
Distributed system for cooperative deanonymization of Tor circuits
(extended abstract of the MSc dissertation)

Pedro Manuel Torres Pires de Medeiros
Departamento de Engenharia Informática, Instituto Superior Técnico

Advisor: Professor Nuno Miguel Carvalho dos Santos

Abstract—Current technology allows an interested party (for
instance, an ISP) to closely monitor the communications of any
user which, in turn, may allow to uncover data such as the
user political views, consumer preferences, health condition,
and other private information. Anonymity networks, such as
Tor, have been designed to defeat network surveillance or traffic
analysis activities, and preserve the anonymity of users when
they use the Internet. Not only that Tor allows the construction
of special services that also remain anonymous on the network
making both the client and server anonymous. Unfortunately,
these services can also be used to support illegal activities,
which raises the need for tools that can help in de-anonymizing
illegal Tor flows. In this work we study techniques that allow to
de-anonymize illegal flows where both the client and the server
are anonymous. Our work leverages on recent results that show
that it is possible to perform traffic correlation based on deep
neural networks. This paves the way for designing distributed,
cooperative, de-anonymization tools, where multiple ISPs can
contribute by sharing information regarding flow sets and then
perform traffic-correlation. We perform an in depth evaluation
of such a system where synthetic flows were generated based
on real fully anonymous Tor onion services. We also present an
extension to the system where the data provided by the ISPs is
kept private and only when a correlation is found, the target
flow can be de-anonymized while ensuring that the anonymity
of the other flows involved in the query is preserved.

I. INTRODUCTION

This work addresses the problem of traffic correlation
on anonymity networks such as Tor. It studies the use of
deep neural networks to perform traffic correlation. Although
traffic correlation attacks are well known, they mostly target
client only anonymity scenarios. We will focus on the
scenario where both the client and server preserve their
anonymity during communication. We present a thorough
evaluation of traffic correlation attacks based on models
combining both deep and regular neural networks for client
and server anonymous communication.

Current technology allows an interested party (for in-
stance, an ISP) to closely monitor the communications
of any user over the Internet. Even if communication is
encrypted, the destination of packets and the fingerprint of
the flow may allow to uncover data such as the user political
views, consumer preferences, health condition, and other
private information[1], [2], [3], [4]. Anonymity networks,
such as Tor[5], have been designed to defeat network
surveillance or traffic analysis activities, and preserve the
anonymity of users when they use the Internet. Tor works
by using an overlay network of relay nodes that forward
encrypted packets in a virtual circuit. Packets are encrypted
using multiple, nested, layers of encryption, such that each
relay can only extract information regarding the next hop in
the virtual circuit but cannot extract information regarding
the original origin or the final destination of the packet. In
this way, the first node of the Tor circuit knows the user

IP but does not know the final destination, and the last
node knows the final destination but does not know the user
IP. Tor, besides anonymyzing the sender, also provides the
ability for the receiver to be anonymous as well. This fully
anonymous circuits provide anonymity to both the sender
and receiver performing twice the hops on the network.

The Tor network can have many legitimate users, such
as individuals that seek to ensure their right to privacy,
or journalists that need to report facts under adversarial
conditions. Unfortunately, Tor can also be used to support
illegal activities, such as drug dealing, illegal gun selling,
or child pornography[6], [7], [8], [9], [10] just to name
a few. This raises the need for tools that can help in de-
anonymizing illegal Tor flows. Previous work as shown that
by employing traffic analysis techniques it is possible to
correlate flows entering the Tor network with flows exiting
the Tor network to de-anonymize a flow[11], [12], [13], [14],
[15]. Such attacks have been applied to the Tor network with
promising results. First attempts focused on timing analysis
and packet distribution in order to correlate two traffic
flows[11], [16]. More recent work uses machine learning
techniques with manually selected features in order to train
a flow correlator [14]. The state-of-the-art leverages convo-
lutional neural networks that learn to correlate flows and that
perform flow correlation with significant success[15].

These techniques however only target traffic that is
produced when accessing regular websites through sender
anonymity only circuits. In this work we will apply such
traffic correlation techniques to fully anonymous communi-
cation through Tor, where most illegal activities take place.

This project focuses on the design and implementation of
a protocol and system that will allow one to perform Tor
circuit de-anonimyzation when both the sender and receiver
are anonymous. The system shall be able to correlate fully
anonymous Tor circuits with reasonable results. We expect
to achieve these goals while being able to process large
amounts of data in reasonable time and without sacrificing
the accuracy of traffic correlation. The system should also
employ a protocol that allows ASes and authorities to work
together. As an extension to the system, it shall also provide
privacy guarantees on data provided by involving ASes.

In order to reach the proposed goal we started by the
collection of a dataset of fully anonymous flow pairs which
to the best of our knowledge as not been done yet. The
next step to achieve our goal focused on the design of a
system that can process fully anonymous circuits with high
performance and precision. The final step to achieve our
goal introduces preliminary work on extensions that make
the system privacy preserving.

This work describes, implements and evaluates Torpedo,
a system that allows for de-anonimyzation of fully anony-

1



Tor Network

Guard
Relay

Guard
Relay

Exit
Relay

Exit
Relay

AS AS

D
estinations

U
se

rs

Correlator

Figure 1. Traffic correlation attack model.

mous Tor circuits where both the sender and receiver are
anonymous. We present the following contributions:

• Torpedo, the first system that applies traffic correlation
attacks to Tor onion service traffic.

• Innovative correlator design that separates the correla-
tion process into two distinct phases allowing for high
throughput of correlations.

• Implementation and evaluation of preliminary privacy-
preserving extensions to the system.

• Deliver a thorough evaluation of the system perfor-
mance and precision showing that we can achieve high
throughput while maintaining reasonable precision.

• Deliver a dataset of correlated flow pairs from fully
anonymous circuits generated by accessing Tor onion
services, both static and dynamic which can be used in
future scientific work.

II. BACKGROUND ON TRAFFIC CORRELATION

This section provides an overview of multiple correla-
tion attack models. Traffic correlation consists in assessing
whether two samples of network flows gathered in separate
areas of the network correspond to the same connection.
Correlation attacks have a prominent impact on the security
of the Tor network, and enable the effective deanonymization
of Tor circuits. A successful traffic correlation attack has the
ability to deanonymize not only Tor clients but also servers
running behind Tor onion services.

Figure 1 illustrates how such an attack can be performed
when a user uses the Tor network. An attacker observes
both end connections of the Tor circuit but does not need
to observe the full path of the circuit traversing the Tor net-
work. By applying these correlation attacks to the observed
flows at each end, the attacker can to determine if the flows
captured belong to the same connection. If that is indeed the
case, since the attacker knows the IPs at each end of both
flows, it has essentially deanonymized the user and it now
knows it’s IP and the IP it is accessing to.

Typically, traffic correlation attacks can be perpetrated by
finding similarities between the packet sizes and inter-packet
timing characteristics of packets pertaining to a given flow.
For the specific case of Tor, the use of packet size features
is largely useless for the purpose of traffic correlation
as fixed sized cells are used to propagate data between
endpoints. However, in order to maintain low-latency, Tor
does not significantly obscure inter-packet timing, allowing
an adversary with a privileged location in the network to
succeed in performing traffic correlation attacks.

IPD to entry
IPD from exit

IPD to entry
IPD from exit

Packet Sizes to entry
Packet Sizes from exit

Packet Sizes to entry
Packet Sizes from exit

Time
Feature

Time
Feature

Size
Feature

Size
Feature

Max 
Pooling

Max 
Pooling

Max 
Pooling

Max 
Pooling

Max 
Pooling

Fl
at

te
n

Pi,j

Fully Connected Layer

Figure 2. Network architecture of DeepCorr’s CNN.

III. RELATED WORK

A. Traffic Correlation using Neural Networks
The latest traffic correlation technique uses deep learning

to learn features about the dynamics of the Tor network and
achieve higher accuracy in flow correlation attacks. Deep-
corr [15] is a state-of-the-art system that allows an attacker
to train a convolution neural network on network flows.
Importantly, DeepCorr offers a higher accuracy in flow
correlation than previous approaches, while simply requiring
the observation of the first 300 packets of data pertaining to
a given flow. This represents a major improvement over the
technique previously proposed by Sun et al. [14].

The compelling results achieved by DeepCorr [15] are
attributed to the fact that the system trains a convolutional
neural network (CNN) on real world data which allows the
model to learn intrinsically how the Tor network operates.
The architecture of DeepCorr’s CNN is illustrated in Fig-
ure 2. The CNN takes as input four features for each flow
– two vectors of inter-packet timings and two vectors of
packet sizes – and is composed of two layers of convolution
and pooling, and three layers of a fully connected neural
network. The first convolution layer aims to capture the
similarities between the input vectors that are expected to be
correlated for associated Tor flows. The second convolution
layer captures overall traffic features from the combination
of timing and size information.

DeepCorr was tested by collecting a large dataset of flows
using multiple virtual machines to connect to the 50,000 top
Alexa websites via Tor network. This method ensured the
real Tor network was used without collecting data pertaining
to real users of the network.

B. Neural Networks with Encrypted Data
An open source project named TF Encrypted has lever-

aged some of the recent developments that allow neural
networks to operate over encrypted data. It provides a frame-
work for enabling encrypted deep learning readily available
for the community of TensorFlow1 and Keras2 developers.
Through the use of TF Encrypted, one can build a neural
network through a programming model similar to Keras with
the added value of being able to perform secure predictions.
TF Encrypted poses the ideal candidate to implement a
privacy preserving extension for our system, as it provides
a usable framework very similar to Keras which is based on
Tensorflow, used to develop DeepCorr.

1https://www.tensorflow.org/
2https://keras.io/

2



Portugal Germany

AS1 AS2

AS3

A B

R1 R'1

Probe Probe

LEA1 Client LEA2Client
CloudCorrelator

AS4

R2 RV R'2
R'3

Figure 3. Torpedo system components: client, probe, and correlator.

IV. TORPEDO

Torpedo consists of three distinct components: client,
probe, and correlator. It also involves three types of partici-
pants: Law Enforcement Agencies (LEAs), ASes, and a Data
Processing Provider (DPP). Figure 3 illustrates a system
deployment on a concrete (and simplified) usage scenario.
The client consists of a piece of software that offers a flow
query interface to LEAs. It enables LEAs to submit queries
to the system aimed at determining correlated flow pairs that
belong to accesses from Tor users to onion services. The
client sends these queries to the DPP which is responsible
for running the correlator logic. The correlator implements
a two-stage pipeline of neural networks (NNs) which is fed
with flow pair information from participating ASes based on
the criteria indicated in the query. This flow pair information
is collected by Torpedo’s probes that the participating ASes
have deployed in their local networks. The correlator’s NN
pipeline outputs the results of the flow pair correlation and
sends these results back to the originating client. The client
displays a list of flow pair ids and respective IP addresses
along with the probability that each flow pair belongs to a
Tor user’s access to a given onion service.

A. Correlator and Flow Pair Correlation
The correlator, runs on a trusted third party – the DPP

– and it is responsible for performing the flow correlation
operations. It takes as input a set of flows sent by the
ASes involved in a given query and outputs a probability
of correlation between pairs of these flows.

Internally, the correlator is composed of a two-stage
pipeline where each stage is implemented by its own neural
network with a particular function. We designate these stages
by ranking stage and correlation stage. The former is the
first stage of the pipeline and it is tailored to pre-process
a high volume of flow pairs very efficiently and return
an ordered list of the pairs which are more likely to be
correlated. The second correlation stage is dedicated to deep
traffic analysis as it performs the actual correlation of the
flow pairs. The rational behind separating the correlator in
two distinct phases rather than one only is its improved
performance and the customizability. First, our two stage
approach allows us to process large volumes of data in the
ranking stage and use it as a filter for selecting the most
probable correlated pairs to input to the correlation stage,
which due to its nature takes orders of magnitude longer to
process. Another benefit of this approach is allowing each
stage to focus on a subset of the flow features leading to
better over all performance of the model.

Ranking
Stage

Correlation
StageFlow Pair Flow Pair

Raw Set of Flow Pairs Ranked Set of Flow Pairs

Flow Pair

Final Result

Input 
Output

Figure 4. Correlator stages processing input flow pairs.

Figure 4 illustrates how both stages interact with one
another to produce a final result of the possibly correlated
flow pairs. The input to the ranking stage is the set of all
pairs provided to the client by ASes for a given query. This
stage processes all these pairs and sends its output of ranked
pairs to the correlation stage. The ranking stage also filters
out certain pairs that do not meet the minimum threshold to
progress into the next and final stage. Finally, the correlation
stage analyzes these pairs and outputs the final set of
possibly correlated flows with their associated probability
of correlation. The following two sections explain in detail
how each of these stages work.

B. Ranking Stage

The ranking stage is composed of a simple neural network
as described in Table I. This neural network takes three
inputs which correspond to three features: packets in forward
direction, packets in reverse direction and time of capture.
These features are derived from the flows of each pair to be
evaluated by the correlator:

• Packets in forward direction refers to the difference
between the number of packets sent from the first flow
and the number of packets received at the second flow;

• Packets in reverse direction refers to the same as in the
forward direction but in the reverse order being packets
sent from the second flow and received by the first flow;

• Time of capture refers to the difference of time between
the first packet of each flow.

The neural network then uses three fully connected hidden
layers only. Each hidden layer contains a specific number
of nodes indicated in Table I as “Size”. All the layers of
this neural network use the ReLU activation function. The
reduced number of layers of the neural network along with
our feature selection allow for a highly efficient evaluation
of flow pairs. This efficiency is desirable as the system
may have to correlate large amounts of flow pairs due to
the combinatorial nature of pairs. For instance if two ASes
capture each 100 candidate flows for a given query, then
we are looking to 100 x 100 pairs to evaluate. We can see
how fast this total number of pairs grows in relation to the
number of captured flows per AS.

The output of this stage consists of a number ranging
from 0 to 1 which implies the probability of correlation
for a given pair. This result can then be used to select
the pairs that are most probably correlated and should be
further evaluated by the correlation stage. We can perform
this candidate selection by means of a configurable threshold
or by amount of flows to evaluate in the correlation stage.
For instance we can have a threshold T where pairs with

3



Layer Details
Input Layer Size: 3
Fully Connected 1 Size: 300, Activation: ReLU
Fully Connected 2 Size: 80, Activation: ReLU
Fully Connected 3 Size: 10, Activation: ReLU
Output Layer Size: 1, Activation: Sigmoid

Table I
RANKING STAGE’S NEURAL NETWORK ARCHITECTURE.

Layer Details
Input Layer Size: Flow Length*8
Convolution Layer 1 Kernel num: 1000

Kernel size: (2,30)
Stride: (2,1)

Activation: Relu
Max Pool 1 Window Size: (1,5)

Stride: (1,1)
Convolution Layer 2 Kernel num: 500

Kernel size: (4,10)
Stride: (4,1)

Activation: Relu
Max Pool 2 Window Size: (1,5)

Stride: (1,1)
Fully Connected 1 Size: 1500, Activation: ReLU
Fully Connected 2 Size: 400, Activation: ReLU
Fully Connected 3 Size: 50, Activation: ReLU
Output Layer Size: 1, Activation: Sigmoid

Table II
CORRELATION STAGE NETWORK ARCHITECTURE.

a result above T are selected as candidates. This is ideal
when there are few constrains on the number of pairs that
the correlation stage can process, but we can also order pairs
by their result and select candidates by the most probable
N when there is an imposed limit of a maximum of N pairs
that can be processed by the correlation stage.

C. Correlation Stage

The correlation stage makes use of a highly more complex
model than the ranking stage. This is because it focuses
on traffic analysis by processing the inter-packet timings
and packet sizes of the two flows in both directions for a
given pair. It is implemented by a CNN which consists of a
modified version of the Deepcorr’s CNN (see Section III-A).

Table II describes the parameters of each layer of the
CNN. The input is composed of 8 vectors of length N
where N is the number of packets the model is trained
on. From these 8 vectors 4 relate to the first flow and the
other 4 to the second. These vectors contain the inter-packet
timings for the incoming traffic, inter-packet timings for the
outgoing traffic, packet sizes for the incoming traffic and
packets sizes for the outgoing traffic. The network presents
two convolutional layers and three fully connected layers.
The convolutional layers are aimed at training filters that will
recognise patterns in the traffic data inputted to the network.
The output of these filters is then fed to the fully connected

Client A

Machine
Alfa

Machine
BetaOnion

Service
6

Tor NetworkEc Eos
RV

Figure 5. Sample capture model.

network to process and learn the relations between them.
• The intuition behind the first convolutional layer is that

it allows the network to learn features that correlate the
same characteristics of both flows. To achieve this, we
use a kernel size of (2,30) where we are processing 2
input vectors at a time, observing 30 packets from each
at a given step i.e. the first 30 inter-packet timings of the
outgoing traffic in the first flow and the first 30 inter-
packet timings of the incoming traffic in the second
flow. By using a stride of (2,1) we ensure this filters
only match intended features and do not mix inter-
packet timings with packet sizes nor incoming traffic
with incoming traffic and vice versa.

• In the second convolutional layer this separation be-
tween inter-packet timings and size features is no longer
present as the kernels are now processing data that
came from both size and timing inputs. This layer
serves for the network to learn more complex functions
about the input flows that process both types of input
(time and size related) together. We then proceed to the
fully connected network which is composed of 3 layers
before the final output, a number of 0 to 1, relating to
the probability of that given pair being correlated.

The main differences between our network model and the
original Deepcorr’s is the size of each layer. We reduced
the number of kernels and neurons in both the convolutional
and fully connected layers, respectively, so that the network
could be used with our available hardware.

V. DATASET

To collect onion service traffic we deploy a similar
configuration to the one depicted in figure 5. We control
both machines Alfa and Beta such that we can observe and
collect traffic locally to their respective entry node in the
Tor network. As a sample capture machine Alfa emulates a
client, A, and machine Beta serves an onion service (OS),
6. A correlated flow pair is generated by accessing OS 6
through client A and capturing the corresponding traffic at
machines Alfa and Beta. The flows captured at each machine
form a correlated flow pair.

To collect multiple correlated flows with different char-
acteristics we deployed multiple onion services and clients
around the globe. To deploy both onion services and clients
we used 8 different machines in the following locations:
Amsterdam, Finland, London, Los Angeles, Sao Paulo, Sin-
gapore, Sydney and Tokyo. Each of these machines served
both as a client and an onion service provider. The capturing
process proceeds sequentially for each of the 8 clients in

4



Characteristic Value
Onion services 8
Onion service pages 32
Pages per onion service 4
Clients 8
Requests per page 50
Pages per client 28
Emulated onion services 32
Emulated clients 224
Total number of flow pairs 11 200

Table III
FINAL DATASET CHARACTERISTICS.

each machine. Each client accesses all onion service pages
hosted on the remaining machines 50 times per page.

The Tor Browser in conjunction with Selenium [17] was
used to simulate a regular Tor user. This allows us to auto-
mate the requests to onion services programmatically using
the Tor Browser which fully renders the page requesting
both HTML and all necessary assets to do so.

Table III enumerates the characteristics of the final
dataset. A total of 8 machines were serving a single instance
of an onion service with 4 distinct pages. A total of 8 client
machines were used however since we were refreshing the
clients Tor circuit once all requests to a given page are
complete we are effectively emulating 224 distinct clients.
Each emulated client performed a total of 50 requests to
the same onion service page giving a total of 11 200
accesses when considering all the 224 emulated clients. This
represents 11 200 distinct correlated flow pairs.

VI. EVALUATION

Uncorrelated pair generation: The collected flow pairs only
contain correlated pairs as expected. However, to train our
classifiers uncorrelated pairs are essential as the network
needs to learn how to distinguish between both classes.
To generate an uncorrelated pair we can simply match
the flow captured at the client with a flow from another
connection. This scheme allows us to not only generate
arbitrary numbers of uncorrelated pairs but also have some
control over the distinguishability between pairs. This leads
us to four distinct categories of uncorrelated pairs:

a) A client flow is matched with the onion service flow
from another client to another onion service page; this
maximizes the distinguishability as the full circuit is
completely different as well as the generated traffic;

b) A client flow is matched with a onion service flow
from that same client but to a different onion service
page, where although the generated traffic is also
completely different the guard nodes of the client is
the same which may reduce the distinguishability;

c) A client flow is matched with an onion service flow to
that same exact page, but the onion service flow was
generated by another client, and therefore the circuit
is totally different;

d) A client flow is matched with an onion service flow
to that same exact page; the onion service flow was

generated by the same client but from a different
access which makes the circuit up until the rendezvous
point exactly the same.

Precision metrics: For evaluating the precision, we use two
metrics: true positive rate and false positive rate. True pos-
itive rate (TPR) refers to the number of correctly identified
correlated pairs over the total number of correlated pairs in
the dataset. False positive rate (FPR) refers to the number
of uncorrelated pairs that erroneously have been marked as
correlated over the total number of uncorrelated pairs in the
dataset. The relation between TPR and FPR provides an
effective method for comparing models, and it is inline with
the goal of achieving the maximum possible TPR for the
minimum possible FPR.
Performance metrics: For evaluating the performance of our
system, we focus on the time the model needs to correlate
a certain amount of flow pairs (testing time) as well as
the time required for training (training time). This will
allow the comparison of different strategies in terms of
performance and compromises that can be made to improve
performance at the cost of precision. To also take a more
hardware independent approach we will provide relative
speedup results in comparison to a base line since absolute
times of both training and classification will vary greatly
depending on the setup, one can however expect similar
speedup rates between the experiments presented.

A. Ranking Stage Evaluation
This section presents a thorough evaluation of the ranking

stage implemented by the Torpedo correlator’s neural net-
work presented in Section IV-B (see Table I). The ranking
stage assigns each pair a score corresponding to the prob-
ability of correlation. By setting a configurable threshold,
only the flow pairs that have a resulting score above that
threshold will be selected to the correlation stage. Our
evaluation aims to study if the ranking stage yields good
results by consistently giving higher scores to correlated
pairs as opposed to uncorrelated ones. To access the impact
of the target flows characteristics we varied the dataset in
two dimensions: volume of traffic and time disparity.

The following results show that Torpedo’s ranking stage
can indeed improve the system performance by pre-filtering
most uncorrelated flows. It also improves the TPR to FPR
ratio even when considering accesses to the same onion
service which the correlation stage struggles to produce high
accuracy results. Next we present our findings as we vary
each of said dimensions individually and then combined.
Varying the volume of traffic: The results for this experiment
are shown in Figure 6. In this chart, as in the following
ones, we plot the CDF corresponding to the percentage of
correlated flow pairs relative to the total number of pairs in
various categories. Each category is consistently labeled as:

• “NO SKIP” refers to no restriction on how uncorrelated
pairs are generated;

• “SKIP same size” forbids flows to onion services of the
same size to form an uncorrelated pair;

5



0.0 0.2 0.4 0.6 0.8 1.0
Total Pairs

0.0

0.2

0.4

0.6

0.8

1.0
Co

rre
la

te
d 

Fl
ow

 P
ai

rs

CDF (1s) [0, 0] NO SKIP
CDF (1s) [0, 0] SKIP same size
CDF (1s) [0, 0] ONLY same onion
CDF (1s) [0, 0] SKIP same onion

Figure 6. CDF concurrent pairs.

• “SKIP same onion” forbids flows accessing the same
onion service to form an uncorrelated pair;

• “ONLY same onion” forces all uncorrelated pairs to
accesses to the same onion service only;

The chart also provides a “[X,Y]” associated with each line.
This range refers to the forced interval of time difference
between flows in a pair. For instance, X=0 and Y=1 means
that flows can deviate a maximum of 1 second (0 to 1
randomly distributed) from the original time difference of
the correlated pair. In this first experiment all flow pairs
have minimal time deviations. In total, there are 460 000
pairs with similar time difference for each instance of the
dataset classes. By fixing all these flow pairs around the
same point in time, the different categories will then explore
what happens as a function of the volume of traffic returned
by various onion services.

Unsurprisingly, Figure 6 shows an almost straight line for
the “ONLY same onion” class. This result occurs because
it is very difficult for the network to distinguish between
accesses to the same onion service page (same overall size
therefore very similar amounts of packets exchanged) at
the same time. When no restrictions apply (i.e., class “NO
SKIP”), we can expect to capture close to 80% of the
correlated flow pairs, while only seeing 20% of the total
number of pairs. When we forbid the same page or pages
with similar size, the number of flow pairs needed to observe
80% of correlated pairs decreases as expected. This shows
that even for flow pairs that are seemingly correlated, when
only considering the time difference of first packet, the
neural network is able to achieve fairly reasonable results.
We can then see that the neural network of the ranking stage
can greatly reduce the search space of flow pairs that the
CNN of the correlation stage needs to process.
Varying the flow pairs’ time disparity: By forcing all uncor-
related pairs to be a match between flows accessing the same
onion service page we can effectively simulate 99/Y possible
pairs per second targeting a given onion service, where Y
is the maximum time deviation in an interval [0,Y]. For
example, considering Y=1 second gives 99/1 = 99 pairs per
second. Figure 7 plots the results of this experiment which
are still very promising for real world data. For a time space
of 16 seconds (blue line), we can capture 85% of correlated
pairs by just observing 2% of the total pairs. In absolute
terms, from the 9200 pairs selected at this stage, 3910 of

0.0 0.2 0.4 0.6 0.8 1.0
Total Pairs

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
te

d 
Fl

ow
 P

ai
rs

CDF (1s) [0, 16] ONLY same onion
CDF (1s) [0, 8] ONLY same onion
CDF (1s) [0, 4] ONLY same onion
CDF (1s) [0, 1] ONLY same onion

Figure 7. CDF uncorrelated only match the same onion.

those are indeed correlated. If we consider a maximum time
difference of 1 second (red line), we are looking at over
20% for the same 2% of flow pairs, which means 920 of
the total 9200 would be indeed correlated pairs.

0.0 0.2 0.4 0.6 0.8 1.0
Total Pairs

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
te

d 
Fl

ow
 P

ai
rs

CDF (1s) [0, 1] NO SKIP
CDF (1s) [0, 4] NO SKIP
CDF (1s) [0, 8] NO SKIP
CDF (1s) [0, 16] NO SKIP

Figure 8. CDF up to 16 seconds time difference pairs.

Varying both dimensions: Figure 8 plots the results for our
last experiment. If we consider 460K possible flow pairs
occurring in a time space of 16 seconds (red line) we can
capture 95% of correlated pairs by just observing 2% of the
total pairs. In absolute terms it would mean that from the
9200 pairs selected at this stage, 4370 of those are indeed
correlated. If we consider a maximum time difference of 1
second (blue line) we are looking at a little over 50% for
the same 2% of flows which means 2300 of the total 9200
would be indeed correlated pairs. This however assumes no
restrictions on the selection of uncorrelated pairs whereas the
previous experiment reduced distinguishability by enforcing
the “ONLY same onion” policy. Next, we focus on the
evaluation of Torpedo’s correlation stage.

B. Correlation Stage Evaluation
The correlation stage aims to correlate flow pairs through

the inter packet timings and packet sizes of each flow.
This operation is implemented in the second stage of the
Torpedor correlator’s pipeline. To evaluate the correlator
CNN, we performed several experiments using our most
realistic dataset, which uses real onion service web pages
and respective assets, and where the Tor client requests were
issued from the Tor browser itself. We present three different
evaluations with different dataset holdouts.
Holdout 15% 85% experiment: Figure 9 shows the plot of
true negative rates (TNR) for the uncorrelated categories and

6



0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0
Ra

te

TN_uncorrelated_sameClient_sameOS
TN_uncorrelated_sameClient_differentOS
TN_uncorrelated_differentClient_sameOS
TN_uncorrelated_differentClient_differentOS
TP_correlated

Figure 9. First results on realistic dataset.

true positive rate (TPR) for the correlated category. This
graph clearly shows where the network struggles to correctly
classify pairs. We can see that for flow pairs where each flow
was from a different onion service access, the network has
a TNR of 99% while also achieving a TPR of 34% (red
and orange lines are within 0.1% of each other). However,
when uncorrelated pairs represent accesses to the same onion
service the TNR drastically decreases, meaning we would be
flagging many uncorrelated pairs as being correlated. The
side-effect of this is that innocent users would probably
be unjustly incriminated. Another conclusion we initially
made from this particular experiment is that changing the
client (therefore the circuit) did not significantly affect the
classifier (lines green and blue) as they only differed by 2%.
This conclusion, however, was based on a first iteration of
this dataset where clients changed the circuit before every
request. This change means that the same client was also
using a different circuit just as a different client would, hence
the proximity between these results.
Holdout 60% 40% experiment: We performed this same
experiment, but now using the 60% training 40% testing
dataset instance instead of the previous 15% training 85%
testing. The reasoning for this change is that even though
15% training 85% testing may more accurately represent a
real world case where a more limited amout of data could
be captured for training purposes, the total number of pairs
we collected may be too small to use such drastic training
dataset reductions leaving the network very little data to
learn from. This proved indeed to be somewhat the case as
the following results show. Figure 10 plots the same rates
as before, but now from a network trained using the 60%
training 40% testing dataset. We can clearly see an increase
in TPR from 34% to 57% for a slightly higher TNR for
different onion service accesses of now 99.1%. We can also
observe that the TNRs for uncorrelated same onion service
accesses increase their distance from one another (green and
blue lines). This result may come from the fact that during
training there are intrinsically more examples of uncorrelated
flow pairs where the access is originated from another client.
Final dataset experiment: Our last experiment represents
the final iteration of our evaluation of Torpedo’s correlator
CNN. To overcome the shortcomings from the previous
experiments where clients always changed circuit and we
noticed a significant increase in TPR for higher volumes of

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

TN_uncorrelated_sameClient_sameOS
TN_uncorrelated_sameClient_differentOS
TN_uncorrelated_differentClient_sameOS
TN_uncorrelated_differentClient_differentOS
TP_correlated

Figure 10. Results on realistic dataset for holdout 60% to 40%.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

TN_uncorrelated_sameClient_sameOS
TN_uncorrelated_sameClient_differentOS
TN_uncorrelated_differentClient_sameOS
TN_uncorrelated_differentClient_differentOS
TP_correlated

Figure 11. Results with the final dataset.

training data, our final dataset now does not establish a new
Tor circuit before each request to the same onion service
(reuses the same browser instance as well without caching)
and we doubled the accesses that clients made to each onion
service from 25 to 50. We also kept the use of a 60% to 40%
ratio for our train and test datasets respectively. Figure 11
plots the new results for this experiment.

As shown in Figure 11, there are significant differences
when compared to the plots from the two previous attempts.
Starting with a significant increase in TPR, where we can
now achieve 73% while maintaining a TNR for uncorrelated
flow pairs from different onion services above 99.2%, this
increase can be attributed to the higher data available for
training as well as true examples of same client uncorrelated
traffic. We can now clearly see the effects of changing
clients (changing circuit) and using the same client (same
circuit), namely that there is a considerable gap between
these two lines, respectively green and blue. As expected, the
TNR for the uncorrelated pairs where we match two flows
that access the same onion service from the same client is
significantly lower as there is little variation between the
flows in these pairs. As the circuit and volume of traffic is
the same, any existing traffic differences that allow the CNN
to correctly classify these pairs are caused by the variations
in the delays introduced by the Tor relays allocated to the
circuits. These delays will be typically influenced by the Tor
network workload experienced by each relay.

When we analyze the counterpart, where uncorrelated
pairs match the traffic for the same onion service but from
different clients, we gain 35% more TNR. This shows that
the classifier has indeed learned to recognize patterns in
the traffic. Had it not, we would expect a similar result

7



0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

tp_all
tn_all

fp_all
fn_all

(a) Full plot.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.000

0.005

0.010

0.015

0.020

Ra
te

tp_all
tn_all

fp_all
fn_all

(b) Zoom on false positive.

Figure 12. Results for both stages combined.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te tp_all

tn_all
fp_all
fn_all

(a) Full plot.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.000

0.005

0.010

0.015

0.020
Ra

te
tp_all
tn_all

fp_all
fn_all

(b) Zoom on false positive.

Figure 13. Results for both stages using combined training.

to the blue line. Interactions between client and server are
intrinsically connected to the circuit that connects them since
different circuits generate different delays in packets. This
provides enough information for the network to make a more
informed classification of the given pair.

As for final observation, in contrast to previous experi-
ments, we can now achieve a TNR of 99.9% with a TPR
of 24% for uncorrelated pairs with different onion service
accesses, as well as 12.7% of TPR for a 99% TNR when
considering uncorrelated pairs that match flows accessing
the same onion service.

C. Full Pipeline Evaluation

This section focuses on the analysis of the results where
both stages work in conjunction to correlate traffic. The
results were taken by combining both stages where all
flow pairs are first ranked using the ranking stage and then
compared to a fixed optimised threshold. The pairs that meet
the threshold are then passed onto the second stage where
traffic analysis is performed to provide a final correlation
probability score. All plots below depict TP/FP/TN/FN rates
against the threshold of the second stage.

Full pipeline with separate training: Figure 12 (a) plots true
positive, true negative, false positive and false negative rates
for all instances of uncorrelated pairs. We can see that as
expected false positive rates are low for all the threshold
range. This is to be expected has there is no absolute
time adulteration on this experiments and thus the ranking
stage can accurately filter most of uncorrelated pairs. As a
consequence we can also see that even for a threshold of 0
we only capture 83% of all correlated pairs as some are lost
in the ranking stage as well. This setting provides a TPR of
57% for a FPR of 9.89e-3. In the other end of the spectrum
we can achieve a FPR of just 1.44e-5 for a TPR of 9.21e-4.
A zoomed in version of the plot can be seen in Figure 12
(b) where we can see the evolution of false positives while
varying the threshold of the second stage.

Full pipeline with combined training: We replicated the
previous experiment but on a second stage that had been
trained using data already analyzed by the ranking stage. In
this setting the same uncorrelated pair generation method
is used, however, only pairs that meet the desired thresh-
old of the ranking stage are used during training of the
correlation stage. The rationale behind this method is to
train the correlation stage on pairs that the ranking stage
cannot accurately distinguish. In the previous experiment the
correlation stage had been trained on both pairs that could
accurately be classified by the ranking stage and pairs that
could not, by focusing the training of the second stage on
pairs that the ranking stage struggles to correctly classy we
can expect to maximize their combination.

Figure 13 (a) and (b) plot our results. We can see that
indeed the FPR is lower, but so it is the TPR. This feature
can be used to tune the network to the user needs as we can
now achieve 7.1% of TPR with a FPR of 9.6e-4. Comparing
for a similar FPR of 5.8e-3 we now achieve 40.3% of TPR
where before we only reached 34.5%. These results may be
improved by segmenting the training dataset. Since we used
the same dataset for training both stages, when training the
correlation stage the ranking stage predictions were made on
its training data which may disguise the network’s difficulty
in dealing with unseen data.
Performance analysis: To assess the total time of query
response of the system we devised the following formula
based on the time it takes to evaluate each of the raking
and correlation stages in seconds per flow (s/f) and on the
threshold of ranking stage propagation:

Tt = X ×Rp+X × Th× Cp

Tt is the total time in seconds for evaluating a given query.
X is the number of flow pairs that have been given has
input. Th is the threshold value of the ranking stage that
controls the number of selected pairs which are passed
over from the raking stage to the correlation stage. Rp
and Cp correspond respectively to the time it takes to
evaluate a given flow pair on the ranking stage and on
the correlation stage, respectively. The first operand in the
addition (X × Rp) represents the time of execution for the
ranking stage and is fixed for a given Rp and X. The second
operand in the addition (X × Th×Cp) represents the time
of execution for the correlation stage which for a fixed X
and Cp can be customized by the Th parameter. According
to our experiments, the ranking stage is able to achieve a
performance of Rp=3e-5 s/f whereas the correlation stage
can only reach Cp=3.5e-3 s/f. Both of these performances
have been measured on a machine with an NVIDIA T4
16GB GPU, 2vCPU Intel, 32GB RAM. Considering both
Rp and Cp presented above, for a Th value of 2% and a
total of 1M pairs (X) we would have a total computation
time of query of approximately 101 seconds.
Main findings: In summary, we present two distinct con-
structions of the same system with slightly different char-
acteristics that can be used by the users to better suit their

8



Batch Size Classification Time
1 479s
6 480s
12 479s
30 483s

Table IV
TF-ENCRYPTED SAME MACHINE MULTIPLE PROCESSES.

Batch Size Classification Time
1 1177s
6 1229s
12 1089s

Table V
TF-ENCRYPTED 2VCPU WITHIN SAME LOCATION.

needs. The system is able to achieve reasonable true positive
rates while maintaining very low false positive rates. Further
optimizations that compromise precision for performance
can be done to fit the correlator requirements.

VII. PRIVACY-PRESERVING EXTENSIONS EVALUATION

This section describes our preliminary results to imple-
ment the privacy-preserving mode for Torpedo. We used the
multiparty computation framework, TF-Encrypted, to con-
duct our experiments. Given that in a realistic deployment
of Torpedo, the privacy-preserving correlations would be
performed by several participating parties connected over
the Internet, we devised the following experiments.

Our main goal is to assess the impact of the network
latency between the intervening parties to the overall per-
formance of the system. We consider that the correlation
process as supported by TF-Encrypted will involve 3 com-
pute servers. We performed these experiments resorting to
a reduced size convolutional neural network implemented
using TF-Encrypted. All tests were performed classifying
300 random flow pairs with a length of 100 packets. The
CNN used is similar in structure to the one described in
DeepCorr github3 code excepting that we used 1/8 of the
original layers’ size.
Testing on a single machine: To establish a baseline compar-
ison point, we first tested the framework running on a single
machine with 30GB of RAM and 8 vCPU cores based on
Intel Skylake lineup of Xeon CPUs. We experimented with
the following batch sizes: 1, 6, 12, 30. We found no apparent
difference between the classification times for the 300 pairs
while varying the batch size. Table IV presents the absolute
results for this experiment.
Testing with multiple machines on a local cluster: These next
tests were performed with the machine described above as
master, input provider, and model provider. The remaining
3 compute servers were powered by similar machines with
10GB of RAM and 2 vCPU all in the same cluster (low
network latency, around 2-3ms between hosts). Table V
shows the results of this experiment. We found that the
classification times tripled while in this setting compared to
running in the same machine. The difference in classification
time between different batch sizes seems to vary slightly

3https://github.com/SPIN-UMass/DeepCorr

Batch Size Classification Time
1 629s
6 601s
12 590s
30 606s

Table VI
TF-ENCRYPTED4VCPU WITHIN SAME LOCATION.

Batch Size Classification Time
1 13200s
6 7800s

Table VII
TF-ENCRYPTED DIFFERENT LOCATIONS.

with the best result (lowest classification time) being with
the highest batch size of 12.

Table VI shows the results for the same experiment but
this time compute servers have 4 vCPU cores instead of 2
allowing us to access the scalability of the system and by
increasing from 2 to 4 the classification times essentially
were twice as fast also suggesting a linear scalability factor.
This experiment shows even less variability between classi-
fication times in between batch sizes.
Testing with multiple servers connected over the Internet:
As a final setting we approached a more realistic scenario
(albeit a very pessimistic one) where the three compute
servers were located around the globe (USA, London, and
Australia). This led to a latency increase of two orders
of magnitude now ranging from 180ms to 280ms between
hosts. The same 4 core machines were being used in this
setting along with the same master. As shown in Table VII,
the increase in classification time followed a similar trend to
the latency, increasing by an order of magnitude. However,
it was now heavily affected by the batch size as expected.
In this setting, we only tested for a batch size of 1 and 6 but
the classification time between these two alternatives almost
halved, representing a 41% decrease in classification time
when increasing the batch size from 1 to 6. We can expect
a similar improvement when increasing again from 6 to 12
as times where still very above the base line for a the same
location setting. Continuing the improvement of Torpedo’s
privacy preserving mode is left for future work.

VIII. CONCLUSIONS

In this work, we have described the design and im-
plementation of Torpedo, a distributed, cooperative, de-
anonymization system where ASes and law enforcement
agencies cooperate to perform traffic correlation on Tor
onion service flows. By adapting existing traffic correlation
attacks based on neural networks to regular Tor traffic,
Torpedo allows efficient correlation attacks to be performed
on onion service traffic.

We present Torpedo, the first system to perform traffic
correlation attacks on Tor onion service traffic. Torpedo
uses an innovative system architecture based on a two-
stage approach that allows for processing high volumes
of data while maintaining reasonable precision on flow

9



correlation. A thorough evaluation of the Torpedo correlation
component showed that the system is able to process large
volumes of data in small periods of time, while maintaining
a reasonable true positive rate and a low false positive rate.
An extension providing privacy guarantees to the system
was implemented and evaluated allowing Torpedo to perform
traffic correlation on encrypted flow pairs while not requiring
ASes to completely trust the correlator.

We identify multiple aspects of the presented system that
demand further improvements. First, there is a need to fully
implement the system with regard to the security protocols
that assure a secure channel between all intervening parties.
Second, our current evaluation assumes there is a clear
way of intercepting individual flows communicating with a
given onion service. If multiple users simultaneously access
a given onion service it is not clear how client-specific
flow capture and discrimination can be performed. Thus, a
deeper study is need to access the system in such conditions.
Third, the prototype implemented focused solely on the
correlator component of Torpedo and does not implement
the client and probe modules. One direction for future
work comprises the implementation and evaluation of these
modules. In particular, there is a pressing need to assess the
probe module ability to flag and log Tor guard relay traffic
in real time. This involves the design and implementation
of all the security protocols related to the communication
between parties involved in flow de-anonymization, as well
as the support for the mentioned query types by the Torpedo
components. Fourth, all modules should be implemented and
fully integrated with TF-Encrypted to support the privacy-
preserving correlation of flows. The thorough evaluation
of this setup comprises another direction for future work.
Finally, there is the need to assess the coverage of onion
service Tor traffic that the cooperating ASes leveraging
Torpedo can achieve. This involves the study of which ASes
concentrate a larger number of guard nodes as well as which
ASes concentrate large fractions of hosted onion services.

ACKNOWLEDGMENTS

We would like to thank Professor Luı́s Rodrigues for the
initial discussion regarding our system design. We are also
grateful to Bernardo Ferreira, Bernardo Portela, and Diogo
Barradas for their feedback and fruitful discussion provided
during the preparation of this work.

REFERENCES

[1] N. V. Verde, G. Ateniese, E. Gabrielli, L. V. Mancini, and
A. Spognardi, “No nat’d user left behind: Fingerprinting users
behind nat from netflow records alone,” in IEEE International
Conference on Distributed Computing Systems, 2014.

[2] S. Coull, C. Wright, F. Monrose, M. Collins, and M. Reiter,
“Playing devil’s advocate: Inferring sensitive information
from anonymized network traces.” in Network and Distributed
Systems Security Symposium, 2007.

[3] T.-F. Yen, X. Huang, F. Monrose, and M. K. Reiter, “Browser
fingerprinting from coarse traffic summaries: Techniques and
implications,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, 2009.

[4] J. Yuan, Z. Li, and R. Yuan, “Information entropy based clus-
tering method for unsupervised internet traffic classification,”
in IEEE International Conference on Communications, 2008.

[5] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
second-generation onion router,” in USENIX Security Sympo-
sium, 2004.

[6] N. Christin, “Traveling the silk road: a measurement analysis
of a large anonymous online marketplace,” in International
Conference on World Wide Web, 2013.

[7] K. Soska and N. Christin, “Measuring the longitudinal evo-
lution of the online anonymous marketplace ecosystem,” in
USENIX Security Symposium, 2015.

[8] R. Hurley, S. Prusty, H. Soroush, R. J. Walls, J. Albrecht,
E. Cecchet, B. N. Levine, M. Liberatore, B. Lynn, and
J. Wolak, “Measurement and analysis of child pornography
trafficking on p2p networks,” in International Conference on
World Wide Web, 2013.

[9] G. Weimann, “Going dark: Terrorism on the dark web,”
Studies in Conflict & Terrorism, 2016.

[10] M. Casenove and A. Miraglia, “Botnet over tor: The illusion
of hiding,” in International Conference On Cyber Conflict,
2014.

[11] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright,
“Timing attacks in low-latency mix systems,” in International
Conference on Financial Cryptography, 2004.

[12] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of
tor,” in IEEE Symposium on Security and Privacy, 2005.

[13] V. Shmatikov and M.-H. Wang, “Timing analysis in low-
latency mix networks: Attacks and defenses,” in European
Symposium on Research in Computer Security, 2006.

[14] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford,
M. Chiang, and P. Mittal, “RAPTOR: Routing attacks on
privacy in tor,” in USENIX Security Symposium, 2015.

[15] M. Nasr, A. Bahramali, and A. Houmansadr, “Deepcorr:
Strong flow correlation attacks on tor using deep learning,” in
ACM SIGSAC Conference on Computer and Communications
Security, 2018.

[16] L. Overlier and P. Syverson, “Locating hidden servers,” in
2006 IEEE Symposium on Security and Privacy, 2006.

[17] S. S. Salunke, Selenium Webdriver in Python: Learn with
Examples, 2014.

10


