
Hardening Tor against State-Level Traffic Correlation Attacks with K-Anonymous
Circuits

(extended abstract of the MSc dissertation)

Vı́tor Nunes
Departamento de Engenharia Informática, Instituto Superior Técnico

Advisor: Professor Nuno Santos

Abstract—Tor is a popular low-latency anonymous protocol
that allows users to surf the Internet anonymously. Despite
its popularity Tor, like other low-latency anonymous systems,
is vulnerable to traffic correlation attacks, which enables an
attacker to match a source IP with a destination IP. This
can be accomplished by a state-level adversary capable of
observing both endpoints of a Tor circuit and correlating
the corresponding outgoing and incoming flows using traffic
analysis techniques. Although correlation attacks are a known
weakness in Tor’s design, no practical solutions to mitigate this
attack without significantly degrading the performance of the
system have been proposed. To tackle this problem we present
TorK - a Tor pluggable transport that leverages the notion of
indistinguishable flows to ensure k-anonymity amongst multiple
sources of Tor connections. Thus, we aim at improving the
existent Tor system to make it more robust against correlation
attacks launched by a global adversary that observes all flows
transiting a given circuit. In this way, we can mitigate the
impact of correlation attacks without significantly damaging
the system performance.

I. INTRODUCTION

Tor [1] is a widely used overlay network which allows
a user to browse the Internet anonymously, i.e. without
exposing its IP address to the destination. However, despite
the sophisticated defences of the Tor network, Tor users
may be subject to deanonymization attacks based on traffic
correlation [2]. Such attacks can be carried out when an
adversary can observe the traffic at the circuit’s entry and exit
relays. By intercepting the traffic at these relay nodes, the
adversary can use features such as the volume of traffic and
inter-packet arrival times to perform flow correlation. If two
flows are correlated, the adversary can determine with high
degree of certainty the IP address of the circuit endpoints.

Today, traffic correlation attacks are realistic threats to
Tor users since they can be launched at large scale by
state-level adversaries. Nithyanand et al. [3] presented an
empirical study where they discovered that up to 40% of
all Tor traffic is vulnerable to attacks by traffic correlation
from network-level attackers; if the network-level attackers
are Autonomous Systems (ASes) that may collude with
each other the amount of vulnerable Tor traffic increases
up to 42%. If the same network-level attacker are state-level
adversaries, then 85% Tor traffic is vulnerable. Users in some
countries (China and Iran) are particularly affected, since
95% of all possible circuits are vulnerable to correlation.

There are several efficient correlation attacks to Tor known
today that rely on the existent of malicious entities in
control of the adversary, such as clients, relays or directory
authorities. Several timing attacks [4], [5] allow attackers to
determine endpoints of a circuit by correlating the time it
takes for a flow to travel from both edges of a Tor circuit.
Several solutions were proposed [6] in the literature to thwart

these attacks and rely on perfect interference which states
that all output should have the same shape.

In this paper we present TorK, a Tor pluggable trans-
port and controller that provides additional protections to
Tor against traffic correlation attacks. TorK shapes traffic
directed to Tor bridges and ensures k-anonymity among all
connected users. In particular, TorK guarantees that a given
ingress client flow cannot be correlated with the correspond-
ing egress flow exposing the identity of the sender.

Our approach is based on the idea of constructing k-
circuits: Tor circuits with k ingress flows and a multiple
egress flows, such that is not possible to link an ingress to
a corresponding egress flow. To build k-circuits in the Tor
network we need to overcome several challenges. Currently,
Tor circuits offer point-to-point channels. However, in order
to enable k cooperating users to participate in the creation
of a k-circuit (to help a given user to get in touch with
a certain destination) adaptations in the way Tor circuits
are currently built need to be performed. In particular, we
need to have a form to generate k ingress flows that can be
coalesced into a single one. Ideally we want to provide this
service without changing the underlying Tor protocols or
the existing software implementations. Second, we need to
ensure that the k ingress flows cannot be distinguished by the
adversary, even when employing advanced traffic classifiers;
i.e., the k ingress flows must be indistinguishable. Third,
the performance overheads introduced by our components
should be tolerable to the end users.

We show that TorK can successfully setup an indistin-
guishable channel by conducting an experiment with a state-
of-the-art classifier for conducting traffic analysis. We also
show that TorK managed to withstand against active attacks,
not disclosing the identity of the real sender.

II. THREAT MODEL

The adversary has complete access to the global net-
work infrastructure of the Tor network, having access to
all the network links and middleboxes interconnecting Tor
ecosystem hosts: Tor users’ computers, TorK bridges, Tor
relays, and any remote host contacted by Tor users. Thus, the
adversary is able to eavesdrop and intercept any massage that
has been exchanged between the communicating parties. The
same attacker can launch active attacks aimed at flustering
the network such as delaying or dropping packages to study
how the system responds, and deploy malicious entities
(sybil attacks).

III. RELATED WORK

Traffic correlation in Tor remains an open research prob-
lem since there are no practical solutions. Evidence suggests

1

that powerful adversaries exist today in the form of actors
being able to control entire networks within national bound-
aries (oppressive regimes) [7], or to able tap into the Internet
backbone across countries (intelligence agencies) [8]. We
now describe two main approaches that actively avoid unsafe
i) relay nodes or ii) autonomous systems. Then, we discuss
the concept of K-anonymity.
Avoiding Unsafe Relay Nodes: To mitigate adversary’s
attempts to launch correlation attacks, clients may attempt
to avoid unsafe relay nodes by employing several strategies:

Clients may run a co-located trusted relay node alongside
the Tor client, and use that relay as entry node to the Tor
circuits created by the user. As a result, the downstream
relay nodes will not be able to determine whether the traffic
forwarded by the trusted relay node was originally produced
by the local user or by another user that may be using that
same relay node for building its own circuits. A second
strategy, currently used by Tor, is to scan and identify bad
relay nodes to decrease the possibility of clients selecting
malicious relays, by detecting and reporting bad relay nodes.
Generally, a relay is considered to be bad if it is malicious,
misconfigured, or unreliable. To mark relays, Tor uses a set
of labels designated as flags.Tor also restricts the set of entry
nodes used by a client in an attempt to mitigate the Guard
Rotation Weakness [9]. If a client was unlucky and selected
a malicious guard, he had the chance of regaining anonymity
when its current guard changed.
Avoiding Unsafe Autonomous Systems: An adversary
may not even need to control any specific relay node to
deanonymize Tor traffic, but only to possess the ability
to eavesdrop on the inter-relay traffic that crosses the net-
work controlled by the adversary [2], [10]. Typically, such
approaches attempt to help Tor clients’ to choose paths
away from the prying eyes of ASes by leveraging the
analysis of the Internet topology boundaries and inter-relay
latencies [11]. As a way to prevent attacks based on traffic
interception through BGP hijacking, Sun et al. [12] pro-
posed a monitoring framework for detecting BGP changes,
allowing Tor to inform vulnerable clients, which in turn can
opt to suspend Tor communications or use another relay. A
number of authors have proposed AS-aware path selection
algorithms for decreasing the chance of an AS-level attacker
to observe traffic flowing between both endpoints of a Tor
circuit [13], [14], [12], [3]. These solutions even though
decrease the probability that an AS is able to eavesdrop in
both ends of a connection, they did not sufficiently mitigate
the possibility for an AS to perform traffic correlation.
K-anonymity: Samarati and Sweeney [15] proposed in 1998
K-anonymity to solve the problem of disclosing privacy-
sensitive database records that needed to be anonymized (e.g.
medical records). K-anonymity is then a property of released
data such that the information about any given individual
cannot be distinguished from at least K−1 individuals. For a
larger value of k, the anonymity set is larger, thus anonymity
is stronger. K-anonymity has been extensively studied and
applied in a wide range of areas [16], [17].

IV. DESIGN

This section presents a system model for TorK which
introduces the notion of k-circuits, a new anonymity-
preserving primitive leveraging k-anonymity that aims to
enhance the Tor network against adversaries capable of per-
forming arbitrary traffic correlation attacks. This is achieved
by providing K-anonymous sender communication proper-
ties on top of Tor’s preexisting infrastructure. In the fol-
lowing subsections, we present its architecture and the most
relevant technical details as well as strategies to withstand
against a range of attacks.

TorK employs a client-server architecture whose main
components are the bridge (server) and the client gateway
as portrayed in Figure 1. Both endpoints communication is
done through TorK Protocol over a secure channel. The
channel along with the protocol allows k users to send
arbitrary data, in a way that an attacker cannot link a given
egress flow to a specific user.

A. System Model

TorK prevents correlation attacks by allowing k − 1
additional users – in the Figure 2, just Alice and Charlie
– to collaborate with Bob such that an adversary will not be
able to distinguish who amongst them is the real originator
of traffic associated with this circuit. To achieve this, prior
to the circuit establishment phase, all the k users initiate a
communication channel between each local client and the
bridge. Each of these channels is a segment. Each segment
acts as a tunnel between the local client and the bridge such
that the local client can send arbitrary traffic through it.

TorK aims to provide K-anonymity by allocating groups
of size K. We use the term k-circuit to refer to a coordinated
setup of K segments for tunneling Tor circuits owned by a
group of K users. Although the k-circuit in Figure 2 tunnels
a single Tor circuit owned by Bob, multiple circuits should
be allowed to be tunneled through. Thus, Alice, Bob and
Charlie form one k-circuit with K = 3.

To prevent the adversary from extracting useful infor-
mation from the segments (this could be achieved by ob-
serving differences in the volume and timing properties
of the traffic), the traffic of all participating segments is
encrypted and modulated according to a common traffic
shaping function. Thus, even though the attacker is able to
capture and inspect the traffic from each of the three users
(red ellipse) it cannot correlate the message to the original
sender, i.e. from the three users discover the one accountable
for the unique egress Tor circuit due to indistinguishability
between segments. The attacker can inspect all hops in the
network but he would have to randomly guess the sender
having a 1/k probability of succeeding.

Achieving the desired properties while delivering good
performance can be accomplished at the expense of increase,
yet tolerable, bandwidth consumption. It is realistic to allo-
cate some of the spare network resources currently present
in the Tor network. Besides, according to a recent study [18]
more than half of Tor bandwidth is currently unused, since

2

Tor Client Tor Bridge

SOCKS Proxy

TorK Gateway

Browser Middle
Relay

Client
Controller

Traffic
Shaper

Controller
Endpoint

TorK Bridge

Bridge
Controller

Traffic
Shaper

Onion Port

Tor Protocol

SOCKS
Proxy

Tor
Controller

SOCKS
Proxy

TLS
Connection

CLI
CLI

Bob

Tor Protocol

PT

PT Protocol

PT

PT Protocol

Figure 1: TorK internal components

Alice

Bob

Charlie

Tor Client

Tor Client

Tor Network

TorK
Bridge

TorK
Gateway

Tor Browser

Tor Browser

Tor Browser

Tor Client

TorK
Gateway

TorK
Gateway

Webserver
(e.g. CNN)

Figure 2: TorK system model depicting a k-circuit. All hops
can be observed by an attacker. Onion layers are colored.

only 45.5% of the advertise bandwidth is actually used. This
means that there is currently room for leveraging existing
spare bandwidth in Tor without affecting the operations of
the system or its ability to grow.

B. K-circuits Specified

The specific k value to be used for a given k-circuit
will be determined by the TorK bridge whenever a set of
restrictions imposed by the group of potential participants
is met. Specifically, each client interested in participating in
a k-circuit will be able to specify a lower bound k-min to
the minimum number of participants that must be present
in the k-circuit. This value allows each user to indicate the
smallest acceptable anonymity set for his communications.
For instance, Alice may indicate that she is only interested
in joining k-circuits with no less than k-min= 3 users, i.e.,
k ≥ k-min. The TorK bridge will then maintain a pool
of participants in a waiting line until their respective k-
min value restrictions are met. As soon as a group of k
of participants is available such that k is smaller or equal
than the k-min value restriction of each participant, then a
new k-circuit can be formed for that group.

Public and private membership: TorK also offers two
k-circuit membership types: public and private. A public
k-circuit admits all sorts of member and are managed by
bridges. By contrast, a private k-circuit can be requested
by users and are solely used by members who know their
existence. Private k-circuits are important to prevent Sybil
attacks and establish some ground of trust for all the
participating members in a given k-circuit.

C. Thwarting Protocol Level Attacks

To assure that K-anonymity is preserved, TorK needs to
coordinate the action of several users joining a k-circuit.
Without proper coordination, it would be trivial for an
attacker to exploit different users’ behaviors. For instance,
observing the Tor network allows an adversary to determine
who among the k users are actually sending traffic, even
though the traffic is encrypted. To this end, TorK constructs
groups of k users designated as k-circuits and uses a custom
protocol to coordinate the actions of its members.
K-circuit establishment request: When a client connects
to a bridge, the TorK protocol begin (Figure 4). Initially,
each client gateway, upon connection to the bridge, sends
a HELLO message containing the specification of its k-
min restriction value. In other words, gateways define the
minimum number of users that should be connected at the
bridge in order to establish a circuit. The bridge validates
this number and reply with HELLO OK. In the case of
Figure 4, Alice requests a minimum of two users that must
be present within the same k-circuit.
Tor circuit creation request: Later, when a client intends
to open a Tor circuit it will ask the bridge by sending
an ACTIVE control frame. Bridges will reply either with
ACTIVE when all k-circuit members’ k-restrictions are
hold, and consequently, the client is authorized to open the
Tor circuit, or with WAIT otherwise. Since Alice requested
two clients and only one, herself, is connected at this
moment, she will wait until another client is placed in the
same k-circuit.
K-circuit ready: Bob joins requesting also a k-min of
2. At this instant, bridge has two connected clients and
therefore Alice has authorization to create a Tor circuit since
their restriction is now fulfilled. From this point onward,
Bob is authorized to send data frames towards the bridge,
containing Tor circuit cells, and consequently, he is also
allowed to open a Tor circuit, which is going to be forwarded
to the Tor network.
Reaction to changes in k-circuit conditions: At any
time, an active client can receive a WAIT frame. Such
indication tells clients that their restrictions, despite having

3

Undefstart

Hello

Shut

Connect

Active

Wait

Changing Inactive

Figure 3: TorK Protocol: Client State Machine

been satisfied in the past, they do not hold currently anymore
(e.g., due to a participant that has left). Clients react by
destructing the circuit immediately and wait further to create
a new circuit. Apart from WAIT frame, clients can receive
a CHANGE frame. Such frame requires that client replace
their current circuit. In other words, tear-down the existing
circuit and open another one.
Tearing-down circuits: However, client gateways can tear-
down the circuit by their will or give up of waiting for
bridge authorization. Active or waiting clients can send an
INACTIVE to indicate that they will tear-down their circuit
or they no longer intended to open one, respectively.
K-Circuit State Machines: A state machine denoting the
clients synchronization process is depicted in Figure 3. The
first phase consists on a handshake between the new client
and the bridge where clients define their k-min (Hello).
After the handshake phase, the bridge will place the new
client in an already existent k-circuit or constructing new
one (Connect).

D. Thwarting Traffic Pattern Attacks

TorK is also designed to hold out against potential
network-level active and passive attacks. For instance, con-
sider the example in Figure 2. Assume also that the bridge is
trusted and all cooperating clients – say, Alice and Charlie
– are benign users. In this circumstances, notwithstanding,
an adversary with the ability to drop, inject, or modify
the sequence of network packets could try to deanonymize
Bob’s communication by instrumentally dropping packets of
each segment of the k-circuit, and observe for which of the
segments there is a visible reduction in the throughput of
the bridge’s outgoing connection to the middle node. In this
case, dropping packets in Bob’s segments will interrupt the
transmission of Tor circuit cells which will be reflected in a
smaller amount of packets exiting the bridge and allow the
adversary to identify the real sender: Bob. TorK uses two
strategies to resist against active attacks:
Traffic shaping: In order to shape traffic, we used a perfect
interference strategy [6], ensuring that all flows have the
same shape regarding timing and size properties. Clients
and bridges implement a module aim at draining traffic at
a constant rate using fixed-size packets, called chunks. This
module receives the client’s Tor circuit cells, split them into

several chunks and send them to the bridge. Upon reception,
the bridge receives all chunks passing them to Tor, whose
next destination is the client’s middle relay. The chunks have
fixed-size and thus, padding is used to ensure that the chunk
size remains always the same, apart from the real data length.

Even though the clients traffic share the same properties,
attacks are still possible based on clients’ sending behavior.
In a k-circuit with two users, one attacker can observe an
ingress flow, followed up by an egress flow. Such observation
uncloaks the responsible client of the egress flow, because
only one client sent chunks. Taking that into account, this
module also generates chaff chunks. Such chunks do not
carry useful data and their goal is to create a common
sending behavior among the same clients under the same
circuit outwitting the attacker.
Flow control: To thwart attacks where an attacker can
deliberately delay certain clients segments, we propose to
augment the synchronization protocols introduced in Sec-
tion IV-C so that all segments of a k-circuit are proactively
throttled by the bridge to ensure they all deliver the same
throughput. This means that the effects of dropping packets
in any single member’s segment will cause a corresponding
leveling down in the throughput of all other members’
segments. As a result, the adversary will not be able to
distinguish which segment carries Tor traffic.

E. Thwarting Bridge Impersonation Attacks
The anonymity properties of k-circuits depend upon the

fact that TorK bridges are trusted not to reveal the identity of
the participating clients. In fact, a bridge knows which of the
participants use their respective segments for forwarding real
traffic. Therefore, it is necessary to ensure that TorK bridges
do not reveal this information to an adversary. However,
given that the Tor network is open, anyone can deploy TorK
bridges, including malicious ones that can be leveraged to
deanonymize end users.

To detect potentially malicious TorK bridges, TorK can
run on top of trusted computing hardware. Inspired by
the approach of Kim et al. [19], our solution requires the
deployment of trusted hardware on the bridge host and
consists in deploying the TorK bridge software inside a
trusted execution environment (TEE). The goal is to protect
TorK memory space even when the bridge’s owner has
hardware access and high privileges – root access. Ideally,
clients and bridges can perform remote attestation, i.e. to
attest the integrity of that program by checking a signature
of the program’s hash signed with a hardware key. Thus,
clients can verify the bridges’ trustworthiness and discard
them if attestation fail.

F. Thwarting Client-side Sybil Attacks
So far we have assumed that all participants in a k-

circuit are benign. However, if one or more participants are
malicious and collude with an adversary that can monitor
the network traffic, it may be possible to deanonimyze a
legitimate client sending Tor traffic through that k-circuit.
Consider for instance the example shown in Figure 2. If

4

Alice and Charlie are malicious, they can inform the network
eavesdropper that they are not sending any traffic through
their specific segments. Given that the network eavesdropper
can observe that the number of participants in that k-circuit
is three and he can rule out Alice and Charlie, then the only
possible source of the traffic exiting the bridge is Bob.

To mitigate such attacks, we propose to investigate several
different strategies, which can possibly be deployed and
operate in combination. One idea is to implement more
clever participant selection policies at the bridge. Essen-
tially, in addition to satisfying the k-min value restrictions
of participants, the bridge can be more selective of which
participants to include in a given k-circuit so as to increase
their geographical and / or AS diversity. This is based on
the intuition that it may be more difficult for an adversary to
control a large number of clients deployed across different
ASes or geographic regions. Another idea is to run an alibi
agent at the bridge itself. Essentially, for each k-circuit,
the bridge would run a piece of software that mimics the
behavior of a real client by establishing Tor circuits and
tunneling traffic through these circuits. As a result, even if
the attacker could control all of k − 1 participants, it could
not know whether the true originator of the traffic exiting
the bridge is the remaining participant or the alibi agent.

V. IMPLEMENTATION

We have implemented TorK prototype in C++ using the
OpenSSL and Boost libraries. One main goal is to implement
TorK without changing the underlying Tor infrastructure,
decoupling TorK from Tor’s implementation and improve
code maintainability of both tools.

TorK is structured in six main components: i) Client
Pluggable Transport, ii) SOCKS proxy, iii) Tor Controller,
iv) TorK Controller Interface, v) Traffic Shaper and vi)
Bridge/Client Controller. The Pluggable Transport Client
implements the Tor PT API instructing Tor how to open
and control TorK process. The SOCKS proxy is responsible
to receive Tor data which is then shaped and sent according
to the Traffic Shaper method. The Tor controller implements
the Tor Control Spec empowering TorK to control Tor cir-
cuits (e.g. creation, destruction). Finally, the TorK Controller
Interface allows clients to interact with TorK (e.g. specifying
k-min value, joining private k-circuits).

TorK’s indistinguishable channel encloses a Traffic Shap-
ing function. Such function is responsible for sending fixed
sized TorK packets – called frames. Each frame is divided
into smaller slices called chunks. Each chunk share the
same size and properties, apart from the first one, which
contains a header. Therefore, all chunks except the first
one can carry data entirely. This design choice prevents Tor
cells’ fragmentation over multiple chunks and consequently
over multiple frames. In other words, it allows us to have
chunks large enough to contain one or several Tor cells
without fragmentation while sending only the necessary
data (chunks) minimizing the sending of unnecessary bytes.
Therefore, the size of the chunks should be set to a multiple
of the Tor cell size. The chunks’ transmission rate is also

Alice Bridge Middle
Relay

HELLO k-min = 2

HELLO_OK

ACTIVE

WAIT

Bob

...

HELLO k-min = 2

HELLO_OK

ACTIVE

TLS ConnectionTor Data - Circuit Creation

Figure 4: TorK protocol for a two k-circuit users (k-min=2).

configured to provide a target throughput. TorK frames can
be labeled as data, chaff or control frames.

Traffic shaper (TS) rate varies according to the number
of connected users, within a defined rate interval window
(minimum, maximum). Having a higher number of con-
nected users requires more frame processing carry out by
bridges. Thus, we decided to decrease the rate proportionally
to the number of connected users. To select minimum and
maximum values an experiment (Section VI-B) was rolled
out to measure the time taken by the traffic shaper to prepare
a single data and chaff frame.

Apart of the indistinguishable channel it is necessary to
coordinate the actions of k members acting in group to
cause plausible doubt using a synchronization protocol –
TorK Protocol. The protocol allows members to share their
intentions (e.g. open or close Tor circuits) to the bridge and
wait for authorization. Figure 4 sketched the protocol for
two users (Alice and Bob) depicting the messages exchanged
between them. Some TorK protocol commands required Tor
circuits to be tear down abruptly. For instance, when bridges
perceive that some client should change their circuit (e.g.
a new client joined the same k-circuit), they notify the
old living client and block all outgoing data traffic from
that client, preventing it from entering the Tor network and
therefore, being visible to a network attacker. The blockade
imposed by the bridge will drop every data frame and it
will remain active until the client acknowledgement. By
dropping Tor data cells we are inadvertently disrupting the
counter values used in Tor cells TLS encryption. As a
consequence, the connection is shattered upon restoring, i.e.
upon lifting the blocking, mainly due to the reception of
TLS Tor cells containing wrong/unexpected counter value.
To prevent such scenario bridges and clients abruptly close
their connection to Tor. However, Tor clients mark bridges
as faulty when the local connection closes abruptly. Tor
will not use the faulty bridge in the future. To overcome
the issue, we needed to change a single line in Tor source
code which prevents Tor from marking faulty bridges. We
stress that such requirement do not introduce any change
in Tor protocols, and consisted in disabling the call to
the function entry guards note guard failure within the

5

entry guard failed in src/feature/client/entrynodes.c.

VI. EVALUATION

A. Evaluation Methodology
This section describes our methodology for assessing

TorK’s prototype performance and resistance against mul-
tiple traffic analysis attacks.
Experimental testbed: Our testbed is composed of a TorK
bridge and 50 TorK clients (leveraging Tor v0.4.2.8). Our
nodes are executed within Docker containers, provisioned
either with 2 vCPU and 2GB of RAM in the case of the
bridge node, or 1 vCPU and 1GB RAM for client nodes.
The bridge and client nodes run in separate physical hosts
equipped with 2 Intel Xeon CPU E5506 vCPUs. Each client
was configured to use a specific Tor circuit throughout our
experiments. We manually selected all relays comprising
each Tor circuit based on Tor’s TopRelays list, and choose
different nodes within Europe.
Datasets and Classifier: For assessing the resistance of
TorK against traffic analysis, we aim to understand whether
it is possible a) to identify which flows between clients and
bridges transport useful data instead of chaff traffic, and b)
to correlate the useful data flows produced by clients with
the outbound (egress) flows from the bridge towards Tor.

For conducting the above experiment, we build a dataset
of connections between clients and a bridge, and, respec-
tively, between the bridge and the Tor network. For case a),
we select half of our clients to receive chaff traffic from the
bridge, while the remaining 25 clients will fetch a file hosted
in a private server, over TorK, repeating this process 100
times (for a total of 5000 samples). For case b), all clients
fetch continuously a file, repeating this process 100 times
(for a total of 5000 samples). We capture traffic in/outbound
the bridge during 15 seconds.

To assess TorK’s traffic analysis resistance properties,
we leverage the XGBoost [20] classifier using two sets of
features based on summary statistics over the packet length
and inter arrival times, such as burst behaviors and high-
order statistics (e.g., kurtosis), and quantized packet length
distributions. We train and test the classifier through 10-fold
stratified cross validation. The rationale for our choice is
based on the fact that multiple state-of-the-art techniques
which are able to efficiently differentiate classes of traffic
over encrypted network streams employ classifiers based in
decision-trees (e.g., Random Forests or XGBoost [20]).
Security metrics: We leverage the following metrics to
assess TorK’s k-circuit indistinguishability: true positive rate
(TPR), false positive rate (FPR), and the area under the ROC
curve (AUC). The TPR measures the fraction of TorK flows
that are correctly identified as carrying useful data, while
the FPR measures the fraction of chaff traffic flows that are
erroneously classified as useful traffic. For case b), the TPR
measures the fraction of client-bridge and bridge-Tor pairs
that are correctly correlated, whereas the FPR measures the
fraction of uncorrelated pairs that are deemed as correlated.
The AUC summarizes the trade-off between the TPR and the

1 5 9 13 17 21 25 29 33 37 41 45 49
#K users

0
2500
5000
7500

10000
12500
15000
17500
20000

Av
er

ag
e

ba
nd

wi
dt

h
(K

bi
ts

/s
ec

)

Relay Max Chaff Data

Figure 5: Throughput observed by number of clients.

FPR for the different possible cutout points for classifiers
possessing adjustable internal thresholds. An AUC of 0.5 is
equivalent to random guessing.

To select a reasonable number of users to test TorK we
estimated the amount of daily connected users in Tor bridges
based on monthly statistics [21]. Thus, 50 clients represent
an average of daily users in Tor bridges.
Performance metrics: To assess TorK’s performance, we
measure three different properties of connections established
through TorK circuits. First, we measure throughput by
instructing a client to connect to a private server via TorK
using iperf3. Second, we measure latency by estimating the
round-trip-time overt the channel using httping. This tool
performs a HTTPS request and measures the time it takes
to receive the first byte of the header – header time to first
byte. We choose it since Tor does not support the forwarding
of typical ICMP packets using ping.

B. TorK Baseline Deployment

Frame size: The current Tor specification multiplexes cells
containing Tor payload data over the same TCP stream along
a given circuit [1]. Tor currently uses 514 B cells. In the wire,
the TCP data length of a single Tor cell occupies 536 B,
considering the TCP and TLS headers. For TorK’s baseline
configuration, we select the TorK frame’s chunk size to 536
B each frame containing up to two chunks, so that each
chunk contains at most one Tor cell.
Send rate: Processing TorK frames takes an average 9.32 µs
and 10 µs at the 90th percentile. To avoiding send empty
TorK cells, while allowing the bridges to fully perform a
communication round, we define the function: Rate(n) =
n×10 µs, where n is the number of connected clients.

Next, we assess the performance of a baseline TorK
deployment configured with the above parameters.

C. TorK Baseline Performance

Network performance: Our baseline configuration was set
to use 536 B chunk frames under a dynamic 10 µs to 500 µs
rate, which varies according to the number of connected
users, leads to a maximum theoretical throughput of 8.5
Mbps with 50 simultaneous clients connected. This is also
the amount of chaff we are introducing in the network.

6

1 5 9 13 17 21 25 29 33 37 41 45 49
#K users

0
200
400
600
800

1000
1200
1400
1600
1800

La
te

nc
y

(m
s)

(a) Clients receiving chaff.

1 5 9 13 17 21 25 29 33 37 41 45 49
#K users

0
200
400
600
800

1000
1200
1400
1600
1800

La
te

nc
y

(m
s)

(b) Clients receiving data.

Figure 6: Latency observed by number of bridge clients.

Figure 5 depicts the achieved throughput based on the
average bandwidth of 5 runs according to the increasing
number of connected users K receiving chaff. It also depicts
the achieved throughput according to the increasing number
of connected users K receiving actual data through Tor.
The sender and receiver values are the throughput values
observed by the iperf running on TorK client gateways
(sender) and on the private server (receiver).

For testing purpose all 5 runs used the same relay
configuration. It is important to notice that even though
relays advertise bandwidth as part of the Tor consensus,
relays may also impose bandwidth restrictions per user/relay
connection using the options: PERCONNBWRATE, PER-
CONNBWBURST, RELAYBANDWIDTHRATE and RELAY-
BANDWIDTHBURST which use token buckets to rate the
bandwidth of client or relay data evenly to every connected
client/relay discouraging greedy users. Unlike the advertised
bandwidth, per connection rates are not public, hence we
conducted an throughput experiment (in 5 runs) without
TorK, i.e. using only Tor, under the same relays configura-
tion to measure the actual per client throughput of the testing
relays. On average, under this testing setup, we observe a
16 Mbps throughput (denoted as a gray line).

The results show that one TorK client can achieve up to 12
Mbps out of the total 16 Mbps achieved by these relays when
not using TorK. With a higher number of connected clients,
TorK decreases the rate and thus reducing the throughput.
This throughput reduction accounts that processing chaff
frames is less burdensome than data frames since the first are
discarded upon reception and the second requires receiving
all chunks and deliver the content to the Tor network.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

536 B (AUC = 0.53)
1050 B (AUC = 0.52)
2078 B (AUC = 0.53)
4134 B (AUC = 0.53)
Random Guess

(a) Summary Statistics

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

536 B (AUC = 0.52)
1050 B (AUC = 0.52)
2078 B (AUC = 0.53)
4134 B (AUC = 0.53)
Random Guess

(b) Packet Length

Figure 7: Performance of the classifier when distinguishing
between k-circuits carrying real Tor data and chaff.

An increase in the number of connected users causes the
latency to increase. New data frames causes slightly higher
increases in latency than chaff frames. It is important to
notice that the bandwidth control measure is also in place
(Section VI-E). Therefore, the delivering process of data
frames’ content (to the Tor Network) may be intentionally
delayed as reactive measure to active attacks.

Indistinguishability of k-circuits: To ensure the k-
anonymity of clients, each individual k-circuit must not be
distinguishable from another by a network adversary. Thus,
the adversary must not be able to tell apart whose k-circuit
carries actual Tor data from those carrying chaff data only.

To show that TorK provides indistinguishability for k-
circuits, we capture network traces at the bridge following
case a) in order to generating a dataset and training an
XGBoost classifier aimed at distinguishing whether a given
flow pertaining to a TorK circuit carries useful data or chaff.

Figure 7a depicts the XGBoost ROC curves using sum-
mary statistics under differ chunk sizes and traffic shap-
ing rates configuration. The summary statistics include the
minimum, maximum, mean, standard deviation, percentiles,
kurtosis and skew. Kurtosis measures the distribution of the
data relative to a normal distribution and skew measures
the symmetry of the packet length. Figure 7b depicts the
XGBoost ROC curve using only the packet length (PL)
statistics. The PL feature encloses a frequency distribution
table, represented in buckets of packet lengths. We can
observe that the maximum AUC achieved by the classifier
is 0.53, suggesting that the classifier brings no advantage,
regardless the chunk size, to an adversary aimed at revealing
whether a client is sending chaff or real Tor traffic.

Unlinkability of k-circuits and Tor traffic: To ensure k-
anonymity TorK must also prevent an adversary from being
able to link a real Tor traffic flow departing from the bridge
with the particular k-circuit that originated such traffic.

To show that TorK also prevents this attack, we captured
network traces at the bridge following case b) in order to
generate a dataset of flow pairs corresponding to the TorK
traffic observed between clients and the bridge, and between
the bridge and Tor middle nodes.

Figure 8a and Figure 8b depict the performance of the
classifier when matching a given k-circuit with an outgoing

7

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

536 B (AUC = 0.52)
1050 B (AUC = 0.52)
2078 B (AUC = 0.51)
4134 B (AUC = 0.51)
Random Guess

(a) Summary Statistics

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

536 B (AUC = 0.52)
1050 B (AUC = 0.52)
2078 B (AUC = 0.52)
4134 B (AUC = 0.51)
Random Guess

(b) Packet Length

Figure 8: Performance of the XGBoost classifier when
matching TorK flows with the corresponding Tor circuit.

1 5 9 13 17 21 25 29 33 37 41 45 49
#K users

0
2500
5000
7500

10000
12500
15000
17500
20000

Av
er

ag
e

ba
nd

wi
dt

h
(K

bi
ts

/s
ec

)

Relay Max
536 B (Baseline)
1050 B

2078 B
4134 B

Figure 9: Throughput achieved with different chunk sizes.
All clients are receiving data.

flow from the bridge towards the Tor network. The figures
show that the classifier is only able to obtain a maximum
AUC of 0.52, suggesting that a passive network adversary is
unable to link k-circuits carrying Tor traffic with the actual
Tor flows departing from the bridge.

D. Varying Traffic Shaping Parameters
The baseline experiment uses 536 B chunk size which

can carry a single Tor cell within each chunk. To study
how the chunk size affects the throughput and latency, those
experiments were repeated under different chunk sizes: 1050
B, 2078 B and 4134 B. These values allow chunks to
contain up to 2, 4 and 8 Tor cells, respectively. The traffic
shaper rate function was modified to maintain the same
minimum and maximum throughput. In other words, the TS
rate minimum and maximum values for each chunk size are:
(20 µs,1000 µs), (40 µs,2000 µs), (80 µs,4000 µs).

Figure 9 depicts the throughput results with different
chunk sizes. By theory the throughput should remain, ap-
proximately the same for each configuration, which is 8.5
Mbps with 50 connected clients. However it is possible
to observe that for the same number of 50 connected
clients, having a higher chunk sizes allow TorK to approxi-
mate throughput values to the maximum theoretical values.
Since the maximum theoretical throughput remains the same
across all chunk sizes, 2078 B and 4134 B turns to be more
efficient than the baseline chunk size (536 B).

Baseline latency results shows increased latency values for
higher number of participants as expected, having higher in-

1 5 9 13 17 21 25 29 33 37 41 45 49
#K users

0
200
400
600
800

1000
1200
1400
1600
1800

La
te

nc
y

(m
s)

(a) 1050 B chunk (up to 2 Tor cells per chunk).

1 5 9 13 17 21 25 29 33 37 41 45 49
#K users

0
200
400
600
800

1000
1200
1400
1600
1800

La
te

nc
y

(m
s)

(b) 2078 B chunk (up to 4 Tor cells per chunk).

Figure 10: Latency by number of bridge clients when using
different chunk sizes. Clients are receiving data.

cidence when #K > 13. Comparing baseline latency results
(Figure 6) against the results depicted in Figure 10 (a), the
same behavior occurs only with #K > 25. Such behavior
may occur due to fragmentation of several multiplexed Tor
cells inside a single TorK frame chunk in combination with
higher CPU load at the bridge. If one or several Tor cells are
scattered over several chunks, it will require multiple traffic
shaping iterations to receive a single Tor cell. Additionally,
a high number of participants causes the latency to increase
due to additional overhead at bridges. However, when the
chunk size comprises more than 2 Tor cells (Figure 10 (b)),
there is almost no large latency fluctuation even with 50
connected clients. Such results show that higher the chunk
is, the less prone TorK is to Tor cell fragmentation.

E. Resisting Active Network Events

So far, the results of our experiments have shown that
TorK is able to ensure the indistinguishability and unlinka-
bility of traffic produced by k-circuits when the k-anonymity
set is preserved. In this section, we assess TorK’s ability
to adhere to the k-anonymity settings of clients in the
event of possible client churn and malicious active network
manipulations aimed at disclosing the identity of clients.
Resisting deanonymization due to circuit reuse: A straw-
man k-anonymous circuitry established by TorK may be
prone to deanonymization attacks in some specific circum-
stances. For instance, consider the case of a k-group of two
clients where both send traffic towards the Tor network.
Consider now that one of such clients leaves the group
and, later, another one joins. If the client which remained

8

in the k-group leverages the same Tor circuit that it was
using before, the adversary can trivially link that client with
the Tor traffic it produced earlier. In order to avoid this
potential vulnerability, TorK requires clients to establish new
Tor circuits everytime a k-group is back in action.
Resisting deanonymization due to bandwidth manipu-
lation: To test a scenario where an attacker deliberately
drops client’s packets in order to disclose the respective Tor
circuit an experiment was conducted. Two clients, forming
a k-circuit with k = 2, will download the same file over
the Tor network. During the process, at a specific instance,
all packets to and from client 2 will be dropped during a
limited period, simulating a packet drop attack. It was used
the Traffic Control – TC – Linux command to instruct the
kernel queue discipline and emulate a total packet loss.

Figure 11 depicts the bytes statistics without (above) and
with (below) bandwidth control protection. At the instance
51, in the above figure, all packets from client 2 are dropped.
No bandwidth protection is employed, thus bridge continues
to receive and sent traffic to client 1. After applying the
bandwidth protection measure (below), the same dropping
behavior on client 2 causes the bridge to stall all traffic to
client 1. Around instance 80, client 2 packet’s drop is lifted,
causing client 2 to continuously receive traffic.

Exploiting side effects of packet drops become a complete
failure to an attacker. The bandwidth protection mechanism
shows to be very useful even in cases where a malicious
client deliberately change the software. For instance, the
attacker can recompile from source, misrepresenting the
traffic shaper by omitting the send of chaff frames. Thus,
bridges will only deliver Tor traffic (transported in data
frames) upon receiving at least one frame, regardless its type,
from all other k-circuit members.

F. Network Utilization
We choose to design TorK to offer protection against cor-

relation attacks without significantly harming performance
at the expense of a slight increase in network utilization.

Figure 12 depicts the bridge outgoing network utilization
for the baseline configuration and additional chunk sizes
and traffic shaping rates. The stats were collected during
approximately, one minute and half, since was time taken to
run each performance and latency tests individually. Usually,
the higher the chunk size is, the higher the network usage
will be, even though the traffic shaper function is adjusted
to guarantee the same throughput across all configurations.

G. Hardening TorK Nodes against Runtime Compromise
Hardening TorK using SGX technologies translates in

protecting the TorK memory space by adding a layer of
isolation with hardware support. In this subsection we will
study the level of additional security provided by SGX
enclaves and a comparison regarding performance.

To evaluate the level of security provided by SGX en-
claves, we setup a bridge environment with and without
SGX, as we denote for the request of the section as TorK-
SGX and regular TorK respectively. A network attacker

0 20 40 60 80 100
Time instant (s)

0

100000

200000

300000

400000

500000

600000

By
te

s

Bridge (Tor) Bridge (Cli.) Client 1 Client 2

(a) 1050 B chunk (up to 2 Tor cells per chunk).

0 20 40 60 80 100
Time instant (s)

0

100000

200000

300000

400000

500000

600000

By
te

s

Bridge (Tor) Bridge (Cli.) Client 1 Client 2

(b) 2078 B chunk (up to 4 Tor cells per chunk).

Figure 11: Bytes received by clients when dropping all pack-
ets from client 2, without and with bandwidth protection.

1 5 9 13 17 21 25 29 33 37 41 45 49
#K users

0

2

4

6

8

10

Us
ag

e
(G

B)

536 B (Baseline) 1050 B 2078 B 4134 B

(a) Clients receiving chaff.

1 5 9 13 17 21 25 29 33 37 41 45 49
#K users

0

2

4

6

8

10

Us
ag

e
(G

B)

536 B (Baseline) 1050 B 2078 B 4134 B

(b) Clients receiving data.

Figure 12: Bridge outward (towards clients and Tor Net-
work) network usage according chunk size/TS rate.

cannot infer the number of real clients, i.e. those that are
connected to the Tor Network, from those that are chaff-only
based on network traces. SGX ensures that the TorK memory
space is encrypted preventing an attacker from analyze it and
find whether a given frame contain chaff or real data traffic.

One of the main possible drawbacks regarding SGX is it
performance impact, which is predictable to decrease due to
encryption and decryption operations from and to the main
memory. The baseline experiment from Section VI-C was
repeated using a capable SGX machine and the throughput
results are depicted in Figure 13. Our nodes are again
executed within Docker containers provisioned with the
same virtual CPU and RAM. Bridges and clients run in
separated hosts where the bridge (SGX machine) is equipped

9

1 2 3 4 5 6 7 8 9 10
#K users

0
2500
5000
7500

10000
12500
15000
17500
20000

Av
er

ag
e

ba
nd

wi
dt

h
(K

bi
ts

/s
ec

)

Relay Max Sender Receiver

1 2 3 4 5 6 7 8 9 10
#K users

0
2500
5000
7500

10000
12500
15000
17500
20000

Av
er

ag
e

ba
nd

wi
dt

h
(K

bi
ts

/s
ec

)

Relay Max Sender Receiver

Figure 13: Throughput achieved by TorK-SGX baseline
configuration (536 B chunk) with an increasing number of
chaff and data clients, respectively.

with an Intel Core i9-9900K CPU. However due to hardware
limitations, the SGX experiment could only be tested with 10
clients. Thus, the TS rate window used was 50 µs to 500 µs
to accommodate the same theoretical throughput.

Notwithstanding the memory protection offered by SGX,
we study the possibility to perform remote attestation of both
clients and bridges. Currently, the lack of remote attestation
in our prototype remains an important limitation.

VII. CONCLUSIONS

Similar to other low-latency anonymity approaches, the
current Tor specification is known to be vulnerable to
correlation attacks launched by global adversaries. Inspired
by the concept of k-anonymity, this paper proposes the
establishment of indistinguishable k-circuits over Tor. As
shown in our experiments, this primitive prevents an ad-
versary with flow correlation capabilities from identifying
a Tor user amongst a group of k other users even in
the presence of active attacks launched by adversaries. By
tuning the configuration parameters it is possible to achieve
a reasonable throughput and latency without substantially
increasing network usage.

ACKNOWLEDGMENTS

We would like to thank professor Luı́s Rodrigues for the
initial ideas and discussion regarding the system design and
attack defenses. We are also grateful to Diogo Barradas
for feedback and fruitful discussions provided during the
preparation of this work.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
second-generation onion router,” in USENIX Security Sympo-
sium, Aug 2004.

[2] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson,
“Users get routed: Traffic correlation on tor by realistic
adversaries,” in ACM SIGSAC CCS, Nov 2013.

[3] R. Nithyanand, O. Starov, A. Zair, P. Gill, and M. Schapira,
“Measuring and mitigating as-level adversaries against tor,”
in NDSS, Feb 2016.

[4] S. Chakravarty, A. Stavrou, and A. D. Keromytis, “Traf-
fic analysis against low-latency anonymity networks using
available bandwidth estimation,” in European Symposium on
Research in Computer Security, Sep 2010.

[5] R. Pries, W. Yu, X. Fu, and W. Zhao, “A new replay
attack against anonymous communication networks,” in IEEE
International Conference on Communications, May 2008.

[6] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of
tor,” in IEEE Symposium on Security and Privacy, May 2005.

[7] K. Bock, G. Hughey, X. Qiang, and D. Levin, “Geneva:
Evolving censorship evasion strategies,” in ACM SIGSAC
CCS, Nov 2019.

[8] B. Schneier, “How the nsa attacks tor/firefox users with quan-
tum and foxacid,” https://www.schneier.com/blog/archives/
2013/10/how the nsa att, Oct 2013, accessed: 2020-01-05.

[9] R. Dingledine and G. Kadianakis, “One fast guard for life (or
9 months),” in Privacy Enhancing Technologies, Jul 2014.

[10] J. Juen, A. Johnson, A. Das, N. Borisov, and M. Caesar,
“Defending tor from network adversaries: A case study of
network path prediction,” Privacy Enhancing Technologies,
Jun 2015.

[11] C. Wacek, H. Tan, K. S. Bauer, and M. Sherr, “An empirical
evaluation of relay selection in tor,” in NDSS, Feb 2013.

[12] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford,
M. Chiang, and P. Mittal, “RAPTOR: Routing attacks on
privacy in tor,” in USENIX Security Symposium, Washington,
D.C., Aug 2015.

[13] M. Edman and P. Syverson, “As-awareness in tor path selec-
tion,” in ACM SIGSAC CCS, Nov 2009.

[14] M. Akhoondi, C. Yu, and H. V. Madhyastha, “Lastor: A low-
latency as-aware tor client,” in IEEE Symposium on Security
and Privacy, May 2012.

[15] P. Samarati and L. Sweeney, “Generalizing data to provide
anonymity when disclosing information,” in Principles of
Database Systems Symposium (PODS), Jun 1998.

[16] A. Campan and T. M. Truta, “Data and structural k-anonymity
in social networks,” in Privacy, Security, and Trust in KDD:
Second ACM SIGKDD International Workshop, Aug 2009.

[17] A. Gupta and N. Shukla, “Privacy preservation in big data
using k-anonymity algorithm with privacy key,” International
Journal of Computer Applications, Nov 2016.

[18] R. Wails, A. Johnson, D. Starin, A. Yerukhimovich, and
S. D. Gordon, “Stormy: Statistics in tor by measuring
securely,” in ACM SIGSAC CCS, Nov 2019. [Online].
Available: http://doi.acm.org/10.1145/3319535.3345650

[19] S. Kim, J. Han, J. Ha, T. Kim, and D. Han, “Enhancing
security and privacy of tor’s ecosystem by using trusted
execution environments,” in USENIX on Networked Systems
Design and Implementation, Boston, MA, Mar 2017.

[20] D. Barradas, N. Santos, and L. Rodrigues, “Effective
detection of multimedia protocol tunneling using
machine learning,” in USENIX Security Symposium, Aug
2018. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3277203.3277217

[21] S. Matic, C. Troncoso, and J. Caballero, “Dissecting tor
bridges: A security evaluation of their private and public
infrastructures,” in Network and Distributed System Security
Symposium (NDSS), Feb 2017.

10

https://www.schneier.com/blog/archives/2013/10/how_the_nsa_att
https://www.schneier.com/blog/archives/2013/10/how_the_nsa_att
http://doi.acm.org/10.1145/3319535.3345650
http://dl.acm.org/citation.cfm?id=3277203.3277217
http://dl.acm.org/citation.cfm?id=3277203.3277217

	Introduction
	Threat Model
	Related Work
	Design
	System Model
	K-circuits Specified
	Thwarting Protocol Level Attacks
	Thwarting Traffic Pattern Attacks
	Thwarting Bridge Impersonation Attacks
	Thwarting Client-side Sybil Attacks

	Implementation
	Evaluation
	Evaluation Methodology
	TorK Baseline Deployment
	TorK Baseline Performance
	Varying Traffic Shaping Parameters
	Resisting Active Network Events
	Network Utilization
	Hardening TorK Nodes against Runtime Compromise

	Conclusions
	References

