star = 1/3χ2

spec + 2/3χ2
seis [65,97]. The diagnostics χ2

spec and

χ2
seis are quadratic deviations from the spectroscopic and seismic observational data, respectively, with

their uncertainties taken into account:

χ2
spec/seis =

1

N

N∑
i=1

(
Xmod
i −Xobs

i

σXi

)2

, (4.1)

where N is the number of parameters, Xmod
i and Xobs

i are the stellar model and observed values of

the ith parameter, respectively, with σXi
being the observational uncertainty. Throughout this work, the

observational constraints for KIC 8228742 are taken from Chaplin et al. [98] for the spectroscopic param-

eters and from Appourchaux et al. [77] for the oscillation frequencies, as published in the Asteroseismic

Modelling Portal (AMP) [99]. From these, the observational parameters used in χ2
spec are {L, Teff , [Fe/H]}

= {4.57 ± 1.45 L�, 6042 ± 84 K, -0.14 ± 0.09} (luminosity, effective temperature and metallicity), and in

χ2
seis is {∆ν} = {62.1 ± 0.13 µHz}. Additionally, to calculate [Fe/H] through [Fe/H] = log[(Z/X)/(Z/X)�]

we use the solar value of (Z/X)� = 0.02293 computed by Bahcall et al. [100] based on the composition

from Grevesse & Sauval [101].

As for the calibration procedure, we use a method that is commonly used throughout the literature

(e.g., [43, 102]) which relies on minimising χ2
star. This is achieved through an automatised optimisation

process which uses a direct search method —the downhill simplex algorithm [103]— to find the optimal

set of inputs that produce the group of outputs {L, Teff , [Fe/H], ∆ν} that are closest to their observed

counterparts. When accounting for DM effects by using the new code mentioned in Section 3.3, we

can also take advantage of the optimisation algorithm to find optimal values for DM parameters. To

do that, we extend the standard calibration process to also include the relevant DM parameters as

inputs, which extends the input set to {M , Yi, [Fe/H]i, α, fov, mχ, σSD} while maintaining the same

outputs and comparison strategy. This is possible because the astero module allows the user to define

31



custom parameters that can behave as inputs to the stellar simulation and therefore are included in the

optimisation process. Then, the variables from the DM code mentioned in Section 3.3 can be connected

to that mechanism via the adequate Fortran scripts. A few additional changes were also made to the

base code of the DM package as to minimise computation time without the loss of accuracy. Namely, we

skip the calculation of the capture rate when the two previous steps exhibit similar capture rates (within

a user defined ε).

More specifically, in a single MESA simulation, the astero module is called each step to produce

the χ2
star values from the parameters coming from the MESA model at that step. This is done until the

simulation reaches its designated end – if the user set a terminal age – or the χ2
star values explode.

The best value from that run (i.e., the smallest χ2
star) is then recorded and the respective model is taken

as the best for that set of input parameters. In our case, since we choose to use one of the module’s

optimisation algorithms, astero will automatically start a new simulation with different input parameters,

so as to find the set that minimises χ2
star, and the whole process is identical. After the designated

number of optimisation steps or the stagnation of the χ2
star values, one can conclude that the algorithm

has converged. All the values are then recorded in an ordered χ2
star table with the respective model input

and output parameters that produced them.

4.3 Seismic ratio diagnostics

While ensuring that a model is consistent with observations in terms of spectroscopy is valuable in

itself, in most cases these parameters do not fully mirror what is happening in the stellar interior. These

are the situations where thoroughly analysing the oscillation frequencies of a star becomes a powerful

diagnostic tool.

To build upon the calibration process described in the last section, we resort to a more detailed

seismic diagnostic of the stellar interior based on the observed and model frequencies νn,`. The os-

cillation frequencies and respective eigenfunctions of a stellar model are obtained using the GYRE

code [104,105]. This is a robust pulsation code that computes the oscillations in both adiabatic and non-

adiabatic regimes. In our case, the code was used to solve the system of linear adiabatic oscillations

under the Cowling approximation [72], given by Equations (2.33) and (2.34).

Following the arguments presented in Chapters 2 and 3, the small to large separation ratio r02 defined

in Equation (2.42) is chosen as a diagnostic to better probe the region that ADM is expected to impact

more severely: the stellar core. Conveniently, we define a new χ2 to assess the seismic quality of a

given stellar model in terms of the r02 ratio:

χ2
r02 =

22∑
n=14

[
robs
02 (n)− rmodel

02 (n)

σrobs
02

]2

, (4.2)
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where robs
02 (n) and rmodel

02 (n) represent the ratio defined in eq. (2.42) computed using both the ob-

served and model frequencies, respectively, while σrobs
02

stands for the observed uncertainty which is

computed through error propagation from the individual frequencies’ uncertainties. For the star con-

sidered here, we can observe 32 modes with ` 6 2 [77] and n running from 14 to 22, amounting to 9

different instances of r02 in the sum defined in eq. (4.2). The resulting value of χ2
r02 along side the other

mentioned diagnostics will provide the classification of the models.

One important point to bear in mind is that χ2
r02 is used as an additional diagnostic, independent

from the original calibration process. This is mainly because it creates a robust two-step rejection

method and also due to computational time constraints. Thus, only χ2
spec and χ2

seis are computed at

each step of the calibration process. It should be noted that while χ2
seis does imply the computation

of the large frequency separation, this is accomplished by taking into account the asymptotic approx-

imation in eq. (2.40) instead of the actual computation of the oscillation modes, and as such, it does

not represent the time-consuming effort that r02 would. After the calibration process presented in the

previous section is completed, the r02 ratios are computed for the accepted models of that step (usually

by defining a cut-off χ2
star).
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Having set the building blocks, we focus on the end goals of this work. If existent, asymmetric

dark matter clusters together in the inner regions of stars, producing distinct signatures. The first step

towards building a reliable method of ADM parameter exclusion is probing this impact and comparing it

with present day observations.

In this chapter, we present the first results of this work. We calibrate the SG star KIC 8228742 using

the methods described in the previous chapter firstly assuming no ADM influence and then applying the

effects described in chapter 3. Comparisons and conclusions are made regarding the quality of no-DM

and DM models, while the impact of ADM in the star is also discussed.

5.1 Standard stellar model of the subgiant KIC 8228742

We start by calibrating a standard stellar model of the star that will serve both as a comparative and as

a backbone model. Thus, using the calibration methods described in Chapter 4 with all five inputs {M ,

Yi, [Fe/H]i, α, fov} as free parameters, we obtain several stellar models with no dark matter interactions.

These are obtained in the optimisation procedure that aims to minimise χ2
star and the whole process

is stopped only when that diagnostic stagnates or starts to deteriorate. After that, from these models,

the best one in terms of χ2
star is chosen as the benchmark model for future analysis and is henceforth

also referred to as Standard Subgiant (SSG) model. The resulting parameters are shown in the first row

of Table 5.1, where χ2
r02 is also included. It should be noted that directly comparing χ2

star with χ2
r02 is

misleading, as their definitions and normalisation are different.

In comparison with other models found in the literature, the SSG model’s parameters fall well within

the limits proposed in most works (e.g., [106]) with the exception of the initial metallicity and mixing-

length parameters found in Verma et al. [107], which had an initial parameter range that did not include

the values of [Fe/H]i and α displayed in Table 5.1. However, this does not amount to a large discrepancy

and thus the model is accepted to be a good reference model. Additionally, the SSG model exhibits

a convective core during the MS that extends up to 0.065R� (0.035 of the total radius R ≈ 1.88) and

showcases a helium core (surrounded by a hydrogen shell) at the end of the evolution (see fig. 5.3),

which is the expected structure for stars in this stage of evolution, with these values of stellar mass

(e.g., [108–111]).

5.2 Comparison of dark matter models with a standard stellar model

A valuable asset of the improved calibration method considered in this work is that it allows for the

DM properties to be treated as free parameters in the calibration. In this sense, we allow the algorithm

to vary the values of the ADM particles’ mass in between 4 and 12 GeV and the spin-dependent cross
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Model mχ

(GeV)
σSD

(10−36 cm2)
M

(M�) Yi [Fe/H]i α
fov

(10−36)
age

(Gyrs)
L

(L�)
R

(R�) log
(
Tc

1 K

)
log
(

ρc
1 gcm−3

) χ2
star

(10−3) χ2
r02

∆Π1

(s)
∆Π2

(s)
SSG - - 1.2565 0.244 -0.139 1.403 1.622 4.52 4.254 1.884 7.42 2.53 5.735 27.8 1636 945

DM Calib 9.12 2.32 1.2517 0.227 -0.140 1.467 1.626 5.03 4.270 1.886 7.32 2.95 5.287 29.2 548 316
DM A 6.00 10−3 1.2580 0.244 -0.140 1.406 1.623 4.50 4.263 1.884 7.42 2.53 5.586 26.7 1642 948
DM B 6.00 10−1 1.2591 0.243 -0.139 1.407 1.622 4.50 4.264 1.885 7.42 2.53 5.486 37.8 1644 949
DM C 5.00a 1 1.2516 0.227 -0.138 1.480 1.623 5.06 4.268 1.887 7.32 2.96 5.245 20.0 543 313
DM D 6.00 10 1.2590 0.229 -0.139 1.403 1.622 4.76 4.339 1.884 7.32 2.96 17.879 64.3 564 326

a A slightly different mass value was used in this case due to model convergence limitations.

Table 5.1: KIC 8228742 models. The 4 bottom models were calibrated with fixed pairs of (mχ, σSD) while DM Calib allowed the two parameters to
vary. The first 2 columns are the DM parameters and the 5 following columns are the input parameters of the calibration. The following
columns correspond (from left to right) to: age, luminosity, total radius and the logarithms of the central temperature and central density.
The χ2 used in calibration and diagnostics are also displayed. Finally, the period spacing is shown for ` = 1 and ` = 2.
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Figure 5.1: Direct comparison of the DM Calib and Standard Subgiant models: the percentage variations were
recorded relatively to the SSG model (see Table 5.1). As some variations are negative, we use blue for
negative values and red otherwise.

section in between 10−40 and 10−35 cm2 since this is both included in the region of the parameter space

currently being probed by DM direct detection experiments and also the region that produces greater

effects on stars (e.g., [36,55]).

As before, the standard stellar inputs shown in the last section were treated as free parameters, so it

is expected that the set of optimal parameters is different than the values shown in the first row of Table

5.1. Taking into account the DM phenomenology described in Chapter 3, we carried out the optimisation

process, from which we retrieved the best model (i.e., with the lowest χ2
star). This model (DM Calib) found

an optimal dark matter particle with a mass of mχ = 9.12 GeV and a spin-dependent interaction cross

section of σSD = 2.32×10−36 cm2, which is within the limits of the XENON-100 experiment mentioned in

Chapter 1. The fact that this model is calibrated, by definition, means that it is bound to be in agreement

with the corresponding observations. However, it is interesting to note that the best agreement – within

the considered parameter range – occurs for the aforementioned values of mχ and σSD, even though

they fall inside the excluded area of other more recent experiments (e.g., [24]).

As expected, fig. 5.1 shows that the optimal inputs changed with respect to the parameters obtained

in the SSG model, some more drastically than others, as is the case of the initial Helium abundance

Yi and the mixing-length parameter α. In terms of model outputs, the inclusion of the DM effects and

parameters in the calibration process made the stellar age change in around 12% while the most notice-

able difference is the 16% increase in the logarithm of the central density, which translates to a factor
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Figure 5.2: Temperature (left axis) and baryonic density (right axis) profiles of the SSG and DM Calib stellar models
(see Table 5.1).
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Figure 5.3: Hydrogen and helium abundances of the SSG and DM Calib stellar models (see Table 5.1).
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of around 2.5 in the central density itself. This discrepancy is best viewed by comparing the respective

profiles shown in fig. 5.2, where it is visible that the star forms an isothermal core at a lower temperature,

which is consistent with other results for the Sun and other sun-like stars (e.g., [34, 112]). Such is also

the case of the baryonic density profile, which displays an increase in the innermost regions of the star

when considering ADM capture and interactions, as shown in Section 3.3. One important aspect to

remember is the fact that, by only considering spin-dependent couplings, the DM-stellar matter scatter-

ings are practically reduced to DM-hydrogen interactions. This means that, in fact, we neglect most of

the DM energy transport that occurs during the actual SG phase, given that in these stars the region

inhabited by ADM particles, i.e., the core, is mostly devoid of hydrogen. Thus, the DM signatures shown

here – and the resulting departures from the standard non-DM models – are in fact a consequence of

DM interactions that occurred mainly during the MS. Therefore, the comparison with different studies

in the literature about similar effects in MS stars is reasonable since we are looking at the remnants of

ADM interactions during the MS phase through a SG star. It should also be noted that although we are

not comparing both models at the same age (nor do they have the same standard stellar inputs), as

is the usual practice, the comparison is still of interest (and thus this effect is still expected) since it is

made between two calibrated models of the same star, meaning that they are spectroscopically similar.

Nevertheless, one could argue that the change in the star’s age could be the driving factor of the differ-

ences found between the two models. But, in fact, that is not the case: By analysing the same profiles

of the two models for the same age (for example, at t = 4.52 Gyrs, see Table 5.1) we confirm that the

two distinct regimes are still present and identical to what is seen in Figures 5.2 and 5.3.

Unlike the Standard model of this star, DM Calib did not exhibit a convective core. In fact, the suppres-

sion of the convective core is a recurring feature of DM influence on stars as mentioned in Section 3.3.

Furthermore, by studying the star chemical profiles (Figure 5.3) we see that while hydrogen is completely

exhausted in the inner regions of the stellar core, there is a smooth increase in the hydrogen abundance

(vice-versa for helium), instead of the sharp variation which is usual in stars with M ' 1.3 M�.

This is a direct consequence of the stellar core being radiative, as opposed to convective, during the

main-sequence: the arise of core convection during the MS promotes the homogenisation of the chemi-

cal species in the central regions of the star, and thus the exhaustion of hydrogen that characterises the

end of the MS occurs everywhere within the convective zone – instead of locally in centre of the star.

One other effect that is found in this model is the extension of the MS lifetime [94]. While the star

with DM has a radiative core during the largest part of its MS lifetime, and thus nuclear burning is limited

to the local hydrogen supply, the decrease in central temperature slows down the hydrogen burning rate

thus extending the MS lifetime. The age of the model itself may be another indicator of this effect since

the best agreements with observations (which are the goals of a successful calibration) were found to

be at a later stellar age than in the standard case.
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In addition to the model DM Calib, we decided to repeat the calibration process accounting for DM

effects, but instead with pre-defined fixed values of mχ and σSD. Stellar DM models from A to D are the

best models for each of the (mχ, σSD) pairs showcased in Table 5.1. The first conclusion to be taken is

that DM Calib, which produced an optimal pair of (mχ, σSD), does not have the lowest χ2
star. This means

that the full calibration optimisation method most likely hit a local minimum around the displayed values.

A closer inspection at the remaining columns of Table 5.1 reveals that the SSG model, DM A and DM

B all share similar outputs. The same happens for models DM Calib, C and D, where the latter slightly

deviates from the rest, leading to a χ2
star of an higher order of magnitude. These two distinct regimes

are expected once we take into account the mass and cross-section values of the dark matter impacted

models: for σSD > 10−36 cm2 the effects from ADM interactions have a noticeable impact on the star,

while for smaller values of σSD the effects are mostly negligible. We also confirm the prevalence of the

two regimes when drawing profiles similar to figs. 5.2 and 5.3 for the remaining models, i.e., the curves

of Standard, DM A and DM B have similar behaviour between themselves whilst the remaining models

follow the signature of DM Calib (see fig. 5.4).

Then, it is expected that the suppression of the convective core, already noticed in DM Calib, is

present in the models that have the same behaviour (i.e., DM C and D). Likewise, DM A and B should

have a convective core like the SSG. The existence of convective and radiative zones can be confirmed

by plotting the Brunt-Väisälä frequency, already defined in Section 2.2.1. The previously mentioned

GYRE [104,105] code allows the direct extraction of N2 for each model and, applying the same rationale

of fig. 2.2, we can conclude from fig. 5.5 that the two classes of models are distinctly separated in the left-

hand side of the plot. While the cold-coloured models (SSG, DM A and DM B) exhibit the g-mode cavity

(radiative region) starting at ∼ 0.035 R (blue vertical line on the left), which is precisely the convective

core size stated in Section 5.1, the hot-coloured models (DM Calib, DM C and DM D) showcase no

convective region besides the outer envelope (r & 0.8 R). As stated before, the increase in size of the

radiative region, and thus g-cavity, is a consequence of the decrease in temperature in the stellar core,

which renders convection unfeasible in the region. Once again, the two different signatures between DM

and (essentially) non-DM models are present and reinforce the consistency of the results.

Finally, it is interesting to note that some DM models have a lower χ2
star than the SSG model. For

DM Calib, the decrease in almost 8% of this quantity is substantial and the fact that DM A, B and C also

represent an improvement on the Standard model’s value reinforces the argument that the existence of

DM is not incompatible with the current observational data for this star. However, the χ2
r02 diagnostic

increased in about 4% for DM Calib (even more for DM B) which hints towards the fact that the model

might have fallen victim to an equivalent of overfitting. This means that, since the optimisation is done

with respect to χ2
star, other parameters of the star might have been affected to achieve a better perfor-

mance in that specific diagnostic. Either way, the deviation on χ2
r02 is not as significant as in the previous
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diagnostic. To better infer on the χ2
r02 discrepancy, we compute r02(n) as shown in fig. 5.6.

The results for r02(n) show that although the DM Calib ratio values deviate more from the observa-

tional average than the SSG’s, the behaviour pattern is similar to that of the observed r02 (particularly

around n ∼ 19−20). Fig. 5.6 also shows that model DM C has the same regime as DM Calib, but slightly

closer to the observation values, which is reflected in its smaller χ2
r02 .

Again, the two regimes are distinctively visible, with DM B being somewhat of an intermediate model.

This is also expected since in this model σSD is in-between that of DM A and DM C, which showcase

each one of the two different regimes.
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After understanding some of the impact that ADM produces in KIC 8228742, it is interesting to use

that knowledge to devise a method to constrain the mass and spin-dependent cross-section of the DM

particles. As seen before, this could be achieved by delving into the inner stellar regions by using the

suitable probing mechanisms. In this chapter we apply some of the asteroseismic diagnostics defined

in Sections 2.3 and 4.3 to better infer on the sensitivity of stellar models to ADM effects and to draw

constraints on DM properties.

6.1 Probing the parameter space mχ − σSD

Using the input stellar parameters of the SSG model as benchmark (see first row, columns 3-7 in

Table 5.1) and enabling the ADM interactions described in Chapter 3, we decide to explore the sensitivity

of the models in DM parameter space. This is achieved by computing 100 models in a mχ − σSD grid

with fixed dark matter parameters within the range 4 6mχ 6 12 GeV and 10−40 6 σSD 6 10−35 cm2. As

before, this range of values was chosen in agreement with the DM parameter space usually explored in

the literature (e.g., [55]). Each input group in this grid was then used to create a model (i.e., one single

model, differently from the optimisation process discussed in the previous sections) for which χ2
star was

computed, allowing for the drawing of contour plots showcasing the parameter region of interest and

corresponding DM parameters (fig. 6.1).

A normalised χ2
star was defined as:

χ2
star =

χ2
DM

χ2
SSG

, (6.1)

where χ2
DM corresponds to the χ2

star of each model taking DM into account and, likewise, χ2
SSG is that

same value for the Standard model (in this case χ2
SSG = 5.735×10−3, see Table 5.1).

On the one hand, it is visible that the overall tendency is for stellar models with lower interaction

cross-section to agree better with observations. On the other hand, there are some models with higher

σSD that do not converge, meaning that the benchmark input parameters coupled with the given DM

quantities cannot converge to an acceptable solution of the stellar evolution differential equations. This

happened for models with σSD larger than 4 × 10−36 cm2, where although not explicitly shown in the

figure, the χ2 values rose to orders of magnitude of 102. This relation between the cross-section and

χ2
star is somewhat expected since the lower the σSD the smaller the influence of DM is on the stellar

structure. Thus, the lower region of the grid performs better than the upper region since it naturally

tends to the SSG case. However, it is still worth noting that for σSD as high as 10−37 cm2 some models

seem to perform well.

Furthermore, by looking at the contour line that defines models as good as the SSG model (at

χ2
star = 1, see fig. 6.1), it is visible that a large portion of the 100 DM stellar models outperform it. This

means that most dark matter models with the same inputs as the SSG but with mχ between 4 and 12
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Figure 6.1: Contours for χ2
star (see eqs. (4.1) and (6.1)): lighter shades represent lower χ2 and thus better models

for this specific diagnostic. The contour for χ2
star = 1 represents models as good as the SSG model.

Direct detection experiment results from XENON-100 [113], LUX [26], PICASSO [23, 114] and PICO-
60 [24] are shown as solid lines.

GeV and σSD between 10−40 and 4 × 10−39 cm2 fit the spectroscopy and large frequency separation

observations better than the best performing no-DM model. It should be noted that despite the fact that

σSD = 10−40 cm2 is a hard limit, i.e., it was chosen by default, that does not mean that the improvement

in χ2
star is observed for any σSD below this value. In fact, we also obtained models below the minimum

cross-section considered in fig. 6.1 (e.g., σSD = 10−42 cm2) and observed that the χ2
star diagnostic

again tended to the SSG value (i.e., χ2
star = 1), which is expected since DM is less influential for lower

interaction cross-sections. Additionally, we found a model near mχ = 9 GeV and σSD = 3 × 10−38 cm2

that exhibits the lowest χ2
star of the set.

It is interesting, however, to study the performance of the best performing model and all the others

under the χ2
r02 diagnostic defined in Section 4.3. To achieve that, the r02 ratio was computed for all mod-

els in the grid and compared to observations, i.e., the ratio that was computed with the 32 frequencies

observed in the star. After that, χ2
r02 was computed and yet again plotted in contours.

The results shown in fig. 6.2 confirm the overall trend seen before in fig. 6.1: models in the lower

region of the grid seem to more accurately agree with the observed r02 which, in itself, grants more

confidence to the previous results. The contour that defines models with similar performance to that of

the SSG model was again explicitly drawn at χ2
r02 = 1. Once more, most models with σSD < 10−38 cm2

outperform the best model with no dark matter interactions, this time on a different diagnostic that better
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(eq. (4.2) and normalised similarly to eq. (6.1)): lighter shades represent lower χ2

and thus better models for this specific diagnostic. The contour for χ2
r02

= 1 represents models as good
as the SSG model. Direct detection experiment results from XENON-100 [113], LUX [26], PICASSO
[23,114] and PICO-60 [24] are shown as solid lines.

represents the core structure.

It is also interesting to note that the best performing model of the previous set (fig. 6.1) is not in the

same region of the best performing models in the χ2
r02 diagnostic. This is a case where the spectro-

scopic results out-shadowed the structural differences in the first diagnostic, which was then covered by

calculating the r02 ratio. Hence, the two step rejection method proves to be valuable in cases like this,

since normally that model would have been accepted by passing the χ2
star diagnostic with the lowest

value.

A simple additional test can be done by combining the two methods, taking the maximum value of

both diagnostics, χ2
total = max(χ2

star, χ
2
r02). This is shown in fig. 6.3, as well as the region within the

χ2
total = 1 contour which represents the models that outperform the SSG model in both diagnostics.

When comparing the aforementioned grids with the direct detection experiment’s limits we see that

our method could provide complementary mχ − σSD exclusion diagrams. This could be achieved by

defining a cut-off χ2 since it is visible that there is a steep transition region between the two regimes

(from yellow to dark red) which indicates a rapid disagreement between the stellar models and the

observational data. The behaviour showcased in figs. 6.1 to 6.3 can be compared to that of the limits

from PICASSO [23, 114] and LUX [26]. Moreover, it seems to suggest harder limits than those of

XENON-100 [113], which is not as competitive for lower mχ. Taking into account the SSG model as
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star and χ2
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total = 1 represents the models with an

equated performance to the SSG model, using their worst diagnostic. Direct detection experiment
results from XENON-100 [113], LUX [26], PICASSO [23, 114] and PICO-60 [24] are shown as solid
lines.

the benchmark we can hint towards the region with σSD & 10−37 cm2 where χ2
total rapidly increases,

meaning that ADM presence in this SG star is strongly disfavoured by both spectroscopic and seismic

observations.

Finally, it should be noted that the models obtained in the previous section – which were obtained

by calibrating the stellar and, in the case of DM Calib, the DM parameters – can fall in the excluded

region suggested in fig. 6.3 (see Table 5.1) and still yield stellar models that are in agreement with the

observational data. This may be due to the increase in the degrees of freedom associated with the

extra free parameters which, given that the observational error for the star in question is substantial,

allows the method to find different combinations of parameters that still fit the reality. Therefore, with

access to more precise measurements from future spectroscopy and asteroseismology missions, one

can expect to calibrate a standard benchmark model that allows the drawing of exclusion diagrams with

more certainty.

6.2 Period Spacing Analysis

When further analysing the oscillation eigenfunctions of several models, it is clear that the amplitude

rapidly falls off within the first outer 20% of the star radius (see fig. 6.4). This means that despite using
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a seismic ratio that is designed to gather more information about the stellar interior, the acoustic modes

that defined the diagnostic fall short on this task. Thus, we can conclude that the r02 diagnostic is not

as sensitive to the core as expected, being more representative of the stellar envelope, contrary to what

happens in a typical MS star.

Motivated by this, we change our focus to the gravitational character of the oscillations, which, as

seen before, should be specially sensitive to the stellar interior. This is done by analysing the mixed

modes of the various models, which allows the extraction of the relevant quantities of the gravity contri-

bution.

In particular, the asymptotic value of the large period separation presented in eq. (2.43) can be

computed from the MESA models for ` = 1 and ` = 2, for which there are mixed modes. It is expected

that if the presence of DM in stars directly affects the size of their convective cores, as we have seen

in previous sections, then the period spacing will serve as a good probing tool [37]. The ∆Π` values

are shown in the two last columns of Table 5.1. The already mentioned regimes are once again clearly

noticeable: there is a substantial decrease in period spacing when DM is strongly influential that can

go up to 66% of the benchmark value (from SSG). This, again, is explained by the suppression of the

convective core caused by DM, which in turn leads to an increase of the g-mode cavity, producing a

direct effect on the integral in eq. (2.43). This effect is clearly visible in fig. 5.5.

As before, we define the ∆Π` deviation from the SSG model for the same grid of DM models to better

understand the impact that the different DM parameters have on the core of the star. The variation of

∆Π1 is shown in fig. 6.5. We only show the case with ` = 1, given that, by definition, in the asymptotic

limit, ∆Π1 and ∆Π2 only differ by a multiplying constant. The darker region represents models where

48



4 5 6 7 8 9 10 11 12
mχ (GeV)

-40

-39

-38

-37

-36

-35

lo
g

10
(σ

S
D
 [
cm

2
])

37.50 %
37.50 %

5.76 %

5.7
6 %

0.0

2.5

5.0

7.5

10.0

12.5

15.0

|δ
∆

Π
1
| (

%
)

Figure 6.5: Contour plot of the deviation of the period separation ∆Π1 from the SSG model for the same grid
of models. The two black curves represent the lower and upper boundaries of the relative error of
measurement of this quantity for 39 SG stars from Mosser et al. [115] ( [37]).

|δ∆Π1| is larger than 15% and, in some cases, models reach the 60% mark as was already the case

for some models in Table 5.1. It is also clear that larger masses of ADM particles tend to result in less

effects. This is twofold: first, these particles are harder to capture by virtue of requiring a larger transfer

of momentum upon recoil in order to reach a velocity lower than the escape velocity (e.g., [85, 116]);

secondly, if eventually captured, they cluster strongly in the innermost regions of the star and, thus, their

impact is naturally not felt as much. It is important to note that most of the deviations shown in the

grid happen in the negative direction, with DM impacted models exhibiting a smaller period spacing, as

expected.

The overall tendency in fig. 6.5 mimics that of figs. 6.1 to 6.3: models in the upper part of the grid

show a larger ADM influence on the star. Yet again, the transition region between the two regimes is

narrow. The region below the 5.76% contour represents models whose ∆Π1 variation is lower than

the lowest relative uncertainty among the large period separation measurements in Mosser et al. [115].

Likewise, models above the 37.50% curve exhibit a variation that surpasses the uncertainty of the less

precise measurements. Both these statements mean that current experiments may not have enough

sensitivity to resolve DM signatures in SG stars in the transition region (where the lower relative uncer-

tainty contour is) and particularly in the region below the 37.50% contour. Above that curve, the effect

should be detected, with the deviation being greater than the observable uncertainty in the worst cases.

However, one should note that if this analysis is carried out for a SG star which allows for a more precise
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measurement of ∆Π1 (i.e., closer to the 5.76% mark) there should be enough sensitivity to draw any

valuable conclusions regarding the acceptability of DM models for that star. In the future, this diagnostic

could be used with measurement data as the benchmark, providing a strong case for model rejection

and, additionally, ADM parameter constraints.
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This thesis focuses on ADM interactions with stellar matter and their effects on SG stars. We use

asteroseismology to infer on constraints for DM parameters: mass and SD cross-section of interaction.

Subgiant stars are but a small fraction of the currently observed stars by virtue of that evolutionary

stage being relatively short. Despite that, they can pose as important laboratories for the study of dark

matter constraints. In this work, we obtained calibrated stellar models of the SG KIC 8228742 assuming

both the presence and absence of ADM spin-dependent interactions. Focusing on SD interactions

allows us to directly compare our results to the corresponding constraints placed by detectors which

study the same type of interactions. More importantly, by studying only SD couplings, we essentially

neglect interactions with elements heavier than hydrogen, and thus also any direct effect that DM has on

the star during the SG phase. Then, by carrying out this study we take advantage of the seismological

benefits of the SG phase to study DM interactions in the MS stage.

The results shown in this dissertation point towards the fact that, overall, DM models are in agreement

with current observations of this star.

We present a new robust method of stellar calibration that can take into account the DM parameters.

This, in theory, could provide sensible values for mχ and σSD of ADM particles by being applied to a

star with precise measurements of both fundamental and seismic properties. Besides, by using seismic

diagnostics weighed towards the core of the star, we probe the DM parameter space

7.1 Summary and Achievements

Firstly, in an attempt to study the possibility of ADM presence in SG stars, we present a new robust

method of stellar modelling that introduces dark matter parameters into the calibration and optimisation

processes. This is a new approach which aims to find the best models, in terms of the diagnostics pro-

posed in this work, disregarding any prior standard (with no dark matter influence) benchmark models.

In theory, using this method could provide sensible optimal values for mχ and σSD of ADM particles by

being applied to a star with precise measurements of both fundamental and seismic properties.

As for results, calibrated models with strong DM influence showcased a different regime from both

the standard (SSG) model and DM models with lower σSD. Phenomena like the suppression of the

convective core, the cooling of the inner core and the increase in density of that region were all present

and in agreement with past findings (e.g., [34, 36, 93, 112]). We later conclude that the results obtained

at this stage of the work, which provided an optimal pair of ADM particle mass and spin-dependent

cross-section of mχ = 9.12 GeV and σSD = 2.32 × 10−36cm2 may not be sufficient to constrain the DM

particle candidates’ properties (see section 7.2).

Using seismological diagnostics as a second probing tool, we then present a method to study the

influence of DM in the interior of stars, with direct applicability to SGs. The r02 ratio is used in an attempt
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to probe the stellar core, which is the region that ADM severely impacts. A study of the deviation of r02

from observational measurements allows us to draw several sensitivity grids (see figs. 6.1 to 6.3) which

showcase the increasing influence that DM has with the increase of the spin-dependent cross-section

of the interaction between ADM particles and stellar matter.

Moreover, those same figures show a class of models with 10−40 6 σSD < 10−38 cm2 that consis-

tently outperform the best standard models, which strengthens the argument that the presence of ADM

particles in this star does not go against observations. Additionally, a σSD admissible region is suggested

for values up to 10−37 cm2 where the χ2 diagnostics start to deteriorate from observations. This value

is comparable to those of the PICASSO ( [23, 114]) and LUX ( [26]) experiments and improves that of

XENON-100 ( [113]). Then, an exclusion limit may be drawn with more certainty at σSD & 10−35 cm2

since results from both Chapter 5 and 6 find this region as incompatible with current observations. This

conclusion is similar to what Casanellas & Lopes [36] and Martins et al. [55] found previously for MS

stars.

Lastly, we propose an additional seismic parameter to study DM influence on SG stars that allows

us to further probe the stellar core. As the acoustic modes were mainly probing the stellar envelope

(contrary to what typically happens in MS stars), we turned our attention to gravity and mixed modes,

which carry more information about the core since they travel deeper into the stellar interior. The ∆Π`

diagnostic was calculated for the same grid of models and the results again confirm the previous analysis

and hint towards the possibility of drawing exclusion diagrams for a SG star for which we have the ∆Π`

observations.

7.2 Limitations and Future Work

Naturally, the development of a thesis does not come without limitations and shortcomings. For

instance, as referred in the previous section, the method here devised to include mχ and σSD into the

optimisation process of stellar calibrations falls short when compared to later results.

A number of limitations can be pointed out as the cause for this. The number of spectroscopic

quantities of this star that we have measurements for pose a problem when introducing more parameters

into the input group, since overfitting – typical of situations where there are too many parameters relative

to the available data points – may be happening here. The precision of the current measurements is also

a factor since it broadens the accepted model spectrum and limits the certainty of a possible exclusion

limit. Lastly, computational time constraints were a large limitation to the minimisation problem and this

is an aspect that has the potential for clear improvements. The rationale behind using DM parameters as

direct inputs for the optimisation process of a stellar calibration has a lot of potential to aid the discovery

of new exclusion limits for these properties. Having enough computational resources will render this task
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more feasible and, for example, the study done in Chapter 6 could then be carried out without a no-DM

model serving as benchmark, but instead with all 100 DM models being calibrated and optimised one

by one.

Additionally, in the future, missions like PLATO [61], which will provide high precision measurements

of both spectroscopic and seismic quantities, will allow for a more extensive analysis of the impact of

ADM in stars and, more importantly, will make the drawing of exclusion diagrams possible, using the

method we present in Section 6.2. With better measurements, we also expect the calibration with DM

quantities as inputs to provide a better result, with less impact from numerical constraints. In fact, we

expect to publish a second article based on this analysis, for another SG star, for which there are ∆Π`

measurements.

Another aspect to consider in the future is the inclusion of spin-independent interactions which will

certainly drive the DM impact in the later stages of the stellar evolution, by allowing the interaction with

helium and heavier elements as well.
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In this appendix we present the scientific paper currently in review for publication in the Monthly

Notices of the Royal Astronomical Society that results from the work discussed in this thesis, namely in

Chapters 5 and 6.
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ABSTRACT
The asteroseismic modelling of solar-like stars has proved to be valuable in the search for dark matter constraints. In this work
we study for the first time the influence of asymmetric dark matter (ADM) in the evolution of a subgiant star (KIC 8228742)
by direct comparison with observational data. Both spectroscopic and seismic data are analysed with a new approach to the
stellar calibration method, in which dark matter properties can also be considered as free inputs. In another phase of this study,
a calibrated standard stellar model (without DM) is used as the benchmark for DM models. We find that the latter models
consistently outperform the former for 10−40 6 fSD < 10−38 cm2, hinting that the presence of asymmetric dark matter in stars
of this type does not go against observations. Moreover, we show that stellar seismology allows us to suggest exclusion limits
that complement the constraints set by direct detection experiments. Different seismic observables are proposed to study DM
properties and ΔΠℓ is found to be the most reliable, having the potential to build future DM exclusion diagrams. This new
methodology can be a powerful tool in the analysis of the data coming from the next generation of asteroseismic missions.

Key words: asteroseismology – stars: evolution – (stars:) subgiants – stars: oscillations (including pulsations) – (cosmology:)
dark matter

1 INTRODUCTION

Since the dark matter (DM) hypothesis arose from the discrepancy
between theory and the observation of the galaxies’ rotation curves
(Rubin et al. 1976), direct detection experiments have been conducted
in the hope of finding these elusive particles (e.g., Bertone 2010;
Undagoitia & Rauch 2015, and references therein). Although some
constraints on the mass and cross section of interactions of DM
particles with baryons have been set (e.g., Beringer et al. 2012), no
detection has yet been confirmed (e.g., Schumann 2019).

Weakly Interacting Massive Particles (WIMPs) stand out as one
of the primary candidates for DM (Bertone et al. 2005; Bertone &
Hooper 2018). These particles have a non-negligible scattering cross
section with baryons which is usually treated in two separate compo-
nents: spin-dependent, fSD, and spin-independent interactions, fSI
(Barger et al. 2008). For WIMP masses around <j ' 5 GeV, recent
upper limiting constraints on fSD (WIMP-proton interactions) have
been placed at slightly below 10−37 cm2 by PICASSO (Behnke et al.
2017) and at around 10−39 cm2 by PICO-60 (Amole et al. 2019).
The XENON-100 experiment (Aprile et al. 2016) placed a limit for
fSD at ∼10−36 cm2 for <j ∼ 9 GeV. For fSI (WIMP-nucleon inter-
actions) the upper limits were found to be at around 5×10−41 cm2

(from both PICASSO and PICO-60).
In this study, we consider WIMPs in an asymmetric dark matter

(ADM) scenario, in which the DM annihilation cross section is neg-
ligible. Much like baryons in baryogenesis, dark matter asymmetry is

★ E-mail: jpedrorato@tecnico.ulisboa.pt

hypothesised to have been produced in a process often called darko-
genesis (e.g., Shelton & Zurek 2010). Thus, in the ADM framework,
the DM and anti-DM densities are unbalanced and make the present-
day DM self-annihilation negligible. This choice of framework is
mainly interesting in the standpoint of the DM influence on stars:
since DM self-annihilation does not occur, the number of DM parti-
cles inside a star will naturally be larger than it would be otherwise,
making the star more sensible to its effects, which allows for a better
study of DM phenomena.

Besides the alreadymentioned direct detection achievements, stars
have also been used in the search for DM. These endeavours have
ranged from the study of solar models affected by DM (e.g., Lopes
& Silk 2010; Taoso et al. 2010) to asteroseismic analysis (e.g., Lopes
et al. 2002a; Casanellas&Lopes 2013; Lopes et al. 2019) also includ-
ing neutrino flux constraints (e.g., Lopes et al. 2002b; Turck-Chièze
et al. 2012). Using stars and stellar models as an object of study
of DM also has its shortcomings, which are mostly inherited from
standard stellar modelling. A notable example among these is the
so-called solar composition problem. Standard solar models using
the most recent photospheric abundances (AGSS09: Asplund et al.
(2009)) as inputs present a contradictory prediction of the Sun’s in-
ternal structure when compared to high-precision results from helio-
seismology (e.g., Christensen-Dalsgaard 2002; Bahcall et al. 2005).
This discrepancy between predictions coming from spectroscopy and
helioseismology renders the determination of stellar properties (such
as the sound speed profile) through stellar modelling problematic and
affects not only the modelling of the Sun but also other stars since
they rely on solar inputs for some quantities, like the relative metal-

© 2020 The Authors
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licity //- . In a recent discussion of this problem, Capelo & Lopes
(2020) have shown that measuring neutrino fluxes from the CNO
cycle with a precision that could be achieved by the next generation
of experiments could help resolve this issue. While this problem can
hinder the ability of using stellar modelling to probe DM properties,
DM itself can also be an answer to the abundance problem since
it introduces different physics in the interior of stars. Particularly,
Lopes et al. (2014) proposed that the accretion of DM in the Sun’s
core could lead to a better agreement between helioseismic and neu-
trino data. In a follow up with a more detailed analysis, Vincent et al.
(2015) show that the solar abundance problem could be solved by
the presence of a light asymmetric dark matter particle.

Asteroseismology has particularly been thoroughly exploited in
an attempt to find constraints for the properties of DM while us-
ing stars as laboratories (Casanellas & Lopes 2010). The premise is
fairly straightforward: by analysing oscillation frequencies of stars
we can extract valuable information of their interior structure. This
is related to DM because the capture and subsequent accumulation
of these particles via gravitational effects introduce an additional en-
ergy transport mechanism. This new phenomenology can naturally
lead to changes in the structure of the star, which can be probed via
asteroseismic diagnostics (e.g., Casanellas & Lopes 2010; Martins
et al. 2017). Missions like CoRoT (Fridlund et al. 2006; Michel et al.
2008), Kepler (Borucki et al. 2010; Koch et al. 2010) and TESS
(Ricker et al. 2014) have made progress in obtaining the oscillation
frequencies of many main-sequence (MS), subgiant (SG) and red-
giant (RG) stars with great precision, making it possible to study the
asteroseismology of stars other than the Sun. To take full advantage
of this diversity of data, seismic diagnostics can be formulated for
several stars in different stages of evolution, broadening the spectre
of potential DM laboratories. With the primary goal of discovering
habitable extra-solar planets, the PLAnetary Transits and Oscilla-
tions of stars (PLATO) mission (Rauer et al. 2014), to be launched in
2026, will extend this effort and enable more precise studies by the
determination of accurate stellar masses, radii, and ages from aster-
osesimic data. The oscillation frequency measurements are expected
to improve in precision upon those ofKepler while also extending the
catalogue to include brighter stars. Thus, this will enable the study of
the effects of DM on the stellar structure with both greater precision
and for a considerably larger number of stars.

In the following section we focus on the asteroseismology of SG
stars and important quantities for describing stellar oscillations are
introduced. We then describe the calibration methodology and the
diagnostics used to infer on the quality of the calibrated models, in
Section 3. In Section 4we address the interactions betweenADMand
stars. Results are then shown in two separate parts. In Section 5 we
calibrate a SG star with and without ADMpresence, where the stellar
inputs are treated as free parameters and are thus optimised to better
fit the observational data. After that, in Section 6, we take on the
work of the previous section by choosing the best no-DM model as
benchmark to build a set of DMmodels with different properties and
fixed standard stellar inputs. We then use the diagnostics defined in
Section 3 to classify this set of models and enquire about constraints
on the properties of ADM. Finally, conclusions and closing remarks
are presented in the last section.

2 ASTEROSEISMOLOGY OF SUBGIANT STARS

The study of the impact of DM on the Sun and other MS sun-like
stars using asteroseismology has allowed to constrain properties of
different types of particle DM (e.g., Lopes et al. 2002a,b; Frandsen

& Sarkar 2010; Lopes et al. 2019). In this work we focus on stars in
a different stage of evolution – the subgiant phase. This stage follows
the MS, i.e., after hydrogen burning ceases in the centre of the star
and moves to a shell right above the helium ashes that compose the
inert stellar core.

In particular, the object of our study is the subgiant KIC 8228742,
a F9IV-V spectral type star (Molenda-Żakowicz et al. 2013) with
a previously modelled mass of 1.27 M� (Metcalfe et al. 2014).
Throughout this work, the observational constraints were taken from
Chaplin et al. (2013) for the spectroscopic parameters and from Ap-
pourchaux et al. (2012) for the oscillation frequencies, as published
in the Asteroseismic Modelling Portal (AMP) (Metcalfe 2014).

Despite the experimental advances made by the aforementioned
missions, SG stars are more difficult to find than MS or giant stars
since that stage has a relatively shorter lifetime. Another interesting
aspect when studying the asteroseismology of SG stars is the lack
of detected non-radial acoustic modes. Usually, SG and RGs’ most
visible oscillations are gravity-dominated mixed modes (Hekker &
Mazumdar 2013; Gai et al. 2017): due to the rapid core contraction,
the gravity (g-) and acoustic (p-) mode trapping cavities are closer
to each other when the stars move off the MS, which results in the
coupling of the acoustic and gravity modes. These are called mixed
modes, which have p-mode characteristics in the convective stellar
envelope and g-mode characteristics in the dense radiative stellar
core. However, KIC 8228742 exhibits many simple modes (or pure
acoustic p-modes) like the sun (Appourchaux et al. 2012). This is
due to gravity-dominatedmixedmodes having lower amplitudes than
pressure-dominated ones (Dupret et al. 2009; Grosjean et al. 2014),
so observing them is not always easy. As such, we first direct our
focus to the acoustic simple modes.

Since acoustic waves of low spherical degree (ℓ) propagate
throughout the entire star, their frequencies encode information of
the whole stellar structure, spanning from the star’s core to its sur-
face. Thus, as stated before, obtaining them is pivotal to understand
the underlying physics of the internal structure of a star. Naturally,
quantities stemming from these frequencies can be defined to better
probe the stellar structure. The large frequency separation is defined
as (e.g., Tassoul 1980; Lopes & Turck-Chieze 1994)

Δa=,ℓ = a=,ℓ − a=−1,ℓ '
(
2
∫ '

0

3A

2(A)

)−1
, (1)

where a=,ℓ denotes the frequency of the mode with radial order =
and spherical degree ℓ, A is the radial coordinate, ' is the total radius
of the star and 2(A) represents the sound speed profile inside the star.
Thus, Δa=,ℓ is deeply related to the sound speed profile of a star and
is useful as a global measure of that quantity (Floranes et al. 2005).

Additionally, a small frequency separation can also be defined as
(Tassoul 1980; Lopes & Turck-Chieze 1994)

Xa=,ℓ = a=,ℓ − a=−1,ℓ+2, (2)

which is particularly sensitive to the thermodynamic conditions of
the stellar core.

As discussed before, subgiant and giant stars often exhibit gravity
dominated modes. From these, the period separation ΔΠℓ is a useful
quantity to extract and, in the asymptotic limit, it is given by (Tassoul
1980)

ΔΠℓ =
2c2√
ℓ(ℓ + 1)

(∫ A2

A1
#
3A

A

)−1
=

Π0√
ℓ(ℓ + 1)

, (3)

where # is the Brunt-Väisälä (or buoyancy) frequency and A1
and A2 correspond to the boundaries of the g-mode cavity which
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ADM constraints from subgiant asteroseismology 3

extends through the radiative region of the star. Since, in SG stars,
A1 coincides with the interface between the inner convective zone (if
there is one) and the radiative region, it follows that ΔΠℓ directly
relates to the size of the convective core.

3 CALIBRATION AND DIAGNOSTIC METHODS

3.1 Observables and calibration

Stellar modelling has been extremely helpful in allowing us to better
understand the physics at play inside stars. Modules for Experiments
in Stellar Astrophysics (MESA) (Paxton et al. 2011, 2013, 2015,
2018, 2019), an open-source 1-D stellar evolution code, is a pow-
erful tool in this regard. By combining various modules that aim to
precisely describe different stellar phenomenology,MESA allows the
user to model a wide variety of stars, given a set of stellar parameters
as inputs.

In our work, we take advantage of the full capabilities of MESA,
with special emphasis on the astero module (Paxton et al. 2013),
as it governs calibrations. Using this module as a starting point, we
produce a high precision stellar model calibration process which al-
lows for both seismic and spectroscopic calibrations by taking as
inputs {" , .8 , [Fe/H]8 , U, 5ov} (stellar mass, initial helium abun-
dance, initial metallicity, mixing-length parameter and overshooting
parameter, respectively) and then producing an evolutionary model
that is compared head-to-head with observations. This comparison
is accomplished by computing a j2

star value that has weighted con-
tributions from both spectroscopic (j2

spec) and seismic (j2
seis) ob-

servables. In this work we use the default 2/3 weight on the seis-
mic contribution and 1/3 on the spectroscopic counterpart, i.e.,
j2

star = 1/3j2
spec + 2/3j2

seis (Metcalfe et al. 2012; Paxton et al.
2013). The diagnostics j2

spec and j2
seis are quadratic deviations from

the spectroscopic and seismic observational data, respectively, with
their uncertainties taken into account:

j2
spec/seis =

1
#

#∑
8=1

(
-mod
8 − -obs

8

f-8

)2

, (4)

where # is the number of parameters, -mod
8 and -obs

8 are the stel-
lar model and observed values of the 8th parameter, respectively, with
f-8 being the observational uncertainty. The observational parame-
ters used in j2

spec are {!, )eff , [Fe/H]} = {4.57 ± 1.45 L� , 6042 ± 84
K, -0.14 ± 0.09} (luminosity, effective temperature and metallicity),
and in j2

seis is {Δa} = {62.1 ± 0.13 `Hz}.
As for the calibration procedure, we use amethod that is commonly

used throughout the literature (e.g., Deheuvels et al. 2016; Capelo
& Lopes 2020) which relies on minimising j2

star. This is achieved
through an automatised optimisation process which uses a direct
search method – the downhill simplex algorithm (Nelder & Mead
1965) – to find the optimal set of inputs that produce the group
of outputs {!, )eff , [Fe/H], Δa} that are closest to their observed
counterparts. To account for DM effects, we extend the standard
calibration process to also include the relevant DM parameters as
inputs, which extends the input set to {" , .8 , [Fe/H]8 , U, 5ov <j ,
fSD} while maintaining the same outputs and comparison strategy.

3.2 Seismic ratio diagnostics

While ensuring that a model is consistent with observations in terms
of spectroscopy is valuable in itself, in most cases these parameters
do not fully mirror what is happening in the stellar interior. These are

the situations where thoroughly analysing the oscillation frequencies
of a star becomes a powerful diagnostic tool.

To build upon the calibration process described in the last section,
we resort to a more detailed seismic diagnostic of the stellar interior
based on the observational frequencies a=,ℓ . Since in stars other than
the Sun it is difficult to observe modes with ℓ > 2 due to partial
cancellation (e.g., Aerts et al. 2010), we decide to use the ratio of the
small to large separations A02,

A02 (=) =
Xa=,0
Δa=,1

. (5)

Equation (5) aims to give better insights on the stellar core –
where the most significant DM influence is expected – since the near-
surface effects that highly affect individual frequency separations
nearly cancel out by computing this ratio. This means that A02 (=)
is independent of the structure of the outer layers of a star and thus
works as a probe into the stellar interior (Roxburgh & Vorontsov
2003). Conveniently, we define a new j2 to assess the seismic quality
of a given stellar model in terms of the A02 ratio:

j2
A02 =

22∑
==14

[
Aobs

02 (=) − Amodel
02 (=)

fAobs
02

]2

, (6)

where Aobs
02 (=) and Amodel

02 (=) represent the ratio defined in eq. (5)
computed using both the observed and model frequencies, respec-
tively, while fAobs

02
stands for the observed uncertainty which is com-

puted through error propagation from the individual frequencies’
uncertainties. For the star considered here, we can observe 32 modes
with ℓ 6 2 and = running from 14 to 22, amounting to 9 different
instances of A02 in the sum defined in eq. (6). The resulting value
of j2

A02 along side the other mentioned diagnostics will provide the
classification of the models.

One important point to bear in mind is that j2
A02 is used as an

additional diagnostic, independent from the original calibration pro-
cess. This is mainly because it creates a robust two-step rejection
method and also due to computational time constraints. Thus, only
j2

spec and j2
seis are computed at each step of the calibration process.

It should be noted that while j2
seis does imply the computation of

the large frequency separation, this is accomplished by taking into
account the approximation in eq. (1) instead of the actual computa-
tion of the oscillation modes, and as such, it does not represent the
time-consuming effort that A02 would. After the calibration process is
completed the A02 ratios are then computed for the accepted models
of the previous step (usually by defining a cut-off j2

star).

4 ASYMMETRIC DARK MATTER INTERACTIONS WITH
A STAR

In the case of ADM, the interactions between DM particles and a
given star are limited to capture, evaporation and energy transport,
all due to scattering with the baryonic matter that constitutes the
stellar plasma. For the models considered in this work, it is safe to
neglect evaporation – the process in which DM particles that were
already trapped inside the star scatter to velocities larger than the
local escape velocity – since it has been found that, for sun-like
stars, the DM mass above which evaporation is negligible is close
to 3.3 GeV (e.g., Gould 1990; Kouvaris 2015), and here we explore
larger mass values of ADM particles. Additionally, as stated before,
the annihilation cross section of ADM particles is negligible and,
thus, the process that defines the number of dark matter particles
inside the star is the capture. This process, which consists in the
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4 J. Rato et al.

gravitational trapping of DM particles from the galactic halo, is
mainly defined by the DM mass, the DM–nucleon cross-section, the
gravitational potential of the star and the local DM density. In our
case, KIC 8228742 is just 0.17 kpc away from the Sun, therefore we
assume a DM density corresponding to what is found in the solar
neighbourhood, dj = 0.38 GeV/cm3 (Catena & Ullio 2010).

After accumulating and thermalising within the star, captured par-
ticles interact with baryons in the stellar interior. These scatterings
will create an additional mechanism for transporting energy, adding
an extra term to the standard equation of energy transport in stars.
In most model-independent DM studies it is usual to assume the
already mentioned fSI and fSD effective constant cross sections to
describe the ADM particles’ interactions with the baryons in the
stellar plasma. In this work, we focus on SD interactions, which,
in the case of solar-like stars, correspond mostly to scatterings with
hydrogen. Previous studies regarding the impact of ADM in the Sun
showed that due to the flux of energy carried outwards from the
innermost regions of the star by ADM particles with a mass of 7
GeV and fSD ' 10−36 cm2, the stellar core exhibited a decrease in
temperature when compared to the standard case, while the reverse
happened with the (baryonic) density (Taoso et al. 2010). This effect,
whose intensity is naturally related to the interaction cross-section,
is in fact counter intuitive given that any transport of energy away
from the core should lead to its contraction, which would in turn lead
to an increase in temperature. This however is not the case, since the
energy transported away by the ADM particles is of a higher order of
magnitude than the one released by the core contraction, countering
its heating effects.

Another well-known consequence of the extra energy transport by
DM is the suppression of convection – generally in the centre of the
star – which was firstly proposed by Renzini (1987) and Bouquet &
Salati (1989) and later studied by Casanellas & Lopes (2013) and
Casanellas et al. (2015), particularly for stars with masses between
1.1 and 1.3 M� . This suppression is directly related to the decrease
in the temperature gradient, which prevents the arise of convection
as it would in cases where there is no energy transport by DM.

In this work, to study the effects of the interactions between ADM
and the stellar plasma during the evolution of star KIC 8228742 we
modified the MESA stellar evolution code to include the processes
described above, namely capture and energy transport. We consider
DM capture as described by Gould (1987), and energy transport
is computed taking into account the numerical results by Gould &
Raffelt (1990). During the evolution, the capture rate is computed at
each time step, and total number of ADM particles inside the star
is updated accordingly. This information is then used to compute
the extra energy term, which is fed to the usual set of differential
equations that govern stellar evolution.

5 STELLAR MODELS

5.1 Standard stellar model of the subgiant KIC 8228742

Using the calibration methods described in Section 3 with all five
inputs {" , .8 , [Fe/H]8 , U, 5ov} as free parameters, we obtain several
stellar models with no dark matter interactions. From these models,
the best one in terms of j2

star was chosen as the benchmark model for
future analysis and is henceforth also referred to as Standard Subgiant
(SSG) model. The resulting parameters are shown in the first row of
Table 1, where j2

A02 is also included. It should be noted that directly
comparing j2

star with j2
A02 is misleading, as their definitions and

normalisation are different.

In comparison with other models found in the literature, the SSG
model’s parameters fall well within the limits proposed inmost works
(e.g., Bellinger et al. 2019) with the exception of the initial metallicity
andmixing-length parameters found inVerma et al. (2018). This does
not amount to a large discrepancy and thus the model is accepted to
be a good reference model. Additionally, the SSG model exhibits
a convective core during the MS that extends up to 0.065 R� and
showcases a helium core (surrounded by a hydrogen shell) at the
end of the evolution (See Fig. 3), which is the expected structure for
stars in this stage of evolution, with these values of stellar mass (e.g.,
Hurley et al. 2000; Salaris & Cassisi 2006a,b,c).

5.2 Comparison of dark matter models with a standard stellar
model

A valuable asset of the improved calibration method considered in
this work is that it allows for the DM properties to be treated as free
parameters in the calibration. In this sense, we allow the algorithm to
vary the values of the ADM particles’ mass in between 4 and 12 GeV
and the spin-dependent cross section in between 10−40 and 10−35

cm2 since this is both included in the region of the parameter space
currently being probed by DM direct detection experiments and also
the region that produces greater effects on stars (e.g., Casanellas &
Lopes 2013; Martins et al. 2017).

As before, the standard stellar inputs shown in the previous section
were treated as free parameters, so it is expected that the set of
optimal parameters is different than the values shown in the first row
of Table 1. Taking into account the DM phenomenology described
in Section 4, we carried out the optimisation process, from which
we retrieved the best model (i.e., with the lowest j2

star). This model
(DM Calib) found an optimal dark matter particle with a mass of
<j = 9.12 GeV and a spin-dependent interaction cross section of
fSD = 2.32× 10−36 cm2, which is within the limits of the XENON-
100 experiment mentioned in Section 1. The fact that this model is
calibrated, by definition, means that it is bound to be in agreement
with the corresponding observations. However, it is interesting to
note that the best agreement – within the considered parameter range
– occurs for the aforementioned values of <j and fSD, even though
they fall inside the excluded area of other more recent experiments
(e.g., Amole et al. 2019).

As expected, Fig. 1 shows that the optimal inputs changed with
respect to the parameters obtained in the SSG model, some more
drastically than others, as is the case of the initial Helium abundance
.8 and the mixing-length parameter U. In terms of model outputs, the
inclusion of the DM effects and parameters in the calibration process
made the stellar age change in around 12%while the most noticeable
difference is the 16% increase in the logarithm of the central density,
which translates to a factor of around 2.5 in the central density itself.
This discrepancy is best viewed by comparing the respective profiles
shown in Fig. 2, where it is visible that the star forms an isothermal
core at a lower temperature, which is consistent with other results
for the Sun and other sun-like stars (e.g., Lopes & Silk 2002; Taoso
et al. 2010). Such is also the case of the baryonic density profile,
which displays an increase in the innermost regions of the star when
considering ADM capture and interactions. One important aspect
to remember is the fact that, by only considering spin-dependent
couplings, the DM-stellar matter scatterings are practically reduced
to DM-hydrogen interactions. This means that, in fact, we neglect
most of the DM energy transport that occurs during the actual SG
phase, given that in these stars the region inhabited byADMparticles,
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ADM constraints from subgiant asteroseismology 5

Table 1. KIC 8228742 models. The 4 bottom models were calibrated with fixed pairs of (<j , fSD) while DM Calib allowed the two parameters to vary. The
first 2 columns are the DM parameters and the 3 following columns are some of the input parameters of the calibration. Both 5ov and [Fe/H]8 are omitted
because they share similar values between all models ( 5ov ' 1.62 × 10−2 and [Fe/H]8 ' −0.14). The following columns correspond (from left to right) to: age,
luminosity, total radius and the logarithms of the central temperature and central density. The j2 used in calibration and diagnostics are also displayed. Finally,
the period spacing is shown for ℓ = 1 and ℓ = 2.

Model <j fSD " .8 U age ! ' log
(
)2
1 K

)
log

(
d2

1 gcm−3

)
j2

star j2
A02 ΔΠ1 ΔΠ2

(GeV) (10−36 cm2) (M�) (Gyrs) (L�) (R�) (10−3) (s) (s)

SSG - - 1.2565 0.244 1.403 4.52 4.254 1.884 7.42 2.53 5.735 27.8 1636 945

DM Calib 9.12 2.32 1.2517 0.227 1.467 5.03 4.270 1.886 7.32 2.95 5.287 29.2 548 316

DM A 6.00 10−3 1.2580 0.244 1.406 4.50 4.263 1.884 7.42 2.53 5.586 26.7 1642 948
DM B 6.00 10−1 1.2591 0.243 1.407 4.50 4.264 1.885 7.42 2.53 5.486 37.8 1644 949
DM C 5.000 1 1.2516 0.227 1.480 5.06 4.268 1.887 7.32 2.96 5.245 20.0 543 313
DM D 6.00 10 1.2590 0.229 1.403 4.76 4.339 1.884 7.32 2.96 17.879 64.3 564 326

0 A slightly different mass value was used in this case due to model convergence limitations.

χ2
star

M Yi [Fe/H]i α fov log L Teff [Fe/H] ∆ν age log R log g νmax χ2
r02

log Tc log ρc
0

2

4

6

8

10

12

14

16

|δ
X
i| 

(%
)

Diagnostic Input variables Calibration outputs Fundamental
parameters

Seismic
parameters

Core physics

δXi < 0

δXi > 0

Figure 1. Direct comparison of the DM Calib and Standard Subgiant models: the percentage variations were recorded relatively to the SSG model (see Table
1). As some variations are negative, we use blue for negative values and red otherwise.

i.e., the core, is mostly devoid of hydrogen. Thus, the DM signatures
shown here – and the resulting departures from the standard non-
DM models – are in fact a consequence of DM interactions that
occurred mainly during the MS. Therefore, the comparison with
different studies in the literature about similar effects in MS stars is
reasonable since we are looking at the remnants of ADM interactions
during the MS phase through a SG star. It should also be noted that
although we are not comparing the SSG and DM Calib models at
the same age (nor do they have the same standard stellar inputs),
as is the usual practice, the comparison is still of interest (and thus
this effect is still expected) since it is made between two calibrated
models of the same star, meaning that they are spectroscopically
similar. Nevertheless, one could argue that the change in the star’s

age could be the driving factor of the differences found between the
two models. But, in fact, that is not the case: by analysing the same
profiles of the two models for the same age (for example, at t = 4.52
Gyrs, see Table 1) we confirm that the two distinct regimes are still
present and identical to what is seen in Figs. 2 & 3.

Unlike the Standard model of this star, DM Calib did not exhibit
a convective core. In fact, the suppression of the convective core is a
recurring feature of DM influence on stars as mentioned in Section 4.
Furthermore, by studying the star chemical profiles (Fig. 3) we see
that while hydrogen is completely exhausted in the inner regions of
the stellar core, there is a smooth increase in the hydrogen abundance
(vice-versa for helium), instead of the sharp variation which is usual
in stars with " ' 1.3 "� .
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Figure 2. Temperature (left axis) and baryonic density (right axis) profiles of
the SSG and DM Calib stellar models (see Table 1).
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Figure 3. Hydrogen and helium abundances of the SSG and DMCalib stellar
models (see Table 1).

This is a direct consequence of the stellar core being radiative,
as opposed to convective, during the main-sequence: the arise of
core convection during the MS promotes the homogenisation of the
chemical species in the central regions of the star, and thus the
exhaustion of hydrogen that characterises the end of the MS occurs
everywhere within the convective zone – instead of locally in centre
of the star.

One other effect that is found in this model is the extension of
the MS lifetime (Lopes & Lopes 2019). While the star with DM
has a radiative core during the largest part of its MS lifetime, and
thus nuclear burning is limited to the local hydrogen supply, the
decrease in central temperature slows down the hydrogen burning
rate thus extending the MS lifetime. The age of the model itself may
be another indicator of this effect since the best agreements with
observations (which are the goals of a successful calibration) were
found to be at a later stellar age than in the standard case.

In addition to the model DM Calib, we decided to repeat the
calibration process accounting for DM effects, but instead with pre-
defined fixed values of <j and fSD. Stellar DM models from A to
D are the best models for each of the (<j , fSD) pairs showcased
in Table 1. The first conclusion to be taken is that DM Calib, which
produced an optimal pair of (<j , fSD), does not have the lowest
j2

star. This means that the full calibration optimisation method most
likely hit a local minimum around the displayed values.

A closer inspection at the remaining columns of Table 1 reveals
that the SSG model, DM A and DM B all share similar outputs.
The same happens for models DM Calib, C and D, where the latter
slightly deviates from the rest, leading to a j2

star of an higher order
of magnitude. These two distinct regimes are expected once we take

14 15 16 17 18 19 20 21 22
n

0.05

0.06

0.07

0.08

0.09

r 0
2

SSG

DM Calib

DM A

DM B

DM C

DM D

Observed

Figure 4. A02 ratios (see eq. (5)) for the models in Table 1 compared to
observations. The dashed lines represent the 4 models with fixed values of
(<j , fSD).

into account the mass and cross-section values of the dark matter
impacted models: for fSD > 10−36 cm2 the effects from ADM
interactions have a noticeable impact on the star, while for smaller
values of fSD the effects are mostly negligible. We also confirm
the prevalence of the two regimes when drawing profiles similar to
Figs. 2 and 3 for the remaining models, i.e., the curves of Standard,
DM A and DM B have similar behaviour between themselves whilst
the remaining models follow the signature of DM Calib.

Finally, it is interesting to note that some DMmodels have a lower
j2

star than the SSG model. For DM Calib, the decrease in almost 8%
of this quantity is substantial and the fact that DM A, B and C also
represent an improvement on the Standard model’s value reinforces
the argument that the existence of DM is not incompatible with the
current observational data for this star. However, the j2

A02 diagnostic
increased in about 4% for DM Calib (even more for DM B) which
hints towards the fact that the model might have fallen victim to
an equivalent of overfitting. This means that, since the optimisation
is done with respect to j2

star, other parameters of the star might
have been affected to achieve a better performance in that specific
diagnostic. Either way, the deviation on j2

A02 is not as significant as
in the previous diagnostic. To better infer on the j2

A02 discrepancy,
we compute A02 (=) as shown in Fig. 4.

The results for A02 (=) show that although theDMCalib ratio values
deviate more from the observational average than the SSG’s, the
behaviour pattern is similar to that of the observed A02 (particularly
around = ∼ 19−20). Fig. 4 also shows that model DMC has the same
regime as DM Calib, but slightly closer to the observation values,
which is reflected in its smaller j2

A02 .
Again, the two regimes are distinctively visible, with DM B being

somewhat of an intermediate model. This is also expected since
in this model fSD is in-between that of DM A and DM C, which
showcase each one of the two different regimes.

6 ASTEROSEISMIC ANALYSIS

6.1 Probing the parameter space <j − fSD

Using the input stellar parameters of the SSG model as benchmark
(see Table 1) and enabling DM interactions, we decide to explore the
sensibility of the models in DM parameter space. This is achieved
by computing 100 models in a <j −fSD grid with fixed dark matter
parameters within the range 4 6 <j 6 12 GeV and 10−40 6 fSD 6
10−35 cm2. As before, this range of values was chosen in agreement
with the DM parameter space usually explored in the literature (e.g.,
Martins et al. 2017). Each input group in this grid was then used
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Figure 5. Contours for j2
star (see eqs. (4) and (7)): lighter shades represent

lower j2 and thus better models for this specific diagnostic. The contour
for j2

star = 1 represents models as good as the SSG model. Direct detection
experiment results fromXENON-100 (Aprile et al. 2016), LUX (Akerib et al.
2016), PICASSO (Archambault et al. 2012; Behnke et al. 2017) and PICO-60
(Amole et al. 2019) are shown as solid lines.

to create a model (i.e., one single model, differently from the opti-
misation process discussed in the previous sections) for which j2

star
was computed, allowing for the drawing of contour plots showcasing
the parameter region of interest and corresponding DM parameters
(Fig. 5).

A normalised j2
star was defined as:

j2
star =

j2
DM
j2

SSG
, (7)

where j2
DM corresponds to the j2

star of each model taking DM into
account and, likewise, j2

SSG is that same value for the Standardmodel
(in this case j2

SSG = 5.735×10−3, see Table 1).
On the one hand, it is visible that the overall tendency is for

stellar models with lower interaction cross-section to agree better
with observations. On the other hand, there are some models with
higher fSD that do not converge, meaning that the benchmark input
parameters coupled with the given DM quantities cannot converge to
an acceptable solution of the stellar evolution differential equations.
This happened for models with fSD larger than 4 × 10−36 cm2,
where although not explicitly shown in the figure, the j2 values rose
to orders ofmagnitude of 102. This relation between the cross-section
and j2

star is somewhat expected since the lower the fSD the smaller
the influence of DM is on the stellar structure. Thus, the lower region
of the grid performs better than the upper region since it naturally
tends to the SSG case. However, it is still worth noting that for fSD
as high as 10−37 cm2 some models seem to perform well.

Furthermore, by looking at the contour line that defines models as
good as the SSG model (at j2

star = 1, see Fig. 5), it is visible that a
large portion of the 100 DM stellar models outperform it. This means
that most dark matter models with the same inputs as the SSG but
with<j between 4 and 12GeV andfSD between 10−40 and 4×10−39

cm2 fit the spectroscopy and large frequency separation observations
better than the best performing no-DM model. It should be noted
that despite the fact that fSD = 10−40 cm2 is a hard limit, i.e., it was
chosen by default, that doesn’t mean that the improvement in j2

star
is observed for any fSD below this value. In fact, we also obtained
models below the minimum cross-section considered in Fig. 5 (e.g.,
fSD = 10−42 cm2) and observed that the j2

star diagnostic again
tended to the SSG value (i.e., j2

star = 1), which is expected since DM
is less influential for lower interaction cross-sections. Additionally,
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Figure 6. Contours for j2
A02 (eq. (6) and normalised similarly to eq. (7)):

lighter shades represent lower j2 and thus better models for this specific
diagnostic. The contour for j2

A02 = 1 represents models as good as the SSG
model. Direct detection experiment results from XENON-100 (Aprile et al.
2016), LUX (Akerib et al. 2016), PICASSO (Archambault et al. 2012; Behnke
et al. 2017) and PICO-60 (Amole et al. 2019) are shown as solid lines.

we found a model near <j = 9 GeV and fSD = 3 × 10−38 cm2 that
exhibits the lowest j2

star of the set.
It is interesting, however, to study the performance of the best

performingmodel and all the others under the j2
A02 diagnostic defined

in Section 3.2. To achieve that, the A02 ratio was computed for all
models in the grid and compared to observations, i.e., the ratio that
was computed with the 32 frequencies observed in the star. After
that, j2

A02 was computed and yet again plotted in contours.
The results shown in Fig. 6 confirm the overall trend seen before in

Fig. 5: models in the lower region of the grid seem tomore accurately
agree with the observed A02 which, in itself, grants more confidence
to the previous results. The contour that defines models with similar
performance to that of the SSG model was again explicitly drawn
at j2

A02 = 1. Once more, most models with f(� < 10−38 cm2

outperform the best model with no dark matter interactions, this time
on a different diagnostic that better represents the core structure.

It is also interesting to note that the best performing model of the
previous set (Fig. 5) is not in the same region of the best performing
models in the j2

A02 diagnostic. This is a case where the spectroscopic
results out-shadowed the structural differences in the first diagnostic,
which was then covered by calculating the A02 ratio. Hence, the two
step rejection method proves to be valuable in cases like this, since
normally that model would have been accepted by passing the j2

star
diagnostic with the lowest value.

A simple additional test can be done by combining the two
methods, taking the maximum value of both diagnostics, j2

total =

max(j2
star, j

2
A02 ). This is shown in Fig. 7, as well as the region within

the j2
total = 1 contour which represents the models that outperform

the SSG model in both diagnostics.
When comparing the aforementioned grids with the direct detec-

tion experiment’s limits we see that our method could provide com-
plementary <j − fSD exclusion diagrams. This could be achieved
by defining a cut-off j2 since it is visible that there is a steep tran-
sition region between the two regimes (from yellow to dark red)
which indicates a rapid disagreement between the stellar models and
the observational data. The behaviour showcased in Figs. 5 - 7 can
be compared to that of the limits from PICASSO (2012; 2017) and
LUX (2016). Moreover, it seems to suggest harder limits than those
of XENON-100 (2016), which is not as competitive for lower <j .
Taking into account the SSG model as the benchmark we can hint
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Figure 7. Maximum value between j2
star and j

2
A02 : the contour for j

2
total = 1

represents the models with an equated performance to the SSG model, using
their worst diagnostic. Direct detection experiment results from XENON-100
(Aprile et al. 2016), LUX (Akerib et al. 2016), PICASSO (Archambault et al.
2012; Behnke et al. 2017) and PICO-60 (Amole et al. 2019) are shown as
solid lines.

towards the region with fSD & 10−37 cm2 where j2
total rapidly

increases, meaning that ADM presence in this SG star is strongly
disfavoured by both spectroscopic and seismic observations.

Finally, it should be noted that the models obtained in the previous
section – which were obtained by calibrating the stellar and, in the
case of DM Calib, the DM parameters – can fall in the excluded
region suggested in Fig. 7 (see Table 1) and still yield stellar models
that are in agreement with the observational data. This may be due
to the increase in the degrees of freedom associated with the extra
free parameters which, given that the observational error for the
star in question is substantial, allows the method to find different
combinations of parameters that still fit the reality. Therefore, with
access to more precise measurements from future spectroscopy and
asteroseismology missions, one can expect to calibrate a standard
benchmark model that allows the drawing of exclusion diagrams
with more certainty.

6.2 Period Spacing Analysis

When further analysing the oscillation eigenfunctions of severalmod-
els, it is clear that the amplitude rapidly falls off within the first outer
20% of the star radius. This means that despite using a seismic ratio
that is designed to gather more information about the stellar interior,
the acoustic modes that defined the diagnostic fall short on this task.
Thus, we can conclude that the A02 diagnostic is not as sensitive to the
core as expected, being more representative of the stellar envelope,
contrary to what happens in a typical MS star.

Motivated by this, we change our focus to the gravitational char-
acter of the oscillations, which, as seen before, should be specially
sensitive to the stellar interior. This is done by analysing the mixed
modes of the various models, which allows the extraction of the
relevant quantities of the gravity contribution.

In particular, the asymptotic value of the large period separation
presented in eq. (3) can be computed from the MESA models for
ℓ = 1 and ℓ = 2, for which there are mixed modes. It is expected
that if the presence of DM in stars directly affects the size of their
convective cores, as we have seen in previous sections, then the
period spacing will serve as a good probing tool (Lopes et al. 2019).
The ΔΠℓ values are shown in the two last columns of Table 1. The
already mentioned regimes are once again clearly noticeable: there
is a substantial decrease in period spacing when DM is strongly
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Figure 8.Contour plot of the deviation of the period separation ΔΠ1 from the
SSG model for the same grid of DM models. The two black curves represent
the lower and upper boundaries of the relative error of measurement of this
quantity for 39 SG stars from Mosser et al. (2014) (Lopes et al. 2019).

influential that can go up to 66% of the benchmark value (from
SSG). This, again, is explained by the suppression of the convective
core caused by DM, which in turn leads to an increase of the g-mode
cavity, producing a direct effect on the integral in eq. (3).

As before, we define the ΔΠℓ deviation from the SSG model for
the same grid of DM models to better understand the impact that the
different DM parameters have on the core of the star. The variation of
ΔΠ1 is shown in Fig. 8. We only show the case with ℓ = 1, given that,
by definition, in the asymptotic limit, ΔΠ1 and ΔΠ2 only differ by
a multiplying constant. The darker region represents models where
|XΔΠ1 | is larger than 15% and, in some cases, models reach the 60%
mark as was already the case for some models in Table 1. It is also
clear that larger masses of ADMparticles tend to result in less effects.
This is twofold: first, these particles are harder to capture by virtue
of requiring a larger transfer of momentum upon recoil in order to
reach a velocity lower than the escape velocity (e.g., Gould 1987;
Nuñez-Castiñeyra et al. 2019); secondly, if eventually captured, they
cluster strongly in the innermost regions of the star and, thus, their
impact is naturally not felt as much. It is important to note that most
of the deviations shown in the grid happen in the negative direction,
with DM impacted models exhibiting a smaller period spacing, as
expected.

The overall tendency in Fig. 8 mimics that of Figs. 5 - 7: models
in the upper part of the grid show a larger ADM influence on the star.
Yet again, the transition region between the two regimes is narrow.
The region below the 5.76% contour represents models whose ΔΠ1
variation is lower than the lowest relative uncertainty among the large
period separation measurements in Mosser et al. (2014). Likewise,
models above the 37.50% curve exhibit a variation that surpasses the
uncertainty of the less precise measurements. Both these statements
mean that current experiments may not have enough sensitivity to
resolve DM signatures in SG stars in the transition region (where the
lower relative uncertainty contour is) and particularly in the region
below the 37.50% contour. Above that curve, the effect should be
detected, with the deviation being greater than the observable un-
certainty in the worst cases. However, one should note that if this
analysis is carried out for a SG star which allows for a more precise
measurement of ΔΠ1 (i.e., closer to the 5.76% mark) there should
be enough sensitivity to draw any valuable conclusions regarding the
acceptability of DMmodels for that star. In the future, this diagnostic
could be used with measurement data as the benchmark, providing
a strong case for model rejection and, additionally, ADM parameter
constraints.
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7 CONCLUSIONS

Subgiant stars are but a small fraction of the currently observed stars
by virtue of that evolutionary stage being relatively short. Despite
that, they can pose as important laboratories for the study of dark
matter constraints. In this work, we obtained calibrated stellar mod-
els of the subgiant KIC 8228742 assuming both the presence and
absence of asymmetric DM spin-dependent interactions. Focusing
on SD interactions allows us to directly compare our results to the
corresponding constraints placed by detectors which study the same
type of interactions. More importantly, by studying only spin de-
pendent couplings, we essentially neglect interactions with elements
heavier than hydrogen , and thus also any direct effect that DM has
on the star during the SG phase. Then, by carrying out this study we
take advantage of the seismological benefits of the SG phase to study
DM interactions in the MS stage.

The results shown here point towards the fact that, overall, DM
models are in agreement with current observations of this star.

Firstly, in an attempt to study the possibility of ADM presence in
SG stars, we introduce darkmatter parameters into the calibration and
optimisation processes. This is a new approachwhich aims to find the
best models, in terms of the diagnostics here proposed, disregarding
any prior standard (with no darkmatter influence) benchmarkmodels.
Calibrated models with strong DM influence showcased a different
regime from both the standard (SSG) model and DM models with
lower fSD. Phenomena like the suppression of the convective core,
the cooling of the inner core and the increase in density of that region
were all present and in agreement with past findings (e.g., Taoso et al.
2010; Casanellas & Lopes 2013; Casanellas et al. 2015; Lopes &
Silk 2002). We later conclude that the results obtained at this stage
of the work, which provided an optimal pair of ADM particle mass
and spin-dependent cross-section of <j = 9.12 GeV and fSD =
2.32 × 10−36cm2 may not be sufficient to constrain the DM particle
candidates’ properties. A number of limitations can be pointed out as
the cause for this. The number of spectroscopic quantities of this star
that we have measurements for pose a problem when introducing
more parameters into the input group, since overfitting – typical
of situations where there are too many parameters relative to the
available data points – may be happening here. The precision of the
current measurements is also a factor since it broadens the accepted
model spectrum and limits the certainty of a possible exclusion limit.
Lastly, computational time constraints were a large limitation to the
minimisation problem and this is an aspect that has the potential for
clear improvements.

Using seismological diagnostics as a second probing tool, we then
present a method to study the influence of DM in the interior of stars,
with direct applicability to SGs. The A02 ratio is used in an attempt to
probe the stellar core, which is the region that ADM severely impacts.
A study of the deviation of A02 from observational measurements
allows us to draw several sensitivity grids (Figs. 5 - 7)which showcase
the increasing influence that DM has with the increase of the spin-
dependent cross-section of the interaction between ADM particles
and stellar matter.

Moreover, those same figures show a class ofmodels with 10−40 6
fSD < 10−38 cm2 that consistently outperform the best standard
models, which strengthens the argument that the presence of ADM
particles in this star is consistent with observations. Additionally, a
fSD admissible region is suggested for values up to 10−37 cm2 where
the j2 diagnostics start to deteriorate fromobservations. This value is
comparable to those of the PICASSO (2012; 2017) and LUX (2016)
experiments and improves that of XENON-100 (2016). Then, an
exclusion limit may be drawn with more certainty at fSD & 10−35

cm2 since results from both Section 5 and 6 find this region as
incompatible with current observations. This conclusion is similar
to what Casanellas & Lopes (2013) and Martins et al. (2017) found
previously for MS stars.

Lastly, we propose an additional seismic parameter to study DM
influence on SG stars that allows us to further probe the stellar core.
As the acoustic modes were mainly probing the stellar envelope
(contrary to what typically happens in MS stars), we turned our
attention to gravity and mixed modes, which carry more information
about the core since they travel deeper into the stellar interior. The
ΔΠℓ diagnostic was calculated for the same grid of models and
the results again confirm the previous analysis and hint towards the
possibility of drawing exclusion diagrams for a SG star for which we
have the ΔΠℓ observations.

In the future, missions like PLATO (Rauer et al. 2014) which
will provide high precision measurements of both spectroscopic and
seismic quantities, will allow for a more extensive analysis of the
impact of ADM in stars and,more importantly, will make the drawing
of exclusion diagrams possible, using the method we present here.
With better measurements, we also expect the calibration with DM
quantities as inputs to provide a better result, with less impact from
numerical constraints.

Another aspect to consider in the future is the inclusion of spin-
independent interactions which will certainly drive the DM impact
in the later stages of the stellar evolution, by allowing the interaction
with helium and heavier elements as well.
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