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Abstract

Annually around 1.35 million people die worldwide as a result of road accidents. Of these, 90% occur

because of human fault. Such faults have been continuously reduced by the development of safer road

architectures and legislation that intends to guarantee the ideal conditions for driving.

However, errors made by human drivers when driving while feeling drowsy result in a constancy of

people involved in road accidents, raising the need for a drowsiness detection system. A physiological

signal capable of early identifying such state is the heart rate variability, which can be obtained by

analysis of the consecutive time intervals between heart beats.

Using peripheral cardiac signals, signals containing cardiac rhythm information and obtained through

non-intrusive ways, it is possible to integrate such detection on a vehicle without affecting the driving task.

This work builds the pipeline to use any of three wearable devices: wrist worn PPG band, ECG chest

strap and off-the-person ECG collection through a steering wheel, to collect the inter beat intervals,

calculate HRV features and detect the drowsiness state of a driver.

A filter was developed to compensate ambient light sensitivity of PPG based devices and the intervals

detected from all signals were corrected by an algorithm created to possible wearable contact losses.

SVM models with linear kernel and C=0.3 and a selected group of HRV features had good performances

, reaching an average 0.62 Matthews correlation coefficient across 12 individuals. Simulator experiments

showed good indication that peripheral cardiac signals can be used for drowsiness detection.
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Resumo

Anualmente, cerca de 1.35 milhões de pessoas morrem fruto de acidentes rodoviários. Dessas, 90%

ocorrem devido a erro humano. Estas falhas têm sido continuamente reduzidas pelo desenvolvimento

de estradas mais seguras e legislação que pretende garantir as condições ideais para condução.

No entanto, erros de condutores sonolentos resultam num número constante de pessoas envolvidas

em acidentes rodoviários, levantando a necessidade de um sistema de deteção desse estado. Um sinal

fisiológico capaz de identificar sonolência é a variabilidade cardı́aca (HRV), que pode ser obtida pela

análise dos intervalos de tempo entre batimentos cardı́acos consecutivos (IBI).

Ao usar sinais cardı́acos periféricos, que contêm informação sobre o ritmo cardı́aco e são obtidos

de forma não intrusiva, é possı́vel integrar tal sistema num veı́culo sem afetar a tarefa de condução.

Este trabalho constrói o processo para usar qualquer um de três dispositivos: pulseira com sensor

PPG, banda de peito e volante capazes de medir o ECG, para obter os IBIs, calcular variáveis de HRV,

e detetar a sonolência de condutores.

Foi desenvolvido um filtro especializado para remover artefactos do PPG. Os intervalos recolhidos

de todos os dispositivos foram corrigidos por um algoritmo criado para compensar percas de contacto

com os sensores. Modelos SVM com kernel linear e C=0.3 e um grupo selecionado de variáveis de HRV

mostraram boas performances, atingindo uma média de 0.62 de coeficiente de correlação de Matthews

em 12 indivı́duos. Experiências em simulador deram bons indı́cios de que sinais cardı́acos periféricos

podem ser usados para deteção de sonolência.

Palavras Chave

Variabilidade Cardı́aca; Wearable; Sonolência; Sinais Cardı́acos Periféricos; Machine Learning
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2.3 Example of Pointcaré plot, with SD1 and SD2 features depicted. . . . . . . . . . . . . . . 16

2.4 Proposed method for ultra short surrogate of short HRV indexes validation, Pecchia et. al

(2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 KSS ratings and corresponding proposed categorical labels. Adopted from Oliveira, 2018. 24

4.1 CardioWheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 PulseOn hBand Wrist band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Filter results: (a) raw signal with discontinuity; (b) result from filtering (a); (c) raw signal

with wandering mean; (d) result from filtering (c) . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Flowchart of the adaptive threshold algorithm used for PPG peak detection . . . . . . . . 43

4.5 Peak detection results, here the same are shown the same segments as the ones repre-

sented in filtering section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Movesense chest band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Example of ECG signal collected using the movesense chest band, the high quality of this

signal allows R peak detection without firstly filtering it. . . . . . . . . . . . . . . . . . . . . 45

4.8 Distribution of IBI ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xiii



4.9 Flowchart of IBI corrector functioning, evidencing the main process and specific tasks:

initialize, fill and join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.10 Comparison of missing IBI estimation using simple homogeneous partition of outlier, or

the smooth filling strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Models performance with initial training strategy, data imbalance leads models to perform

poorly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Models performance with class weights, models continue to perform poorly, leading to the

proposition that other factors contribute to the difficulty of this classification task. . . . . . 55

5.3 t-SNE plot and KSS distribution for subject FP03. The excellent performance of SVM

and GBT models for this subject are a result of the quality of KSS scores, with a clear

difference between day and night driver state, which is reflected in a t-SNE plot with a

clear separation between the two classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 t-SNE and KSS representations of poorly performing individuals, respectively (a) FP07,

(b) and (c) FP19, representing three major problems that KSS annotated data can have

for the drowsiness classification task: class imbalance, annotation error and state continuity. 58

5.5 t-SNE representation of the dataset formed by all the well separated individuals data.

While both plots distribute the same data, (a) colors each point according to the subject

the point comes from, and (b) colors the points according to the class (0=alert, 1=drowsy)

they belong to. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Recommended placement of sensors: (a) wrist band, fastened bellow the wrist bone; (b)

chest band, just bellow the pectoral muscles and with each contact (marked in orange) on

one side of the chest; (a) CardioWheel, hands symmetrically placed at a middle height. . 66

xiv



List of Tables

2.1 Filters used to preprocess PPG signal in literature. . . . . . . . . . . . . . . . . . . . . . . 10

2.2 PPG pulse classifiers in literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 PPG peak trackers in literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Strategies found in literature to identify driver state through HRV features. . . . . . . . . . 36

4.1 MAD of IBI reconstruction with different levels of contamination. . . . . . . . . . . . . . . . 50

5.1 HRV features extracted in Silveira’s work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Matthews correlation coefficient for each model-subject pair. Best performing model for

each individual is marked with bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Parameter space searched evaluated through grid search. . . . . . . . . . . . . . . . . . . 61

5.4 Features to use in the final drowsiness classifier. . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Results for signal source performance comparison, for each subject, columns correspond

to the origin of test data, and rows to training data. . . . . . . . . . . . . . . . . . . . . . . 68

6.2 McNemar’s test results regarding similarity of classifications from different sources. . . . . 69

List of Algorithms

4.1 Definition of integer levels of ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xv



xvi



Listings

xvii



xviii



Acronyms

ADAS Advanced Driver Assistance System

AECS Average Eye Closure Speed

ANN Artificial Neural Network

ANS Autonomic Nervous System

ApEn Approximate Entropy

AR Autoregressive model

BPM Beats Per Minute

DFA Detrended Fluctuation Analysis

ECG Electrocardiography

EEG Electroencephalogram

ESS Epworth Sleepiness Scale

FFT Fast Fourier Transform

FIR Finite Impulse Response

GBT Gradient Boosting Tree

GSR Galvanic Skin Response

HF High Frequency

HR Heart Rate

HRV Heart Rate Variability

ICC Intra Class Correlation

xix



IIR Infinite Impulse Response

IBI Inter-Beat Interval

JDS Johns Drowsiness Scale

KSS Karolinska Sleepiness Scale

LED Light Emitting Diode

LF Low Frequency

MAD Mean Absolute Deviation

MCC Matthews Correlation Coefficient

NPC Non-Player Character

ocSVM one class SVM

PCB Printed Circuit Board

PDA Personal Digital Assistant

PERCLOS Percentage of Eyelid Closure

PKE Positive Kinematic Energy

PPG Photoplethysmography

PSD Power Spectral Density

PRV Pulse Rate Variability

PTT Pulse Transient Time

RBF Radial Basis Function

RF Random Forest

RMSE Root Mean Squared Error

RMSSD Root Mean Square of Successive Differences

SampEn Sample Entropy

SDNN Standard Deviation of Normal intervals

SDSD Standard Deviation of Successive Differences

xx



SENN Standard Error of Normal intervals

sHRV short Heart Rate Variability

SMOTE Synthetic Minority Oversampling TEchnique

SNR Signal to Noise Ratio

SSS Stanford Sleepiness Scale

SVM Support Vector Machine

TINN Triangular Interpolation of NN interval histogram

t-SNE t-Distributed Stochastic Neighbor Embedding

ULF Ultra Low Frequency

usHRV ultra-short Heart Rate Variability

UUID Universally Unique Identifier

VLF Very Low Frequency

xxi



xxii



1
Introduction

Contents

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1



2



1.1 Context

Annually around 1.35 million people die worldwide as a result of road accidents [1]. Of these, 90% occur

because of human fault [2]. Such faults have been continuously reduced by the development of safer

road architectures and legislation that intends to guarantee the ideal conditions for driving.

However, despite all efforts, errors and distractions caused by the insistence on driving even when

feeling drowsy result in a constancy of people involved in road accidents.

For this reason, it has become of the uttermost importance to develop systems capable of identifying

driver drowsiness, to act with them to prevent in a more personalized and effective way this dangerous

behaviour. Several proposed systems are already available in the market, but are usually based on

extrinsic factors, as the simple measurement of time driving, or the monitoring of driving behaviour.

Even though their implementation on the vehicle is as non-invasive as one could desire, the fact that

they monitor only variables external to the driver leads to performances that fall short of what such vital

system should.

On the other side, it is known that the monitoring of physiological data allows insight on the inter-

nal mechanisms that produce drowsy states, providing an excellent source of information to assess the

drowsiness state of any driver. However more powerful information exists in these signals, the technol-

ogy to read them normally implicates an higher level of intrusion on the drivers environment, which is

why they have been kept away from this field of application.

One of the physiological signals that has revealed an interesting capability to identify an individ-

ual’s drowsiness state is Heart Rate Variability (HRV), which is obtained through the analysis of the

series of time intervals that separate heart beats, usually identified through QRS complexes in an

Electrocardiography (ECG). Again, the need to place chest electrodes to collect the ECG renders

this approach impractical, but, fortunately, less invasive alternatives have been proposed to collect

the needed information, measuring cardiac rhythm information in a more peripheral way. These non-

invasive technologies combine the feasibility of being installed on a vehicle without disturbing the drivers

environment, with the ability to infer their drowsiness state from an intrinsic signal, instead of possible

manifestations of such state.

This way this work defines peripheral cardiac signals as the set of physiological signals that measure

the cardiac rhythm dynamics in a non-invasive form, that is, which collection doesn’t demand any change

in drivers routine, or that in any way forces him to have his activity affected by the connection with the

measuring devices.

Two pieces of equipment already available seem to meet such criteria, the CardioWheel® by CardioID

Technologies, a steering wheel cover that measures a bipolar derivation of ECG through the drivers

hands, and wristbands and smart watches with an integrated Photoplethysmography (PPG) sensor, as

long as these allow continuous signal acquisition, unlike most consumer grade devices that only report

3



an average value of measure heart rate.

However, while both of them exceed expectations when it comes to practicability, fitting perfectly

into anyone’s lifestyle and driving, the distancing from the cardiac signals’ primary source demands a

more careful processing of these peripheral signals in order to extract information as trustworthy as that

collected with thoracic electrodes.

Having this, this thesis proposes to answer two main questions, that ultimately combine to produce a

drowsiness detection system for driving environments based on peripheral cardiac signals: How to deal

with the processing of such signals (filtering and fiducial points localization), and ensure confidence on

the HRV features obtained from them, and if the HRV information obtained from these sources allows

such drowsiness state classification as it does with thoracic ECG.

1.2 Objectives

The two questions proposed before define the main objectives of this theses, which should be further

specified briefly here.

1.2.1 How to process peripheral signals?

Processing strategies differ depending on which equipment is used, while the CardioWheel® has filters

built in, and so, returns a signal where the QRS complexes are immediately identifiable, most wrist band

PPG sensors return a raw signal, filled with noise, movement and light change artifacts. For this reason

an online filtering strategy is implemented to extract only the pulsated component of PPG.

Having the peaks on these signals corresponding to ventricular systole (ECG) and systolic pulse

(PPG) peak detection algorithms are implemented to store the timestamps at which heart beats oc-

curred. This stream of timestamps is then used to calculate the series of Inter-Beat Intervals (IBIs) (fig.

1.1) that are the base of HRV calculation.

As the continuity of the peripheral cardiac signals depends on the constant contact of hands on

wheel, or the absence of too strong artifacts on the PPG, it cannot be guaranteed at all moments. Thus

it is possible to have missed peaks or false detections in the stream of heartbeat timestamps. To solve

this, an IBI correcting algorithm is proposed, and validated, artificially removing or adding peaks and

evaluating the error remaining after correction.

It is to note that the wearable nature of these signal’s source results in that continuous segments

may have duration a lot shorter than what state-of-the-art HRV use, even with correction. Having in

mind that short Heart Rate Variability (sHRV) need a minimum 5 minutes of uninterrupted inter-beat

intervals detected, and, in wearables, 2-3 minutes would be a much more realistic projection, the analysis
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Figure 1.1: Representation of Inter-Beat Intervals on ECG and PPG signals. IBIs are the interval of time that
separates two consecutive heart beats.

conducted must be redirected to the field of ultra-short Heart Rate Variability (usHRV), and, to do so, the

validity of features in this ultra short scope will be assessed before using them in classification models.

1.2.2 How to classify drowsiness from peripheral signals derived HRV?

To start building a classification model on this subject, an already existing dataset containing naturalistic

driving data, with both ECG measurement and drowsiness annotations is used to evaluate machine

learning algorithms in their capacity to correctly output drowsiness alarms from usHRV features. This

database is also used to evaluate the need for class balancing, feature selection and alternative training

strategies.

After defining the optimal models and training procedure, data collected with a driving simulator

(fig. 1.2) developed by CardioID/ISEL is used to evaluate the performance of such models when using

peripheral signals as data source. This dataset contains drowsiness annotations, hands ECG from

CardioWheel®, wrist PPG measured with the pulseOn wrist band, and chest ECG from a Movesense®

chest-band. Positive results in this section establish a system using peripheral cardiac signals only to

detect drowsiness in drivers, combining the non-invasive advantages of wearables and built-in vehicle

systems, with the deep insight physiological signals provide.
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Figure 1.2: Driving simulator setup: A computer simulated environment is presented in the screen, while the driver
controls a vehicle using the pedals and Cardiowheel. The simulator not only integrates the inputs to
run the environment, but also aggregates inputs from the wheel movements, CardioWheel sensor, and
intel realssense camera to a database.

1.3 Thesis outline

In order to fulfill the defined objectives, a comprehensive literature review is performed in chapter 2,

where not only currently used tools in this field are presented, but also a theoretical basis is used to justify

the relations here proposed. In chapter 3, the state-of-the-art of cognitive state characterization in drivers

is , namelly stress and, more importantly, drowsiness. Chapter 4 explicit the methods implemented to

filter the peripheral signals, as well as to correct the IBI stream they provide. A report on drowsiness

classification from HRV features is present in chapter 5. Finally, an experiment is setup to test the system

developed for signal extraction and drowsiness classification and described in chapter 6.
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2.1 Photoplethysmography

Photoplethysmography (PPG) was first described by Alrick Hertzman in 1937. He noticed that the

amount of infrared light absorbed by the tissues varied along time, so it was proposed that this change

depended on the volume of blood passing the tissue bed at each time. This founds support in Beer-

Lambert’s law, where light absorption is essentially dependent on the path distance the light rays travel,

concentration and the specific absorption coefficients of each substance for different wavelengths.

In fact, with every heartbeat, a pulse of new arterial blood passes the arterioles in locations as the

wrist, finger or earlobes. As this increases the amount of light absorbed, a high correlation between

PPG pulse intervals and heart rate can be found and, from this, Pulse Rate Variability (PRV) can be

used as an estimate of standard HRV [3].

An example of a typical PPG waveform can be seen in Figure 2.1. As stated before, this waveform

describes the variation in blood volume through time. As it is possible to observe, a fast increase in

volume results in the systolic peak, which corresponds to the pulse of blood incoming from the heart

after systolic contraction. From this point, blood volume should decrease steadily, however, as this

signal is also sensitive to the reflected pulse, i.e. blood returning to the heart, a second, smaller peak,

the diastolic peak, can also be detected. This specific format gives this signal a richness of information

to be extracted from it and its derivatives. While most of these information is used currently to estimate,

not only heart rate, but very different physiological aspects, as cardiac output volume, arterial pressure

and stiffness, and even blood oximetry [4], the interest of this work is to extract the precise time intervals

between pulse peaks (IBI) and calculate HRV features that allow drowsiness detection.

Figure 2.1: Schematic of typical PPG pulse waveform, with most relevant features and key points denoted.
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2.1.1 Motion Artifact Filtering

Being an optic method, PPG is extremely sensitive to phenomena that result in a change of detected

light intensity or hemodynamics. These include motion of the measuring site or sudden alterations in

the ambient lightning, which will result in the superposition of these perceived changes on the real PPG

signal. Also, given that these light variations have a power much higher than that of the subtle blood light

absorption, they will completely hide the information needed and must be handled before any analysis

on the signal is performed. As most of the abrupt lightning changes correspond to discontinuities, and

other artifacts produced by motion and respiration have frequency ranges bellow the PPG pulse, filtering

the signal can mitigate their presence in the signal.

It is to note that, as stated by Park, Waugh and his colleagues [5, 6], phase distortions can occur

if the phase response of the applied filter is not taken into consideration, which could ultimately result

in completely invalid results after HRV analysis of the filtered signals. Because of this, Finite Impulse

Response (FIR) filters with linear phase response are used and, when Infinite Impulse Response (IIR)

filters are needed for their lower orders, a forward-backward design has to be implemented. However,

the latter does not allow real-time applications, which, in the scope of drowsiness detection during driving

tasks, narrows the filter choices to linear phase FIR.

A table (2.1) containing proposed filtering methods for PPG is presented bellow, which will serve as

a justification for the methods implemented in this thesis.

Source Year Filter Type Phase distortion correction
Sabeti et al. [7] 2019 Butterworth Band-Pass Filter None
Liang et al. [8] 2018 4th order Chebychev Low-Pass Forward-backward design

Waugh et al. [6] 2018 FIR Low-Pass filter
IIR High-Pass filter

Symmetric FIR
Phase non-linearity at
very low frequencies

Park [5] 2017 Harmonic IIR Notch Filter Forward-backward design

Subhagya et al. [9] 2017 Band Pass-filter
LMS-adaptive filter None

Ye et al. [10] 2017 Adaptive Noise Cancellation
Singular Spectrum Analysis None

Sun [11] 2012 Moving Average Symmetric FIR

Ram et al. [12] 2012 Adaptive step-size Least
Mean Square adaptive filter None

Wei et al. [13] 2011
Median Filter
FIR Low-Pass Filter
Wavelet decomposition

Symmetric FIR

Table 2.1: Filters used to preprocess PPG signal in literature.

It is important to note that the works that present none as a method for phase distortion correction

simply didn’t mention it, leaving the possibility that symmetric FIR or forward-backward designs were

used but not made explicit in those papers. Also, as some of this works [7, 9, 12] were not concerned
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with a precise characterization of time features, as peak position, but only in morphological classification

of pulses or even oxygen saturation estimates, phase distortions could have been disregarded as they

would not affect those results considerably.

Given the difficulty that superposition between PPG and artifacts presents, some researchers cou-

pled their filtering processes with automatic classification of pulses and signal quality assessment so

that non-correctable segments of it are identified as such and discarded before any signal parameters

are derived.

A summary of the methods and classifiers used in this signal classification are depicted in Table 2.2.

Source Year Features Classifiers

Sabeti et al. [7] 2019

Amplitude
Pulse duration
Peak-Peak jump
Valley-Valley jump

Decision Tree
Ensemble Decision Tree
SVM
Threshold Optimization

Waugh et al. [6] 2017 Normalized Pulse against template

Clustering:
Pearson Correlation
Kendal Rank Correlation
Spearman Rank Correlation
RMSE

Karlen [14] 2012

Amplitude
Maximum & Minimum intensity
Pulse period
Slopes Distribution

Adaptive Thresholding

Sun [11] 2012

Amplitude
Dissimilarity with template
Onset location
Pulse peaks location and number
Pulse duration
Peak-Peak interval

Thresholding
Kalman filter

Table 2.2: PPG pulse classifiers in literature.

All of these classifiers are based on a definition of what is a ”normal” PPG pulse, and serve as an

excellent pointer of which features of this waveform provide the most accurate description of it, features

as amplitude and pulse duration are transversal for all methods, and some other interesting character-

istics can be investigated, as a quantification of all peaks present in a pulse, and the characterization of

the distribution of slopes in it.

2.1.2 Peak detection

Being a tool for Inter-Beat Interval determination, it is crucial to be able to accurately detect the peaks

correspondent to the systolic beats. Differently from ECG where QRS complex has a very distinctive

morphology when compared with the rest of the signal, and is very narrowly time localized, systolic

beats in PPG can be a little bit more complicated to identify if some noise or even if an abnormally large
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diastolic peak is present, potentially compromising the temporal resolution of its peak detection [15].

For this, different techniques to find the correct peaks in PPG signal have been proposed, which

take advantage of the derivatives of this signal or some other heuristics based on the relation it has with

physiological behavior of the heart, as refractory periods1 (Table 2.3).

Source Year Peak detection criteria
Vadrevu [17] 2019 Zero-frequency resonator correlation

Thang [18] 2017
Adaptive threshold
Refractory period
Amplitude variation

Wei et al. [13] 2011 Derivative zero-crossing

Shin [19] 2009 Adaptive threshold
Refractory period

Table 2.3: PPG peak trackers in literature.

2.1.3 Peak location refinement

The digitization of PPG measurements places a dependency of peak detection precision on the sys-

tem sampling frequency. Even though very high frequencies, around 1000Hz, are technically possible

and even used in clinical settings, wearable form factors require lower sampling to optimize power con-

sumption and battery autonomy. This results in a tendency for reduction of sampling frequency in most

wearables, reaching frequencies as low as 25Hz.

The investigation on the effects of this sampling level have been investigated by Choi and Shin [20],

who decimated high frequency PPG recordings and compared the accuracy of Pulse Rate Variability at

frequencies raging from 5kHz to 5Hz. By comparing the deviation of PRV parameters, obtained from

stable PPG signals at different sampling frequencies, and the HRV corresponding ones, from ECG at

10kHz, a measure of how much this downsampling affected the reliability of the obtained data. They

concluded, as expected, that the larger the decimation, the larger the deterioration of the parameters

reliability, and significant differences were found for parameters as NN50 and pNN50 when sampling

frequency is bellow 25Hz. Other parameters are also affected, being observable that time-domain pa-

rameters are more sensitive than frequency-domain ones. The authors also underline that their findings

were based on very stable PPG, so that systems where the signals are collected in real world applica-

tions should take into consideration the additional uncertainty that the inevitable noise brings, and be

careful with sampling frequencies too close to this proposed limit of 25Hz.

Additional work has been done in order to investigate the feasibility of using interpolation techniques

to regain the temporal resolution lost because of low sampling rates, which has been summarized by

Berés [21]. Not only this work presents the results from previous studies, it unifies those findings in a

1The fact that heart muscle cells are not immediately ready to contract again after a heart beat [16]
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comprehensive manner by generating an artificial PPG correlated signal at 1kHz, decimating it to fre-

quencies between 2 and 500Hz, and cubic spline interpolating it back to the original sampling frequency.

After that, HRV parameters were estimated and compared with the original signal, establishing this way a

measure of interpolation usefulness in recovering the information lost due to undersampling. In general,

they found interpolation to greatly improve the HRV study accuracy, determining nonlinear parameters

as Poincaré-plots to be the most sensitive ones to this process, which required minimum 10Hz original

sampling frequency so that the interpolation could reconstruct the signal. However, we must note again

that the signals used were artificial, presenting no artifacts and a controlled variability. Because of this,

the uncertainty added by such factors in real signals must be taken into account, and this minimum limits

should be avoided, in order to guarantee an error margin and reliable results at the end of the analysis.

Finally, two different interpolation techniques are used in literature to refine peak location estimates,

cubic spline interpolation and parabola approximation.

Cubic spline interpolation defines a C2 function that is a cubic polynomial between each pair of

consecutive sampled points. Even though it has had its usefulness tested for PPG peak refinement,

it is computationally expensive as it needs to solve a set of three equations for each pair of points,

relating adjacent segments’ derivatives. This can be avoided using a simpler method, the parabola

approximation. This is a method used only for peak estimation, domain at which it maintains an accuracy

close to that of cubic spline, but, as it uses a quadratic approximation of the observed set of points, it is

able to rewrite the needed calculus into just one single equation. I does so by defining a three sample

set, where the central one is the observed local maxima. Using this points, and rewriting the parabolic

equation allows the direct definition of peak location both in time and amplitude directly from the sample

values. Baek et al. [22] compared the performance of both cubic spline and parabola approximation in

PPG peak estimation and found their results to be very similar, while the computational burden of the

second was consistently lower.

2.2 Heart Rate Variability

HRV is the study of variation of consecutive Inter-Beat Interval over time. This type of observation

provides a window to perceive the balance between systems responsible for the modulation of cardiac

rhythm, namely the Autonomic Nervous System (ANS) sympathetic and parasympathetic systems, and

the identification of anomalous intervals that can be correlated with cardiac disease. Because these

clues may not happen at all times, but only in specific periods of the day, the need for continuous

monitoring of heart rate appeared, carrying with it the time consuming task of analysing the accumulated

data. This resulted in the appearance of computational methods to form indexes that would condensate

all the observed data and point out if some worrying information is present. [23]
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2.2.1 HRV and ANS

For this work it is specially important to establish a relation between HRV and the balance between sym-

pathetic and parasympathetic systems, and to understand how different psychological states influence

that balance.

As stated in [24], the ANS is constituted by two antagonist systems: the sympathetic, that in a general

form prepares the organism for energy expenditure and stress response, and the parasympathetic, that

returns the body to its basal, relaxed state.

Sympathetic system, also referred to as the ”fight or flight” system, produces a series of alterations

in the body, such as vasodilatation of coronary arteries and vasoconstriction of other vessels, as well as

increase in heart rate. This optimizes cardiac output and oxygenation of muscles, that must be optimally

active to respond to the stress source.

Contrarily, parasympathetic system will promote a restful state, dilating peripheral circulation and

slowing down the heart rate, so that other systemic functions, such as digestion and lachrymal, saliva,

urine and fecal secretion take place. For that reason it is called as the ”rest and digest” system.

In healthy subjects, both branches of ANS balance each other, with sympathetic predominance repre-

senting an active acceleration of Heart Rate (HR) and the parasympathetic dominance a passive return

to the basal state, with consequent deceleration of HR. These effects are observable in HRV stud-

ies, specially through frequency domain parameters, as their continuous balancing process produces

oscillations at defined frequency ranges.

It is widely accepted in the scientific community that two different bands of spectral analysis of HRV

correlate with distinct activity levels of ANS branches [23,25,26]. Specifically, high frequencies (0.15 to

0.40 Hz) are commonly related to parasympathetic activity, while low frequencies (0.04 - 0.15 Hz) can be

related to a mixture of both activities, or, as some researchers propose [26], sympathetic activity alone

if frequency band powers are in normalized units. This allows the direct evaluation of ANS state through

HRV as a non invasive form of accessing a person’s internal state.

Other HRV indexes provide additional information, and can be divided in three main groups, depend-

ing on the type of analysis needed to calculate them: Time domain, frequency domain and nonlinear

domain. These are presented in the following sections.

2.2.2 Time Domain

Time domain parameters result from the direct analysis of inter-beat intervals present in the tachogram

(fig. 2.2), again, two subgroups are described [23]: statistical indexes and geometric ones. Both are

directly calculated from the series of IBI values, and several statistical parameters have been described,

such as Standard Deviation of Normal intervals (SDNN), Standard Error of Normal intervals (SENN),
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which is the standard deviation of the sample distribution means, Standard Deviation of Successive

Differences (SDSD), which is the standard deviation of adjacent intervals’ difference, Root Mean Square

of Successive Differences (RMSSD) and the number of adjacent intervals that differ more than 50ms

(NN50) and the relative homologous, pNN50, that is the percentage of NN50s in the entire sample.

Geometric indexes are built upon a geometric representation of the RR intervals, as a histogram of

those intervals. Two indexes are presented in the review by Acharya et al. [23] the triangular index, that

results from the quotient between the total of intervals analysed and the amount of intervals that fall in

the modal duration (peak of the histogram), that can be viewed as the division between the are and the

height of a triangle approximating the RR interval distribution [26], and the Triangular Interpolation of NN

interval histogram (TINN), that measures the width of the triangular approximation of the RR intervals

histogram as a measure of HR variability. Geometric analysis provides on clear advantage, that is is

insensitivity to data quality, as the triangular approximation acts as a automatic outlier removal process.

However, these methods need at least 20min of recorded data [26], which renders them unsuitable for

short and ultra-short term HRV studies.

Figure 2.2: Example of tachogram, it represents the time series generated by consecutive inter-beat intervals, and
it is the basis of HRV analysis.

2.2.3 Poincaré Plot

Poincaré plots are a representation of detected RR intervals as a function of the previous interval (fig.

2.3, as is commonly seen in state space diagrams from control theory, which distribution and formed

geometry can afterwards be used to access the normality of a given tachogram. Two simple indexes

are calculated from this plot, that correspond to the variance along the directions NNn = NNn−1,

successive intervals maintain the same duration (SD1), and NNn = 2NNmean − NNn−1, successive
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intervals vary proportionately to the distance to the mean interval duration (SD2). This gives a measure

of the different contributions of long term and short term variability respectively. The ratio SD1/SD2 can

also be obtained to perceive the balance between these two components [23].

Figure 2.3: Example of Pointcaré plot, with SD1 and SD2 features depicted.

2.2.4 Frequency Domain

Frequency domain parameters are found through the measurement of variance or power in defined fre-

quency bands of the Power Spectral Density (PSD) representation of the collected RR intervals. Two

different approaches can be used to estimate PSD, a non-parametric method as Fast Fourier Trans-

form (FFT), or the parametric Autoregressive model (AR). While FFT is a simple and fast method that

produces a discrete frequency decomposition of the original signal, the AR is more complex and need

verification of its model suitability [26] but results in a continuous and more accurate PSD estimation.

Four frequency domain indexes are commonly used, that are the powers measured in defined frequency

bands: Ultra Low Frequency (ULF) for frequencies bellow 0.003Hz, Very Low Frequency (VLF) in fre-

quencies between 0.003Hz and 0.04Hz, Low Frequency (LF) for frequencies that lie in a 0.04 to 0.15Hz

interval and High Frequency (HF) for those up to 0.4Hz [23, 26]. It is yet important to note that these

bands are not resolvable independently of the record duration, this because some of the lower frequency

bands measure oscillations that take longer periods of time than the recordings themselves. As an ex-

ample, to measure phenomena bellow 0.04Hz oscillations longer than 25 seconds are need and, for

0.003Hz, 5min30s are needed. Because of this, even with continuous spectrum from AR, measure-

ments shorter than 5 minutes cannot provide any reliable information about ULF [26], and even the

interpretation of VLF powers must be done very carefully in this time frames, as the proximity to these

frequency resolution frontiers becomes very relevant.
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2.2.5 Nonlinear Domain

Nonlinear or fractal parameters are derived from chaos theory, which accounts for non-linearity and non-

periodicity of signals in systems as physiological ones [26]. There is also evidence that this approach to

evaluate HRV is more accurate than the previously defined indexes [23, 26] as it is able to accept that

heart rate is slightly random and sometimes chaotic.

Godoy [27], presents a comprehensive review on nonlinear methods for HRV, dividing them into tow

categories invariant and information domains. Invariant domain contains parameters like Fractal and

Correlation Dimension, Detrended Fluctuation Analysis, Hurst exponent and Largest Lyapunov Expo-

nent, that give measures of signal regularity, that is, larger values express more complex variations of

HR and lower ones a more regular rate, being the first associated with healthy subjects capable of quickly

adapting their cardiac system to other stimuli. Information domain comprehends for methods of entropy

analysis, Approximate, Sample, Shannon and Multiescalar entropy. These reflect the randomness or

unpredictability of a signal, so that higher entropy levels refer to more irregular HR.

While nonlinear HRV indexes seem to better measure the irregularity of HR, as it deals directly with

chaos and randomness of signals, it is also very sensitive to low quantities of information, as stated

by Acharya et al. [23], so one must be careful employing nonlinear analysis in shorter tachograms, as

they may not contain enough information to separate chaos from noise. This sensitivity renders most

non-linear indexes unusable for usHRV, as with 2 minutes or less of signal, around 120, at most, IBIs

are available for analysis.

2.3 Pulse Rate Variability

HRV is usually made using ECG recorded tachograms. However, this is expensive and uncomfortable

for most measurement scenarios, as the most portable solutions for ECG measurement consist of band

straps around the chest. For this reason, PPG based devices present a promising alternative, as they

can be presented in very practical form factors as smart bands and watches. Nonetheless, this alterna-

tive has to consider that the physiological mechanisms measured by these systems are not the same,

ECG measures the electrical activation of cardionector tissue in the heart while PPG the volume change

in peripheral circulation that blood pulses provoke. This means that differences between the two of them

are unavoidable, the ECG can instantaneously detect ventricular systole, but PPG will only find its peak

after a delay, that corresponds to the time the blood takes to travel from the heart to the measurement

place. This time is referred to as Pulse Transient Time (PTT), and has several variables influencing it,

thus, influencing the precision of PRV too.

A study conducted by Murakami and Yoshioka [28], related HR and PTT. Though our goal is not to

verify this relation, it is to justify that the variation in PTT does not compromise the correlation between
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HRV and PRV. In fact, though PTT seems to vary linearly with heart rate, the standard deviation of PTT

when the standard deviation of IBI was around 50ms was just 4ms, so we can assume that variations in

PTT will only cause minor differences between PRV and HRV.

A large set of articles was produced in order to relate these two analysis, by directly comparing both

of them.

In 2006, Bolanos [29] built a Personal Digital Assistant (PDA) system to capture simultaneously PPG

and ECG signals. From these, time domain parameters (minNN, maxNN, mean, mode and SDNN),

frequency ones (Total power, HF, LF and their ratio) and statistical measures of the heart rate signal

(variance, skewness, kurtosis and Approximate Entropy (ApEn)) were compared using correlation met-

rics. From the recordings taken from two subjects (one female), each with three different recordings,

very high correlations between simultaneous PRV and HRV was achieved, above 0.99. This opened the

door for additional studies that could base their research on this positive result, and try to refine the level

of confidence with which PRV constitutes a surrogate for HRV, and in which conditions that substitution

is feasible.

In 2015 Jeyhani [15] confirmed these findings using a larger study population, with 18 healthy male

individuals. By measuring the relative error between PPG derived parameters and those derived from

ECG it was found that most indexes had errors bellow 6% (SDNN, RMSSD, SD1 and SD2), while pNN50

showed to be more sensitive with errors around 29,89%. This study focused also on which fiducial point

of PPG produced the better PRV indexes, testing the pulse peak and its second derivative maximum,

and, in their trial, the signal peak gave the best results.

Pinheiro et al. [30] investigated this with a more robust approach, using a population of 33 healthy

subjects and other 35 that suffered from some type of cardiovascular disease. They compared the

statistical agreement of SDNN, SDSD, RMSSD, NN50, pNN50, VLF, LF, HF and low-high frequency

ratio obtained from ECG and PPG simultaneous recordings. To derive the PRV parameters, an extense

list of fiducial points was tested, namely:

• PPGonset - minimum at valleys

• PPG20% - point at 20% of pulse amplitude

• PPGder - point corresponding to the first derivative maximum

• PPG50% - point at 50% of pulse amplitude

• PPG80% - point at 80% of pulse amplitude

• PPGpeak - maximum at peak of pulse

Finally three different test groups were created, healthy subjects at rest, healthy subjects after ex-

ercise and cardiovascular patients at rest. With this they concluded that PPG is a good surrogate of
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ECG for healthy resting individuals, specially if using the derivative peak as a fiducial point for inter-beat

interval measurement, and that for the other two groups only some parameters maintain a good corre-

lation with ECG derived HRV, the frequency domain ones, mean and SDNN, specially if PPG20% and

PPGonset are used respectively. It seems that there is not a single fiducial point that proves to be opti-

mal for every situation, so that it should be adjusted for the specific population and scenario where PRV

is conducted. Also, exercise and poor cardiovascular condition seem to reduce the proximity between

these two branches of cardiac rate analysis. This happens because PRV is not only affected by direct

changes in sinus rhythm, but also by vascular stiffness, different intra-thoracic pressure, etc.

More recently, in 2018, Vescio [31] compared PPG and ECG derived inter-beat intervals and HRV

parameters using short-term analysis (5 minutes long recordings), with PPG being recorded with a

earlobe wearable form factor. Cross correlation and Root Mean Squared Error (RMSE) were used to

quantify the similarity between differently obtained indexes. Very little differences were found comparing

the inter-beat interval sequences, with a RMSE around 4.4ms. Also, no significant differences between

HRV parameters from 1440 segments (from 10 different subjects) were found, except for the mean NN.

However, this adverse result is explained by the sensitivity of pair tests to mean shifts, as in fact this

difference had a very low dispersion. Poincaré plots supported the measured similarity level between

HRV and PRV.

2.4 Ultra-short HRV

After a review by Georgiou [32] (2018), where the accuracy of HRV obtained from signals collected by

different wearables (16 ECG chest bands and 2 finger probes PPG) is compared with clinical grade

holter ECG, it became clear that increasing movement resulted in the deterioration of this correlation.

This happens because of the increased noise and artifact presence, that make some of the heart beats

undetectable and some false detections inserted. This results in fragmented signal, and so, shorter

continuous segments from which to estimate HRV parameters. The fact that device used to monitor

heart rate places a time cap in our analysis, that can very easily be lower than 5 minutes, makes it

mandatory to consider a different scope of HRV that fits the small time-windows offered, usHRV.

In 2014, trying to reduce the time constraints short term HRV guidelines demanded (5 min of supine

resting and 5 min recording) [33] to potentiate the implementation of this tool in train planing of college

athletes, Esco and Flatt [34] studied the agreement of a commonly used in sports HRV parameter,

lnRMSSD, when measured in shorter time frames (60, 30, 10 seconds) instead of the normally required

5 minutes. Statistically significant differences were only found in post exercise lnRMSSD for 60 and 30

second measurements, however, those differences were considered trivial after Cohen’s d was used to

determine effect size. All parameters presented near perfect (>0.89) or very large (>0.79) Intra Class

19



Correlation (ICC). Bland-Altman plots were used to test the limits of agreement, and it was concluded

that the shorter the segment, the larger these limits would become. This shows that it is possible to

shorten the duration of HRV and still obtain relevant results, but that that shortening is not without a cost,

and a researcher must first be certain that the usHRV parameters he is using maintain their significance

under the measuring conditions and duration used in its application.

Castaldo, Melillo and Pechia conducted a series of studies focusing on the ability of different HRV

parameters to maintain their significance in ultra short scenarios, and their feasibility as stress indicators.

In 2015 [35], a list of 10 parameters that were significantly linked to stress detection in short HRV

was tested: mean NN, LF, LF/HF ratio, Sample Entropy (SampEn), correlation dimension, Detrended

Fluctuation Analysis (DFA) long and short term slopes, recurrence plot mean line length and recurrence

rate. The Stroop Color Word Test was used to induce stress in 42 participants, who had 7 minutes

of ECG recorded before and after the test. The described parameters were calculated from those

recordings using the last 5 minutes (short) and 2 minutes (ultra short) from each, and compared to see

if significance was maintained and if the variation in both domains was coherent when the analysis is

shortened. Even though all of them were coherent, only six kept significance when usHRV was used:

mean NN, LF, SampEn, DFA long and short term slopes, recurrence plot mean line length. with this,

they concluded that these 6 indexes are useful to detect stress in usHRV of 2 min. However, the lack of

significance of the other four should not be interpreted as a definitive discard of them, but as a need to

perform studies in larger populations to confirm if they are really not significant.

Later, in 2018 [36], they made a review on existing work on usHRV and identified the lack of a

rigorous method to assess ultra short indexes reliability. Most works would use only statistical tests, and

some of them wrongly, as assuming that p-value > 0.05 means the confirmation of null hypothesis, and

others would find correlation values without statistically validate them. To provide future investigation on

this subject with a standardized solid method for ultra-short/short term HRV indexes surrogate relation,

the algorithm presented in Figure 2.4 results from this review.

The authors also note that the normality of the data should also be tested prior to the application of

this validation method, so that suitable methods are selected. For example, if the data is not normally

distributed, non-parametric correlation methods have to be used instead of parametric ones, the Bland-

Altman plot has to be adapted to accommodate this and instead of Cohen’s d coefficient, a Cliff’s delta

statistic should be used to test effect size.
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Figure 2.4: Proposed method for ultra short surrogate of short HRV indexes validation, Pecchia et. al (2018)

To study the feasibility of using ultra short surrogates for HRV, a new research on usHRV features

for stress detection was conducted [37], following the method previously described. 42 healthy subjects

had 5 minute long ECGs recorded in two distinct moments, one during an oral examination used as a

stressor, and another one after spring break in a calm and relaxed environment. From the collected 5

minute excerpts, shorter ones of 3, 2, 1 and 0.5 minutes were extracted, and they constituted the set of

ultra-short segments to be compared with the short (5 min) ones. A total of 23 HRV parameters were

tested, which are listed as follows:

• Time Domain: Mean NN, SDNN, Mean HR, Standard deviation of HR, RMSSD, NN50 and pNN50

• Frequency Domain: LF, HF, LF/HF ratio and Total Power

• Non-linear Analysis: Poincaré plot SD1 and SD2 indexes, Approximation, Sample and Shannon

Entropy, Correlation Dimension D2, DFA long and short term indexes, Recurrence Plot Analysis

mean and maximum line length, and determinism index and the Recurrence Rate

The parameters were computed for every segment, with the exception of some parameters that, ac-

cording to the guidelines by the task force of the european society of cardiology and the north american
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society of pacing and electrophysiology (1996) [33], can not be calculated using such short recording

periods, such as LF that needs at least two minutes and HF that requires 1 minute of tachogram to

be validly obtained. First, to test the feasibility of using each usHRV parameters as a stress indicator,

the comparison between medians of each one of the parameters derived from at rest segments and

the corresponding indexes at stress. This relation would hold if the trend of means was consistent for

different time scales comparatively to the 5 min experiment. Also, validity of this was asserted with

Wilcoxon’s test p-value < 0.05. Afterwards, even though potential ultra-short term stress indicators are

selected, their validity as surrogates of short term ones has to be proven. This was done by following the

method described in [36]: Correlation analysis on all time scales, usage of Bland-Altman plots to discard

the existence of bias in the found correlation. This produced a set of six features that are consistent

surrogates of short term HRV indexes in ultra short analysis: Mean NN, SDNN, Mean HR, Standard

deviation of HR, HF and SD2. Moreover, the authors tested these in an automatic classifier scenario to

both find an optimal subset of features that eliminated redundancy, and to evaluate their performance

in stress detection. Mean NN, Standard deviation of HR and HF formed this subset that achieved over

88% accuracy when employed in an automatic classifier.

2.5 Sleepiness scales

Having seen how to collect and process cardiac dynamics into HRV features, to identify sets of values as

the states they correspond too, some quantification method needs to be used. In this work we will focus

on the detection of alert vs. drowsy states, so a review on different methods to measure sleepiness are

presented here.

But first, it is important to distinguish two concepts, that, even though similar in how they are experi-

enced, their physiological origin differs: drowsiness and fatigue.

While drowsiness results from the physiological need to sleep, mostly modulated by circadian cycles

and hours slept in the previous nights, fatigue is associated with the tiredness resulting from performing

a certain task. It is important to distinguish both, because different measure systems are needed to

assess each correctly, and different strategies can be applied to them. As an example, time on task is a

good simple measure to estimate fatigue, but fails to describe the individual’s need to sleep. And while

performing mentally engaging tasks, as simple algebraic calculations with speed sign values, seems to

reduce the fatigue progression, it has no effect on drowsiness, which can only be resolved with actual

rest [38].
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2.5.1 Epworth Sleepiness Scale

This is a drowsiness scale designed to detect abnormal daytime drowsiness, which can then alert for the

existence of an sleep disorder. It is based on a questionnaire asking patients to classify the likelihood of

them falling asleep in 8 different situations in a 4 point scale. Those items are based on scenarios

that occur occasionally during a normal day, but not necessarily every day. It is important to note

that Epworth Sleepiness Scale (ESS) does not measure one’s level of alertness/drowsiness at a given

moment, but the average sleep propensity across different activities. For this reason it is used to screen

sleep disorders, as it identifies individuals that live their day with excessive daytime sleepiness, but its

unable to determine which causes or factors produce that state. [39]

2.5.2 Johns Drowsyness Scale

The Johns Drowsiness Scale (JDS) uses analysis of eye closure to determine in real time the level of

drowsiness of an individual. It was created and calibrated for a specific eye tracking device, the Optalert2,

and has the advantage of being an objective measure of drowsiness, this is, it does not depend on the

subjects capability to self assess their state. [40] By using the ratio between amplitude and velocity of

blinking movements, this measurement does not need individual calibration. The major limitation of this

scale is that it needs an infrared camera tracking the eyes to capture the dynamics of blinks. The scale

measures drowsiness with a value from 0 (=very alert) to 10 (=very drowsy).

2.5.3 Karolinska Sleepiness Scale

Karolinska Sleepiness Scale (KSS) is a subjective scale of drowsiness, where individuals are asked to

rate their state from 1=very alert to 9=very sleepy [41]. It consists on a single item self report measure,

where the individual states which value (between 1 and 9) better correlates with its perceived state, after

being explained to him that the levels span like the following:

• 1: Very alert

• 3: alert

• 5: neither alert nor sleepy

• 7: sleepy (not fighting sleep)

• 9: very sleepy (fighting sleep)

The ease of application of this scale made it popular in several drowsiness related studies, namely

naturalistic driving [42–46], shift work [47–49] and attention and performance [50–53]. A study from 2006
2https://www.optalert.com/why-optalert/science/#johnsdrowsinessscore
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by K. Kaida et al. [54] focused on the validation of KSS against EEG signals. The researchers add their

contribution to other works confirming the validity of KSS to measure subjective sleepiness [42, 50, 55].

To do so, 16 participants were tested for 3 days, with repeated sessions in low lighting levels, where the

KSS score was measured along side various EEG features, as alpha and theta wave power during a

Karolinska Drowsiness Test, and the alpha attenuation coefficients. Behavioural components were also

obtained, as the number of lapses and reaction times during a Psychomotor vigilance test. The results

further confirmed the positive correlation KSS scores have with subjective sleepiness, finding almost

linear relations between this scale and the physiological parameters gathered. To facilitate drowsiness

detection based in this scale, it is common to aggregate ranges of KSS values into categorical labels

that better differentiate different states of sleepiness, as shown in figure2.5 [56,57].

Figure 2.5: KSS ratings and corresponding proposed categorical labels. Adopted from Oliveira, 2018.

2.5.4 Stanford Sleepiness Scale

This scale is symmilar to KSS, in the way that it is a subjective measure of sleepiness. Individuals are

asked to rate their sleepiness as one of seven states [58,59]:

• 1: Feeling active, vital, alert, or wide awake

• 2: Functioning at high levels, but not at peak; able to concentrate

• 3: Awake, but relaxed; responsive but not fully alert

• 4: Somewhat foggy, let down

• 5: Foggy; losing interest in remaining awake; slowed down

• 6: Sleepy, woozy, fighting sleep; prefer to lie down

• 7: No longer fighting sleep, sleep onset soon; having dream-like thoughts

It is to note that this scale has its levels more detailed than the Karolinska one, which is less defined

but allows intermediate classifications. The other main difference between these two scales is that

Stanford Sleepiness Scale (SSS) has items that can be answered based on boredom or task related

fatigue, while KSS keeps its focus on the propensity to fall asleep, thus being a better measure of

sleepiness alone [60].
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2.6 Decision Models

To model the relationship between HRV features and drowsiness, machine learning algorithms will be

implemented, so serves this section as a brief review of the basic concepts that this field attains, as well

as some of the techniques used to improve their results.

As part of the larger field of Artificial intelligence, machine learning comes from the need to have

computers refine their functions, learning from provided data how to better solve given tasks [61]. As

such, different strategies can be used to find this learning capability, in the majority of cases, a function

is defined so that a set of its parameters can be adjusted by the computer in order to better emulate the

real relationship between the inputs and outputs present in the data. This function can be as simple as

a linear one, with only two parameters (slope and bias), or as complex as the highly non-linear result

of a neural network with several hundreds of parameters to tune. And the model’s dependency on data

dictates that its that source material that defines how complex the model should be: complex models

on simple data end up paying too much attention to noise, jeopardizing the learning procedure, and too

simplistic models fail to fully reconstruct more complex relations in the data [62,63].

To help find the equilibrium point between robustness against noise and flexibility to model complex

data, different procedures can be implemented, such as tuning hyper-parameters (model parameters

that are not defined during the training progress, but that are defined a priori and can have great impact

on its capability to generalize) and selecting subsets of features to evaluate, besides the very first step,

choosing adequate model architectures.

In the task this project is interested in, classification of alertness/drowsiness state from HRV features,

the outputs of the data, and models, correspond to a finite set of labels or classes, more specifically two:

0=alert and 1=drowsy. Because it is a classification task, the models will define a separation boundary

in feature space that places each provided data point in the correct class, measuring its performance

and refining it in accordance to a cost function. The use of a cost function leads the model to tune its

parameters in order to minimize its value, which ultimately corresponds to correctly classify the most

samples possible. While in tasks where each class is completely separated from the other this results

in perfect classification of all samples, in those cases where the classes distributions overlap, the model

will have to place its border here the majority of samples is correctly classified. This means that if the

classes are not balanced, the model can choose to classify every sample as the majority class, as that

gives it the lowest error. To avoid this, class balancing techniques must be employed [64].
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2.6.1 Models

2.6.1.A SVM

Support Vector machines are classifiers that search for separation hyper-planes in feature space that

maximize the margin between classes. This strategy allows higher levels of confidence when classifying

new samples that lie close to the decision boundary, as it was chosen in order to balance the space

separation. Two major parameters to tune in this model are the kernel and the regularization param-

eter. Kernel, i.e. the function that defines the hyper plane geometry, and that can be used to model

feature spaces that are not linearly separable, but perhaps are radially separable, using radius-based

functions as the kernel. And the regularization parameter weights how much misclassifications cost to

the loss function. This is especially important in cases where classes are not completely separable, this

parameter allows a trade-off between margins and misclassifications, having low regularization param-

eters creating separation landscapes with higher margins and some misclassified samples, while larger

values of this parameter favor the correctness of classification, sacrificing margin area. [65]

This type of model is largely used in classification tasks involving HRV due to its ability to store

compact representations of feature spaces, even in non-linear cases. [66–69]

2.6.1.B One Class SVM

The model itself is the same as the SVM explained previously, but here, instead of modeling a sepa-

ration boundary between two classes, the model is trained only with samples from one class, learning

a self-contained area where that class lies on, and classifies as outliers all samples that fall outside of

that region. Deploying this strategy on drowsiness classification is based on the assumption that alert

samples constitute a normal class, and that the HRV get anomalous in drowsy states, producing this

way outlier samples that can be classified as such.

2.6.1.C Gradient Boosting Trees

Gradient Boosting Trees are a classification algorithm that instead of building a single powerful represen-

tation of feature space, relies on multiple weak classification stages, each contributing with a different

insight on how classes can be separated. By organizing these stages on decision trees, optimized

contributions can be added up to form classifiers that are robust, even in the presence of noisy data [70].

2.6.1.D Artificial Neural Networks

ANN are networks of simple computing cells that try to mimic the process by which information is pro-

cessed in the brain, a cell collects a series of inputs, and compares its weighted sum with a threshold to
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decide on whether to activate or not. Making use of alike computing entities, and tunning the weights by

which inputs are multiplied, artificial networks can approximate any function. Though this universal ap-

proximator is extremely useful in non-linear classification tasks, the number of parameters that the model

needs to adjust to perform well in such tasks demands an increased amount of data to successfully train

a neural network [71].

2.6.2 Feature selection

Feature selection is the process by which the total set of available features is reviewed and possibly

trimmed. Today, when collecting information, given the apparent limitless of storage space, the tendency

is to accumulate every possible feature available, however, when that same data needs to be processed

and utilized by a machine learning algorithm, the high dimensional feature space is more often than not

a curse. As more features does not necessarily reflect more information for the models but implicate

heavier memory usage for feature space representation and longer training times, methods to select

only those features that contribute with relevant and unique information were created [72]. There are

different strategies to select an optimal set of features, with two sitting on opposite extremes: supervised

and unsupervised. While supervised directly connects feature selection with model optimization, and

evaluates each possible subset of features based on the model performance it results in, unsupervised

feature selection tries to evaluate the vectors in feature space independently from classification labels

or outcomes. Two major quantities are considered in this process: relevance and redundancy. The

first deals with a measure of how rich can be the information encapsulated in each feature, and deals

normally with dispersion measures, as Variance or Mean Absolute Deviation (MAD). Redundancy repre-

sents a quantification of how independent the information given by two features is, being that high levels

of redundancy encourage the elimination of one of them. This is measured using metrics of similarity, as

correlation coefficient or angle cosine between feature vectors [73]. By ranking features based on their

relevance, and iteratively adding features that present low redundancy with the already selected ones,

a subset of features that maximizes information maintenance, while keeping only those that contribute

with unique knowledge, is created [73].

2.6.3 Class balancing

From the various factors that hinder machine learning algorithms performance, a commonly reported one

is the imbalance between cardinally of samples in each class. While, as pointed by Batista [74], class

balancing itself does not pose a problem, when other issues co-exist, as class overlapping, performance

is lowered. Imbalanced classes occur frequently in real classification tasks, specially when trying to de-

tect uncommon but important events. If the feature space allows complete separation between majority
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and minority classes there is no effect of this imbalance on performance, but, if classes overlap and the

model is forced to choose a separation plane that misclassifies a few samples, the minority class tends

to be sacrificed in order to minimize the cost function, most of the times compromising the detection

of that important infrequent event. Batista shows in his work that oversampling improves model perfor-

mance in these cases. One of the methods used to over-sample the minority class is Synthetic Minority

Oversampling TEchnique (SMOTE), which has the advantage that it generates new unseen samples,

unlike random over-sampling that simply duplicates the original ones, potentially leading to over-fitting

of the model. SMOTE produces new unseen samples by selecting the k-nearest neighbors and adding

to the dataset points that lie between the original point and a fraction of its neighbours, depending on

the oversampling needed. This balances the cost of misclassifying minority samples, and generalizes

the feature space region occupied by this class, improving its detection accuracy [75].

2.6.4 Feature space visualization with t-SNE

The first difficulty encountered when dealing with data with dimensionality higher than 3, is that it be-

comes impossible to produce a direct visual representation of feature space. This visualization allows

quick inference of data characteristics, as linear relationships or existence of clusters. One tool that is

particularly praised for its capability to reduce feature space dimensionality and reproducing the clus-

ters in the new visible space is t-Distributed Stochastic Neighbor Embedding (t-SNE). By converting

euclidean distances into conditional probabilities that represent similarity, this method is capable to map

the points into a lower dimension space in such a way that it maintains the local structures present in

the high dimension data. For this reason t-SNE is the tool of choice to have a visual representation of

high dimensionality feature space structures [76].
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Automobile field is one where the need for insight on a persons internal state is becoming already

a main topic among researchers. Through the need to reduce road accidents and the unavoidable

evidence that most incidents are caused by drivers. According to a report from the Department for

Transport [77] (UK) in 2008 3% of fatal accidents and 2% of those that result in serious injury had

fatigue as a contributory factor. However, previous research pointed out larger number, namely 10% of

collisions [78] and 17% of road crashes [79] that result in injuries and death being sleep related. Its is

plausible that fatigue as an accident cause is underestimated in official reports, given the lack of specific

formation of police agents to assess its contribution when reporting accidents and the fact that drowsy

drivers involved in crashes tend to be wide awake when interviewed because of the induced stress [80].

This underestimation predicts that a much more realistic statistic would be that around 20% of all road

accidents are caused by fatigue, either by actually falling asleep on the wheel and or by the decreased

performance that it implies.

According to an European Road Safety Observatory report from 2018 [81], driving while sleepy or

fatigued has a prevalence much higher than what would be expected or even minimally safe, surveys

demonstrate that more than a half of the population drives while being drowsy at least once a year, with

a range of 10%-40% of them having actually fallen asleep on the wheel. Also, studies from the united

states corroborate these results, as about one third of the population feels impaired to perform their daily

tasks at least once on a monthly basis [82], which included severe reduction in driving performance.

The same report states that fatigue related accidents result in high level injuries, and reaffirms the

20% prevalence of fatigue as a crash contributor. Finally, different studies focused on measuring the

increased risk resulting from driving while drowsy, finding the risk to be involved in a car crash to be 4 to

14 times higher than for rested individuals [83–85].

Another aspect of driving behaviour that is interesting to analyse is road rage. The American Safety

Council defined road rage as ”an attack initiated by the driver of a car or a passenger, on a driver of

another car or its passenger, using a car or another dangerous vehicle, this anger being the result of

an incident or event on the road during driving” [86]. And such attacks can take the form of tailgating,

blocking passage for other drivers or even verbally and physically assaulting them. As these are risky

behaviours to present on road, a study dedicated to establish a relation between perceived stress on

road and driving aggressivity [87]. By observing the behaviour of 226 drivers entering a parking lot

with heavy traffic, annotations on aggressive behaviour were taken, and a set of questionnaires was

used to assess the drivers coping (with stress) style, general driving behaviour and stress state during

the experiment. From these measurements it was observed that in general, the more stress is per-

ceived by a driver, the more aggressively he behaves. However, other factors model this, as intrinsic

coping mechanisms, for example, drivers with problem-solving coping strategies tend to present less

aggressivity when driving than emotional ones. These results are similar to those obtained in previous
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studies [88, 89], that directly related stress with poorer driving performance, with the observation that,

if on one side, aggressive-coping stressed drivers tend to overtake other vehicles more often and in

a more error prone manner, while non-aggressive, but driving disliking drivers tend to be more cau-

tious even though they presented less control. Moreover, following a similar procedure, but coupling it

with measurement of reaction times, Różanowski [90] established a positive correlation between per-

ceived stress and poorer task performance in driving environments, which was even more evident in

aggressive-coping drivers.

Seeing this, it becomes clear that a need for measures that reduce these human factors preponder-

ance in road accidents is increasingly important. The most obvious course of action would be to remove

the human from the driving process, which is already a market direction in the form of autonomous ve-

hicles. However, full implementation of this technology will not occur in the next 30 years, which means

that other strategies are needed [91]. Those are the creation of systems that monitor and act upon the

stress/fatigue state of the driver. This is advantageous because the only question to be solved is how to

measure the internal state of the individual. Mainly three different branches on this subject appear:

• Driving behaviour - Analysing driving patterns, as angle of steering wheel corrections, lane

positioning, etc.

• Tracking face position and eye direction - The position and movements of the head and eyes

present characteristic patterns depending on fatigue/stress state.

• Physiological signals - Physiological manifestations are the direct result of internal state varia-

tions in an individual.

Several proposals have been produced in this scope, some of which are presented in the following

sections.

3.1 Driving behaviour

In 2002, Kirche et al. published an article that evaluated a series of existing technologies for fatigue

detection through evaluation of driving patterns [92]. The authors describe methods directly related

with the steering wheel movements and steering wheel angle variability. According to Wylie et al. [93],

steering wheel variability can be related with driver drowsiness because there are minimal frequent and

low amplitude route corrections during a driving session, that tend to reduce in number and increase

in amplitude as drowsiness evolves. Although easy to extract this type of information, geometry of the

road affects this greatly, as the distinction between small heading corrections and simple following of

road geometry is affected not only by this geometry itself, but also by the velocity of the car can change

the temporal span of these phenomena. Eliminating the average of the steering wheel position over a
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defined period of time/ length of road is often used to reduce the weight of road geometry in this set

of parameters, however, in urban environments the length, duration of curves are highly confoundable

with micro-corrections, thus these methods are relevant only for highway studies. One other method is

referred in [92], that is the computation of a VHAL index, explained in detail by Bittner [94]. The VHAL

index corresponds to the squared derivative of the position of the steering wheel, in that paper denoted

as HAL, so that it can be thought as a measure of its variance. By band-passing the calculated squared

derivative of HAL, a relatively smooth measure of the variability of steering wheel movements is obtained,

which seems to be related with drowsiness as when it increases, the drowsiness level decreases and

vice-versa.

One other set of commonly used parameters is related with the lateral position of the car in relation

to the lane limits, the capacity to maintain a steady, well centered position is a sign of alertness.Dingus

et al. [95] compared lane positioning-related features with PERCLOS (percentage of time with eyes

at 80% closure) to evaluate their suitability to detect drowsiness. One other work that searched for

more of these features was conducted by Skipper [96] in 1984. Together, these two articles propose

lane position features as standard deviation, mean square and maximum of lane deviations, as well

as measures of lane deviation that are heavily weighted for lane exceeding or mean square of high

passed lane deviations, where all of them showed to be highly correlated with eyelid closure, and thus

drowsiness, except for the last one, where some potential was identified but not validated as thoroughly

as the others.

One final set of parameters covered in Kircher’s work [92], is the time-to-line crossing, which corre-

sponds to the time it would take for the car to exceed the lane limits if its instantaneous lateral velocity

is kept. This is a rather difficult measure to obtain, as no direct sources of this velocity information are

available, so approximation methods have to be deployed. Normally obtained from a first and second

derivative of lateral position, measures of time-to-lane crossing has been correlated with drowsiness by

various researchers [97–99].

In 2017, spanish researchers Muñoz-Organero and Corcoba-Magaña [100] combined measure-

ments of car velocity, acceleration and Positive Kinematic Energy (PKE) with LF/HF ratio from HRV

to predict upcoming values of stress, being actual stress measured as the aforementioned ratio. This

approach showed some promise as a model trained and tested by the same driver would achieve accu-

racies around 97.5%, showing that kinetic parameters are also relevant for this type of driver evaluation.

3.2 Face/eye tracking

A lot of information can be extracted from the face and eyes of a person. As humans, we are hardwired

to perceive immediately the internal state of an individual just by looking at his eyes. However, while
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it is naturally easy for us to detect ”sleepy eyes” or understand head tilts and different body poses as

drowsiness, their definition for automatic detection of this state is not trivial to compute. Because of

this, much work has been done in order to develop reliable and efficient methods that track the desired

features, as well as to find those features that better describe the individual’s internal state.

Ji and Yang published in 2002 an article [101] proposing an image processing system that tracked

in real time the pupil to determine the Percentage of Eyelid Closure (PERCLOS), Average Eye Closure

Speed (AECS) and direction of gaze, all of which provided very encouraging results for drowsiness and

alertness detection, identifying clear patterns that distinguished each situation.

PERCLOS is defined as the percentage of time that the individual has his eyes closed during a

certain period of time. it is hypothesised that as a person gets drowsy, its ability to keep the eyes wide

open deteriorates, so that higher levels of PERCLOS are observed in this situation [102, 103]. As an

example, Ji and Yang noticed that PERCLOS above 30% were associated with drowsy states [101].

AECS is the average time it takes for the eye to go from fully open to fully closed, and the other way

around, measured over a regular time window. Research shows that drowsiness results in slower eyelid

movements, such that noticeable increase in AECS happens [101].

In terms of direction of gaze, Ji and Yang found that lack of attention was related with lateral deviations

(to the right or left), while drowsiness resulted in its lowering [101].

In 2006 Bergasa [103] produced a similar study, where some parameters were added, namely the

frequency of nodding and blinks, as these are clear signals of tiredness. However, the difficulty in-

volved in tracking the head in 2D pictures and resolving a three dimensional motion for nodding and the

camera frequency needed to detect fast blinks render these measures less feasible than those already

described. One other parameter tested was a detection of fixed gaze, which means that the direction of

gaze remains constant for a prolonged period of time. When the driver is drowsy or inattentive, his gaze

remains still because there are no new stimuli to change his focus of attention, contrarily, active drivers

continuously move their gaze around a restrict are to evaluate different cues present in the road. In the

same year, Smith et al. [104] published an article describing another system, very close to these, where

eyes, lip corners and face contours were detected to track eye closures and direction of gaze, and use

both metrics to warn the user of low visual attention to the driving task. Masala and Grosso in 2014 [105]

proposed a system robust to light changes and different users by evaluating images through a dictionary

of poses and a dissimilarity classifier, where the dictionary of poses is based on the same fatigue-pose

relations that were described already. And Zhang et al. [106] used the same fatigue models, but RGB-D

cameras to ease the three dimensional reconstruction of pose problem.
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3.3 Physiological signals

While the previous measures relate to the manifestations that are observable when drowsiness sets

in, and that are easily interpreted by humans, they lack to detect the deterioration of alertness of the

driver at its origin. Measuring the physiological signals that are related to the very same processes

that produce such cognitive state may be harder to accomplish and extract meaning from, but, if done

properly, provides a window to detect subtle clues that otherwise would just be visible in later drowsiness

states, and possibly, too late.

One of the signals that is agreed to present the best correlation with fatigue and drowsiness states

[107], as well as with attention vs. inattention is the Electroencephalogram (EEG) [108]. The EEG

measures the electrical field produced by neurons in the cortex, being possible to identify frequencies

of neuron activation with temporal and (coarse) spatial resolution, frequencies that provide the needed

information for the aforementioned correlations. Because of this, different researchers have proposed

systems that monitored EEG to detect drowsiness or inattention of the drivers [109–112]. However,

these systems impose the wearing of a set of EEG electrodes, that are a rather intrusive form factor,

resulting in low adherence by users, and thus its impracticability in real life use.

Other signals can be used to overcome this, like Galvanic Skin Response (GSR), that is a good

measure of the state of arousal of the individual, and ECG and PPG to extract the cardiac rhythm.

GSR measures the small changes in skin electrical conductance resultant from the activity of sweat

glands, which are modulated by central autonomous activity [113]. While capable of accurately detect

stress and drowsiness episodes, as shown by Healey and Picard [114, 115], and described by Chowd-

hury et al. [116], it is also very sensitive to ambient temperature, as high temperatures dominate the

sweat glands behaviour over parasympathetic activation.

At last, two signals that convey the same fundamental information, and that seem to circumvent the

limitations of EEG and GSR are the ECG and PPG, from which the dynamics of cardiac rhythm can

be assessed. These signals are probably the easiest to integrate in an Advanced Driver Assistance

System (ADAS) implementation, as ECG can be collected through any system with two contacts, like

a chest strap, a tight t-shirt with contacts, or even a steering wheel with conductive leather. PPG is

even simpler to integrate, as the wrist band and smart watch form factor can seamlessly enter the daily

lifestyle of practically any driver. Driver state information is inferred by analysing the heart rate variability,

and several methods using it have been proposed [57, 100, 114, 115, 117–120]. From these studies,

superiority of ECG signal quality has been reported, justified by the normal usage of chest straps, that

guarantee a robust fixation of contacts with skin during the all driving time, while wrist worn PPG sensors

have shown sensibility to movement. Healey and Picard [114] achieved accuracies in the detection

of stress with HRV features around 52.6%, referring the difficulty in establishing a defined boundary

between stress and no stress as one of the main causes of this low performance, while Muños [100]
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managed to achieve 97.7% accuracies in predicting stress levels by using a regression to the LF/HF

ratio. Gruden [120] encountered statistically significant differences in HRV features for different levels

of cognitive load . And Silveira and Oliveira [56, 57], in different works, found that HRV features could

detect alert states with 84% accuracy, but drowsy ones only with around 47%. This lower performance

in drowsy states can be related with the continuous process of accumulating sleepiness, leading to

overlapping classes and a blurry boundary between them.

In several the studies presented in this chapter, more than one information source was studied si-

multaneously, with those studies agreeing that ultimately, the combination of different signals was the

best strategy to cover multiple dimensions of drowsiness and stress, and so capture the real state of the

driver.

Table 3.1: Strategies found in literature to identify driver state through HRV features.

Source Year Model Features Results

[120] 2019 - HRV -
time domain

Statistically significant
difference between cognitive states

[57] 2019 SVM, GBT, RF HRV - time and
frequency domain

84% accuracy for alertness,
but only 47% for drowsiness

[56] 2018 SVM, GBT,
RF, KNN

HRV - time and
frequency domain

84% accuracy for alertness,
but only 47% for drowsiness

[100] 2017 Regression HRV - LF/HF ratio 97% accuracy for stress
[114] 2000 Linear Discriminant HRV - LF/HF ratio 52.6% for stress
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4
Methods for signal extraction
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To later implement a drowsiness detection system, three different signal sources are tested, each

with its particular interface with the user, and its output signal characteristics. To ease the integration

of all these devices into this workflow, specific strategies for output normalization were implemented.

Depending on the signals needs, filtering and further processing were applied to ensure that all devices

return a trustworthy IBI sequence.

4.1 CardioWheel

CardioWheel was originally developed as an off-person biometric solution based on ECG. Lourenço

et al. built a PCB designed to process one lead ECG signal, filtering it with a band pass filter and

segmenting the successive heart-beats. While the segmented signal is used to create templates of

mean ECG waveform for individual identification, the system also produces a stream of time intervals

between identified R peaks [121]. The system also implements an outlier detection mechanism, that

discards noisy or abnormal segments [122], and a hands-on-wheel detection system that switches off

the R peak location when the user is not properly contacting the sensors.

By having conductive leather in a steering wheel cover, and integrating that sensor form factor with

the Printed Circuit Board (PCB), a non intrusive method for ECG collection is obtained, which can be

easily introduced into the driving environment.

As CardioWheel already provides a stream of IBIs, that is the signal used in this work, only passing

it through a IBI revision system before performing HRV analysis.

Figure 4.1: CardioWheel
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4.2 Wrist PPG

Advances in wearable technology, such as microprocessor computing power, battery life-time and de-

vice miniaturization, as well as signal processing techniques designed for PPG, present us today with

a long desired possibility: continuous recording of physiological signals like the cardiac rhythm with

minimal intrusion on peoples lives. Current form factor used for these solutions, the smart bands and

smart watches are even considered by the general public as trendy, so it can only be expected that the

penetration of this type of technology will continue to increase during the following years [123].

However, current usage of this type of technology is limited to rough estimations of heart rate aver-

aged over a time period (as one minute), to satisfy the curiosity of some and, in more applied users,

measure and control sports performance.

This limitation comes from the fact that, being a non-intrusive optic based method, PPG greatly

suffers from motion artifacts and others resultant from sudden changes in ambient light. To eliminate

those, several types of filtering and machine learning methods have been presented, but, given their

computational burden, they are mostly unsuitable for these mobile solutions. Because of this, most

cases couple an accelerometer that, when movement is detected, HR determination is suppressed, as

bad signal quality is assumed in these situations.

In this work, the device used for processing and algorithm design was the PulseOn hBand (fig. 4.2),

a wearable wrist band with two PPG sensors using green LEDs, collecting raw data at 25Hz. Other

devices were tested, namelly the Maxim MAXREFDES103, and the Emotibit. All of them provided the

same sampling rate, and while Maxim’s device had built in algorithms for HR and IBI detection, and

Emotibit offered a more flexible and programmable framework, PulseOn wrist band was chosen. The

use of such a device with low sampling frequency is motivated by the ease with which it is possible to

collect raw data with this comfortable form factor, but also its battery autonomy and the fact that the

sampling frequency is in accordance with most wearable wrist bands with PPG sensors.

4.2.1 Signal treatment

Raw PPG data is a composition of real PPG oscillations, noise and artifacts provoked by hand gestures

and ambient light changes that affect either the contact the sensor has with wrist circulation or the overall

luminosity in the sensor-wrist environment. For this reason it is necessary to reduce the weight that this

undesired components have (figure 4.3).

The first step was to eliminate all light fluctuations that are slower than human heart rate and light

offset changes, so a moving average with window corresponding to 1 second of signal is removed

for three iterations. To guarantee the possibility of implementing this system on a online assembly,

the necessary coefficients for digital filtering were determined through (4.1). This results in a zero-
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Figure 4.2: PulseOn hBand Wrist band.

(a) (b)

(c) (d)

Figure 4.3: Filter results: (a) raw signal with discontinuity; (b) result from filtering (a); (c) raw signal with wandering
mean; (d) result from filtering (c)
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mean oscillatory signal where PPG pulses are evident enough to be easily distinguished from remaining

artifacts.

y[n] =x[n]− 3
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(4.1)

Where W is window, that should equal the sampling frequency of the signal, and k,v,u go from -W/2

to W/2, to center the window on the point being evaluated in each moment.

Most of the remaining artifacts resemble peaks, but have amplitudes and locations that can identify

them as outliers from the set of normal peaks. A good peak detection algorithm should discard these

false peaks.

4.2.2 Peak detection

Peak detection with adaptive threshold inspired on Thang’s paper [18] was implemented to identify

systolic peaks (figure 4.4).

Adaptive threshold consists on a method to keep track of successive peaks where a dynamic thresh-

old alternates between two modes to identify relevant maxima of an oscillatory signal.

The first mode consists of following the waveform until a peak is reached. The first detected peak

has to have an amplitude above 200 (defined empirically) and be the global maxima in a 8 sample (320

ms) window. After this, a slope is defined and the threshold value changes with time independently until

it crosses again the signal, according to equation 4.2.

The slope is altered every time a new peak is found, to adjust it regarding peak amplitude and current

cardiac rhythm. When a peak is missed, i.e. no peak is found 1.5*last IBI after the last found peak, the

peak detector is reset so it is able to detect peaks in a different regime (different amplitude or shape

configurations). The threshold updating for successively found peaks was made using the expression

depicted in equation 4.3. The so defined slope guarantees that even peaks in fast heart rates that

decrease to 50% of the previously found amplitude are detected and accepted as valid, making this

process robust to changes in wave amplitude and to different cardiac frequencies.

Also, to guarantee that sudden peaks provoked by motion artifacts or other noise superposition does

not introduce false peak detection in impossible locations, a refractory period was established. Initialized

as 500ms (12 samples) advance in sample acceptance, as soon as the first inter-beat interval (IBI) was
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Figure 4.4: Flowchart of the adaptive threshold algorithm used for PPG peak detection

determined, the refractory period started to be updated according to 4.4.

Thrs[n] = Lasty − slope · (n− Lastx) (4.2)

slopen+1 = −0.5 ∗ lasty
Fs ∗ IBIn

(4.3)

RPn+1 = 0.6 · IBIn (4.4)

After this independent threshold crosses the signal again, the following mode is recovered until a

new peak is found and a new threshold and RP are defined. The dependency of each slope on the

previously found peak amplitude makes this method robust against amplitude variations in successive

peaks.

43



(a) (b)

Figure 4.5: Peak detection results, here the same are shown the same segments as the ones represented in
filtering section.

4.3 Movesense

Movesense is a lightweight sensor, that can measure ECG. Connected to a chest band, it is able to

monitor a persons heart signal with great Signal to Noise Ratio (SNR), being the collected signal robust

against motion or contact artifacts, due to the elasticity of the band. The use of this equipment serves

as a source of groundtruth signal for heart dynamics, against the CardioWheel and the wrist bans, as it

measures it directly in its source.

Figure 4.6: Movesense chest band.

As the signal obtained through this device has a very good SNR, figure 4.7 represents the signal

quality observed throughout all measurements made, no filtering is implemented, and a simple Pan-

Tompkins algorithm [124] was used to detect the R peaks, whose location was revised by selecting the

closest maxima from the original estimates.

From the detected R peaks, IBI values were calculated, which, after being revised by the IBI corrector,

were used for HRV analysis.
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Figure 4.7: Example of ECG signal collected using the movesense chest band, the high quality of this signal allows
R peak detection without firstly filtering it.

4.4 IBI corrector

It is a common practice to filter IBI values before performing HRV analysis, as outliers can deviate the

variability indexes from their true value, hindering any further conclusions about the recorded signals.

In most cases, IBI revision is made by simply eliminating non-physiological intervals, such as the ones

shorter than 300ms (above 200 Beats Per Minute (BPM) [125]) and those longer than 1500ms (below

40 BPM [126]). Other approaches even define boundaries to how much consecutive IBIs can differ, dis-

carding those that cross so defined thresholds. However, while this outlier elimination strategy improves

results in conventional HRV time windows, where several hundreds and thousands of IBIs are available,

windows as short as two minutes may not be able to afford the information loss by discarding outliers.

For this reason, this work proposes a system capable of not only identify outliers, but also of recon-

structing the real IBI values from signal corrupted with outliers, combining the reliability of HRV measures

based on only physiological values, but also maintaining all the available information, so that the analysis

is not compromised by scarcity of data.

This system is based on the ratio between consecutive IBI. Outliers are defined as points which

ratio crosses a defined threshold. This forms a basis to evaluate streams of IBI using the same sets of

criteria, regardless of the absolute values present in any record.

To define the thresholds and test the performance of the corrector, ECG records from the naturalistic

driving experiment SleepEye [127] was used. Signal from all available records was visually inspected,

and all segments with clean and correctly identified R peaks were converted into series of IBIs. This way,

a dataset of validated IBI streams was ready to evaluate the corrector, consisting of 138 intact series,

containing 231470 consecutive pairs of IBIs in total.

Firstly, to define thresholds, a histogram of the ratios produced by the consecutive IBI values was
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produced, resulting in figure 4.8.

Figure 4.8: Distribution of IBI ratios

This distribution of values gives good grounds to select a lower threshold of 0.8, and a upper thresh-

old of 1.5. These limits were designed to be in accordance with previous research indicating that vari-

ations larger than 20% between IBIs indicated outliers [128]. Ratios are also advantageous to allow

identification of how many heart-beats were missed in cases of longer IBI. Rounding the ratio to the

nearest integer would return the number of heart beats encapsulated in the same outlier IBI.

These defined thresholds identified only 0.02% (53) IBI as outliers.

4.4.1 Algorithm design

There are three main functions the corrector has to implement: to track the level of reliability of each

new IBI, and, having identified an outlier, decide whether to fill a gap, our join two smaller intervals into

a physiological value.

Four thresholds are defined, physiological bounds for IBI values, and ratio limits for normal inter IBI

variation:

• Iinf - Inferior limit of physiological IBI, set to 300ms.

• Isup - Superior limit of physiological IBI, set to 1500ms.

• rinf - Lower bound of accepted ratio, set to 0.8.

• rsup - Upper bound of accepted ratio, set to 1.5.

While physiological limits are used to make a final validation on accepted IBI, ratio limits are used in

a function that transforms the exact quotient between IBIs into an integer (algorithm 4.1).
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Algorithm 4.1: Definition of integer levels of ratio
Result: ratio
quotient=IBIn/IBIn−1;
if quotient< rinf then

return 0;
else

return round(quotient−(rsup − 1.5));
end

The rounding function used in algorithm 4.1 rounds floats to the nearest integer. This behaviour is

used so that ratios larger than rsup, there is a estimation of how many real IBI were skipped to produce

the larger outlier. As an example, with rsup = 1.5 and a quotient of 2.8, the system would be capable of

realizing that most likely 3 IBIs, instead of only 2, were concatenated into a single value.

Figure 4.9 explains the logic the corrector implements. The main process consists of consuming a

value of a waiting list of IBI, and, by deeming its corresponding ratio to the previously accepted value,

decide whether to directly add it to the validated results, to fill detected gaps or to sum it to an adjacent

interval.

Before starting this process, and any time the corrector needs to be reset, the corrector must initialize

the pending list and the last value. To do so, the corrector extracts the first IBI from the input and checks

if it is inside the physiological range. If so, that value is defined as last, and the rest of the available IBIs

form the pending list.

To fill detected gaps, a series of estimates for the missing IBIs are computed, using the mean value

between the partition of the longer interval and the last accepted value (eq. 4.5).

new =

(
V alue

ratio
+ last

)
/2 (4.5)

This is done to simulate a smooth evolution from the last accepted IBI and the partition length needed

to have a detected heart beat at the timestamp corresponding to the longer outlier. It allows smooth

shortening or widening of estimated intervals to accommodate outliers that are not integer multiples of

the last valid value, instead of having a sudden jump to a series of identical partitions of that outlier, as

seen in figure 4.10.

After defining a filling value, the outlier gets this estimated value subtracted from it, and is replaced at

the beginning of the pending list to proceed the evaluation, if the remaining value continues to be large

enough to be an outlier, the filling process is repeated.

Finally, if the system detects a shorter interval, it tries to join it with an adjacent value. This serves

to correct instances where a false peak was detected, leading to a real IBI divided into two parts. The

corrector chooses the smallest value between the previous (last) and following intervals, and adds the

outlier to it. Finally, it checks that such addition does not result in a ratio above rsup, if it does, the shorter
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Figure 4.9: Flowchart of IBI corrector functioning, evidencing the main process and specific tasks: initialize, fill and
join
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Figure 4.10: Comparison of missing IBI estimation using simple homogeneous partition of outlier, or the smooth
filling strategy.

interval is added without any processing, as it would mean that it did not correspond to a partitioned IBI.

To make sure that the system always produces realistic estimates, in regards to physiology, any time

a proposed value reports a normal ratio, but a non-physiological value, the corrector is reset by running

the initialize process on the current pending list.

4.4.2 Performance Evaluation

To evaluate the performance of this system, the 138 clean ECG records described before were used.

Artifacts were added to those signals, with controlled percentages off contamination by miss detections

and false peaks. To form such signals, a desired percentage of IBI values were chosen at random, some

to be joint with the following value, simulating a missed detection, and, thus, returning a longer interval.

Other would be divided in two at a random proportion. Percentages of missed detection and false peak

artifacts were controlled independently, and the generated error only made sure that the same original

IBI would not be selected for both contamination types. To measure performance, re-sampling of the

original and corrected tachograms was performed, from their irregular sampling to 16Hz, to measure the

quadratic error of the correction. By contaminating all records with a defined level of artifacts, summing

all the resulting absolut errors and storing the number or re-sampled samples allowed to calculate a

value of MAD for the corrector at each contamination setup.

A grid of artifact density was produce, raging miss detections from 0.0 to 0.3 and false peaks from

0.0 to 0.1 in intervals of 0.05 and 0.02 respectively.

The results of such evaluation are presented in table 4.1.

To achieve these results, the threshold rsup was changed from 1.5 to 1.7, as it enhanced the performance
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Table 4.1: MAD of IBI reconstruction with different levels of contamination.

False peak density
0.00 0.02 0.04 0.06 0.08 0.10

0.00 0.13 0.20 0.30 0.58 1.56 1.99

0.05 2.66 2.14 2.43 2.79 3.75 3.98

0.10 5.23 5.63 5.97 6.62 6.20 7.42

0.15 10.40 10.08 11.56 11.84 12.70 12.39

0.20 15.96 17.27 17.64 17.19 18.35 19.17

0.25 24.39 25.19 24.00 27.20 26.62 25.95
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0.30 35.93 36.19 36.84 35.79 37.37 38.03

of the corrector in clean ECG records.

These results sustain the decision to use this method, as the reconstruction of signal is almost perfect

for signals contaminated with up to 5% of missed detections and 10% of false peaks. Errors in higher

contamination levels are also acceptable, having in mind that the highest measured level corresponds

to having only 60% of the original values available, and it is still lower than the uncertainty in IBI values

produced by the PPG sampling frequency of 25Hz.
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5
Detecting drowsiness from HRV

features
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To establish a set of models capable of correctly identify dangerous states of drowsiness, machine

learning strategies were implemented, using a dataset from a previous naturalist driving study, Sleep-

EYE [127]. This study consisted of 20 individuals who had their ECG measured and KSS self-report

annotated during 90 minute drives in public roads in Sweden. Using these measurements, ECG can

be transformed in HRV features and KSS annotations can justify a binary classification of alert/drowsy.

Each individual drove twice, first in a day period, after a normally slept night, without influence of al-

cohol or caffeine, and the second in the night, after spending the day awake in normal activity. This

measurement design intended to force alert and drowsy data from all individuals, even though it is not

guaranteed that each individual record does not have a wide range of KSS scores associated with both

alert and drowsy states.

The initial approach to the training of models using this data is inspired in a previous work that also

tried to build classifiers for the task of detecting drowsiness from physiological data [117]. Using the

same data set, the author tested four models: Support Vector Machine (SVM), Gradient Boosting Tree

(GBT), Random Forest (RF) and Artificial Neural Network (ANN), comparing the performance between

models and evaluating the effect that some alternative training strategies could have in their results.

Regarding training with HRV data only, Silveira focused on time and frequency HRV features, as the

ones present in table 5.1. The inclusion of these variables should be considered carefully, as some

frequency and non-linear HRV indexes are not valid for short intervals as the ones used in this and

Silveira’s work, that is 2 minute time windows.

Table 5.1: HRV features extracted in Silveira’s work

Time features Frequency features
HR HF

SDNN LF
SDSD VLF

RMSSD TP
NN50 nuHF

pNN50 nuLF
NN20 nuVLF

pNN20 LF/HF

From Silveira’s work it is expected that the SVM and GBT are the best performing models, although

her findings point that this means only 60% accuracy, with the minority class (drowsy) being classified

almost completely at random. Also, the neural network is expected to present very poor results, most

likely because the data available is not enough to avoid fitting of noise present in it.
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5.1 Models training

To establish a baseline, the models were firstly trained using the entire dataset with a 70% split between

training and test. To ensure generalization of the results, each model was trained and tested ten times

with independent splits. Before training, ten-fold cross validation was used to tune each models’ hyper-

parameters, that that all experiments here presented reflect the effect of data and model capability on

the models’ performance. Features were also normalized using z-score transformation. Four metrics of

performance are calculated after the tests, being those the accuracies of the model, and for each of the

classes, as well as Matthews Correlation Coefficient (MCC). While the first is used to compare results

with those of Silveira’s, class accuracy is used to understand the distribution of misclassification, and

finally Matthews is used to correctly appreciate the generalization capability of the model.

In this first training scenario, model accuracy behaved as expected, SVM, one class SVM (ocSVM)

and GBT had accuracies between 60% and 70%, and the neural network performed poorly with only

41% accuracy. However, it is to note that this results are misleading: the classes in this dataset are

imbalanced, with two thirds of the data points belonging to the alert class. Looking at the class per-

formances, its visible that indeed the models are classifying almost every sample as alert, being the

accuracy for drowsy samples very low in those first three models. This imbalance is well identified by

MCC, that is close to zero, indicating that the models did not learn any structure in the data. Regarding

the neural network, it presented a close to completely random behaviour, again indicating that no struc-

ture of data was learnt. However, for the ANN it seems that class imbalance is not to blame, but that the

network is not able to adjust with the available data.

To test if the uneven distribution of data through classes was the real major factor for these poor

performances, class weights were defined, so that the error of misclassifying a sample of the minority

class matters enough to sacrifice the correct labeling of some of the majority class samples. This way

each class weigh was defined as the proportion of data that the other class corresponded to. As the

ocSVM does only sees one class during training, there is no class weight definition for it.

Figure 5.2 shows the results from this second test. As pointed before, ocSVM is unaltered by this

class balancing. Both SVM and GBT increase their performance regarding the classification of drowsy

samples, but at the cost of the other class, presenting an only slightly improved MCC. The neural

network continues to behave randomly, corroborating the hypothesis that it has not enough data to learn

this classification task.

This low performances propelled the need to investigate alternative forms of training. One of which

was to train individual models. Using the fact that the specific cardiac dynamic one individual has is quite

specific, as it depends on several factors: age, weight, physical fitness, etc.. Because of this, the regions

of HRV that a person occupies when feeling alert and transitioning to drowsy will be personalized, thus

making it virtually impossible to find a single separation rule for an heterogeneous population. Previous
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Figure 5.1: Models performance with initial training strategy, data imbalance leads models to perform poorly.

Figure 5.2: Models performance with class weights, models continue to perform poorly, leading to the proposition
that other factors contribute to the difficulty of this classification task.
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works have already pointed that this individualized strategy results in improved results [129].

5.1.1 Individual training

Here models were trained using the original procedure and hyper parameter, but different instances of

each model were trained, each with the data of only one subject. Tables 5.2 report the metrics results on

each model-individual pair. It is visible that SVM and GBT benefited from this strategy, having generally

significantly improved performances. This table confirms also that the complexity of ANN is the sole

cause for its poor results, achieving a mean −0.02± 0.04 MCC across subjects. The results obtained by

training ocSVM show that assuming drowsiness to behave as an outlier does not lead to positive results,

with an overall MCC of −0.17 ± 0.04. This may be cause by the scarcity of data, leading this model to

define an outlier threshold that does not generalize well, misclassifying most of the test dataset.

From the four proposed models, only two seem to perform satisfactorily in this classification task, the

SVM with 0.42± 0.03 MCC and GBT with 0.40± 0.04.

Looking in more detail to the different subjects, its possible to visualize that while most subjects

provide data that fits high performing models, with MCC above 0.5, some individuals present values

close to zero, namely FP07, FP15 and FP19.

Table 5.2: Matthews correlation coefficient for each model-subject pair. Best performing model for each individual
is marked with bold.

SVM ocSVM GBT ANN
FP01 0.69±0.15 -0.36±0.25 0.62±0.19 -0.03±0.25
FP02 0.66±0.11 -0.40±0.16 0.46±0.11 -0.01±0.14
FP03 0.94±0.04 -0.55±0.17 0.77±0.06 0.00±0.00
FP07 -0.02±0.03 0.04±0.18 0.04±0.20 0.00±0.08
FP08 0.34±0.13 -0.19±0.16 0.42±0.12 0.00±0.00
FP09 0.43±0.12 0.01±0.11 0.38±0.16 -0.02±0.21
FP10 0.65±0.10 0.21±0.23 0.49±0.11 0.00±0.00
FP11 0.53±0.11 -0.15±0.15 0.43±0.17 0.10±0.28
FP12 0.64±0.11 -0.12±0.17 0.27±0.22 -0.04±0.18
FP13 0.29±0.18 -0.20±0.18 0.38±0.22 0.09±0.15
FP14 0.51±0.20 -0.22±0.16 0.31±0.19 0.00±0.00
FP15 -0.01±0.14 -0.18±0.15 0.11±0.09 0.00±0.00
FP16 -0.02±0.09 0.02±0.03 0.54±0.25 -0.18±0.21
FP17 0.56±0.08 -0.28±0.11 0.42±0.21 0.00±0.00
FP18 0.93±0.08 -0.19±0.21 0.67±0.21 -0.17±0.44
FP19 0.06±0.18 -0.09±0.15 -0.02±0.25 0.00±0.00
FP20 0.52±0.13 -0.22±0.18 0.55±0.20 0.00±0.00

To evaluate what was causing these outliers, t-SNE plots were created for each subject, as a visual

measure of the class separability their dataset provided. Their KSS annotations were also plotted, to try

and base the separability assessment on the quality of those labels.

Figure 5.3 serves as a comparison point, as it represents the data separability of subject FP03, one
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of the best performing ones. There is visible a clear difference on the driver’s reported state between the

day and night session. And that separation of states results in separable classes as seen in the t-SNE

plot.

Figure 5.3: t-SNE plot and KSS distribution for subject FP03. The excellent performance of SVM and GBT models
for this subject are a result of the quality of KSS scores, with a clear difference between day and night
driver state, which is reflected in a t-SNE plot with a clear separation between the two classes.

Figure 5.4 represents different cases where classification performances were extraordinarily low: in

5.4(a) and 5.4(c), a large majority of points belongs to a single class, alert and drowsy respectively.

The failure of these models can also be related to the degree of variation the KSS reports present,

suggesting some difficulty by these individuals to correctly assess their state, which explains why the

minority class points are completely mixed with the majority ones. 5.4(b) presents another problem

that lowers the performance of these models, but not to the extent of the previous cases, that is the

continuous nature of the drowsiness process, there are preferential concentrations of points in different

sides, but a substantial overlap between clusters lowers the classification performance.

This finding is related to the main flaws pointed at KSS, in that it is highly dependent on the subject’s

capability to correctly evaluate their state, and to understand what the different levels represent. Failing

to produce accurate KSS jeopardizes all future classification that depends on that data.

In the absence of an objective drowsiness scale, as JDS, is important to guarantee that subjects

being measured to produce a dataset for drowsiness classification fully understand the scale, and can

distinguish drowsiness from other feelings, as boredom. Also, measures to induce alertness and drowsi-

ness must be studied and implemented, in order to minimize class overlap due to the continuity of

drowsiness process.

Eliminating the individuals that presented these flaws (FP07, FP08, FP13, FP15, FP16 and FP19),

improves the average performance of SVM and GBT models, respectively to this way better expressing

their fitness for this task, given acceptable data the achieve, respectively, 0.64 ± 0.04 and 0.49 ± 0.05

MCC scores. The significant increase in average performance of SVM sets it as the fittest model for this

task of personalized classification of drowsiness using HRV features.

To confirm that the outlier subjects were not causing the poor results of the original training, but
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(a)

(b)

(c)

Figure 5.4: t-SNE and KSS representations of poorly performing individuals, respectively (a) FP07, (b) and (c)
FP19, representing three major problems that KSS annotated data can have for the drowsiness classi-
fication task: class imbalance, annotation error and state continuity.
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that the individualization of models was actually the key factor, global models were retrained using only

data from the well performing individuals. The removal of those outlier datasets has no impact, as

all models resulted in MCC close to zero. To visualize the importance of model customization, t-SNE

representations of the well performing dataset were created and presented in figure 5.5, coloring points

according to the subject they come from, or to the class they belong to. There it becomes clear the

importance of individual models, as each subject creates its own cluster of HRV data, which results in a

complete mixture of alert and drowsy data points in a general dataset, as their separation exists only in

an intra-subject scope.

(a) (b)

Figure 5.5: t-SNE representation of the dataset formed by all the well separated individuals data. While both plots
distribute the same data, (a) colors each point according to the subject the point comes from, and (b)
colors the points according to the class (0=alert, 1=drowsy) they belong to.

5.2 Model Architecture and training procedure

Having defined SVM as the best model for this task, it became important to further tune the model in

order to maximize its performance after fitting individual data. To do so, features were revised, using

the a priori knowledge about the validity of certain HRV indexes in the context of usHRV, and selected,

using unsupervised methods. Model hyper-parameters were also fine tuned, performing an grid search

to find the parameters that produce the best average score across the data set population. Finally, class

balancing strategies were tested to increase the generalization capability of the fitted models. At the

end of this process, a set of features, hyper-parameters and a class balancing strategy were defined to

deploy a model architecture that only needs training data to start being applied to new drivers.
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5.2.1 Feature Selection

Until this point, the features used in the model were those listed in table 5.1. However, ensuring an

optimal set of features can increase the performance of the model. Before implementing any algorithm

on the feature set to select the best features, a revision on each features validity in respect to their

application on usHRV, as the two minute analysis intervals require, is conducted.

While there are no constraints on which time-domain features to use in these short time windows,

frequency ones loose meaning when the analysed window doesn’t allow the needed resolution. This

is the case when trying to use VLF and normalized VLF with only two minutes of signal, as the lower

bound of this frequency range is 0.004Hz, at least five minutes of signal would be needed to have enough

frequency resolution to calculate these indexes. For this reason, these two features were discarded.

Initially no nonlinear-domain features were used, and, although most chaos indexes need longer

period of time to separate chaotic from random behaviour, two short-term related features can be added

to the dataset. They are the first alpha component of DFA and the Poincaré SD2, which can be calculated

meaningfully for sets of tens of points, and two minutes of signal contain normally 120 IBIs [130].

Changing the features as described before changes the model’s average performance from 0.64 ±

0.04 to 0.61±0.04. Even though it is a reduction, given that the difference is smaller than the uncertainty,

and that the new set of features is more in line with the prior knowledge of feature validity for usHRV, the

new set of features is maintained.

Finally, to ensure that no useless feature was being used, unsupervised feature selection was imple-

mented, using MAD as a relevance measure, a and correlation coefficient as the similarity coefficient.

As the number of features is already relatively low, only 16, the thresholds on the selection algorithm

were soft, allowing enough features to have 98% cumulative relevance, and allowing every feature with

less than 0.95 correlation coefficient to be accepted in the final feature set. Of all features, the only that

seem be disposable was LF, and, retraining the individual models with the feature set that excludes this

one slightly increases the average performance from 0.61± 0.04 to 0.62± 0.04.

5.2.2 Hyper-parameter tuning

To refine the SVM parameters optimally for this classification task and datatype, a grid search over

the model’s parameters was performed, evaluating the parameter sets using the average MCC as the

performance metric. This way a set of parameters is chosen that optimizes the performance of this

model trained for any subject, and not for a specific subject in detriment of another.

Four hyper-parameters were selected, kernel type, that defines the function basis of the kernel used

for the learning task, penalty parameter C, that controls how strict or loose is the misclassification per-

mission in order to manage its trade-off with margin maximization, the parameter gamma, that is a
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parameter of polynomial and Radial Basis Function (RBF) kernels, and the degree of the polynomial

kernel.

Table 5.3 lists the values tested for each parameter considered in the grid search.

Table 5.3: Parameter space searched evaluated through grid search.

Parameter Values
Kernel ’linear’, ’poly’, ’rbf’, ’sigmoid’

C 0.1 - 2, in increments of 0.2
gamma ’auto’, ’scale’
degree 2, 3, 4, 5

Running this search returns that the best set of hyper-parameters is the linear kernel with an regu-

larization parameter C of 0.3, increasing the average MCC by only two thousandths from the original set

of hyper parameters, that were linear kernel with C equal to 0.5. The small increase in the performance

means that its rounded value continues to be 0.62 ± 0.04, as the original parameters were already very

similar to the optimal ones.

5.2.3 Class balancing

To finalize the improvement process of this learning task, a simple class balancing algorithm was im-

plemented, SMOTE, to help improve the models performance when detecting the minority class. This

method creates new data points for the minority class, by placing them in between close existing points

of that class, this way guaranteeing the maintenance of that classes dispersion, but better populating

its cluster, so that the machine learning algorithm has to define more accurate boundaries between

classes in order to minimize its cost function. By implementing this method performance increases by a

few thousandths again, setting its final value as 0.62± 0.03.

5.2.4 Final model

The process previously described defined the model to use and its training strategy: a SVM model with

linear kernel and regularization parameter C 0.3. It should take 15 features as inputs, those listed in table

5.4 and output a label stating if a certain time period corresponds to alert or drowsy. One model should

be fitted for each individual, with the training set balanced using SMOTE and data further standardized.
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Table 5.4: Features to use in the final drowsiness classifier.

Time-domain Frequency-domain Nonlinear-domain
HR nuHF DFA α1

NN20 TP SD2
NN50 LF/HF

pNN20 HF
SDNN nuLF

RMSSD
pNN50
SDSD
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6
Implementation of drowsiness

detector on driving simulator
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Transitioning from traditional chest ECG to the peripheral cardiac signals’ based HRV demands a

comparison of results obtained with each signal. To do so, a database containing simultaneous record-

ings of chest ECG, hands ECG and wrist PPG, in a driving context, was needed to produce the data

that would provide answers on whether such transition was possible.

In coordination with other projects being developed at CardioID, an experimental setup was designed,

making use of the AUTOMOTIVE: AUTOmatic multiMOdal drowsiness detecTIon for smart VEhicles

[131] simulator and the three physiological data sources discussed in chapter 4 (CardioWheel, PulseOn

wrist band and Movesense).

6.1 AUTOMOTIVE - the simulator

The AUTOMOTIVE project aimed to be a platform able to investigate sleepiness detection through an

array of different sources of information, namely steering wheel dynamics, eye and gaze detection and

HRV. It incorporates these inputs with a virtual environment, that emulates two cities connected by a

high way.

While the cities have their architecture defined, the highway is built in a procedural form, which allows

its customization in accordance with the needs of any experiment, in terms of road length, and ensures

that every simulation run has a slightly different sequence of turns in the highway. The environment can

also be populated with Non-Player Character (NPC) cars and pedestrians, making it more realistic and

more cognitively demanding for the driver.

The subject controls the virtual car by means of a set of pedals, for acceleration and braking/reverse,

and a steering wheel equipped with the CardioWheel.

For its multi-modal purpose, the simulator also integrates a camera capable of detecting facial fea-

tures and estimating gaze direction and detecting blinks, which was not used in the experiments con-

ducted in this thesis.

Finally, to provide annotations regarding the alertness state of the driver, the system can prompt

a KSS scale where a value is selected, saving these annotations alongside with the IBIs from Car-

dioWheel.

Data produced by the simulator and CardioWheel is communicated to a SQL database, identify-

ing the session in which it was collected, the driver by a Universally Unique Identifier (UUID) and the

timestamps of each datapoint.

6.2 Experimental design

The data collection consisted in double sessions of 30 minutes, for each tested individual.
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Before beginning the experiment, subjects are briefed on the objective of the project, and have the

KSS explained to them, as a message prompts every five minutes asking for their sleepiness evaluation.

They are asked to state their self assessed state every time the message appears, without any inter-

vention by the experiment supervisor, which would only store the stated value. The scale used was the

version adapted for Portuguese, retrieved from [132].

The drivers are also asked to maintain the car in the rightmost lane at all times, except if overtaking

a NPC car, and to keep an average speed of 60km/h throughout the experiment. This is done to ensure

constant need of engagement by the drivers, while the activities are not demanding enough to prevent

drowsiness and fatigue to set in.

The number of sessions each subject attends to, two, is used to have sessions where alert and

drowsy states are promoted. Alertness is stimulated by having the session in the middle of the morning

after a good night sleep (>8 hours), and by setting the simulator environment lighting on a sunny day

mode. Drowsiness is boosted by having subjects being measured at the end of the day, with the past

24 hours without any coffee, tea or energetic drinks, or after a night with short sleep (<6 hours). In

these sessions the simulator would be set to night mode, to further promote an environment prone to

sleepiness and fatigue.

All 30 minute sessions consist of a highway connecting two cities, with approximately 30km. The

driver starts by crossing an intersection and immediately entering that highway. During the first 5km,

NPC cars are generated every 500 meters, with constant velocities that range from 50 to 70km/h, forcing

the driver to adopt dynamic strategies on whether to overtake or follow these agents, while respecting

the traffic rules. After those 5km, the driver only has to maintain its speed and keep the car inside its

lane.

(a) (b) (c)

Figure 6.1: Recommended placement of sensors: (a) wrist band, fastened bellow the wrist bone; (b) chest band,
just bellow the pectoral muscles and with each contact (marked in orange) on one side of the chest; (a)
CardioWheel, hands symmetrically placed at a middle height.
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6.3 Results

In total, 13 volunteers (2 female) with ages 33.42 ± 10.90 were recruited. From those, only 10 com-

pleted both sessions, resulting in 23 simulation trials. Three sessions were eliminated from analysis for

belonging to incomplete data collection of three different individuals, and additional four sessions were

discarded because simulator data was corrupted for two sessions of different subjects, rendering the

four sessions associated with them unusable. Finally, of the eight subjects to be analysed, four reported

the same state (either alert or drowsy) for the totality of their sessions, so they had to be discarded as

well from analysis, due to lack of different class samples to train and test the models.

The final dataset consisted of eight sessions, two for each of four individuals (1 female) with ages

29.75 ± 12.85. For each individual, Movesense’s ECG and PulseOn’s PPG signals were processed as

described in chapter 4, and had their IBIs extracted. CardioWheel already provided IBI values, so those

were used directly. Using the stored KSS values and their timestamps, the annotation values were up-

sampled of to 1 KSS value per minute with linear assigning each sample the value of the nearest original

one, and the resulting intervals were used to select the IBIs values to evaluate for each signal in two

minute intervals, with 50% overlap. Overlapping was used to increase the amount of available data,

as each participant collected around 60 minutes of signal, using two-minute windows without it would

half the number of samples. The HRV features listed in table 5.4 were calculated for each interval and

device, creating three sets of features for each signal source.

Finally, a system to train and test models with the architecture defined in the previous chapter was

implemented. For each individual, a table with features and KSS values from both sessions, and for

each device was loaded, and, in 10 different runs, each dataset would be separated into train and test

portions with 30% assigned to testing. Three models would be trained using the training sets of each

device. The models of each device were then tested using the Movesense model on all three sources

test data, and the respective test sets with the PulseOn and CardioWheel models. The rational of this

was to have a comparison of performance between Movesense model on the defined ground truth data

and the peripheral signals data, but also to obtain a measure of information contained in the wearables,

having the performance of the model trained in the same wearable data. The metrics presented in table

6.1 are mean and standard deviation of MCC across the 10 runs.

Two very different patterns appear in these results, on one hand, subjects 152 and 128 have very high

MCC values for the models trained and tested with only one data source, always above 0.60 and hold

very decent performances when the Movesense model is used on the other datasets, being remarkable

the fact that for individual 152, PulseOn data is classified as correctly by the Movesense model as it

is by its own model. On the other hand, participants 170 and 147 present lower performances in their

one-device only models, and fail completely to classify samples from the peripheral devices using the

Movesense model.
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Table 6.1: Results for signal source performance comparison, for each subject, columns correspond to the origin
of test data, and rows to training data.

Subject 152
Movesense CardioWheel PulseOn

Movesense 0.81±0.10 0.46±0.26 0.61±0.20
CardioWheel – 0.77±0.11 –

PulseOn – – 0.61±0.19
Subject 128

Movesense CardioWheel PulseOn
Movesense 0.70±0.13 0.34±0.20 0.54±0.21

CardioWheel – 0.62±0.13 –
PulseOn – – 0.70±0.14

Subject 170
Movesense CardioWheel PulseOn

Movesense 0.41±0.30 -0.06±0.15 -0.03±0.21
CardioWheel – 0.41±0.18 –

PulseOn – – 0.14±0.22
Subject 147

Movesense CardioWheel PulseOn
Movesense 0.47±0.48 0.00±0.00 -0.09±0.18

CardioWheel – 0.27±0.42 –
PulseOn – – 0.40±0.49

Looking further into the original sample distribution in all four individuals, one finds that while subjects

152 and 128 have fairly good class distributions, with 18/32 and 17/41 drowsy/alert sample ratio respec-

tively, the other two present more skewed class balances, with 9/48 and 4/45 corresponding ratios. The

hypothesis is that such level of imbalance results from phenomena described in chapter 5, related with

the frailties of KSS annotations. In fact, both this low performing individuals report a maximum level of

KSS of seven (sleepy (not fighting sleep)), and only at the end of of a session where initial levels were

as low as two (very alert/alert).

With this analysis, there is an clue that a drowsiness detection system based on HRV and agnostic

to the data source is possible, considering that the two best performing individuals have good perfor-

mances even when tested data originates from a different device from that with which the model was

trained. Granted that the reduced population in which these results were obtained demands future work

to validate such claim, it indicates a possibility that must be considered.

To support statistically that the classifications of the different signals tend to be equivalent, the best

model trained with Movesense data is selected to classify the entirety of the three datasets. That creates

three binomial distributions in which McNemar’s test can be used to evaluate their similarity.

McNemar’s test is the statistical test to use when determining the difference between two dependent

binary populations. As stated by McNemar [133], the test is to be applied in situations like the change in

responses on a questionaire by the same population after an experiment, or the difference in responses

to two different questions by the same population, in order to evaluate if the experiment changed the
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population answers, or if the questions had significantly distinct difficulty levels. In this particular case,

it is intended to evaluate if the classification of the same physiological quantity, HRV, becomes signifi-

cantly different when a different base signal is used to observe said quantity. McNeamr’s test statistic is

calculated by equation 6.1, where b is the number of samples where one population had true predictions

and the other false ones and c is the number of samples a population had false predictions and the other

true ones. The statistic is approximated by a χ2 distribution with one degree of freedom [133]. However,

when the number of disagreeing data pairs is small, as it happens to be in all the cases studied here, it

is best to compare it with a binomial distribution with size equal to the number of disagreeing pairs and

θ = 0.5 [134], which was used to calculate the p-values in table 6.2.

χ2 =
(b− c)2

b+ c
(6.1)

In all cases, the number of different classifications between two datasets is small, so the p-value of

this test can be calculated using the exact binomial test, for which the results, defining null hypothesis

rejection at p-value < 0.10, are presented in table 6.2. The null hypothesis, that the binomial distributions

are equivalent, is accepted for all pairs.

Table 6.2: McNemar’s test results regarding similarity of classifications from different sources.

Subject Pair χ2 p-value result

152 Movesense+CardioWheel 1.00 0.508 Equivalent
Movesense+PulseOn 3.57 0.125 Equivalent

128 Movesense+CardioWheel 0.50 0.727 Equivalent
Movesense+PulseOn 1.29 0.453 Equivalent
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7
Conclusion and Future Work
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This thesis studied the feasibility and technical requirements of producing a peripheral cardiac signal

based drowsiness detection system. Three main dimensions of this problem were approached and

answered: how to collect these peripheral signals and convert them into streams of IBIs values, how

to use those values in drowsiness detection and whether such system could be agnostic to the original

signal measured.

The first question was answered by introducing three different types of wearable devices capable of

collecting cardiac rhythm information: the chest strap Movesense, the capacitive steering wheel Car-

dioWheel, and the wrist PPG sensor PulseOn. While the ECG based devices provided built-in filtering

that allowed direct detection of R peaks and subsequently IBIs, the PPG sensor suffered from sensi-

tivity to external conditions, such as perceived ambient illumination from both light and hand position

changes. This created sudden offset changes in the signal that needed a special filter to eliminate, that

could not depend on frequency filtering due to the step nature of those artifacts. Instead, an online

filter that mimics recursive moving average removal was created. By applying such filter to mimic a

window of one second, resulting signals would maintain only the oscillatory component, where cardiac

rhythm is encoded. Additionally, an adaptive threshold peak detection algorithm was implemented to

locate the peaks of PPG signal. the algorithm used also a refractory period of 0.6 times the length of

the last detected inter-beat interval to avoid false peak detection, and reset its threshold after 1.5 times

the last detected interval passes without a new peak detection. This created a detection system robust

against changes in pulse amplitude, false peaks created by sudden movement and interruptions in the

signal pulses. For the other devices, while CardioWheel directly provided the IBIs itself calculated, Pan-

Tompkins algorithm was used to detect R peaks in Movesense signals, correcting the peak locations by

selecting the maximum value in a 0.4 seconds window centered in the initial estimates.

While the peak detection methods used in the different signals proved capable of identifying the

peaks present in them, moments of poorer contact between the individual and the devices lead to miss-

ing peaks and added artifacts that corrupted some of the intervals collected. While normal procedures to

treat such outliers consist of simply eliminating them, the ultra short nature of the analysis time windows

used, 2 minutes, required a more conservative approach. Hence a IBI corrector system was created,

evaluating the ratio between consecutive IBIs to detect both missing peaks and false detections to ac-

cordingly estimate the location of the non-detected peak and divide the longer IBI or two join two shorter

intervals into the true IBI. By testing this system on artificially corrupted segments of visually validated

ECG, it was shown that the system is capable of reconstructing the sequence of IBIs from signals cor-

rupted with 10% missed detections and additional 10% false peaks with less than 7.5 milliseconds of

mean absolute deviation from the true signal. The system was tested to the limit of having 40% of the

signal values corrupted, and still managed to retrieve a stream of values with an MAD of 38.03ms, which,

while very unlikely that such a large portion of the signal produces faulty IBI values, its still a smaller
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temporal deviation than the uncertainty in IBI determination on a 25Hz signal as the PPG is. This sys-

tem is relevant to ensure that all collected information is used to calculate the HRV as confidently as

possible, but the author leaves also the suggestion of its usage on analysis of longer term HRV, as it

maintains the true succession pairs used in non-linear analysis as the Poincaré plot and the traditional

sample elimination does not.

The second question, how to use the IBI values to detect drowsiness, was answered by searching the

best subset of HRV features and the best model architecture to do so. An initial set of time and frequency

domain features was used to compare four decision models, SVM, ocSVM, GBT and a ANN. In the

process of testing which model performed best, the author realized that a general models, this is, a model

trained to classify drowsiness in any arbitrary individual was performing poorly, independently of model

architecture. This lead to the investigation of personalized models, which showed great improvements

for part of the population. The individuals that continued to perform badly showed upon further analysis

of their data that the limitations of the experiment and sleepiness scale used for the database, SleepEye,

brought:

• Unbalance in classes, while the experiment was designed to have both alert and sleep deprived

driving sessions, not all participants managed to provide enough KSS ratings associated with

being sleepy for the model to properly learn the separation boundary between the two classes,

even with class balancing methods applied.

• Imprecise self rating of their own state, being KSS a subjective drowsiness scale, the confidence

in the annotations is proportional to the capability each individual has to self assess its state

and correctly understand the levels of the scale. By looking into some of the ratings provided by

subjects in this dataset, consecutive values with high ranges of variation raised the suspicion that

some individuals were not accurately reporting their KSS level.

• The fundamentally continuous nature of drowsiness, as it is not a biological switch, where people

would be either fully alert or fully drowsy, it is a process that sets in continuously, which makes the

definition of a dangerous drowsiness level a rather arbitrary process, blurring the class separation

in this problem. It was observed that the best results were obtained by individuals that reported

both very low KSS values (¡4) and high ones (¿7), while those that concentrated ratings in values

between 5 and 7 had the poorest performances.

By evaluating only the population whose annotations showed a good understanding of the scale,

trustworthy self report and balanced experience of both alert and drowsy states, the models trained and

tested for each of the 12 selected individuals attained a mean performance across them of 0.64 ± 0.04

and 0.49 ± 0.05 MCC for SVM and GBT respectively, while the other two models continued to perform

poorly, thus being discarded. At last, to confirm that the poorly performing individuals were not the cause
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why the general model failed, a new general model was trained and tested with data from the 12 selected

ones. This new model failed, and it was shown that the real reason for that was that each individual forms

its own cluster in feature space, and while a frontier can be defined between the alert and drowsy data

of one individual, the displacement of the various subjective clusters makes it impossible to determine a

single common boundary.

From here, the SVM model was selected as the best fitted to classify personalized state of drowsi-

ness. Features used in the classification were revised, eliminating VLF because it did not hold signifi-

cance when calculated in a short time window as 2 minutes, and two non-linear features were added:

first α component of DFA and Pointcaré SD2. Unsupervised feature selection using MAD as the rele-

vance metric was applied, which resulted in the elimination of LF feature. And Finally, hyper-parameters

were fine tuned, defining an SVM with linear kernel and C parameter 0.3 as the best architecture for

drowsiness detection, which attained a mean performance of 0.62± 0.03 MCC, which indicates a strong

correlation.

This answers the question on whether IBI values can ultimately be used to detect drowsiness, but

all these models were tested and trained with data collected through a chest ECG, and a final question

must be analysed, can the same model detect drowsiness, but from IBIs measured from a peripheral

signal?

The experiment conducted in this thesis aimed to answer that. By applying the tools developed

in the rest of the work, the simultaneously collected signals (chest ECG, hands ECG and wrist PPG)

were converted into IBIs, and ultimately, HRV features were calculated for every two minute window

in each of the signals. Unfortunately, from the 13 volunteers recruited, only two managed to survive

the selection criteria applied to the SleepEye dataset. Three individuals had only one session, two

individuals had missing data in one of their sessions, and four had reported the same state (either alert

or drowsy) throughout the two sessions, not providing the two classes needed for training and testing

the models. Additionally, two individuals had very unbalanced class distributions, and suffered from the

same limitations found in the SleepEye data annotations, KSS values all bellow 8, and very few minutes

reporting a 7 drowsy state.

The two individuals that survived the selection criteria produced models with very good MCC scores

when trained and tested with data from the same device, with all devices. Those scores ranged from

0.62 to 0.81. And, to answer the final question, the model trained with data from the Movesense device,

remained well performing when applied to data from the peripheral cardiac signals, ranging scores from

0.34 to 0.61, and with the high note of the performance of classifying PulseOn data with the model

trained with its own data or the Movesense one is the same. Additionally, McNemar’s test was used to

compare the classifications of the entire dataset of each device with the Movesense trained model, for

each individual, and it showed that all crossed classifications were statistically equivalent to the base
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classification, Movesense train on Movesense data.

This results indicates that the system this thesis proposes is very possibly feasible, and well perform-

ing.

However, future work has to be developed to affirm this with certainty, firstly to compensate the

limited size of the analysed population. A new study has to be conducted to evaluate if the findings of

this work hold. The reduced number of individuals here analysed is pointed as the main limitation of this

work, however the recruitment of volunteers during this pandemic time was mostly nonexistent, and the

recruits consisted of the CardioID team and two professors involved in the development of the Simulator.

The time window that aligned the readiness of the simulator with the ease in lockdown measures, as

well as the calendars of each of the participants, unfortunately didn’t allow the retake of some of the

sessions to be able to add more individuals to the final analysis.

One other interesting point to develop in the future is the fact that while individualized models proved

to be the possible way to detect drowsiness, training each model for every new user of this system is

not doable in a market perspective. However, it is hypothesised that a limited set of individual models

can be representative of the possible ranges of HRV for a general population. By finding such set and

combine them in a voting scheme or other ensemble classification framework a general and ready to

apply drowsy detection system based on HRV can be created.
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[51] K. Kräuchi, C. Cajochen, and A. Wirz-Justice, “Waking up properly: Is there a role of thermoregu-

lation in sleep inertia?” Journal of Sleep Research, vol. 13, no. 2, 2004.

81

https://www.optalert.com/why-optalert/science/#johnsdrowsinessscores
https://www.optalert.com/why-optalert/science/#johnsdrowsinessscores


[52] M. Gillberg, G. Kecklund, and T. Akerstedt, “Relations between performance and subjective ratings

of sleepiness during a night awake,” Sleep, vol. 17, no. 3, 1994.

[53] M. Gillberg, G. Kecklund, J. Axelsson, and T. Åkerstedt, “The effects of a short daytime nap after
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R. O. Wüest, N. E. Zimmermann, and J. Elith, “What do we gain from simplicity versus complexity

in species distribution models?” Ecography, vol. 37, no. 12, pp. 1267–1281, 2014. [Online].

Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/ecog.00845

82

https://web.stanford.edu/~dement/sss.html
https://onlinelibrary.wiley.com/doi/abs/10.1111/ecog.00845


[64] A. Ali, S. M. Shamsuddin, and A. L. Ralescu, “Classification with class imbalance problem: A

review,” International Journal of Advances in Soft Computing and its Applications, vol. 7, 2015.

[65] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond. Cambridge, MA, USA: MIT Press, 2001.

[66] M. Ashtiyani, S. Navaei Lavasani, A. Asgharzadeh Alvar, and M. R. Deevband, “Heart

rate variability classification using support vector machine and genetic algorithm,” Journal of

biomedical physics & engineering, vol. 8, no. 4, pp. 423–434, 12 2018. [Online]. Available:

https://pubmed.ncbi.nlm.nih.gov/30568932

[67] M. Babaeian and M. Mozumdar, “Driver drowsiness detection algorithms using electrocardiogram

data analysis,” in 2019 IEEE 9th Annual Computing and Communication Workshop and Confer-

ence (CCWC), 2019, pp. 0001–0006.

[68] G. Li and W.-Y. Chung, “Detection of driver drowsiness using wavelet analysis of heart rate

variability and a support vector machine classifier,” Sensors, vol. 13, no. 12, pp. 16 494–16 511,

2013. [Online]. Available: https://www.mdpi.com/1424-8220/13/12/16494

[69] T. Xing, Q. Wang, C. Q. Wu, W. Xi, and X. Chen, “Dwatch: A reliable and low-power drowsiness

detection system for drivers based on mobile devices,” ACM Trans. Sen. Netw., vol. 16, no. 4,

Sep. 2020. [Online]. Available: https://doi.org/10.1145/3407899

[70] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” The

Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001. [Online]. Available: http:

//www.jstor.org/stable/2699986

[71] D. Graupe, Principles of Artificial Neural Networks, 2nd ed. USA: World Scientific Publishing Co.,

Inc., 2007.

[72] A. J. Ferreira and M. A. Figueiredo, “Efficient feature selection filters for high-dimensional data,”

Pattern Recognition Letters, vol. 33, 2012.

[73] ——, “An unsupervised approach to feature discretization and selection,” Pattern Recognition,

vol. 45, 2012.

[74] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of several methods

for balancing machine learning training data,” ACM SIGKDD Explorations Newsletter, vol. 6, 2004.

[75] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Synthetic minority over-

sampling technique,” Journal of Artificial Intelligence Research, vol. 16, 2002.

83

https://pubmed.ncbi.nlm.nih.gov/30568932
https://www.mdpi.com/1424-8220/13/12/16494
https://doi.org/10.1145/3407899
http://www.jstor.org/stable/2699986
http://www.jstor.org/stable/2699986


[76] L. V. D. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning Re-

search, vol. 9, 2008.

[77] P. Jackson, C. Hilditch, A. Holmes, N. Reed, N. Merat, and L. Smith, Fatigue and road safety: a

critical analysis of recent evidence. Department for Transport, 01 2011.

[78] G. Maycock, Driver sleepiness as a factor in car and HGV accidents. Transport Research Labo-

ratory, January 1995.

[79] D. Flatley, L. Reyner, and J. Horne, “Sleep-related crashes on sections of different road types in

the uk (1995– 2001),” in Road Safety Research Report No. 52. Department for Transport, 2004.

[80] R. Robertson, E. Holmes, and W. Van Laar, The Facts about Fatigued Driving in Ontario, A Guide-

book for Police. Traffic Injury Research Foundation, 2009.

[81] European Road Safety Observatory, Fatigue. European comission, 2018.

[82] National Sleep Foundation, ”Sleep America” Pool 2002. National Sleep Foundation, 2002.

[83] J. Connor, G. Whitlock, R. Norton, and R. Jackson, “The role of driver sleepiness in car crashes:

a systematic review of epidemiological studies,” Accident; analysis and prevention, vol. 33, no. 1,

pp. 31–41, 01 2001. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/11189120

[84] T. a. Dingus, S. G. Klauer, V. L. Neale, A. Petersen, S. E. Lee, J. Sudweeks, M. a. Perez, J. Hankey,

D. Ramsey, S. Gupta, C. Bucher, Z. R. Doerzaph, J. Jermeland, and R. Knipling, “The 100-car

naturalistic driving study phase ii – results of the 100-car field experiment,” Dot Hs 810 593, 2006.

[85] J. Herman, B. Kafoa, I. Wainiqolo, E. Robinson, E. McCaig, J. Connor, R. Jackson, and

S. Ameratunga, “Driver sleepiness and risk of motor vehicle crash injuries: a population-based

case control study in fiji (trip 12),” Injury, vol. 45, no. 3, pp. 586–591, 03 2014. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/23830198

[86] R. Martinez, “National highway traffic safety administration,” Washington, DC, July 1997.

[87] L. Shamoa-Nir and M. Koslowsky, “Aggression on the road as a function of stress, coping strate-

gies and driver style,” Psychology, vol. 01, pp. 35–44, 01 2010.

[88] D. Hennessy and D. Wiesenthal, “The relationship between traffic congestion, driver stress and

direct versus indirect coping behaviours,” Ergonomics, vol. 40, pp. 348–361, 03 1997.

[89] G. Matthews, L. Dorn, T. Hoyes, D. Davies, I. Glendon, and R. Taylor, “Driver stress and perfor-

mance on a driving simulator,” Human factors, vol. 40, pp. 136–49, 04 1998.

84

https://www.ncbi.nlm.nih.gov/pubmed/11189120
https://www.ncbi.nlm.nih.gov/pubmed/23830198
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