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Abstract: The intricate environment created by global trading leads to enforcing trust by centralized organizations. A
potential problem is that these organizations constitute a single point of trust and failure. Blockchain (BC)
offers a decentralized ledger that records transactions and allows tracking assets in a secure and reliable way.
While BC can guarantee that the stored data cannot be tampered with, it cannot guarantee that the data was
correct when it was stored in the chain. A correctness check for data before data is stored in the BC is needed.
The DEMO methodology offers all the information about the process needed to evaluate and create Smart
Contracts (SC). By computing a high-level formal model as DEMO Action Model and generating SCs from it,
one can create SCs that ensure the correctness of transactions data before it is stored in the BC. This solution
allows the reuse of Ontological models and guarantees the correct implementation of SCs. This work relates
concepts between DEMO and Solidity and creates a base SC that encapsulates the DEMO concepts. Regarding
the mapping between the DEMO concepts and Solidity concepts, DEMO ensures the syntactic validation,
while the two Use Case ensure the semantic validation. The base contract, it instantiates the mapping, and its
validation is done using the EVM compiler and Solidity language. The work was communicated to ICEIS,
KEOD, and MODELSWARD to obtain a scientific evaluation.

1 INTRODUCTION

BC technology can be seen as a solution to coor-
dinate inter-organizational processes involving un-
trusted parties (Dumas et al., 2019). This technology
provides a way to record something that happened to
ensure that it cannot be deleted once recorded. SCs
are mechanisms, that exist in latter BC generations,
that ensure that a given routine is executed every time
a transaction, of a given type, is recorded. Tradition-
ally, the coordination of all parties in a transaction is
accomplished through message exchange. Instead of
exchanging messages, all parties involved in the inter-
organizational process can execute transactions on the
BC. This alternative method ensures that important
business rules are always followed.

While BC can guarantee that the stored data can-
not be tampered with, it cannot guarantee that the data
was correct when it was stored in the chain. Rectify-
ing incorrect information is almost impossible in the
BC. What is needed is a correctness check for data
before data is stored in the BC.

Dietz uses the ψ-theory (Dietz, 2007) (underlies
the notion of Enterprise Ontology (EO)) to construct
a methodology providing an ontological model of an
organization, i.e. a model that is coherent, compre-

hensive, consistent, and concise, and that only shows
the essence of the operation of an organization model
(Dietz, 2006). This methodology is called DEMO. In
DEMO, an enterprise is seen as a system of people
and their relations, authority and responsibility. The
usage of a strongly simplified models that focus on
people forms the basis of DEMO.

The EO model reduces complexity. This reduc-
tion in complexity makes the organization moretrans-
parent. It also shows the consistency between all ar-
eas within the enterprise, such as Business Processes
(BP) and workflows.

Concerning the automatic generation of SCs, sev-
eral approaches can be followed, one of which being a
Model-Driven Engineering (MDE) approach. MDE is
a software engineering method that uses models with
various views and levels of abstraction to achieve dif-
ferent goals in the software development process.

By computing a high-level formal model as
DEMO Action Model and generating SCs from it, one
can create SCs that ensure the correctness of trans-
actions data before it is stored in the BC. This solu-
tion allows enterprises to experience the possibilities
of BC without needing to know all sorts of technical
details. Ultimately, this solution allows the reuse of
Ontological models and guarantees the correct imple-



mentation of SCs.

2 PROPOSAL

In this section the artifacts developed in the scope of
this work are presented.

2.1 Ontological Solution Hypothesis

The concept of data independence designates the
techniques that allow data to change without affect-
ing the applications that process it (Markov, 2008).
It is the ability to modify a scheme definition at one
level without affecting a scheme definition at a higher
level. It is believed that a similar separation is highly
needed for SCs to achieve the goals set in this work.
DEMO is based on explicitly specified axioms char-
acterized by a rigid modeling methodology and is fo-
cused on the construction and operation of a system
rather than the functional behavior. It emphasizes the
importance of choosing the most effective level of ab-
straction during information system development to
establish a clear separation of concerns. The adop-
tion of the Distinction Axiom of EO is proposed as an
ontological basis for this separation.

At the Essential layer, an inter-organizational BP
consists of several causally related transactions, as
depicted by the Composition Axiom of EO. Each of
these transactions has one initiator and one execu-
tor, which are roles played by process participants.
Process participants perform acts during the various
transaction phases. Whenever an act is carried out, it
results in a fact. Whereas an act typically consists of
a desirable future state, a fact states something true
in the social world at a point in time (van Wingerde
and Weigand, 2020). In this layer, the present work
believes a SC is a contract in which the commitment
fulfillment is completely or partially performed auto-
matically in BC.

The acts on the Essential layer maps to one or
more invocations to a contract on the Infological
layer. This contract guards the invocation of business
rules that can potentially change the state of that same
contract. So, this work believes, for the Infological
layer, a SC is enforced by a set of rules implemented
on the BC through code.

On the Datalogical layer, an inter-organizational
process is invocations to SCs made by wallets. A
transaction invocation, if successful, is recorded in
a block. The execution of the function may emit an
event and change state variables. So, for the Datalogi-
cal Layer, a SC is defined as a piece of code contained
in nodes of the BC.

2.2 Modeling Solution Hypothesis

One of the most common graphic process modeling
notations used is BPMN. BPMN focuses on modeling
the articulation between activities, resources, flows,
gateways, events, messages, and data objects that oc-
cur in a BP. However, BPMN doesn’t adequately sup-
port the articulation of business rules that would be
essential for the automatic generation of SCs. Process
modelers usually have to use workarounds, usually by
also using additional tools, to include business rules in
their processes. In addition, (Tobias and Jan, 2013),
concluded that BPMN has a level of 51.3% of over-
lapping language concepts and lacks state concept to
ensure a more sound semantics.

DEMO, on the other hand, has been widely ac-
cepted in both scientific research and practical appli-
ance (Andrade et al., 2018; DIETZ, 2020). DEMO,
sees an enterprise as a system of people and their rela-
tions, authority, and responsibility. DEMO ψ-theory
specifies semantic meaning to the business transac-
tions. The business transactions dynamic includes the
actors, the communications, the productions, and all
its dependencies. While BPMN does not describe any
semantic for the business model, it only provides a set
of constructs that could be combined accordingly with
a specification.

2.3 Technology used in Solution
Implementation

This work requires that the BC chosen supports the
creation of SCs.

2.3.1 Ethereum

Ethereum is a platform for BC applications, with its
BC and cryptocurrency, Ether.

Ethereum does this by building what is essentially
the ultimate abstract foundational layer: a BC with a
built-in Turing-complete programming language, al-
lowing anyone to write SCs where they can create
their own arbitrary rules for ownership, transaction
formats, and state transition functions.

2.3.2 Solidity

Solidity was chosen because it is developed under
Ethereum, and it is the most used language for SCs
for EVM. The building block in Solidity is a con-
tract that is similar to a class in object-oriented pro-
gramming. The contract contains persistent data in
state variables, functions to operate on this data, and
it also supports inheritance. The contract can further



contain function modifiers, events, struct types, and
other structures to allow the implementation of com-
plex contracts and full usage of EVM and BC capa-
bilities. A SC written in Solidity can be created ei-
ther through an Ethereum transaction or by another
already running contract, just like an instance of a
class would be created. Either way, the contract code
is then compiled to the EVM bytecode, a new trans-
action is created, holding the code and deployed to
BC, returning the address of the contract for further
interaction.

2.3.3 Remix

Remix is a browser-based IDE for creating SCs with
an integrated debugging and testing environment.
Remix offers development, compilation, and deploy-
ment of solidity contracts as well as access to al-
ready deployed contracts. The testing environment
allows running the transactions in a sandbox BC in
the browser with JavaScript VM with a possibility
to switch between virtual accounts and spend virtual
Ether for full SC testing.

2.3.4 MetaMask

Metamask is what makes it possible to switch be-
tween virtual accounts and spend virtual Ether for full
SC testing. MetaMask is a browser plugin that serves
as an Ethereum wallet. It allows users to store Ether,
enabling them to make transactions to any Ethereum
address.

2.4 Solution Architecture

This work starts with the belief a DEMO transaction
is represented as a contract in a BC. The contract has
its address, internal storage, attributes, methods, and
it is callable by either an external actor or another con-
tract. This is the functionality needed to represent a
DEMO transaction. Now, this present work argues
that the DEMO Action Model could be implemented
through BC SCs without any support of the remain-
ing DEMO models. It believes that the structure and
content of a SC can be directly mapped to each action
rule. By creating the action rules, the logic in which
the SC operates is also being created.

The action rules contain all the decomposed detail
of the above models, the basis of the DEMO method-
ology is exactly the Action Model, as can be seen in
Figure 1. The Cooperation Model specifies the con-
struction of the organization, specifies the identified
transaction types and the associated actor roles, as
well as the information links between the actor roles
and the information banks. By occupying the top

Figure 1: Solution Architecture.

of the triangle it is suggested that is the most con-
cise model. The Process Model contains, for every
transaction type in the Cooperation Model, the spe-
cific transaction pattern of the transaction type. And,
also contains the causal and conditional relationships
between transactions. The Process Model is put just
below the Cooperation Model in the triangle because
it is the first level of detailing of the Cooperation
Model, namely, the detailing of the identified trans-
action types. The Action Model specifies the action
rules that serve as guidelines for the actors in dealing
with their agenda. The Action Model is put just be-
low the Process Model in the triangle because it is the
second level of detailing of the Cooperation Model,
namely, the detailing of the identified steps in the Pro-
cess Model of the transaction types in the Coopera-
tion Model. At the ontological level of abstraction,
there is nothing below the Action Model. The Fact
Model is put on top of the Action Model in figure 1
because it is directly based on the Action Model; it
specifies all object classes, fact types, and ontologi-
cal coexistence rules that are contained in the Action
Model.The Action Model is in a very literal sense the
basis of the other aspect models since it contains all
information that is (also) contained in the Coopera-
tion Model, Process Model, and Fact Model; but in
a different way. These models have as if a zoom in
(Action Model) zoom out (Cooperation Model) rela-
tionship between each other. The Action Model is the
most detailed and comprehensive aspect model.

2.5 Generate DEMO Action Model
from Blockchain Smart Contracts

The implementation of the Action Rules of the Ac-
tion Model is proposed using SCs. This is enabled by
the ability of SCs within the scope of BC technology
to describe complex algorithms by using the Turing-
complete programming language.

The proposed mapping not only takes advantage



of the intrinsic properties of BC technology but also
takes advantage of some design patterns for SCs in
the Ethereum Ecosystem (Wöhrer and Zdun, 2018).

Contracts often act as a state machine, which
means that they have certain stages in which they be-
have differently or in which different functions can
be invoked. A function call often ends a stage and
transitions the contract into the next stage, this is
known as the State Machine common pattern (Wöhrer
and Zdun, 2018). Through the DEMO theory, it is
known that actors interact through creating and deal-
ing with coordination facts (C-fact). Since these con-
tracts will model interactions it seems fit to model
C-facts into stages, these stages are implemented as
Enums. Enums are a way to create a user-defined
type in Solidity, for this particular application seven
stages, corresponding to the C-facts: Initial; Re-
quested; Promised; Declined; Declared; Accepted;
Rejected. The Initial stage was created with the as-
sumption that the deployment of a contract by some-
one doesn’t mean they want to immediately start the
transactions.

Function Modifiers can automatically check a
condition before executing a function. So to guard
against incorrect usage of the contract functions a
dedicated function modifier will check if a certain
function can be called in a certain stage.

The DEMO theory defines coordination acts (C-
act) as acts in a business conversation, so these will
be modeled as functions that can only be called by
a certain address in a certain stage of the contract.
To implement the guard of access to the functions the
Restricting Access common pattern was implemented
(Wöhrer and Zdun, 2018), through function modifiers
once again. The production act (P-act) by the same
logic is implemented through a function modifier that
is only called in functions that represent the C-act de-
clare. The function modifier that represents the P-act
will emit an event corresponding to the production
fact (P-fact), as a production fact is a result of per-
forming a P-act.

To summarize, 1 shows the proposed correspon-
dence.
Table 1: Correspondence between Solidity Smart Contract
Components and DEMO Components.

DEMO Components Solidity Components
C-fact Enum
C-act Function Invocation
P-fact Event
P-act Function Modifier

pragma solidity >=0.4.22 <0.7.0;
contract Transaction {

enum C_facts {

Initial, Requested, Promissed, Declared,
Accepted, Declined, Rejected }
C_facts public c_fact = C_facts.Initial;
address payable public initiator;
address payable public executor;
event p_fact(address _from, bytes32 _hash);
modifier p_act() {

bytes32 hash =
keccak256(abi.encodePacked(now));
emit p_fact(msg.sender, hash);
_; }

modifier atCFact(C_facts _c_fact) {
require(

c_fact == _c_fact,
"Function cannot be called now.");

_; }
modifier onlyBy(address _account) {

require(
msg.sender == _account,
"Sender not authorized.");

_; }
function nextCFact(bool happyFlow) internal {

if(happyFlow == true){
c_fact = C_facts(uint(c_fact) + 1);}

if(happyFlow == false &&
c_fact == C_facts.Requested){

c_fact = C_facts.Declined;}
if(happyFlow == false &&
c_fact == C_facts.Declared){

c_fact = C_facts.Rejected;} }
modifier transitionNext(bool happyFlow) {

_;
nextCFact(happyFlow); }

}

Regarding the mapping presented in Table 1, the syn-
tactic validation is guaranteed by DEMO, while the
semantic validation is done by two Use Cases pre-
sented.

Since the building block in Solidity is a contract,
that compares to a class in Object-Oriented program-
ming. In a more Object-Oriented manner, the Trans-
action Contract can be interpreted as the Base-Class
from which the Sub-Classes inherit some of its func-
tionalities.

The abstraction created allows for the contracts,
seen as Sub-Classes, to re-use code from the Base-
Class (Transaction Contract). Besides, the re-use of
the functionalities allows for the Sub-Classes to only
implement the business logic associated with it.

As discussed, the C-facts are represented through
an Enum, with the seven stages considered as the co-
ordination facts. The initiator and executor are rep-
resented through each of their addresses. The p-act()
is represented by a function modifier that emits the
p-fact event. At last, the atCFact() and onlyBy(), are
respectively modifiers of the common patterns State
Machine and Restricting Access, already presented
before. The transitionNext() modifier uses the nextC-



Fact() function to control to switch between C-facts,
checking if the execution followed an happy flow or
not. The symbol present inside the modifiers in
Transaction Contract is a place holder. The function
body is inserted where the special symbol in the def-
inition of a modifier appears. This functionality al-
lows executing modifiers after the correct execution
of a function, as the transitionNext(), or before, as
onlyBy(). By defining the initiator and executor as ad-
dress payable, at run-time this type of EOA allows for
exchange of Ether, having access to primitives useful
to manage Ether.

The deployment of the contract presented in
Transaction Contract, takes 6 seconds and costs
0.000646 Ether (0,43 $). This contract only offers
access to the following variables: C facts, initiator,
and executor. This contract doesn’t give access to
any function. Meaning, this contract encapsulates the
DEMO concepts, but by itself, it is not very useful as
it has no business logic.

SCs can store data and attest transaction execu-
tion. From the Action Model, it’s possible to re-
trieve which object classes the transaction needs and
at which point they arise at the transaction execution,
besides evaluating the changes of the objects associ-
ated with the transaction execution. Contract internal
state variables represent object classes, with the cor-
responding DEMO name. The SC then serves as a
database for the transaction.

To attest transaction execution contracts represent
all possible C-facts. The contract’s then hold their
current status as C-facts. For every C-act, a contract
method exists that changes the contract state to the
corresponding C-fact. Every change of C-fact issues
an Ethereum system-wide notification, allowing ex-
ternal systems to keep track of their contracts.

The action rules of the Action Model define the
operations for each actor role. The contract execu-
tion logic results from the translation of action rule
pseudo-code. The name of the functions correspon-
dent of each C-act is the C-act concatenated with the
transaction name.

It is important to note, however, that in the so-
lution presented human actors are ultimately respon-
sible and accountable for the acts of these artifacts.
Human actors send transactions to a BC via specific
wallet software. The transaction contains a data pay-
load containing instructions to invoke SC functions
with specific input parameters. The function may
update state variables, which are stored, in the con-
tract’s internal storage. Each declare function call
may emit an event, to which an actor can subscribe.
All other DEMO transaction steps, if successful, are
also recorded in the BC.

Following the nomenclature suggested in (DIETZ,
2020), this solution does not remove the final respon-
sibility and accountability for the acts from subjects.
By subjects, it is understood, human beings responsi-
ble for actor roles. The technological capabilities of
the BC, however, outperform, in order of magnitude,
the subject’s capabilities. This dissertation proves the
feasibility of implementing actor roles using BC. So,
the question is, what it means to have agents per-
form the P-acts and C-facts while keeping in mind
that agents cannot be held accountable. By agents un-
derstand BC artifacts to perform functions of, an actor
role.

Transactions typically occur on one or more of
the performa, informa, and forma levels. Datalogical
transactions, in view of this work, do not present any
contradiction in being executed by agents. However,
there must always exist an actor ultimately respon-
sible for the work and who can be held accountable
for the agent. The solution presented makes the ex-
ecution of P-acts tacit when declaring a transaction.
Since C-facts represent social commitments, C-acts
are performed by the actor, himself through the invo-
cation of a SC function.

Infological transactions, in the perspective of
this work, follow the same guideline as Datalogical
transactions. The guideline proposed for Datalogi-
cal transactions allows exchanges of information or
knowledge between actors.

When it comes to performing original P-acts, at an
Ontological transaction level, agents are not capable
of dealing autonomously with it, as they cannot be
ultimately responsible and accountable for the acts.
However, BC can support O-actors with the P-acts by
doing so as tacitly as possible, that is, by doing so by
invoking the function that represents the declaration
C-act. However, this form of operation must obvi-
ously be known to the actor. This presented solution
allows supporting O-actors, to a large extent, while
never taking over the authority and responsibility that
is assigned to an actor. This dissertation defends the
idea of co-existence between the subjects and the BC.

The sub-transactions are implemented as other
contracts. In DEMO, there are two kinds of depen-
dencies between BP: (i) Request after Promise, re-
quest of a new BP is triggered after a promise of a
previous; and (ii) Request after Accept, request of the
new BP is only triggered when the previous one has
been accepted. The creation of the sub-contracts in-
side the enclosing contract at the promise and accept
methods respectively solves the issue. The deploy-
ing of the sub-contracts must happen at the address
returned by the functions.



3 USE CASE: RENT-A-CAR

The first Use Case is well-known in EO. The case
Rent-A-Car is an exercise in producing the essen-
tial model of an enterprise that offers the usufruct of
tangible things: Rent-A-Car is a company that rents
cars to customers. At (DIETZ, 2020) all four aspect
models (Cooperation Model, Action Model, Process
Model, and Fact Model) are presented. Together they
constitute a coherent whole that offers full insight into
and overview of the essence of car rental companies.

3.1 Implementation

For Rent-A-Car BPs there are 5 consequent trans-
actions with the rental completing being the parent
transaction. The rental completing transaction can be
looked at as the contract between the Rent-A-Car and
the Client with conditions that must be fulfilled for
the contract to be terminated. These transactions re-
quire data sharing between parties as well as trustless
control, for this reason, seems fit to implement them
resorting to SCs.

Table 2: Sequence systematization of Rental-A-Car case.

RentalCompleting
rq with clause of event part (ARS-1)
pm

DepositPaying
rq with clause of response part (ARS-1)
pm
da
ac truth division of assess part (ARS-2)

CarTaking
rq with clause of response part (ARS-3)
pm
da
ac truth division of assess part (ARS-4)

...
InvoicePaying

rq with clause of response part (ARS-7)
pm
da
ac truth division of response part (ARS-8)

RentalCompleting
da
ac

The tangling between all the transactions in this
Use Case is presented, in Table 2, for easier com-
parison and an execution overview, resorting only to
the Action Rules identified in (DIETZ, 2020) for the
Rent-A-Car BP. For the complete code please go to
https://github.com/martasaparicio/try.

3.2 Performance

It’s difficult to make a technical evaluation of this
process as the BC used is the Ropsten test-net. Al-
though Ropsten test-net is the best test-net that repro-
duces the current production environment, i.e. system
and network conditions on the live Ethereum main-
net, because it’s Proof-of-Work net, it doesn’t allow
to change the Block Size for a deeper technological
analysis. However, makes available a link to analyze
the blocks and their properties. The blocks in this BC
have mutable size, being the maximum block size 139
789 bytes and the minimum block size 517 bytes.

Figure 2: Relation between a sample of block size and la-
tency.

Figure 2 shows the expected behavior, for a sam-
ple of transactions. The larger the block, the shorter
the latency of a transaction. This behavior is as
expected due to the nature of the chosen BC. In
Ethereum the block size dynamically increases if it
starts getting full, and decreases if it starts getting
empty. This means that when the block size is greater,
the number of transactions submitted is also greater,
so there is dynamically an increase in the size of the
blocks so that the latency does not increase propor-
tionally.

Figure 3: Transaction latency for each DEMO transaction
step.

The deployment of the RentalCompleting Con-
tract was the operation that took the longest to per-
form, having a latency of 55 seconds. This behavior
is expected as this is the contract that contains all the
others.



Regarding the transaction step request, 3, the re-
quest from the Deposit Paying transaction was the
longest. This may be explained by what was already
mentioned. The block size was 2.846 bytes, the small-
est found while performing the simulation. This may
also be related to the computational capabilities of the
miner.

Figure 4: Transaction cost for each DEMO transaction step.

A relevant metric when comparing this solution
to others is the overall cost. It is safe to say that the
operation that had the greatest financial burden was
the deployment of the RentalCompleting contract has
expected, of 0.004667171 Ether, which corresponds
to 2.73 $. It was also observed that the price of a
transaction is proportional to the complexity of the
same.

In Figure 4 it is possible to observe that the most
expensive transaction step of the RentalCompleting
Contract is the promise step where the DepositPay-
ing Contract is created. Following the same logic the
most expensive step for the contracts DepositPaying,
CarTaking and CarReturning is the accept step where
the subsequent transactions are created. The process
grand total is 0.014027725 Ether, which can be con-
verted to 8.20 $.

3.3 Functional Argumentation of Asset
Control

To complete a DEMO BP kind, it is necessary to ex-
ecute a set of BC transactions, meaning a set of BP
steps to complete the transaction pattern. For this
reason, to complete an inter-organizational scenario,
this approach implies the submission of a very large
number of transactions. It is necessary to submit, in a
happy flow case, a total of 20 transactions, not count-
ing the deployment of 1 contract and four other tacitly,
to complete the scenario.

Despite requiring a high number of submitted
transactions, this implementation can objectively de-
tect unexpected situations. For instance, an unwanted
party tries to take the car that someone else paid for.
This is possible due to the use of BC, this technology
allows not only to keep track of all transactions but to

whom they belong, thus facilitating asset control.
This Use Case presented may ease access to car

renting to the different parties involved, especially the
information exchange. Furthermore, this Use Case
can benefit from the use of BC to provide an im-
mutable trace of registry changes. The use of BC may
also provide higher resilience to system faults and a
more seamless exchange of funds.

This implementation raises the issue of the dis-
appearance of some transactions that can be tac-
itly accomplished. Namely, the treatment of sub-
transactions should be studied. In this work the the
sub-transaction is implemented as another contract,
this is not an optimal solution, due to the number
of resources that this implies. It is believed there
must not always be a need to create separate con-
tract for sub-transactions, the sub-transaction can be
implemented inside the main contract. This can be
convenient if only partial execution benefits from its
BC execution. Finally, the last option is that the sub-
transactions are not handled at all and leave this out-
side of BC. The choice of which option to choose
seems at all related to the situation in question. More-
over, it might not be possible to implement full busi-
ness logic and there is no need to run the exact
same transaction execution multiplied on thousands
of computers.

4 USE CASE: EUROPEAN UNION
PARLIAMENT ELECTIONS

The European Union election process is very com-
plex. The European Union issues general guidelines
on how country elections should look like, and each
country then implements its legislation to describe
how the elections are done in a particular country.
This means that each of the 27 European Union coun-
tries do this process differently. To avoid this com-
plexity, it was assumed that there is a unified voting
process and each country votes according to one of
the three voting systems – Preferential Voting, Closed
Lists, and Single Transferable Vote.

4.1 Implementation

Let’s start this implementation section by understand-
ing the token concept. The use of BC technology
seems the future to manage digital assets, due to its
security and immutability features. In (Voshmgir,
2019) tokens are described as ways to represent ”pro-
grammable assets or access rights, managed by a SC
and an underlying distributed ledger. They are acces-
sible only by the person who has the private key for



Figure 5: Process Structure Diagram (representation form
of the Process Mode) of the European Union Parliament
Elections process.

that address and can only be signed using this private
key” (Voshmgir, 2019).

However, without the use of fungible tokens, this
would be impossible to do since no unique informa-
tion can be written into the token. To represent tokens
that have to be unique and hold information instead of
values, non-fungible tokens are preferred.

Due to the requirement of using non-fungible to-
kens for this Use Case, a VotingToken contract was
created.

import "https://github.com/OpenZeppelin/
openzeppelin-contracts/blob/release-v3.1.0/
contracts/access/Ownable.sol";
import "https://github.com/OpenZeppelin/
openzeppelin-contracts/blob/release-v3.1.0/
contracts/token/ERC721/ERC721.sol";

contract VotingToken is Ownable, ERC721{
constructor(string memory name, string memory symbol)
ERC721(name, symbol) Ownable() public payable{}
function mint(address receiver)
onlyOwner public {
_safeMint(receiver, uint256(receiver)); }

function transfer(address from, address to)
onlyOwner public {
_transfer(from, to, uint256(from)); }
}

About 30 Action Rules were created to im-
plement the process shown in Figure 5, available
at https://github.com/martasaparicio/try. The idea
would be for the end result of ElectionControlling to
result in the deployment of the ElectionCompleting
SC into the BC.

Although more complex, the chaining of transac-
tions and contracts would process in a similar way to
what was exposed in Table 2.

An ontological builder provides the best ontol-
ogy and knowledge representation practices, together
with the best enterprise solutions architecture to pro-
vide a robust and scalable ontology management so-
lution. The essential function that is being considered
is that an ontological builder translates an ontological
model, fully independent of the implementation, into

an implementation model, this process being the most
straightforward definition of engineering. In software
development, the implementation model often is the
source code in a programming language like Solidity.

Google Blockly is a visual coding block editor.
Blockly documentation claims that this editor is an
intuitive, visual way to build code, which is in line
with the requirements to model Action Rules. An ac-
tion rule can be interpreted as a block that contains
the normal Action Rules Specification.

To satisfy these requirements it is necessary to cre-
ate, for each customized block, a Block definition ob-
ject, a Toolbox reference, and a Generator function.
The Block definition object defines the look and be-
havior of a block, including the text, color, fields, and
connections. Once defined,the type name must be
used to reference the block to the toolbox. The tool-
box reference allows users to add it to the workspace.
Finally, to transform the block into code, the block
is paired with a generator function. The generator
in question is specific to the desired output language,
Solidity. The generator function takes a reference to
the block for processing. It renders the inputs into
code strings and then concatenates those into an ex-
pression.

Figure 6: Blockly workspace, defining ARS-5 and ARS-6.

As an example the workspace is presented 6. In
the figure the first two action rules to be performed by
the actor Election Completer are presented.

The Ontological Builder, as already mentioned,
was not the main objective of the thesis, so its de-
velopment still has room for improvement.

4.2 Performance

As proven by 7 figure shows the expected behavior,
for a sample of transactions. Both variables have an
inversely non-proportional relationship. The block
size is not a controllable metric, so it is not a metric by
which, can extract knowledge beyond which is public
domain about the operation of the BC Ethereum, a
lower block size results in a higher throughput.

As previously explained, this use case requires



Figure 7: Relation between a sample of block size and la-
tency.

non-fungible tokens to represent voter’s ballots, pre-
venting a double vote situation. This requirement
requires additional costs associated with the deploy-
ment of the VotingToken Contract. The time spent in
the deployment of this contract was 14 seconds. The
cost was of 0.022150379098 Ether, which is equiva-
lent, at the time of writing, to 13,08 $. When com-
pared to the total cost of the Rent-A-Car Use Case of
8.20 $, can be immediately realized that this Use Case
has a much higher cost than the previous.

Once again, the conclusions point that he latency
of these transactions is predominantly determined by
the levels of supply, meaning the miners, and demand
in the network.

Without accounting for the cost and time required
to create the ballot for each voter, which has already
been presented separately, the total cost of this use
case was 0.02244436 Ether, which is equivalent to
15.43 $, the total time was 654 seconds, which equals
10 minutes and 9 seconds.

4.3 Functional Argumentation of Asset
Control

With the application of the BC, it would make sense
to implement the Election Controlling transaction
through an Oracle. An Oracle is a data feed provided
by an external service and designed for use in SCs
on the BC. In this particular case, the Election Con-
trolling transaction would disappear to make way for
the implementation of an Oracle, that every five years
would trigger the execution of the Election Complet-
ing transaction.

As the votes are submitted by voters, in this case
by the Election Voter, their counting is done intrin-
sically. Which can lead to the disappearance of the
Election Vote Counting transaction. BC technology
has the ability to secure and validate the voting pro-
cess on its own, as it secures a person’s vote and
doesn’t allow any other actor to change its vote. For
this solution, no centralized authority is needed to ap-

prove the votes, and everyone agrees on the final tally
as they can count the votes themselves, as anyone can
verify that no votes were tampered with and no ille-
gitimate votes were inserted.

Now the allocation of seats in parliament can also
be done automatically using BC technology. The BC
has access to all candidates if the voting system fol-
lowed is Preferential Voting or Single Transferable,
or all candidates associated with a party if the voting
system followed is Closed List. When the assignment
is being made, it’s possible to assign a token to each
of them, now deputies. With this token, they would be
able to identify themselves in the course of their du-
ties. For example, voting in parliament would be done
using this token. This token would allow the citizens
of each country to verify the active participation, or
not, of the elected candidates.

Figure 8: Process Structure Diagram (representation form
of the Process Mode) of the European Union Parliament
Elections process using Blockchain.

The changes would translate into the restructuring
shown in 8. As can be seen was made the option of
keeping the Election Vote Completer actor, for it rep-
resents a different real-world entity.

The benefits of applying BC technology to the use
case, such as reducing the number of transactions and
asset control, have been described. Now, the use of
Ontology provides another type of benefit, provide
solid and robust principles, in addition to reusing and
organizing knowledge.

The limitation of this approach is that mainly there
is currently no public BC capable of supporting mil-
lions of transactions in a cost and time-efficient way,
as it would be necessary for this Use Case.

5 COMMUNICATION

To obtain scientific evaluation about the conceptual
mapping developed and presented the following paper
was submitted and accepted in:

• Aparı́cio, M.; Guerreiro, S. and Sousa, P. (2020).
Towards an Automated DEMO Action Model
Implementation using Blockchain Smart Con-
tracts. In Proceedings of the 22nd International



Conference on Enterprise Information Systems
(ICEIS)

To obtain scientific evaluation about the Use Case
implementation developed and presented the follow-
ing paper was submitted and accepted in:

• Aparı́cio, M.; Guerreiro, S. and Sousa, P. (2020).
Automated DEMO Action Model Implementa-
tion using Blockchain Smart Contracts. In Pro-
ceedings of the 12th International Joint Confer-
ence on Knowledge Discovery, Knowledge Engi-
neering and Knowledge Management (KEOD)

To obtain scientific evaluation about the Use Case
implementation developed and presented the follow-
ing paper was submitted and accepted in:

• Skotnica, M.; Aparı́cio, M.; Pergl, R. and Guer-
reiro, S. (2021). Process Digitalization using
Blockchain – EU Parliament Elections Case
Study. Proceedings of the 9th International Con-
ference on Model-Driven Engineering and Soft-
ware Development (MODELSWARD)

6 CONCLUSION

This work sets out to address the hypothesis of us-
ing BC SCs to implement DEMO Action Models. To
address the problem set out, this work has presented
two artifacts which consist of one conceptual map-
ping, between DEMO concepts and Solidity concepts,
and a base contract, from which all other transaction
should inherit. These artifacts aim to remove ambigu-
ities and wrong implementations of the DEMO stan-
dard transaction pattern. These two artifacts allow for
the development to only focus on the business logic
implementation. By using BC technology, it ensures
that something that happens cannot be deleted once
recorded. Moreover, using Smart Contracts ensures
that a given routine is executed every time a trans-
action, of a given type, is recorded. This alternative
method ensures that important business rules are al-
ways followed, in addition to facilitating asset con-
trol.

The prototype of a possible ontological builder
was also presented, although it is not identified as
one of the artefacts resulting from the work presented
here. By computing a high-level formal model as
DEMO Action Model and generating Smart Contracts
from it, one can create smart contracts that ensure the
correctness of transactions data before it is stored in
the BC.

Regarding the mapping between the DEMO con-
cepts and Solidity concepts, DEMO ensures the syn-
tactic validation, while the two Use Case ensure the

semantic validation. As for the base contract, from
which all other transactions should inherit, it instanti-
ates the mapping, and its validation is done using the
EVM compiler and Solidity language.

Two distinct use cases were studied. The
first,refers to assets that are materialized outside the
BC. In this case, the asset (car) studied, is realized
outside the BC, but its control is done on the BC. The
second, refers to assets that are materialized within
the BC. In this case, the asset (vote) studied, is real-
ized within the BC, and its control is done on the BC.
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