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Resumo

A dor é uma experiência subjectiva e privada. Esta é influenciada pela matriz de percepção do

sujeito, e só pode ser observada a partir do exterior através de expressões ou comportamentos

de dor. O presente trabalho propõe o estudo da linguagem da dor como um tipo especı́fico

da sua expressão, modelando descrições de experiências de dor crónica a partir de entrevis-

tas gravadas, transcritas, recolhidas num contexto de cuidados de saúde. Sob esta análise

linguı́stica, as descrições são agregadas pelos tópicos semânticos que cobrem, o que permite

a caracterização dos tópicos semânticos tanto do paciente como da experiência dolorosa. A

caracterização semântica é utilizada para prever parâmetros clı́nicos associados à manifestação

da dor, especificamente, a patologia diagnosticada e a intensidade de dor.

Os resultados obtidos mostram que a incorporação de informação semântica externa,

adquirida em colecções externas que não têm as limitações da nossa coleção, provou ser mais

adequada do que as abordagens tradicionais de modelação de tópicos. Os resultados obti-

dos mostram também uma relação entre a linguagem da dor e a patologia diagnosticada, com

uma precisão de ∼ 80%, numa metodologia de validação Leave-One-Out. Esta relação não foi

encontrada ao prever a intensidade da dor auto-reportada. Foram identificadas e discutidas

várias causas para esta observação, remontando à própria definição de percepção da dor.

Este trabalho é motivado pelo estudo do processo cognitivo que incorpora a experiência

dolorosa, que determina que as dimensões emocional, psicossocial e sociocultural do sujeito

com dor desempenham um papel especı́fico na modulação da percepção da dor e do sofrimento

e expressão correspondentes, e o estudo da linguagem da dor, que se mostra portadora de parte

desta informação.





Abstract

Pain is a subjective and private experience. It is influenced by the subject’s perception ma-

trix, and can only be observed from the outside through expressions or behaviors of pain. The

present work proposes to study the language of pain as a specific type of expression, by mod-

eling descriptions of chronic pain experiences from recorded, transcribed interviews, collected

in a healthcare setting. Under this linguistic analysis, the descriptions are aggregated by the

semantic topics they cover, which allows for the semantic topic characterization of both the

patient and the painful experience. The semantic characterization is then used to predict clin-

ical parameters associated with the manifestation of chronic pain, specifically, the diagnosed

pathology and the self-reported intensity of pain.

The obtained results show that the incorporation of external semantic information, previ-

ously acquired in external collections that do not carry the limitations of ours, proved to be

better adjusted than the traditional topic modeling approaches. The obtained results also show

a relation between the language of pain and the diagnosed pathology, with an accuracy score

of ∼ 80%. This relation was not found when predicting the self-reported intensity of pain.

This work is motivated by the study of the cognitive process that embeds the painful ex-

perience, which determines that the emotional, psychosocial, and sociocultural dimensions of

the subject in pain play a specific part in modulating the perception of pain and corresponding

suffering and expression, and the study of the language of pain, which is shown to carry part

of this information.





Palavras Chave

Keywords

Palavras Chave

Dor Crónica

Percepção de Dor

Avaliação Computacional de Dor

Modelação de Tópicos para Dor
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1Introduction

Pain is a subjective and private experience. It is subjective because it is dependent on biomed-

ical, psychological, and sociocultural dimensions, encompassing the perception matrix of the

patient, that directly influence how it is perceived and consequently expressed by the subject

in pain. Pain is also private, because if it is not expressed to the outside world, it cannot be

observed and assessed. In this sense, the expressions of pain function as a window, allowing

external entities to interpret and evaluate an otherwise private experience. Expressions of pain

range from facial expressions, to verbal descriptions and changes in behavior. These, together

with demographic and clinical parameters related to the manifestation of pain, are the inputs

used by health professionals to assess and manage these patients.

Pain assessment and management are, arguably, complex tasks. Not only are they depen-

dent on verbal and non-verbal communication established with the subject in pain, but also on

the interpretation of this communication performed by the health professional. After years of

experience, health professionals are capable of developing a model of pain, by learning how to

associate certain key expressions to underlying states. Computationally analyzing expressions

of pain may provide insights about the intrinsic characteristics of the experience, to ultimately

aid health professionals with better pain management procedures.

1.1 Objectives

An experience of pain is dependent on the perception matrix of the subject experiencing it.

Language of pain, a specific type of expression, conveys information both about the perception

of the subject and the underlying pain mechanisms, which are relevant details for an adequate

pain management. Thus, the analysis of the language of pain, specifically trough verbal de-

scriptions of the experience in a healthcare context, may help develop a computational linguis-

tic and paralinguistic model of pain, which in turn can be used to evaluate those descriptions

and the dimensions of pain.



2 CHAPTER 1. INTRODUCTION

The hypothesis for this approach, from a linguistic standpoint, is that semantically related

descriptions of pain may represent related experiences and can indirectly characterize the dif-

ferent types of pain. The paralinguistic perspective is also taken into account in order to capture

the relevant communicative information not passed through text.

Concretely, the objective of the present work is two-fold, given a collection of descriptions

of pain. First, to obtain a characterization of the population in the linguistic domain, and,

second, to use said domain to predict clinical parameters related to the manifestation of pain.

1.2 Contributions

The present work contributed to the definition and implementation of a data collection pro-

tocol, as well as the preparation and definition of a baseline dataset of verbal descriptions of

pain in Portuguese. To the extent of our knowledge, there is no previous dataset that merged

verbal descriptions of pain in a healthcare context with demographic and clinical parameters,

including the intensity of pain parallel to the description. This was possible with the establish-

ment of a network between health professionals and patients suffering of chronic pain. The

development of this work also lead to the submission of a financed project to Fundação para a

Ciência e Tecnologia (FCT). Finally, 3 papers resulting from this work are under development,

respectively focusing on the linguistic characterization of verbal descriptions of pain based on

topic modeling, the usage of linguistic features for pathology prediction, and the merging of

linguistic and clinical parameters to aid the management of pain in a healthcare context.

1.3 Document layout

The document is structured as follows.

Chapter 2 discusses the nature of pain, presenting the types of painful stimuli and charac-

terizing the experiences of pain, as well as an in-depth look at the cognitive process involved

in perceiving and expressing pain to the outside world, specifically examining the language of

pain, the tool used to construct the descriptions of pain under study.

Chapter 3 briefly studies the methods and instruments used for a medical assessment of

pain, and presents a discussion of the state-of-art of the corresponding computational linguistic
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and paralinguistic methods.

Chapter 4 defines the dataset used in this work. It encompasses both the data collection

protocol as well as the preparation pipeline, which produces the baseline dataset for the per-

formed experiments. The challenges associated with the nature of the data are also discussed.

Chapters 5 and 6 present the experimental setup, results, and corresponding discussion

of the main objectives, respectively, the characterization of the population on the linguistic

domain, and the usage of said characterization to predict demographic and clinical parameters.

Finally, Chapter 7 presents final considerations regarding the whole work, and finalizes the

study with future work.

This work is followed by two appendices. In Appendix A is made an exposition of the

distribution of the population according to select demographic and clinical parameters, as well

as linguistic and paralinguistic features. This is presented to help contextualize the core of the

work. This report is followed by the proposition of a tool to automatically produce a patient

profile which merges the clinical and linguistic domains. Finally, in Appendix B are tabulated

the actual values of figures used in the discussion, as well as other figures deemed relevant for

presentation, but not for discussion.



4 CHAPTER 1. INTRODUCTION



2The Nature of Pain

Pain is a sensation and an experience that issues a warning that something is probably wrong

with the body. This sensation is exclusively private. The experience of pain resulting from that

sensation is molded by a set of multi-domain factors, both individual and sociocultural. This

experience is effectively the result of a complex cognitive process which takes as input noxious

signals, the sense of self and the psychological, behavioral, and sociocultural embeddedness

of the subject in pain. The cognitive process of pain can therefore be separated into two major

components, the noxious signal and the subjective resulting experience.

The noxious signal, or painful stimulus, can be broadly classified into two categories, the

physiological and the pathological. The physiological category encompasses both the nocicep-

tive and inflammatory pains which are associated with sensory input from potential or actual

tissue damage, respectively. Their purpose is two-fold: firstly to alert and protect the body from

potential tissue damage, resulting in non-controlled bodily actions and reflexes, and, secondly,

to discourage contact and movement involving the damaged tissue, serving the purpose of as-

sisting in the healing process. On the other hand, the pathological category encompasses both

the dysfunctional and neuropathic pains, which do not serve a specific function for well-being

and survival and are presumably the result of maladaptation. This category of pain is com-

monly identified as a disease of the nervous system, amplifying, or generating sensory signals

that should not be there (Woolf, 2010).

The experience of pain is triggered in a range of physiologically, psychologically, and emo-

tionally unbalanced states, depending on the noxious stimulus, its temporal pattern of activity,

and other factors. This is further influenced by the patient’s perception of the pain, and conse-

quent suffering and behavior.

An acute pain experience is usually associated with tissue damage, inflammation, and

brief disease processes, thus encompassing both the nociceptive and inflammatory types of

pain. The subject suffering this pain understands it to be essential for survival, functioning as
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a warning that something is not right (Fink, 2000). The healing processes eventually overcome

the injury and pain generally disappears with the elimination of the causal agent and inflamma-

tion (Dias, 2007). This usually takes a few days or weeks. Pain that persists for months or years

is not classified as an acute pain experience (Loeser & Melzack, 1999). Due to its well-defined

characteristics and short period of activity, assessment of acute pain can be a straightforward

clinical practice (Breivik et al., 2008), and, thus, is not considered in the present study.

A chronic pain experience, in contrast, is characterized by its persistent state, either con-

tinuous or recurring, lasting for months, years, or a lifetime. The organism arrives at this state

when the original damage overwhelms the healing processes, preventing the nervous system

from restoring itself to the original state (Loeser & Melzack, 1999). Taking the perspective of

pathological pain, it is commonly associated with a disease process, such as arthritis, cancer,

and fibromyalgia (Fink, 2000), and can be perpetuated and intensified by factors other than the

causal agent, such as stress, environment, culture, and affection (Loeser & Melzack, 1999). This

experience can be expressed in a multitude of ways which are consequently dependent on the

cultural, behavioral, and psychosocial dimensions of the subject in pain (Dansie & Turk, 2013),

rendering it impossible to impartially experience, describe, and interpret pain as a pure nox-

ious stimulus that would directly point to the causal agent and facilitate its mitigation. Assess-

ment of persistent pain is, therefore, a demanding task, and considering that sometimes there

is no identifiable objective pathology, most of the time it can only be based on the patient’s

explicit communication, both verbal and nonverbal. This process requires a comprehensive

set of methodologies besides the standard pain assessment techniques, including a complete

review of the patient’s history and medical examination, and a set of screening and psycho-

logical interviews (Dansie & Turk, 2013) to effectively characterize all dimensions of the pain

experience. Despite advances in research, chronic pain assessment and consequent manage-

ment are still challenging (Loeser & Melzack, 1999; Fink, 2000; Breivik et al., 2008; Azevedo,

Costa-Pereira, Mendonça, Dias, & Castro-Lopes, 2012).

Chronic pain is recognized as a major health problem, with impacts not only on the in-

dividual, but also on the social and economical levels. In 2012, it was concluded that 37% of

the adult Portuguese population suffered of chronic pain (Azevedo et al., 2012), which was

further estimated (at 31%) to have 738.85 million euros in associated costs, both directly and

indirectly (Gouveia & Augusto, 2011). On the individual level, chronic pain dominates a multi-
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tude of aspects of the patient’s life, most of the time even extending to family and friends. This

experience is usually accompanied by a chain of alterations on both the somatic and psycho-

logical levels. For instance, due to immobility, muscles start to weaken, discouraging further

exercise or movement. This cycle can lead to sleep disturbances and a vulnerable immune

system, effectively affecting the subject’s psychological balance, leading to medication depen-

dency, disability, isolation, depression and, sometimes, suicide (Dias, 2007). Adequate chronic

pain assessment determines the quality of its management, which has been identified as a key

procedure in improving the quality of life of these patients (Fink, 2000).

2.1 Cognitive aspects of pain

How the painful experience is perceived and conceptualized directly influences how it is ex-

pressed and consequently evaluated by an external entity (Dansie & Turk, 2013), which de-

mands a comprehensive assessment of the patient as a whole. Therefore, the cognitive process

of pain must be defined so that it may be possible to identify which factors influence this per-

ception and corresponding suffering, and understand how it is expressed to the outside world.

The International Association for the Study of Pain (IASP) defines pain as ”an unpleas-

ant sensory and emotional experience associated with actual or potential tissue damage, or

described in terms of such damage” (Merskey & Bogduk, 1994). This definition relates the

sensory input with the omnipresent experience. The relational element is the neuromatrix,

which was defined by Melzack (2001) as ”a widespread network of neurons that generates pat-

terns, processes information that flows through it and ultimately produces the pattern that is

felt as a sense of self”. This modulating network encompasses past experiences, memories, and

other factors such as culture and psychosocial states, outputting the multiple dimensions of the

experience of pain together with regions of the brain involved in affective and cognitive activ-

ities (Loeser & Melzack, 1999). 3 In essence, sensory inputs are fed into the neuromatrix which

then generates the perception and experience of pain based on the sense of self of the subject,

adding a subjectivity filter to the experience. As stated before, the perception of pain is deter-

mined by a set of intrinsic personal factors, which range from past experiences and memories

to emotional, psychological, sociocultural, and behavioral contexts. Determining each of these

values for the patient in question will help characterize the private experience and underlying

mechanisms of that pain.
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2.1.1 Emotional state

The emotional state has been observed to influence the feeling and perception of pain, partic-

ularly in patients whose painful signal generates an imbalanced emotional state, which leads

to negative responses to the experience of pain, causing more suffering, effectively perpetu-

ating this cycle (Hansen & Streltzer, 2005). Specifically, the distress factors that are known

to commonly worsen the pain experience are depression and anxiety. Depressive symptoms

are known to intensify the perceived feeling of pain: a Portuguese population-based study

determined that a lifetime history of these symptoms is significantly associated with chronic

pain (Azevedo et al., 2012). Anxiety caused by attentional disorders (hypochondria) can lead

subjects who are over-vigilant about bodily sensations to amplify them to the point of actually

feeling painful, even when there was no noxious stimulus in the first place (Hansen & Streltzer,

2005). As a consequence, this may lead to fear and further disability. On the other hand, the

opposite is expected when the subject is in a more positive emotional state or less focused on

the debilitating factor of pain.

2.1.2 Beliefs and expectations

The way the patient feels and thinks about the disease, pain, and treatment processes psycho-

logically modulates the experience, leading to commitment and empowerment issues towards

the pain. Negative expectations and wrong beliefs about the recovery processes and the dis-

ease/pain itself may lead to an inaccurate perception matrix. Specifically, negative social cues,

such as messages that communicate lack of confidence (especially on the side of the health

professional), the act of prescribing medication (Hansen & Streltzer, 2005), or the sharing of

false information in social circles, can all negatively impact the experience. Conversely, posi-

tive expectations and adequate beliefs may lead to a better engagement of the patient with the

recovery processes and helping in overcoming the debilitating factors of pain.

2.1.3 Behavior

Factors such as the patient’s disability, coping efforts, and communication are directly linked

with the development of the experience. Particularly, it has been found that patients who were

less satisfied with their pain management had significantly higher disability (Azevedo et al.,
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2012). Hansen and Streltzer (2005) conclude that a crucial step for a better pain management is

to convince the patient that an active role must be taken in retaking control of life (empower-

ment) and, consequently, minimizing the influence that pain has in the quality of life. However,

this will be determined by the patient’s openness about the whole experience and exposition

of anxiety, beliefs, or doubts about the disease and treatments.

2.1.4 Sociocultural context

On a larger social scale, there are some sociocultural parameters which have been suggested

to influence the experience of pain in some way, namely, religion, ethnicity, and nationality

(Miyahara, 2019). On the other hand, in a more fine-grained scale, it is expected that in specific

social contexts expressions of painful experiences might vary, for instance, between friends,

where the goal might be to open up about personal problems, or in a healthcare setting, where

the primary goal is to seek medical help in mitigating the causal agent (Ehlich, 1985). Partic-

ularly, the enactive approach proposes pain as an embodied experience in a particular envi-

ronment, which does not only affect its perception but the very experience itself (Miyahara,

2019). Population-based studies have also been able to identify correlations between demo-

graphic and social variables with chronic pain and associated disability (Azevedo et al., 2012).

Regarding the education variable, a higher level is found to be correlated with an emphasized

positive thinking (Leino-Kilpi, Maenpaa, & Katajisto, 1999), which in turn can positively af-

fect the psychosocial and behavioral dimensions of the subject and experience. Conversely,

weak foundational studies can lead to incoherent reflections about the disease, the spread of

false information, and general misunderstanding of the complex processes, which result in the

problems exposed in previous sections. In terms of employment, retired and unemployed sub-

jects have been found to be statistically more susceptible to chronic pain. An immediate cause

can be attributed to the lack of entertainment and diverse social contexts, leading to anxiety,

fear, and inadequate beliefs. Finally, on the demographic axis, regarding age, it has been ev-

idenced that older subjects are more likely to be associated with chronic pain and disability.

Azevedo et al. (2012) have also found chronic pain and disability to be more associated with

the feminine gender, than the masculine gender.
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2.2 Expression of pain

A painful experience is private to the subject in pain and ultimately non-existent in an external

entity’s eyes. This experience is only accessible to the outside world through an outward ex-

pression or behavior, rendering the expression a necessary part of pain. For an external entity,

by observing these expressions, it may be possible to infer the existence of pain in a quantified

manner (Loeser & Melzack, 1999). Given that pain is a socioculturally embedded experience,

and as a multitude of experiences and memories are accumulated, these expressions are even-

tually associated with specific types and intensities of pain. Furthermore, it is learned which

behaviors are adequate for a given social context, from positive and negative reinforcement,

which are the ones that produce the (seemingly) best outcome for a given painful experience

(Hansen & Streltzer, 2005), and, ultimately, a context-dependent pain-to-expression transfor-

mation function is developed, which is inversely used to interpret someone’s pain behavior.

The most common expressions of pain are cries, facial expressions, verbal interjections,

descriptions, emotional distress, disability, and other behaviors that come as a consequence

of these, such as lack of social interaction, exercise, movement, and productivity. The expres-

sion that is the object of study of the present work is the verbal description of the experience

of pain, which includes both linguistic and paralinguistic aspects. The description oftentimes

includes valuable information about the bodily distribution of the feeling of pain, temporal

pattern of activity, and intensity. Additionally, the choice of words may reflect the underlying

mechanisms of the causal agent (Wilson, Williams, & Butler, 2009), which in turn can be used

to redirect the therapeutic processes. The language of pain is the tool used to build this descrip-

tion. Understanding this tool and how it is used for specific types of experiences allows us to

build a linguistic and paralinguistic model of pain descriptions.

2.2.1 Linguistic expression and description

In a healthcare context, in order to get the desired help, the subject in pain must outwardly ex-

press and describe the underlying pain in the way that is felt to best expose the relevant factors

of the experience. An expression is the action of disclosing one’s current thoughts or feelings.

Therefore, studying the expression of pain allows for the evaluation of the present sensation

and experience. The different forms of expression that are relevant in a verbalized experience
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are the emotional distress, the affection towards what is being said (for instance, when talking

about the therapeutic processes), and interjections. In general, these manifestations are unin-

tentional. On the other hand, one can (intentionally) describe any given interval of time of an

experience of pain, past or present. However, as it has been characterized before, pain is an

embodied response to a certain situation (Miyahara, 2019), rendering it simultaneously depen-

dent on the subject and the context in which it is experienced. Thus, when it is to be described

afterwards, both the subject and the context will most likely have changed, which can, in turn,

result in inaccurate perceptions and descriptions. On top of this, the cognitive process of build-

ing these descriptions is limited both by the language (the tool) and the linguistic capability of

the speaker to use that tool (Ehlich, 1985).

2.2.2 Lexical profile

In the realm of pain descriptions, there are specific words or combinations of words that have

been found to be consistently associated with certain pains and intensities across subjects of

different backgrounds.

The work initiated by Melzack and Torgerson (1971) aggregated these words, denominated

pain descriptors, and performed a series of studies in order to categorize and relate them with

pain indices which would be valuable for pain assessment. The main challenge was natural

language ambiguity, where, for instance, many of these descriptors could be interpreted as

synonyms with varying intensity, while others were only subtly different. These slight dif-

ferences had to be captured and quantified, as they might represent specific characteristics of

the pain the patient was trying to verbalize. Accordingly, pain descriptors were mainly cate-

gorized into three classes: sensory descriptors describe the sensation of the pain, for instance,

burning, throbbing, stabbing; affective descriptors represent the emotional affection towards

the pain, for instance, sickening, suffocating; and, finally, evaluative descriptors, provide a per-

sonal evaluation of the overall experience, for instance, mild, annoying, unbearable. For each

class, the descriptors were organized and put on an intensity scale so that they could be com-

pared and quantified. The result of these studies was the McGill Pain Questionnaire (MPQ),

which is nowadays widely used to characterize pain from a verbal standpoint, having been

demonstrated to provide reliable, valid indices of pain in a relatively efficient way (Katz &

Melzack, 1992) .
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However, the identified MPQ descriptors represent only a portion of the lexical profile of

the language of pain. A trivial analysis reveals the validity of this statement as translation

between different languages is not always a one-to-one process, which means that different

languages may use different words (or combinations of words) to describe the exact same char-

acteristic. Accordingly, the MPQ has been adapted to different languages based on population-

based studies (Stein & Mendl, 1988; Pimenta & Teixeiro, 1996). On a second-order analysis, it is

understood that language, culture, and social context are intertwined, influencing one another.

Therefore, the possibility exists that in the same language (for example, Portuguese) the same

characteristic of pain may be described by different words by patients of different sociocultural

backgrounds. Some studies have specifically stated that the fixed quality of the MPQ ultimately

limits the assessment in terms of stability and predictiveness, concluding that the descriptors

should be subordinated to that sociocultural, linguistic background (Sullivan, 1995).

The study of the lexical profile of the language of pain suggests that there are language-

specific pain descriptors which bear crucial information regarding the qualities of the under-

lying pain, that can be compared and quantified to output a pain index. It suggests that the

patient’s choice of words might be contributing to modulating the experience of pain and trig-

gering cyclic worsening experiences (Wilson et al., 2009), and that the vocabulary is in fact an

open set that can change over time and be different in certain sociocultural contexts. Thus,

it is concluded that pain assessment from a verbal perspective would greatly benefit from an

evaluative analysis that is flexible to the descriptors that the subject in pain feels that more

adequately describe that unique pain experience.

2.2.3 Grammatical structure and semantics

Halliday (1998) performed a functional account of English pain descriptions in order to provide

a theoretical background for the construction of pain descriptions: the Grammar of Pain. Hal-

liday used the grammatical system of transitivity as the basis of his work. This system states

that the world of experience is construed into a manageable set of process types which describe

reality. In Halliday’s setup, a process integrates three components: the process itself, which is

realized by the verbal phrase; the participant, which is realized by the nominal phrase; and,

finally, the quality, which may be realized by the adjective, adverbial, or prepositional phrases.

With this framework at hand and given descriptions from patients, Halliday found the concept
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of pain to be realized by any of the elements of a process, for instance (examples adapted from

Sussex (2009)), “The wound is painful” (qualitative adjective), “I feel a lot of pain” (participant),

and “My knee is hurting” (verb).

Based on Halliday’s framework, Lascaratou (2007) performed a corpus-based study com-

posed of 69,996 words from 131 different patients naturally discussing their pain. She found

the concept of pain realization as a verb in the process to be the most common, specifically

arguing that this is the linguistic structure most associated with intense, personal expres-

sion/description of pain (Sussex, 2009).

2.3 Summary

In this chapter the nature of pain was briefly presented, identifying the experience as the result

of the interpretation and expression of a given noxious signal, embedded in the subject’s emo-

tional, psychological, and sociocultural dimensions, as well as the context in which pain is ex-

perienced. Both acute and chronic pain experiences were detailed, with focus on the challenges

associated with the assessment and management of persistent pain, continuous or recurring.

Then, we dived into the cognitive aspects of the experience of pain, with the primary goal

of identifying the key factors that have been shown to modulate the experience of pain, as well

as to understand how they take influence. Specifically, we looked at the emotional state, beliefs

and expectations, behavior, and sociocultural context as primary cognitive aspects. All of these

factors are commonly identified by health professionals in order to assess the patient as whole,

and provide a more adequate management of their pain.

Finally, we explored the language of pain as a specific type of expression of pain, and

how the usage of this tool conveys relevant information about the patient and the underlying

mechanisms of pain, as well as how it modulates the actual experience. We identified how

certain types of words and expressions are associated with specific qualities and intensities of

pain, and we also explored how the grammatical construction of a description of pain relates

to the embodiment of the experience.
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3Pain and Language

Analysis

Pain assessment is the cornerstone of its management. An adequate assessment will provide

significant insights to the extent and magnitude of the disease, and the development of the

recovery process. From a medical standpoint, a generic approach to evaluation tries to un-

derstand the pattern of activity, intensity, and bodily distribution of the pain. A complete pain

history includes these factors, additional descriptive qualities, and physical examinations, even

though there is no direct linear relationship between the amount of detectable physical pathol-

ogy and the reported pain intensity. This documentation is often helpful in revealing impor-

tant aspects of co-morbidities (Breivik et al., 2008), in assessing the necessity of additional tests,

and in providing a safeguard against over-interpretation of other findings, effectively charac-

terizing the biomedical dimension of pain (Dansie & Turk, 2013). Widely accepted tools for

an adequate collection of these data include the previously discussed MPQ (Melzack, 1975),

the Brief Pain Inventory (BPI) (Cleeland & Ryan, 1994), and a number of other questionnaires

and scales, such as the Visual Analogue Scale (VAS), and the Numeric Rating Scale (NRS) of

pain intensity. In order to account for all the remaining dimensions of the experience, chronic

pain assessment must also be accompanied with psychological and behavioral examinations.

A screening interview (and a set of other more specialized interviews, if deemed necessary) is

performed so that the health professional may be able to understand the patient’s subjective

filter through which pain is being perceived, felt, and expressed. This includes studying the

patient’s behavior alone and with significant others, assessment of the emotional state, explicit

beliefs, and expectations (Dansie & Turk, 2013).

A linguistic analysis of the description of pain may provide insights on the aforementioned

relevant factors to the assessment. Specifically, similar descriptions of pain might describe sim-

ilar characteristics of different experiences of pain. Allowing these descriptions to be charac-

terized by their semantic topics allows to quantify the relations between different experiences

in this abstract space of semantic concepts, determining how similar they are. Additionally, it

may be possible to characterize specific types of pain by their associated semantic topics.
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A paralinguistic analysis, on the other hand, provides methods to evaluate the patient’s

verbalization of pain without necessarily considering the actual semantic or structural contents

of the description. Specifically, by identifying the speaker’s emotional state it may be possible

to quantify the level of perception distortion that it may be causing and provide the health

professional with a ”second opinion”. The following sections present the state-of-art regarding

both types of analysis.

3.1 Text-based analysis

The analysis of syntactic and semantic structures of textual descriptions of pain may yield cor-

relations between the content of the descriptions and other relevant medical or non-medical

aspects of the painful experience. This includes the identification of the most significant de-

scriptors or qualifying attributes, the aggregation of descriptions focusing on the same or sim-

ilar concepts, sentiment analysis, and regression of any value from a description. This analysis

may be performed with a multitude of methods and models. Specifically, topic models are ca-

pable of extracting semantic information from text in an unsupervised manner without relying

on the explicit analysis of syntactic structures. The latter characteristic is especially relevant in

contexts such as transcriptions of natural speech, which, in general, include repetitions, correc-

tions, and other syntactically disruptive speech disfluencies not commonly present in written

text. Thus, the text-based analysis of descriptions of pain, which inherit the aforementioned

syntactically disruptive artifacts, will focus on topic modeling.

3.1.1 Topic modeling

This task focuses on extracting implicit (latent) information in a given document from a collec-

tion, explicitly representing it with that information. Thus, each document is projected into the

latent space of (abstract) semantic concepts of the collection, where the value of each dimension

represents the weight of that latent topic in the given document. A topic is a cluster of weighted

words, where the weight indicates the level of relevance that word has in the topic in such a

way that the top relevant words of a topic are syntactically and/or semantically related, given

the collection. Pragmatically, topic modeling can be seen as a dimensionality reduction tech-

nique as it provides a representation of documents in the lower-dimensionality space of latent
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topics, which is usually much smaller than the vocabulary space. By itself, this task provides a

new perspective on the documents and the collection, allowing for new measures of similarity,

composition, and aggregation. This can then be used to enhance other tasks dependent on doc-

ument representation, such as document classification, indexing, and clustering. Additionally,

topics can be characterized by themselves when they are attributed with ”meaning”, given the

context of a problem. In the following exposition, the following concepts will be used: the vo-

cabulary V , of size |V |, is the set of words of a document collection, where each term (or word)

is denoted w; a document is a sequence of N terms, denoted w = (w1w2...wN ); and a collection

of M documents is denoted D = {w1,w2, ...,wM}.

Topic modeling methods follow either probabilistic or non-probabilistic approaches. Non-

probabilistic approaches follow three steps, specifically, data representation, latent topic de-

composition, and topic extraction. Common document collection representations are the term-

document term frequency matrix N|V |×M and the Term Frequency Inverse Document Fre-

quency TFIDF|V |×M matrix. The former defines each entry nij as the number of times the

vocabulary term wi appears in document wj , and the latter each entry tfidf(t, d) as the fre-

quency of the term t in document d, as previously defined by entry nij , also denominated

tf(t, d), multiplied by the inverse document frequency of that term in the whole collection, as

defined in Eq. (3.1).

tfidf(t, d) = tf(t, d)× log
M

|{d ∈ D : t ∈ d}|
(3.1)

The data representation matrix is then decomposed into low-rank (k) factor matrices and,

finally, the topic extraction step, which is dependent on the data representation matrix and

consequent decomposition, is performed. For instance, the non-Negative Matrix Factorization

(NMF) (Lee & Seung, 1999) model performs a factorization of the form N ≈ WH as in Fig-

ure 3.1a, constraining these factors to be non-negative, which encodes the intuition that a doc-

ument is an additive combination of topics rather than complex cancellations between positive

and negative factors, which would result from applying the (similar) dimensionality-reduction

techniques of Principal Component Analysis (PCA) (Wold, Esbensen, & Geladi, 1987) or La-

tent Semantic Analysis (LSA) (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990).

Thus, for this model, there is not the necessity for an explicit topic extraction step since the

resulting matrices W and H represent, respectively, terms in the latent k-topic space and the
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distributions of topics per document. Matrix W is sparse, intuitively representing the notion of

a semantic topic and dictated by the resulting matrix H . Document variability is obtained by

combining these parts/topics into a whole. Similarly, the LSA model performs dimensionality

reduction by applying singular value decomposition (SVD) on the representation matrix N as

in Figure 3.1b. Matrix Σ contains the sorted r singular values in its main diagonal. Thus, LSA

considers the k latent topics the k ≤ r most significant singular values by setting the remaining

in the matrix to zero.

(a) NMF (b) LSA

Figure 3.1: Decomposition of the term-document collection representation matrix N following
different approaches.

On the other hand, probabilistic approaches assume a generative probabilistic process for

each document. The probabilistic variation of LSA (pLSA) (Hofmann, 1999) performs decom-

position over mixtures of multinomial components, sampled from an estimated latent variable

”aspect” model. The aspect model estimates the mixture P (d,w) = P (d)P (w|d), for each term

and document, where w is independent from d, given an observed class variable zi ∈ Z, as

defined in Eq. (3.2).

P (w|d) =
∑
z∈Z

P (w|z)P (z|d) (3.2)

The Latent Dirichlet Allocation (LDA) (Blei, Ng, & Jordan, 2003) model represents each

document as a mixture of multinomial distributions (defined in the latent topic space), in which

each multinomial is defined over the vocabulary space. Each topic mixture θ is sampled from a

k-dimensional Dirichlet distribution (the number of topics k is defined a priori), parameterized

by α which intuitively models the concentration of topics per document in a collection. Finally,

each multinomial is parameterized by another Dirichlet prior β, which models the concentra-

tion of words per topic. This relaxed paradigm allows for many-to-many relationships both

between topics and words, and documents and topics, which fits the intuition that a document

may comprise several topics and that a word may belong to multiple topics.
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Figure 3.2: LDA box diagram, where each box is a replicate. The outer box represents the
collection of documents and the inner box the sequence of topics and words per document.
Figure adapted from Blei et al. (2003).

3.1.2 Topic Modeling: Evaluation metrics

The performance of topic models may be intrinsically evaluated regarding topic coherence

through mutual information and perplexity, given that the model provides a distribution over

the vocabulary, which is the case for the probabilistic approaches. Topic coherence measures

how semantically related are the top words of a given topic, and averaging over all topics yields

the model’s coherence. Specifically, the Pairwise point-wise Mutual Information (PMI) score,

defined by Eq. (3.3), gives a higher score to topics which T top words are more likely to co-

occur in the same document, normalized against their individual independent probability in

the collection. This measure is said to account for topic coherence because it encodes the notion

that words defining a concept, that often share the same context, ”gain” in information from

one another to provide with a more well-defined, or coherent, topic. This metric is dependent

on the used corpus and therefore carries any statistical lack of information that might exist

in said corpus, for instance, considering a collection of documents with a lack of word co-

occurrence information, this will negatively impact the PMI score, if it is indeed calculated

on that collection. In these cases, a possible way to circumvent this problem is to evaluate

the resulting topics with the PMI score on external collections which do not have that lack of

information. Topic coherence may also be measured by expert evaluation, but this approach is

usually not considered due to the expense of using human judges.

PMI(t) =
2

T (T − 1)

∑
i<j≤T

log
p(wi, wj)

p(wi)p(wj)
(3.3)

Topic models that follow probabilistic approaches estimate mixtures over the latent se-



20 CHAPTER 3. PAIN AND LANGUAGE ANALYSIS

mantic space and a distribution over the vocabulary. These distributions may be evaluated

regarding how well they model never-seen data. A model’s perplexity intuitively measures

the inverse likelihood of the test data, so that the better it fits the model, the lower perplexity

score is obtained (the less ”perplexed” the model is to the new data). Formally, the perplexity

of a model given a test set is given by Eq. (3.4) (as defined by Blei et al. (2003)). However, per-

plexity has been shown to not reflect semantic coherence of a topic, sometimes scoring against

expert evaluation (Chang, Gerrish, Wang, Boyd-Graber, & Blei, 2009).

P(Dtest) = exp

(
−
∑

m∈Dtest
logp(m)∑

m∈Dtest
|m|

)
(3.4)

3.1.3 Short-text topic modeling

In certain contexts, there is a useful focus on short-text, particularly due to the necessity of ana-

lyzing data derived from online platforms such as social media (e.g. Twitter posts). Extracting

topics from short texts, where the document length has shifted from the hundreds of words

to the hundreds of characters, presents challenges that the traditional models are not capable

of efficiently overcoming, specifically the difficulty in capturing word co-occurrence informa-

tion, due to noise and sparsity. This has led to a recent line of research which has introduced

enhanced traditional models with external semantic representations and term correlation. The

motivation is two-fold: (i) external semantic representations provide a good partitioning of the

semantic space, clustering together words that are related in a given context; (ii) external se-

mantic representations can be derived from larger datasets which may not have the restrictions

identified in short-text documents.

However, as pointed out by Sridhar (2019), the partitioning of the semantic space is de-

pendent on the task at hand, for instance, if a classification approach were to be followed,

the terms clustered together are expected to be that of each class in the problem, but on the

other hand, following the language modeling approach, terms that often share the same con-

text (surrounding window of terms) are expected to be clustered together, which for generic

tasks of topic modeling is the desired behavior.

The Biterm Topic Model (BTM) (Yan, Guo, Lan, & Cheng, 2013) is a probabilistic approach

that tackles sparsity in short-text document collections by virtually aggregating the whole col-

lection into a single, long document. Thus, instead of capturing word co-occurrence at the
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document level, this information is captured at the collection level, so that it describes a gen-

erative process of word co-occurrence patterns instead of documents. Co-occurring words,

denominated biterms, are modeled to be sampled from a topic multinomial ρz , which in turn

is sampled from a Dirichlet topic distribution θ of the whole collection. The parameters ρ and θ

are estimated similarly to LDA. Even though BTM has been shown to outperform LDA regard-

ing topic coherence, it does not make use of external semantic information and thus is limited

to the statistical information present in the training short-text collection.

The Latent Feature LDA (LF-LDA) model (Nguyen, Billingsley, Du, & Johnson, 2015), in

contrast, incorporates latent features (semantic representations) learned from external corpora

in the LDA model, specifically in the topic-to-word Dirichlet multinomial component. Thus, it

assumes a generative process similar to that of LDA with the exception that, for each word, a bi-

nary indicator is sampled from a Bernoulli distribution in order to decide if the word should be

generated by the multinomial topic distribution or the latent feature (additional) component.

This allows for the external semantic information to model topic-to-word generation when

there is lack of information in the documents themselves. The external models used to export

the latent features, such as Word2Vec and skip-gram (Mikolov, Chen, Corrado, & Dean, 2013),

are neural-network-based models which learn real-valued vectors that represent words in a

language modeling semantic space. These vectors, denominated word embeddings, are dense

and of arbitrary length L, usually chosen in such a way that L � |V |, so that document repre-

sentation may be done in a lower-dimensionality space. FastText (Mikolov, Grave, Bojanowski,

Puhrsch, & Joulin, 2017) is another such model, with the difference that it learns embeddings

at the character level, virtually infinitely expanding the accepted vocabulary space (consider-

ing that any word is a combination of characters and that its corresponding embedding is a

combination of the character embeddings).

The Generalized Pólya Urn Dirichlet Multinomial Mixture (GPU-DMM) (Li, Wang, Zhang,

Sun, & Ma, 2016) follows a similar approach, but instead of directly incorporating the external

semantic information into the generative process, during the estimation step, promotes seman-

tically related words to be assigned to the same topic. The generative process on top of which

it is built is given by the Dirichlet Multinomial Mixture (DMM) (Yin & Wang, 2014) model that

makes the simplifying assumption that each short text document talks about one single topic,

so that all words in a document are sampled independently from the same topic multinomial
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distribution, which in turn is sampled from the topic Dirichlet mixture of the collection. Both

LF-LDA and GPU-DMM have been shown to have higher performance regarding topic coher-

ence when compared against LDA and DMM baselines, effectively demonstrating the gain of

incorporating external semantic information into the topic model.

In short texts, LDA and LDA-based models have been shown to under-perform when com-

pared against NMF and NMF-based models with respect to the PMI topic coherence evalua-

tion metric (Y. Chen, Zhang, Liu, Ye, & Lin, 2019), which is argued to be due to the sparsity

and noise of short texts, the instability of stochastic Gibbs sampling when there is not sufficient

term co-occurrence information, and the fact that NMF can operate in matrix representations

of collections which might encode term discriminative information, such as the TFIDF repre-

sentation matrix. For these reasons, current research has focused on short-text topic modeling

following non-probabilistic approaches, specifically with NMF. These are presented below.

The knowledge-guided NMF (KGNMF) (Y. Chen et al., 2019) adds a semantic constraint to

the factor matrices W and H , which states that word representation in the latent topic space

(rows of W ) should preserve the relatedness between word-pairs in the external semantic rep-

resentation space. This word-word semantic graph regularization matrix S is learned from an

external corpus, where each entry sij is the cosine similarity between two word vectors, defined

by Eq. (3.5). These word vectors are specifically learned with Word2Vec. Thus, whilst maintain-

ing the non-negative constraints, NMF is adapted so that Eq. (3.6) is minimized. Even though

precise values are not provided by the authors (only comparative graphs, lacking specificity),

KGNMF is shown to have better performance with respect to the PMI score, when compared

against BTM, LF-LDA, LF-DMM (Nguyen et al., 2015), GPU-DMM, GK-LDA (Z. Chen et al.,

2013), LDA, and NMF, especially when considering the top 5 and 10 words of each topic. Com-

paring with the NMF baseline exposes the gain of external semantic information enhancement.

sij = cos(wi, wj) =
〈wi, wj〉

||wi|| × ||wj ||
(3.5)

||N −WH||2F + λ× tr(W TLW ),

where L = diag(S × 1)− S
(3.6)
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tr(W TLW ) = min
1

2

|V |∑
i=1

|V |∑
j=1

sij ||wi∗ − wj∗||22 (3.7)

Viegas et al. (2018) propose a semantically enhanced NMF model that replaces each word

in a document by the corresponding embedding obtained from the Word2Vec model. Each

document is then represented by a single vector obtained from the Fisher Vector of single

multivariate Gaussian distribution pooling strategy, applied over the corresponding document

word embeddings. This is a simplified version of the Fisher Vector pooling strategy (FV) (Lev,

Klein, & Wolf, 2015). The decomposition step is applied as defined in Figure 1, however the

explicit relation between topics and words is effectively lost as matrix W columns represent

latent topic weights over the FV space instead of the vocabulary space (noting that matrix H

still represents linear combinations of topics for each document). In order to overcome this,

a novel topic extraction step denominated Advanced Semantic Topic Combination (ASToC) is

proposed. This strategy introduces a way to group documents represented in FV dimensions

into the decomposed topics, and the use of Information Gain (IG) to associate the most rele-

vant words to each topic. In summary, this strategy builds a tripartite graph with three types of

nodes, each corresponding to the documents, latent factors (topics), and FV features or dimen-

sions, where each edge represents the relation between the nodes, weighted by the probability

distribution derived from the factor matrices, such that document nodes and topic nodes are

weighted by matrix H and topic nodes and FV nodes are weighted by matrix W . This graph

is then submitted to a topic merging step to increase topic coherence whilst updating matrix

H to reflect the merge changes, so that if topic ki is merged with kj , then rows Hi and Hj are

removed from the matrix and row H∗, as defined by Eq. (3.8), is appended to the bottom.

The final step applies the IG technique to the set of documents of each latent topic in order

to obtain the most relevant words associated with that topic. This model is demonstrated to

have significant improvements over BTM, LDA, GPU-DMM, Feature Sentiment (FS) (Guzman

& Maalej, 2014), Life-long Topic Model (LTM) (Z. Chen & Liu, 2014), Embedding-based Topic

Model (ETM) (Qiang, Chen, Wang, & Wu, 2017), and Additive Regularization of Topic Mod-

els (ARTM) (Vorontsov & Potapenko, 2015), with respect to the normalized PMI (NPMI) score

(defined in Eq. (3.9)), in all twelve analyzed datasets. From the extensive experimental results,

it is possible to observe that the proposed model has a higher NPMI score in the vast majority

of cases (36 out of 49), in some having over 50% increase over the second best baseline, for



24 CHAPTER 3. PAIN AND LANGUAGE ANALYSIS

instance, considering the top T = 10 words of each topic, the second highest scoring model is

the GPU-DMM with a score of 0.304± 0.157, whilst the proposed model scores 0.620± 0.055.

H∗ =
Hi +Hj

2
(3.8)

NPMI(t) =
∑
i<j≤T

log
p(wi,wj)
p(wi)p(wj)

−p(wi, wj)
(3.9)

The semantics-assisted NMF (SeaNMF) (Shi, Kang, Choo, & Reddy, 2018) model over-

comes the problems associated with short-text noise and sparsity by applying a skip-gram

model with negative sampling (SGNS) with a context window size equal to that of each docu-

ment (given that it is applied to short texts). The skip-gram model is used because it learns

to predict a context window (set of surrounding words) given a single word from the vo-

cabulary, effectively learning a word vector ~wi ∈ Rk+ and a context vector ~cj ∈ Rk+ for each

wi, cj ∈ V . By constraining these vectors to be non-negative, matrix W (Figure 1) is defined

so that W (i, :) = ~wi and corresponding context matrix Wc(j, :) = ~cj . Thus, the term-context

correlation matrix S is obtained by S ≈ WW T
c . This strategy is shown to capture relevant

term-context correlation that otherwise would not be fully taken advantage of by the tradi-

tional NMF model. At this point, a bi-relational collection representation matrix with both

term-document and term-context information is obtained by vertically stacking NT and ST .

Finally, the objective function, defined by Eq. (3.10), where α ∈ R+ is a scale parameter and

ψ(W,Wc, H) is a penalty function specified for sparsity, is solved using a block coordinate de-

scent algorithm. Given the previously mentioned problem of the PMI evaluation for short texts,

the experimental results of SeaNMF include the PMI scores, both against the short-text datasets

used for training, but also on external datasets composed of long documents, specifically the

Yahoo.CA (Research, accessed December 30, 2019) and ACM.IS (Luo, 2014 (accessed Decem-

ber 30, 2019)) datasets. SeaNMF is compared against LDA, NMF, GPU-DMM, and Pseudo-

document-based Topic Model (PTM) (Zuo et al., 2016), consistently showing higher scores,

in some cases with a performance score (3.6318) over 50% higher than the second best model

(PTM with 1.6628). SeaNMF is shown to outperform NMF, which evidences the need for taking

advantage of semantic information when considering short texts. On top of this, it is argued

that the fact that the semantic information is learned from the collection itself (and not from an
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external source, such as the case of GPU-DMM) is a determining factor due to the possibility

of introducing bias from context-inadequate semantic spaces.

min
W,WC ,H≥0

∣∣∣∣∣∣
∣∣∣∣∣∣
 NT

√
αST

−
 H
√
αWc

W T

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

+ ψ(W,Wc, H) (3.10)

The cluster-of-words (CluWords) (Viegas et al., 2019) model exploits external semantic

information by replacing each term in a document bag-of-words (BOW) representation by a

meta-word, denominated CluWord, which represents the cluster of syntactically and semanti-

cally similar words. Each term’s CluWord Ct is a row in the CluWords matrix C|V |×|V |, where

each entry ct,t′ is the cosine similarity score between the pre-trained word embedding of term

t and term t′, ∀t, t′ ∈ V (scores below a threshold α are set to zero). For this extended BOW

representation to be fully taken advantage of, the model incorporates a TFIDF-based approach

capable of weighting the semantic information carried in each CluWord, defined by Eq. (3.11).

In this approach, matrix CtfM×|V | represents the term frequencies of each CluWord in each doc-

ument, so that row Ctfd is given by the sum of the products of the frequency of each term t in

document d, given by Td,t, and the corresponding similarity measure in the CluWord given

by Ct,t′ , as defined in Eq. (3.12). Matrix idf(C) determines the inverse document frequency

of each CluWord Ct ∈ C as defined in Eq. (3.13). The term µCt,d is the mean of the values of

the similarities in CluWord Ct that occur in the vocabulary sub-set of all terms in document d

which have similarity not equal to zero in Ct. The novel TFIDF-based CluWord representation

matrix Ctfidf is then submitted to factorization as in the traditional NMF model.

The experimental results show that CluWords derived from the pre-trained word embed-

ding FastText model trained with WikiNews (Mikolov et al., 2017) achieves better NPMI scores

when compared with Word2Vec trained with GoogleNews (Mikolov et al., 2013) and FastText

trained with Common Crawl (Mikolov et al., 2017), but the results were mainly statistical ties,

which suggests that the CluWords model is capable of extracting equally coherent topics in all

three semantic spaces (i.e., to some degree, it is capable of avoiding the bias in the pre-trained

models). With threshold α chosen so that 2% of the most similar words are selected with the

pre-trained word embedding FastText WikiNews model, when compared against FS, BTM,

LDA, LTM, GPU-DMM, ETM, ARTM, and SeaNMF, in twelve different short-text datasets,

CluWords achieved the best NPMI score seven times and statistically tied the remaining exper-
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iments with SeaNMF. However, taking into account the standard deviation of the scores, the

ones obtained by CluWords are considerably smaller than those of SeaNMF, and are indeed

less variable according to the Levene (1960) and Bartlett (1937) variability tests.

Ctfidf = Ctf × idf(C) (3.11)

Ctf = T × C (3.12)

idf(C) = log
M∑

1≤d≤M µCt,d
(3.13)

3.2 Audio-based analysis

In addition to conveying the words used in linguistic analysis, the speech audio signal may

also carry relevant information about the speaker. This can then be used to further character-

ize what is being said or infer states about the speaker. This type of information is useful in

many cases. The tasks of speech recognition and identification of speaker’s intention use this

information to further enrich the linguistic analysis, for instance, with disambiguation. The di-

agnosis of speech disorders is directly linked with the extraction of high level speech features,

such as reduction of spontaneous verbalizations, trouble finding words, and degradation of

articulation. Systems that include human-computer interfaces are also usually interested in the

detection of anger and stress levels, for instance, in speech interactions in call centers, and in

the detection of other states, such as uncertainty, interest, and deception, all of which can be

used to adapt these interfaces or any other embedding system (Schuller et al., 2013).

In the present work, it is of interest to further complement the textual content of the de-

scriptions of pain with information about the patient, namely, the emotional state, affection,

stress, insecurity, tiredness, irony, sarcasm, and other speech characteristics, which can, in some

way, affect the perception of pain or intrinsically reveal characteristics of the painful experi-

ence. The following sections present the signal features which are believed to carry relevant

information, the general architecture of information extraction models from speech, how they
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can be evaluated, and, finally, focus on the task of speech information extraction specifically for

emotion recognition.

3.2.1 Frame and utterance level features

It is largely assumed that the relevant information in audio-based speech analysis is indeed

in its temporal variation rather than static values. To this end, acoustic features are captured

at the frame level (20-50 ms), which are then statistically aggregated over the duration of the

signal, or utterance, in the specific case of speech, in order to obtain variational utterance level

features.

Commonly extracted frame level features, denominated Low Level Descriptors (LLDs),

include the pitch (through the F0 fundamental frequency), which allows for the auditive dis-

tinction between lower and higher sounds, the energy, defined as the area below the squared

magnitude of the continuous-time signal (which in this case is discretized at the specified sam-

pling rate), which allows for the auditive distinction between quieter and louder sounds, the

zero-crossing rate, defined as the rate at which the sign of the speech signal changes, which

intuitively carries information about the smoothness of the sound, and the Mel Frequency Cep-

stral Coefficients (MFCCs), which are a set of features that concisely describe the sequence of

frames, by taking the constituent frequencies of the signal with a Fourier transform, mapping

them onto the Mel-frequency cepstrum (MFC), since evenly spaced frequencies in the MFC are

closely related to the human hearing, and finally taking the corresponding power logs, which

is also motivated by the human hearing, which is less capable of distinguishing variations in

higher frequencies than lower frequencies. The MFCCs are the amplitudes resulting from tak-

ing the discrete cosine transform of these Mel-frequency log powers.

In order to reveal variation over time (during the duration of the signal), these LLDs are

aggregated using statistical functions, which comprise the identification of maximum and min-

imum values, mean, standard deviation, range, and high-order derivatives, effectively charac-

terizing the signal at the utterance level. Higher level paralinguistic features may also be ex-

tracted, such as laughter, sighs, and disfluencies, including hesitation, repetitions, and pauses

(Schuller et al., 2013).
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3.2.2 General architecture and evaluation

Speech models, in general, follow a common architecture, in part because all tasks deal with

similar challenges intrinsic to the speech signal. On the first stage, the signal is preprocessed,

so that noise is removed. If there are multiple speakers, these are separated through speaker

diarization, and the signal is further separated, for instance, using NMF, if deemed necessary.

Next, acoustic features are extracted at the frame level (the LLDs). These describe the signal

statically, at each sample. Most tasks are interested in the temporal variation of the signal,

rather than static information. To this end, a set of statistical aggregation functions are applied

to each LLD, over the duration of the signal. At this stage, utterance level features are obtained.

Large feature vectors are then usually submitted to dimensionality reduction, for instance, us-

ing PCA, before being used for training. The machine learning model used will depend on the

task at hand. For classification purposes, Support Vector Machines (SVM) and Hidden Markov

Models (HMM) are typically employed.

When dealing with a classification problem, which is usually the case for Speech Emotion

Recognition (SER), the evaluation metrics that are commonly used are the unweighted accu-

racy, weighted accuracy, and F1 score. These are usually employed in the multi-class setting,

if there are highly unbalanced test classes. Calculating the regular accuracy could yield false

conclusions, since the most representative classes would statistically dominate the metric.

The unweighted accuracy (UA) is given by the average recall of each class, as defined by

Eq. (3.14), where TPc refers to the true positives, TNc the true negatives, FPc the false positives,

and FNc the false negatives, all referring to class c.

UA =
1

|C|
∑
c∈C

TPc
TPc + FNc

(3.14)

The weighted accuracy (WA) metric, specifically the uniform weighted accuracy, defined

by Eq. (3.15), gives equal contribution to the resulting metric to each class, independent of the

number of samples.

WA =
1

|C|
∑
c∈C

acc(c) (3.15)
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acc(c) =
TPc + TNc

TPc + FPc + TNc + FNc
(3.16)

The Fβ score measures the accuracy of a given model by having into account both the

precision (P) and recall (R) metrics. The Fβ score for a single class is given by Eq. (3.17), where

β is the degree of importance of the recall metric in relation to the precision metric. The F1

(β = 1) score is the harmonic mean of both precision and recall, so that its value tends to the

smaller of the two. Thus, the best F1 score (equal to one) is obtained when both precision and

recall are perfect as well.

Fβ = (1 + β2)× P ×R
(β2 ×R) + P

(3.17)

3.2.3 Speech emotion recognition

Speech information extraction consists on the extraction of the aforementioned features present

in the audio signal, in order to study their relations, both between themselves and other exter-

nal information. Emotion has been identified as a key aspect in the perception and expression

of pain. Thus, the present wok will initially focus on the task of SER, so that this type of models

may be used to characterize the signal.

SER is the paralinguistic task which focuses on recognizing emotion given a speech audio

signal. The output can vary from categorical variables (sad, happy, angry, surprised, etc.) to

continuous values in specific dimensions, for instance, valence and arousal. Data points of

either type can be mapped to the other.

Handcrafted feature-based approaches extract the utterance level features by statistically

aggregating the LLDs, and then apply machine learning algorithms, such as SVM (for the clas-

sification case). Recent developments, however, have focused on automatically learning both

frame and utterance level features, typically following the artificial neural network approach.

The reasoning is two-fold (Mirsamadi, Barsoum, & Zhang, 2017): (i) it is unclear which fea-

tures best characterize the signal for emotion recognition; (ii) variational analysis depends on

pre-processing the signal in order to remove frames which are known not to carry emotion in-

formation, specifically silence frames, and it should also employ a weight-based analysis since

often only a few parts of the signal carry relevant information, rather than the whole utterance.
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Ignoring the latter could imply the distortion of the decision making due to noise in the fea-

ture set. This has lead to the development of end-to-end neural-network-based architectures,

that take as input the raw temporal data samples and output an emotion label or value, which

have shown improvements over the traditional approach. Commonly employed structures are

specializations of Deep neural networks (DNN), including Recurrent neural networks (RNN),

specifically, Long short-term memory networks (LSTM), and Convolutional neural networks

(CNN), which are briefly presented below to contextualize the state-of-art.

LSTMs are RNNs specifically modeled to process sequences of inputs, such that the com-

putation of the input at time-step t is dependent of previous time-steps, by maintaining an

internal state (memory). In this architecture, the memory of past computations is modeled by

other networks, which in turn integrate gating mechanisms that determine which of the pre-

vious information is relevant for the current computation. A LSTM unit is composed of a cell,

which holds actual memory of previous computed values, and, commonly, three gates, the

input, forget, and output gates. In summary, these gates are responsible for determining if a

value should be stored in the cell, if a value should remain in the cell, and if the value in the cell

should be used to compute the activation of the unit, respectively. This design renders LSTMs

well-suited for the processing of temporal sequences of inputs, due to the relative insensitivity

to the dependence distribution of information in the whole sequence.

CNNs are a specialization of DNNs in which at least one of the hidden layers performs the

mathematical operation of convolution. In practice, this operation is a sliding dot product of the

input window and a given filter, producing an activation map of that filter, which is then passed

onto the next layer. During training, these filters are learned, so that they are only activated in

the presence of specific features, or patterns, in the input, thus, stacking more convolutional

layers allows for the detection of increasingly more complex patterns in the data. In addition,

these layers are often interleaved with pooling layers, which perform down-sampling of their

input, in order to reduce the number of parameters and avoid overfitting. Max pooling is a

common pooling strategy, where only the maximum value of the input window is passed onto

the next layer. This type of dimensionality reduction is motivated by the fact that the relative

spatial position between features is often more important than the exact location of each one.

Mirsamadi et al. (2017) propose an RNN-based model, which architecture consists of two

main parts (Figure 3.3). The first part is composed of two feed-forward layers, each with 512
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neurons and Rectilinear Unit (ReLU) activation, defined as h(x) = max(0, x) where x is the

neuron’s net value, and is responsible for learning the frame level LLDs. The second part,

composed of two bidirectional LSTM networks, which connects layers in both directions, so

that information from past and future computations is taken advantage of, with a weighted

pooling attention-based mechanism, is responsible for learning the utterance level, temporal,

and statistical aggregation of each LLD. The weighted pooling layer, placed at the end of the

architecture, is based on an attention mechanism, in this case composed of a Logistic Regres-

sion, capable of learning which frames of the input carry the most relevant information for the

predicted output, by associating an adequate weight to each frame. In this way, the pooling

layer can use these weights to take advantage of relevant frames and ignore the noise in the

remaining. The experimental study, on the IEMOCAP dataset (Busso et al., 2008), considering

only audio signals from four emotion classes, revealed that the end-to-end architecture, even

though it had WA and UA scores slightly higher (+4.0% and +0.6%) than the baseline (57.8%

and 55.7%), which is a Support Vector Machine (SVM) classifier based on handcrafted LLDs

and utterance level statistical features, did not have a much better performance due to the lack

of data for the task’s complexity. However, the hybrid architecture, with handcrafted LLD

features and the LSTMs with weighted pooling mechanism, revealed the advantage of using

attention mechanisms to learn frame importance, with gains of +5.7% and +3.1% in WA and

UA respectively, over the baseline.

Figure 3.3: Attention-based weighted pooling NN. Adapted from Mirsamadi et al. (2017).

Another possible approach for emotion recognition is to take into account information

captured from multiple domains, for instance, text and speech, since emotions are indeed ex-

pressed through multiple channels. Thus, fusion techniques take advantage of intra- and inter-

domain dynamics for emotion recognition. Early fusion concatenates features extracted from

multiple domains and feeds them to a single model. This approach is able to capture inter-



32 CHAPTER 3. PAIN AND LANGUAGE ANALYSIS

domain dynamics, but may fail to capture the variability within a single domain, as it attempts

to model, in general, all the domains’ features. Late fusion, on the other hand, only merges

information before making the classification/regression decision. To this end, this approach

has one model for each domain, effectively capturing domain specific variability, and uses a

voting decision system between all models to make the final prediction. However, this comes

at the risk of not capturing inter-domain dynamics when the feature spaces are very different.

Recent research has, thus, led to the development of emotion recognition models based on

the aforementioned fusion approaches. Specifically, Sebastian and Pierucci (2019) propose a

deep learning architecture that combines both intra- and inter-domain dynamics, particularly

the text and speech domains, with both early and late fusion. In summary, the architecture

can be split into three main components (see Figure 3.4). The feature extraction component ex-

tracts both text and speech features from the input: text features are extracted from pre-trained

300-dimensional word embeddings from FastText, using convolutional, max pooling, and fully

connected layers; speech features are extracted using the OpenSMILE toolkit (Eyben, Wöllmer,

& Schuller, 2010), and comprise both LLDs and utterance level speech features. The text fea-

tures are fed into the uni-domain (textual) component, which performs emotion recognition

solely based on text. This component comprises a LSTM layer, two fully connected layers,

and, finally, an output layer with as many units as emotion classes. The text features are also

concatenated with the speech features using early fusion, and fed to a joint component, which

accounts for inter-domain dynamics. This last component comprises two CNN layers with

max pooling, followed by two fully connected layers, and the output layer. This component

was chosen not to be based on LSTMs because it showed poorer performance compared to

the CNN-based approach. Finally, the outputs of the uni-domain and joint models are merged

using late fusion to output the final prediction.

The experimental setup includes the study, on the IEMOCAP dataset with six emotion

classes, of multiple late fusion techniques, showing weighted voting and product rule combi-

nation, defined by Eq. (3.18) and Eq. (3.19), respectively, to have the best performance regard-

ing UA, WA, and F1 scores. Specifically, the latter having 60.2%, 61.2%, and 61.2%, respectively.

The baselines used for comparison against the best late fusion combinations, include the Tensor

Fusion Network (TFN) (Zadeh, Chen, Poria, Cambria, & Morency, 2017), Memory Fusion Net-

work (MFN) (Zadeh et al., 2018), Bi-directional contextual LSTM (cLSTM) (Poria et al., 2017),
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Figure 3.4: Block diagram of an emotion recognition model architecture, based on speech and
transcripts, integrating both early and late fusion. Adapted from Sebastian and Pierucci (2019).

and Interactive Conversational Memory Network (ICON) (Hazarika, Poria, Mihalcea, Cam-

bria, & Zimmermann, 2018), noting that the last two models are dialog level emotion recog-

nizers, which carry more contextual information for the decision making than utterance level

recognizers. Again, the proposed architecture, combined either with weighted voting or prod-

uct rule late fusion, showed the best performance results regarding UA, WA, and F1 scores,

excluding the dialog based emotion recognizers. The second best performing baseline was

MFN (which also uses video-based features), scoring, respectively, 58.3%, 60.1%, and 59.9%,

whilst the proposed architecture had gains of +1.9%, +1.1%, and +1.3%. The performance of

the ICON model was also compared to show that utterance level emotion recognition based

on the proposed architecture can compete with dialog level recognition, having only close to a

-2% decrease in performance.

s = w1 × stext + w2 × stext,speech (3.18)

sj =
sjtext × sjtext,speech∑
i sitext × sitext,speech

, i 6= j, i, j ∈ C (3.19)
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3.3 Summary

In this chapter we explored the literature related to the analysis of language, specifically for the

language of pain.

Starting with the text-based analysis, we focused on the technique of topic modeling.

We exposed the traditional methods, specifically the probabilistic and non-probabilistic ap-

proaches (e.g. LDA and NMF, respectively). We identified the challenges associated with our

data, namely its short-text nature, and concluded on the necessity of tailored models to tackle

its intrinsic noise and sparsity. We presented an extensive review of short-text topic models and

identified the deficiencies of probability-based approaches in this setting. Thus, we mainly fo-

cused on the review of the methods based on the non-probabilistic approach, specifically NMF,

with the introduction of semantics assistance, such as word embeddings.

Finally, for the audio-based analysis we presented the traditional approach to information

extraction from speech, including the generic architecture, the commonly extracted feature set,

and the set of evaluation metrics commonly employed. With a focus on the task of Speech

Emotion Recognition, as an instance of Speech Information Extraction, we explored how this

task is tackled in the literature. Specifically, we explored more recent end-to-end models based

on neural-networks that merge features from multiple domains (e.g. text and speech).



4Dataset Definition

In this chapter we define the dataset used in the present study. All data were collected and

prepared with the objectives previously presented in mind. This dataset is the result of a joint

data collection project with the Faculty of Medicine of University of Porto (FMUP), which took

place at University Hospital Center of São João (UHCSJ), for a total of twelve months (from

October, 2019, to October, 2020). The data includes verbal descriptions of chronic pain expe-

riences (resulting from recorded, scripted interviews) and additional contextual information

(demographic and clinical data) from patients deemed eligible for the study. These are adults

(older than or equal to eighteen years of age), of either sex, diagnosed with osteoarthritis,

rheumatoid arthritis, or spondyloarthritis (including psoriatic arthritis), and with symptoms

of chronic pain. A total of 94 patients were included in the collection.

All data were collected under a collection protocol, approved by the Ethics Commission

of UHCSJ, in which data confidentiality is explicitly protected. All recordings are anonymous,

and the presentation of results is always made without individual references. Patient record-

ings are identified with a unique ID, and kept separate from the ID resolution key, which is

maintained in physical format at a secure location. The ID also links recordings with other

relevant data, so that the patient personal identification is never used.

4.1 Collected information

For each patient, we collect a natural description of the personal experience of chronic pain and

contextual demographic and clinical parameters of disease and pain manifestations.

The description of the experience, on the one hand, should be based on the aspects of the

experience that are most important to the subject describing it, and must be based on that sub-

ject’s elicited vocabulary alone. On the other hand, as suggested by the presented literature,

there are specific cognitive aspects that have been identified as the most determinant factors
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in assessing experiences of pain, therefore, each subject should provide their insights for each

of these cognitive aspects, with less or more importance, depending on their personal experi-

ence. These natural descriptions should, therefore, be unrestricted in terms of the described

aspects, but at the same time guided to the previously identified cognitive aspects. This may

be achieved with a specifically designed interview, with open, guiding questions. Finally, as

stated before, the context in which pain is described influences both the vocabulary used and

the way it is verbalized, thus, the description is obtained in the medical office, immediately

after the regularly scheduled appointment, by the health professional.

The set of questions composing the interview was the result of a design process that aimed

at obtaining a natural description of the patient’s pain experience, in their own words, but,

at the same time, directing it towards the cognitive topics that were identified as the most

relevant for pain assessment. The script, validated by multiple health professionals included

in the collection process, is as follows (translated from Portuguese):

1. Onde localiza a sua dor?

Where does it hurt?

2. Como descreveria a sua dor? Como a sente/que sensações provoca?

How would you describe your pain? How do you feel it/which sensations does it cause?

3. Como tem evoluı́do a intensidade da dor no último mês?

How has pain intensity evolved in the past month?

4. Como considera que a dor tem afetado o seu dia-a-dia, nomeadamente na sua atividade fı́sica,

profissional e social, e o seu estado emocional?

How would you consider pain to affect your day-to-day, namely, your physical, profes-

sional, and social activities and your emotional state?

5. Qual considera ser a origem da sua dor?

What do you believe to be the cause of your pain?

6. Como considera que tem evoluı́do a sua dor, tendo em conta o tratamento (atual) aplicado?

How would you say your pain has evolved, considering the current treatment?

7. Como acha que irá evoluir a sua dor nos próximos meses?

How do you expect your pain to develop in the coming months?
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The contextual information is comprised of basic demographic information (age, gender,

and education level), duration of the disease and reports of pain, the therapeutic processes, an-

alytical parameters of the disease’s activity (Erythrocyte Sedimentation Rate (ESR) and Repeti-

tive C-Protein (RCP)), and VAS of both pain and disease. The form used to collect these data is

shown in Figure 4.1.

Posterior to this collection, each patient recording was listened to and evaluated by a health

professional (which did not participate in the collection and has no known connections with

the patient). Indeed, some patients were evaluated by multiple health professionals, but not all.

This evaluation produces an additional perspective on the patients in terms of linguistics, since

it is performed by professionals and is limited to the audio alone. The evaluation consists of

comments on the situation of the patient regarding pain and disease management, emotional

state, and patient perception of the situation. Additionally, segments of the patient speech were

identified as evidence for the provided evaluation.
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Formulário 
 
ID: ________________________________ 
 

Informação demográfica básica 
 
Idade: ______ 
 
 
Género:     Masculino               Feminino                     Outro: __________ 
 
 
Grau de escolaridade:  ___________________ 
 
 
Ocupação profissional: ___________________ Activa Baixa/Reforma 
 

Patologia 
 
     Osteoartrose                 Artrite reumatoide 
 
                              Espondiloartrites                        Outra: ___________________ 
 
 
EVA (dor): ____ 
 
 
EVA (doença): ______ 
 
 
 
Tempo de evolução das queixas álgicas: _________________ 
 
Duração da doença: __________________ 
 
Terapêuticas instituídas: 
_________________________________________     _________________________________________ 

_________________________________________     _________________________________________ 

_________________________________________     _________________________________________ 

_________________________________________     _________________________________________ 

Parâmetros analíticos da atividade da doença 
VS: __________________ 
 
PCR: __________________ 

Dor máxima Sem dor 

Pior possível Muito bem 

Figure 4.1: Form used to collect the contextual information of each patient. The form is filled
by the health professional with the assistance of the patient.
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4.2 Data preparation

In order for the collected data to be processed in a systematic and automatic way, the raw data

of each patient is put through a preparation pipeline, depicted in Figure 4.2.

Figure 4.2: Preparation pipeline of the data, which is used to create the baseline dataset.

Given as input an audio file with a recorded interview, the first stage of the pipeline is

speaker diarization, which comprises the segmentation of the audio file by speaker, so that

in each segment there is only one identified speaker. It is assumed that during the interview

only two subjects speak, the interviewer and the interviewee. The implementation is detailed

after. The second stage is the fragmentation of the audio file by question in the interview,

resulting in a total of 7 segments per patient. These segments include only the interviewee’s

speech. Finally, each of these fragments is manually transcribed. The strategy comprises a

clean transcription, which does not account for repetitions, corrections, hesitations and other

speech disfluencies. At the end of the pipeline, to each patient is associated a set of 7 audio

segments and corresponding 7 transcriptions.

Speaker diarization is the task responsible for identifying segments of an audio file by

speaker, so that in each segment there is only one speaker. In our case, given a recording of

an interview between a physician and a patient, we want to obtain an annotations file with

segment timestamps (start and end) and corresponding speaker label, for the full duration of

the recording, as exemplified in Table 4.1. We perform this task in a semi-automatic fashion.

First, we automatically obtain segment timestamps determined to belong to different speakers.

Then, manual segment validation is performed and all corrections applied, and, finally, the

speaker is manually identified in each segment. This part is easily done by hand, since the

interviewer voices are known beforehand and are expected to repeat the same questions in

each recording. The only other voice is assumed to belong to the patient.

The first and automatic part of this task is performed in three steps. Given an audio file

of a recorded interview, we first sample it at a 16kHz rate and extract 6 types of features per
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Start End Label
0.0 14.500 Physician

14.500 31.820 Patient
31.820 32.400 Noise

Table 4.1: Example of an annotation file with speaker segments identified and labeled.

frame, which is defined as a window of 20ms of audio signal. These features are the root-mean-

square (RMS), the spectral centroid, bandwidth, contrast, and flatness, and the zero-crossing

rate, as defined by the librosa library (McFee et al., 2015). Secondly, we estimate a Gaussian

Mixture model (Reynolds, 2009) with 3 components over the data points on the feature space.

The choice of the number of components is based on the expected structure of each recording:

scripted turns of dialog between the physician and the patient, rarely with interruptions, and

an ever-present background noise, which may sometimes superimpose the dialog. Thus, we

assume that the data points generated by each source fit a normal distribution (for the physi-

cian, patient, and noise) and that each is distinct enough to be differentiated. Finally, with this

estimated model over the feature data, we assign each frame to a cluster, as given by the com-

ponent in the mixture model with the highest posterior probability for that sample. We apply

a filter to the cluster assignments so that we observe a sequence of cluster blocks that more

accurately represents scripted dialog turns, as exemplified in Figure 4.3. This filter is a simple

pass-through over the frames with a window of 100 frames, where all frames in that window

are assigned the respective window mode.

(a) Unfiltered cluster assignments by frame. (b) Filtered cluster assignments by frame.

Figure 4.3: Cluster assignments by frame, represented in a square matrix, as given by a Gaus-
sian Mixture model over the feature data.



4.3. BASELINE DATASET AND CHALLENGES 41

The preparation pipeline facilitates processing in two ways, (i) it allows for the study of

the patient’s verbal description separate from the interviewer’s speech, and (ii) since the dialog

turns follow a specific script, the fragmentation is done automatically, separating each audio

file into the different questions and answers, so that they can also be processed independently.

4.3 Baseline dataset and challenges

The baseline dataset is comprised of 94 rows (patients) and 29 columns (inputs). Table 4.2

summarizes the available inputs for each patient.

Parameter Meaning and values Other labels

ID Unique identifier per patient
Age Age of the patient. Idade (anos)
Gender Gender of the patient: [Female, Male]. Género
Education
(level)

Highest level of education obtained: [Basic, High School, Bachelor, Mas-
ter].

Educação
(nı́vel)

Education
(year) Last completed year of the corresponding education level. Educação

(ano)

Occupation Current professional occupation when applicable, otherwise refers to the
latest professional occupation. Ocupação

Activity status Whether the patient is professionally active or not: [Active, Medical leave
/ Retired]. Activo

Pathology Associated pathology: [Rheumatoid Arthritis, Spondyloarthritis, Os-
teoarthritis, Psoriatic arthritis]. Patologia

VAS pain Pain intensity as reported by the patient, where 0 is no pain and 100 is the
maximum pain ever felt by that patient: [0, 100]. EVA dor %

VAS disease Disease state as reported by the patient, where 0 is very well and 100 is as
worse as it has ever gotten for that patient: [0, 100].

EVA doença
%

Evolution
(years)

Number of years the patient has reported health problems associated with
the disease (including pain).

Evolução
(anos)

Duration (years) Number of years that the patient has been diagnosed with the associated
pathology. Dur. (anos)

Therapeutics List of applied therapeutics.

ESR Analytical parameter of the activity of the disease (Erythrocyte Sedimen-
tation Rate). VS

RCP Analytical parameter of the activity of the disease (Repetitive C Protein). PCR

Q1-Q7 Document of text corresponding to the labeled question of the interview
(total of 7 questions).

A1-A7 Audio file corresponding to the labeled question of the interview (total of
7 questions).

Table 4.2: Dataset inputs and corresponding description.

The nature of the data used in this study presents a set of challenges to the task of modeling

it in terms of its semantic and syntactic structures. Three types of challenges were found in the

data, relating to the background and characteristics of the interviewed patient, the quality of

the audio and textual data, and, finally, the availability. All of these challenges condition the
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applicability of any type of analysis, linguistic or paralinguistic.

Firstly, we are concerned with the content and nature of the data, which is linked to the va-

riety of ages, backgrounds, and personalities of the subjects included in the study. Specifically,

the complexity and detail of the discussed topics ranges from vague to dense, simply because

some people naturally speak more than others, resulting in denser documents, whilst others

restrict themselves to short, precise or imprecise, answers. Additionally, the relationship estab-

lished between the physician and the patient also restricts, or elicits, the development of the

thought process. These characteristics render a collection of semantically related documents,

although of different lengths, vocabularies, development, and precision.

Secondly, we are concerned with the quality of the obtained data. Since the textual docu-

ments are the result of transcribed speech, they inherit some speech disfluencies which could

not be mitigated with a clean transcription strategy, such as the lack of syntactic coherence,

which sometimes results in incoherent phrases. Regarding the audio quality, because the

recordings were captured in the medical office without professional equipment (in an attempt

not to intimidate the patients), the automatic processing is very limited.

Finally, we are concerned with the amount of available data to perform the analysis. If the

patient’s answers to all interview questions are concatenated into a single document, there are

a total of 94 long documents, which is a very limited amount for almost all types of analysis,

resulting in statistically irrelevant conclusions. If the fragments are considered independent,

we would have 94 × 7 documents, albeit short-text. The resulting conclusions could be statis-

tically sounder, but the information is also harder to extract, due to their short length, and the

fact that the notion of a patient could be lost.

4.4 Summary

In this chapter we presented the dataset used in the study, including the collected information

and the preparation pipeline, which includes semi-automatic diarization of the audio, frag-

mentation into question segments, and manual transcription. Additionally, we discussed the

challenges associated with the nature of the data, specifically the intrinsic variability of the

content of the descriptions of pain, the syntactic incoherence of the text, the poor audio quality,

and the limited availability of data.



5Characterization of the

Population

In the present chapter we aim at characterizing the population of patients experiencing symp-

toms of chronic pain in a space of linguistic features, as determined by their natural language

descriptions of the experience. We define this characterization as both the mapping of the pop-

ulation onto the feature space, and the definition and quantification of any relations found in

that space, as given by intrinsic qualities or extrinsic parameters.

Given the baseline dataset presented in the previous chapter, this experiment is performed

in two main steps. First, the projection of the population on the linguistic feature space. Specif-

ically, these features are based on topic modeling techniques, so that each patient is mapped

onto a latent semantic space representing the aspects discussed in the collection of descriptions.

This is the method used because it allows us to identify topics and quantify their importance

for each patient in an unsupervised manner, as determined by the scripted interviews used

to generate the descriptions, which guide the patients to reflect on the cognitive aspects de-

termined by the literature as the most important for pain assessment and management. The

second and last step encompasses the analysis of the projected descriptions. This includes sim-

ilarity measures between distinct patients, clustering analysis, and semantic characterization

of these groups and the ones defined by objective demographic and clinical parameters.

The structure of this chapter is as follows. First, we lay out the experimental setup of

both topic modeling and characterization of the population. This includes the definition of the

analysis and evaluation metrics. This is followed by a results and discussion section.

5.1 Topic modeling

We are interested in obtaining a projection of the patients on a latent semantic space. Specif-

ically, a matrix projection T of n patients on the topic space (n × k), and the corresponding

distributions of weights over the vocabulary for each topic, for k topics, unknown beforehand.
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Our approach is based on the fragmented documents (7 documents per patient). We have de-

cided on this approach because, otherwise, we would be restricted to a collection of n = 94

documents. The fragmented approach means that, for the purpose of topic modeling, we are

considering each fragment as an independent document, and consequently, with an indepen-

dent projection. Matrix T is obtained by aggregating the projected fragments by patient. We

perform this aggregation by averaging each topic importance over the corresponding 7 frag-

ments, which assumes that all fragments (answers to each question in the interview) have equal

importance for the description of the experience of that patient. We start by preprocessing the

text and defining the topic models to apply, and, finally, define the evaluation process used to

determine the most adequate fragment projection on the topic space. This will be the latent

space used to characterize the population, after fragment aggregation by patient.

5.1.1 Text preprocessing

This task is in charge of noise removal and standardization of text. The applied techniques

are, sequentially, text lemmatization (which includes identification of collocations and Part-Of-

Speech (POS) tagging), and stop-word removal. The following describes each of these tech-

niques, as well as the methods and tools used to apply them.

Lemmatization is the process in charge of obtaining the root word (lemma) of any given

word in a sentence. The lemma is necessarily a valid word with semantic value. The objective

is, thus, to standardize the text, since the variability intrinsic to text, such as conjugations of the

same verb, variations of the same noun, and others, are all reduced to the same lemma. The

tool used for this process is STRING (Mamede, Baptista, Diniz, & Cabarrão, 2012), which also

tags each lemma with the original word’s POS tag and finds collocations, which are sequences

of two or more words which are commonly used together to define a specific concept. Colloca-

tions are defined as a single token, given that considering each of the composing words inde-

pendently does not render the same semantics. Some examples are the n-grams ”senhor doutor”

(health professional) and ”mais ou menos” (more or less). After lemmatization the vocabulary

size drops 27%, which indicates a significant level of syntactic variability in the original text.

Stop-word removal excludes from the lemmatized and POS tagged text words such as de-

terminants, pronouns, auxiliary verbs, conjunctions, and prepositions, which by nature do not

convey significant semantic information relevant outside the syntactic context of the phrase,
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thus producing only noise when under topic analysis. As a baseline set of stop-words, we use

that defined by the NLTK package (Loper & Bird, 2002), for the Portuguese language, together

with a filter for any POS tag that is not a verb, noun, adjective, or adverb. Additionally, we

also remove any tokens that have a document frequency lower than 2 documents, or higher

than 95% of the documents in the collection. This is so because certain tokens are so frequently

used that they no longer carry information relevant to distinguish the documents, and, con-

versely, highly infrequent words (that are unique to one document) by definition distinguish

too well each document, without taking into consideration the underlying semantics, and don’t

allow for an adequate generalization of the model. Stop-word removal yields a vocabulary 65%

smaller, which highlights the lack of richness of the collection’s vocabulary.

Table 5.1 reveals the top 20 words more frequent, before and after preprocessing, highlight-

ing the importance of this initial step. This preprocessing pipeline yields a new version of the

original documents, which is standardized, with noise removed, and with a total of 526 unique

tokens. Figure 5.1 shows the probability distribution of this final vocabulary (ratio of number of

documents in which each vocabulary word appears and the total number of documents in the

collection). Expectedly, most words have a very low probability of occurring in the collection.

Before After
eu

não
ser
que
ter

de
em

estar
dor
um

muito
mas
fazer
saber
mais

ir
assim
com

porque
mesmo

andar
dia

mão
poder

conseguir

doer
sempre

medicação
joelho

pé

querer
tomar
mau

bastante
começar

afetar
melhorar

tempo
passar
esperar

Table 5.1: Top 20 words more frequent, before and after preprocessing.

5.1.2 Models

The presented NMF and LDA models, which, as discussed, are expected to have a limited

performance in the setting of short-text documents, are applied as baselines. The described

SeaNMF and CluWords models have been shown to have the best performance in a similar

setting to the one described in the present experimental setup, and, thus, are applied to further

explore the data and overcome its challenges. We apply both these models due to their varying

nature, since SeaNMF does not resort to external information but is limited by the collection’s

size, and CluWords resorts to external information but is limited by domain adaptability and
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Figure 5.1: Distribution of vocabulary probabilities.

poor vocabulary. We explore these domain adaptability concerns when using external word-

embedding models, specifically by comparing the performance of CluWords with different

word-embedding models, specifically FastText and BERT (Devlin, Chang, Lee, & Toutanova,

2018), which have been pre-trained on Portuguese corpora. These are summarized in Table 5.2.

LDA
NMF

SeaNMF
CluWords (FastText)

CluWords (BERT)

Table 5.2: Considered topic models for the experimental results.

5.1.3 Evaluation

Given that this is an unsupervised task, the evaluation that we can performed is solely based on

intrinsic qualities of the modeling of the collection in the topic space. There are two main types

of intrinsic evaluation. First, interpretability metrics, which are concerned with the semantics

associated with the projection and the relation with the nature of the data under study, and,

second, clustering metrics of the projected documents on the latent semantic space, which are

concerned with evaluating the stowage of data points in the given space. These can be both

context agnostic or context dependent. We evaluate the applied topic models under both of

these types of evaluation.
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5.1.3.1 Interpretability metrics

Our first concern is the number of topics to extract, k, which is unknown beforehand. Even

though this is somewhat of an arbitrary choice, it may be informed by the nature of the collected

data. Each question of the interview focuses on at least one aspect of the experience. It is up

to the patient to develop, or not, the thought process to more aspects. Given this statement,

the number of topics to extract should be bounded by a minimum of 7 topics (the number of

questions in the interview). The value of k is determined based on empirical evaluation and

human interpretation of the extracted topics.

Given a fixed number of topics to extract, following the literature, we evaluate the topic

coherence of each topic model, given by the PMI score. Because we are dealing with an ex-

tremely low-resourced collection of documents, we focus on the Positive PMI (PPMI) metric,

which adequately accounts for word pairs that never co-occur (which is a common problem in

our collection). The PPMI metric is defined in Eq. (5.1), where t = 10 is the number of top most

weighted words of a topic.

PPMI =
1

t(t− 1)

∑
i<j≤t

max{log
p(wi, wj)

p(wi)p(wj)
, 0} (5.1)

Finally, we evaluate topic modularity by determining the number of words shared between

all topics extracted by one model (given the top t = 10 most weighted words of each topic).

A topic that does not share a single word with the remaining topics may define a concrete,

modular concept, which allows for an independent evaluation of the projected population on

that dimension. Therefore, we are most interested in the topic model which extracts topics with

most unique words, however taking into consideration that the probability of choosing k sets

of t = 10 unique words from the vocabulary is not zero. Thus, the discussion around these

results cannot be independent of the actual top words of each topic.

5.1.3.2 Clustering metrics

Regarding the clustering metrics in the modeling space, we start with the ones which are to

a degree agnostic to the problem domain, in this case, how well the projected documents can

be clustered in the latent space, and which is the most adequate number of clusters for the
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samples. In this experimental setup, in which we are dealing with the fragmented short-text

documents (around 20 tokens per document), the typical document projection is composed of

a highly weighted dimension and the remaining with infinitesimal values. This is so because,

most of the times, in such a short amount of words, semantically speaking, only one concept is

being discussed. Given this characteristic, we expect to obtain the best clustering for a model

with the number of clusters equal to the number of extracted topics. However, we do not

expect to obtain a perfect clustering, as if all projected documents we restricted to a specific

dimension by groups. Indeed, some documents may have higher weights on more than one

topic. Thus, we look at the Silhouette Coefficient of each sample, defined by Eq. (5.2), in each

topic model, for the number of clusters equal to the number of topics. This metric determines as

a well-defined cluster that which has all points well-distanced from the next nearest cluster, and

the mean distance between all points of that cluster is minimal, where a is the mean distance

between a sample and all other samples in the same cluster, and b is the mean distance between

that sample and all other samples in the next nearest cluster. This evaluation will give us

insights as to how distributed are the samples across the clusters, and how adequate each

sample is to the assigned cluster.

s =
b− a

max(a, b)
(5.2)

To conclude on the best model for our data, we also have to look at what is actually as-

signed to each cluster, and thus need to define a qualitative cluster evaluation, which is domain

dependent. In our case, the interview design is such that each question should elicit specific

thought processes on the answers, which, therefore, should be focused on specific semantical

aspects. If the documents answering to a given question should share a similar, specific dis-

tribution of topics, then we should observe each cluster to have a distribution of documents

over a very small number of questions (because different questions should resolve into differ-

ent topic mixtures). In order to assess this statement, we define matrix M , of dimensions c× q,

where c is the number of clusters, and q is the number of questions (fixed at 7). Each entry Mij

is defined as the percentage of documents in cluster i which are answers to question j, such

that each row Mi sums to 1. We also define a threshold value β ∈ [0, 1] such that if Mij < β,

then Mij = 0. We use this value to discard residual values which do not provide statistically

relevant information. We define as the most interpretable clustering model that which has the
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most sparse matrix M , specifically, that which maximizes Eq. (5.3), for a given value of β.

sparsity(M,β) =

∑c
i |{j ∈Mi : j = 0}|

c
(5.3)

After this evaluation we obtain a topic space on which to characterize the patients. Be-

cause the topic space is obtained through the fragmented dataset, the notion of a patient topic

projection may be recovered by aggregating the corresponding projected fragments.

5.2 Characterization

The previous sections defined how to extract and evaluate the semantic structures associated

with each description of pain, by means of topic modeling. In this section, we define the

methodology to visualize and discuss these structures on the latent semantic space, in order

to compare patients, identify groups, and correlate with demographic and clinical parameters.

We perform this characterization following three approaches. First, we look at the pro-

jected population as a whole, and characterize it. This includes the interpretation and labeling

of the extracted topics and topic importance mixtures, and the identification of the most com-

mon and important topics and words. Second, we split the population into groups of similar

topic distributions, which represent the different types of experiences of pain, and characterize

them independently. This encompasses all evaluations performed in the first step, and further

correlation with demographic and clinical parameters, specifically regarding their distributions

in these similarity-defined groups. This allows us to associate types of experiences of pain, ac-

cording to their descriptions, to specific ranges or values of objective parameters. For the third

step, we split the population into groups defined by the demographic and clinical parameters,

and perform the previous analysis in these groups independently. This allows us to associate

values or ranges of demographic and clinical parameters with aspects of experiences of pain.

The following sections describe in greater detail how each of these steps is carried out and

which evaluations are performed. All steps assume a matrix projection T of f fragments on the

topic space (f×k), as determined by one of the topic models in Table 5.2, and the corresponding

distributions of weights over the vocabulary for each topic. Matrix T may be aggregated by

various parameters, but, most importantly, by patient, obtaining a topic mixture for each.
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5.2.1 Overall population

We start by interpreting the topic space by assigning a label to each topic, so that it is more

concrete and easier to discuss. This is performed by interpreting the top 10 most weighted

words of each topic. The topics may now be referenced by label and represent the whole con-

cept associated with that label. Topic interpretation depends on context. These assigned labels

are validated by aggregating matrix T by question (7 × k), which results in the mean mixture

of topics by question, representing the average answer to each. Because each question in the

interview focuses on a specific aspect of the experience of pain, this analysis also allows us to

understand exactly how complex each aspect is to the patients, and which semantical topics it

encompasses. Additionally, we can also determine the success of the interview in terms of its

answers, and judge if the obtained descriptions of pain match the intention of the design.

The second analysis focuses on topic importance distribution. We want to determine how

the importance of any given topic varies in the population, which have the highest and lowest

importances, and which are discussed by more and less patients. To obtain this in terms of

patients, we aggregate matrix T by patient (n× k, where n = 94 patients).

Finally, considering that each projected patient is defined by its top N ≤ k most weighted

topics, we define topic co-occurrence in a collection of projected patients the co-occurrence of

these top N topics in that set. Topic co-occurrence dictates how correlated are the topics in a

set of patients, and provides insights as to how the description of the experience of pain flows

between the aspects or concepts that they represent.

5.2.2 Topic similarity clusters

This analysis is based on the premise that similar descriptions in the topic space relate to similar

experiences of pain, such that each of these similar groups represents a type of experience.

We also raise the hypothesis that these types of experiences are correlated with demographic

and/or clinical parameters.

Given the projection matrix T aggregated by patient (n × k), we start by assigning cluster

labels to each patient, so that we obtain groups of similar patient descriptions, based on topic

mixtures. The number of clusters is determined based on the clustering model inertia value,

the Calinski-Harabasz index, the Silhouette Coefficient, and Davies score, because there is no
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obvious arrangement of the patients in groups, and these metrics provide insights on their

stowage. Once the patients are arranged in groups, we perform an ad hoc interpretation of the

obtained clusters by observing their mean topic mixture and variance, so that we may, first,

validate their grouping, and second, interpret the different types of experiences of pain. To this

end, we apply the same steps of analysis as for the whole population, but by cluster.

Finally, for each type of experience we analyze the distribution of demographic and clinical

parameters, so that we can try to correlate semantic structures of descriptions of pain with

values or ranges of objective parameters. This is not independent of the distribution of patients

per parameter. In Tables A.1 and A.2 and Figure A.2 are presented these distributions (category

values with a dash refer to patients that did not disclose such information).

5.2.3 Demographic and clinical clusters

In this final step of the characterization, we raise the hypothesis that certain characteristics of

the patients under study influence their experiences of pain, specifically in terms of the mixture

of topics of their descriptions.

We define groups of patients according to demographic and clinical parameters, and ob-

serve the descriptions of pain of these groups, in the topic space. The demographic parameters

that we consider are sex, age, education level, and whether the patient is professionally active

or not. The clinical parameters that we consider are pathology, pain intensity, duration of the

disease, ESR, and RCP. We apply the same steps of analysis as for the whole population, but by

group of patients as given by these parameters.

5.3 Results and discussion

In this section we present and discuss the results associated with the evaluation of the experi-

mental setup of the characterization of the population. The goal is to decide on the best topic

modeling of the fragmented data, aggregate it by patient, and use it for characterization. We

start by defining the model parameters and then discuss the evaluation results, for both topic

modeling and characterization.
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5.3.1 Topic modeling

Figure 5.2: Mean percentage of tokens in the vocabulary considered sufficiently similar to any
other token as the parameter α increases. The horizontal dashed line represents the 1% mark,
which, for our limited vocabulary, translates to roughly 5 words.

The LDA model parameters are those defined as default in the Sci-Kit Learn package

(Pedregosa et al., 2011). The NMF model, also from the same package, is set to initialize the

procedure with random factoring matrices, and use the coordinate descent solver. The SeaNMF

model implementation is the one provided by the authors and the parameters are those defined

as default. Finally, since there was no public implementation of the CluWords model provided

by the authors, at the time of writing, it was implemented specifically for this study. As de-

scribed in the original paper, when the CluWords α parameter is set to 0, the whole vocabulary

is considered sufficiently similar to any other term, softening the TF-IDF (CluWords) counts

to the maximum and possibly diluting important information in the whole vocabulary. Con-

versely, when α = 1, only a single token is considered sufficiently similar (the token itself),

replicating the behavior of the original TF-IDF method. However, the rate of drop in percent-

age of similar terms, as α grows from 0 to 1, is dependent on the richness of the vocabulary

and the meaning of the word-embeddings derived from the external model. This rate can be

seen in Figure 5.2, for our vocabulary, regarding the FastText and the BERT word-embedding

models. Observing this figure, we conclude that, for the BERT word-embedding model, 100%

of our vocabulary scores more than 0.65 on the cosine similarity distance metric (vertical line,
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where α = 0.65). This can be explained by the fact that the BERT model already incorporates

contextual information, restricting our vocabulary terms to a specific region in space, which in

turn translates to very similar vectors. This is also evidenced by the steep drop observed when

α gets closer to 1. On the other hand, for the FastText model, even though we also observe a

steep drop, it occurs much behind and more smoothly, hinting that the vocabulary is better dis-

tributed on this word-embedding space. Table 5.3 reveals the top 5 words with higher cosine

similarity scores for two random samples of tokens in the vocabulary, and their corresponding

score. For the following experiences, we fix α = 0.55 for the FastText model, and α = 0.98 for

the BERT model, so that, on average, the TF-IDF (CluWords) counts are smoothed over 1% of

the vocabulary, with either model (which, for our vocabulary, roughly translates to 5 words).

FastText BERT
cansaço aguentar cansaço aguentar

desconforto (0.65)
cansar (0.63)

sensação (0.59)
cansado (0.58)
inchaço (0.58)

cansar (0.61)
suportar (0.59)

incomodar (0.57)
esperar (0.57)
parar (0.57)

cansar (0.95)
cansado (0.95)

desconforto (0.95)
ardor (0.94)

inchaço (0.93)

segurar (0.94)
avançar (0.94)

doer (0.94)
apanhar (0.93)

moer (0.92)

Table 5.3: Top 5 words with higher cosine similarity scores for a random sample of tokens in
the vocabulary, and their corresponding score. Note that with the proposed thresholds of α
only a select few of these words would be used.

5.3.1.1 Interpretability

Figure 5.3: PPMI score of each model, over a range of topics, on the dataset vocabulary.

The PPMI score assigns a higher score to topic models which extract more coherent top-

ics, where coherence is defined as most weighted words that most commonly co-occur in the

collection of documents. Figure 5.3 plots the scores for all models, across a wide range of
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Topic Top 10 words

0 braço, perna, trabalho, joelho, andar, casa, difı́cil, posição, conseguir, anca

1 mau, dia, poder, sempre, manter, afetar, começar, resto, hora, noite

2 começar, movimento, andar, articulação, rigidez, hora, corpo, constante, provocar, menos

3 melhorar, tratamento, doença, tomar, medicação, tempo, passar, grande, querer, conseguir

4 pensar, esperar, evoluir, ver, origem, medicação, ideia, andar, problema, ano

5 andar, joelho, sempre, pouco, costa, profissional, emocional, pé, trabalho, dia

6 mal, costa, doer, tempo, chegar, profissional, altura, começar, pescoço, conseguir

7 dia, medicação, tomar, mau, doer, sempre, sensação, piorar, continuar, andar

8 afetar, sempre, poder, doença, dia, normal, andar, querer, gente, entender

9 levantar, poder, explicar, artrite reumatóide, mexer, conseguir, origem, pé, dia, noite

10 querer, conseguir, poder, mexer, andar, mão, gente, melhorar, braço, parar

11 mão, joelho, pé, doer, anca, articulação, bastante, ombro, pulso, osso

(a) LDA
Topic Top 10 words

0 doer, dia, mal, depender, começar, igual, esforço, conseguir, noite, passar

1 origem, doença, osso, ideia, artrite reumatóide, problema, reumatismo, perceber, explicar, mı́nimo

2 bastante, lepicortinolo, vida, profissional, de vez em quando, trabalhar, levar, chegar, altura, relação

3 pensar, costa, continuar, problema, artrite, pouco, evoluir, igual, sei, nı́vel

4 afetar, poder, trabalho, casa, trabalhar, profissional, normal, amanhã, fı́sico, explicar

5 medicação, tomar, sempre, continuar, tempo, deixar, melhora, n vezes, desaparecer, suspender

6 mão, articulação, ombro, joelho, fechar, problema, conseguir, pé, mal, força

7 querer, conseguir, gente, mexer, braço, corpo, sempre, emocional, para trás, parar

8 andar, mau, estar, ver, perna, custar, piorar, trabalho, sempre, conseguir

9 melhorar, tratamento, piorar, grande, começar, medicamento, resultar, deus, ver, verdade

10 esperar, evoluir, manter, continuar, mau, ideia, tempo, estável, ver, depender

11 joelho, pé, anca, ombro, pulso, cotovelo, articulação, corpo, dedo, costa

(b) NMF
Topic Top 10 words

0 pessoal, tentar, ultrapassar, profissional, nı́vel, aspeto, pessoa, causar, influenciar, resto

1 mão, pé, joelho, doer, braço, pescoço, perna, articulação, parecer, fechar

2 leve, lidar, pedir, tarefa, executar, pesado, colega, trabalho, sair, gerir

3 possı́vel, forma, nada, limitado, de lado, saúde, estável, gostar, manter, esperar

4 chuva, mudança, descrever, nevoeiro, partir, na totalidade, saı́da, nervoso, apanhar, desculpar

5 presumir, muscular, análise, especial, intermédio, conversa, melhora, surto, praticamente, comum

6 palavra, fixar, frente, temporada, vacina, cheio, subir, escada, crise, acabar

7 impossı́vel, janeiro, desconforto, recorrer, aos bocados, cortar, supermercado, tocar, picar, secretário

8 impressionante, artrite, arrastar, momentâneo, artrite reumatóide, quente, incapacitante, fraco, tempo quente, ponto

9 assinar, repetitivo, intensidade, ontem, aumentar, a seguir, diferença, demorar, almoço, cortisona

10 esposo, metro, de um lado para o outro, diminuir, estacionamento, fundo, carro, sofrer, a pé, caminhada

11 valongo, hospital, conta, encontrar, horrı́vel, médico, mandar, boca, ui, cama

(c) SeaNMF
Topic Top 10 words

0 começar, parar, esperar, voltar, demorar, acontecer, continuar, acabar, sair, aguentar

1 medicamento, tratamento, medicação, metotrexato, fisioterapia, reumático, pomada, reumatismo, cortisona, tomar

2 perna, ombro, joelho, dedo, cotovelo, tornozelo, pescoço, tendão, mão, punho

3 conseguir, pegar, tirar, tentar, chegar, voltar, encontrar, falhar, perder, ajudar

4 afetar, causar, provocar, depender, resultar, influenciar, alterar, controlar, diminuir, aumentar

5 artrite, doença, artrite reumatóide, inflamação, pericardite, reumatismo, infeção, reumático, medicação, inflamatório

6
de um lado para o outro, de vez em quando, de um momento para o outro, de cada vez, para sempre, para trás, trabalho de casa, dia de amanhã, ter a
ver, de repente

7 bastante, menos, pouco, mı́nimo, mau, quase, praticamente, totalmente, ideia, mal

8 querer, chatear, cansar, apetecer, pensar, esquecer, esforçar, incomodar, gostar, tentar

9 entender, perceber, explicar, perguntar, presumir, responder, pensar, desculpar, falar, considerar

10 melhorar, melhora, melhoria, diminuir, aumentar, ajudar, alterar, esforçar, piorar, agravar

11 osso, músculo, ilı́aco, ósseo, pescoço, cervical, costa, lombar, origem, muscular

(d) CluWords (FastText)
Topic Top 10 words

0 perceber, conseguir, levar, acontecer, aparecer, levantar, nomeadamente, considerar, envolver, influenciar

1 enorme, comum, igual, cheio, pegar, adaptar, bastante, julgar, junto, entretanto

2 osso, perna, peito, dedo, correr, cheio, braço, doer, andar, prender

3 querer, ligeiramente, ultrapassar, cair, suportar, sar, frequente, controlar, pedir, parar

4 mau, mal, dia, andar, costa, estar, querer, para trás, menos, tentar

5 medicação, tomar, dia, sempre, continuar, doer, andar, poder, começar, normal

6 joelho, ombro, pé, anca, cotovelo, pulso, punho, apanhar, constante, alto

7 esperar, evoluir, continuar, manter, aumentar, tentar, pensar, ver, estável, desejo

8 forte, intenso, leve, umar, muitar, algumar, tenhar, raro, ligeiramente, essar

9 mão, articulação, doer, pé, costa, problema, fechar, principal, horrı́vel, punho

10 melhorar, melhora, alterar, mudar, tratamento, piorar, grande, para já, deus, comar

11 origem, doença, ideia, artrite reumatóide, pensar, costa, mı́nimo, reumatismo, problema, anca

(e) CluWords (BERT)

Table 5.4: Extracted topics by each model with hand-assigned labels.



5.3. RESULTS AND DISCUSSION 55

Figure 5.4: Modularity of each model’s extracted topic, presented in tables 5.4. Defined as the
number of words in a topic (given its top t = 10 most weighted) that are unique to that topic
for all other topics extracted by the model. Mean model modularity is also shown in blue.

topics, which also allows us to validate our choice of the number of extracted topics. We ob-

serve a clear distinction between SeaNMF and all other models. This model looks at word

co-occurrence in the collection and extracts word and context vectors for each term in the vo-

cabulary. In practical terms, it promotes to belonging to the same topic terms that frequently

share similar contexts, even if they never co-occur in the collection. This type of contextual

information is designed to overcome the limitations of short-text documents, specifically those

carried to the baseline BoW or TF-IDF representations. Although there is a limited amount of

samples, the extracted contextual vectors seem to allow for a superior topic coherence. On the

other hand, CluWords, with either FastText or BERT, does not seem to outperform the base-

line LDA and NMF models, as suggested by the literature. This limitation can be attributed

to domain adaptability concerns, which are highlighted in our context by the highly contex-

tual meaning of the words employed by the patients when describing a personal experience,

often resorting to linguistic tools such as analogies or metaphors, and the poor variety of the

vocabulary. If synonyms or words describing similar concepts are not employed, the TF-IDF

smoothing done by CluWords is rendered practically ineffective. We also observe a marginally
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lower score for CluWords with contextual word-embeddings provided by BERT. This is ex-

pected, following the previous discussion on the cosine similarity of the vocabulary on both of

the word-embedding spaces.

Regarding the number of topics to extract, we focus on values higher than 7 (the number of

questions in the interview). Analyzing the interview structure, and having in mind the actual

answers given by patients, we conclude that a few questions did not elicit the development of

other cognitive aspects other than the question itself (e.g. questions 1, 5, and 7). The remaining

questions have varied thought elaborations. Given these statements, we decide on fixing the

extraction to k = 12 topics, and should thus be considered the baseline from hereon. Observing

the top t = 10 words for each extracted topic by each model in Table 5.4, we make the following

observations. Starting with the baseline models, we conclude that the top words defining the

NMF topics allow for a slightly easier interpretation than those of LDA, even though their cor-

responding PPMI scores are practically identical (indeed, NMF is marginally superior). Nev-

ertheless, both topic models are still hard to interpret. Observing CluWords (FastText) topics,

it becomes dramatically easier to interpret. Indeed, some seem to relate to concrete concepts,

such as pain location, intensity, and treatment. However, again, this model is indistinguishable

from the baselines and CluWords (BERT), according to the PPMI score. SeaNMF, on the other

hand, which has the greatest coherence score, seems to be extremely overfit to the collection,

with very hard to interpret topics. In Figure 5.4 is shown the modularity of each model. In this

case, as previously defined, topic modularity is given by the number of words in the set of most

weighted words of a topic that are unique to that topic (for a model extracting k topics). This

metric corroborates the topic interpretation that was previously discussed, because a model

with more modular topics may have more well-defined concepts represented by the topics.

These observations, together with the distribution of vocabulary probabilities in Figure 5.1,

allow us to determine that a probability-based evaluation of topic coherence is inadequate for

our collection. First, the number of samples, even though extended through fragmentation, is

very limited, and, second, the vocabulary is extremely poor, with most words having a very low

probability of occurring in the collection. Additionally, we conclude that SeaNMF is capable

of having higher PPMI scores simply by selecting for each topic words that commonly share

the same context (in this case, the context window is each document), producing semantically

inferior topics.
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5.3.1.2 Clustering

Figure 5.5: Silhouette of each model, for 12 clusters (equal to the number of topics). Represents
the silhouette score assigned to each sample.

Fixing the number of clusters to equal the number of topics, we can observe the concrete

silhouettes of each model in Figure 5.5. Observing the silhouette rather than simply its mean

value gives us a clear understanding of the distribution of samples in space and in relation

to the assigned clusters, so that we can better assess how well the projected documents are

grouped in the topic space. The silhouette of the LDA model represents the ideal silhouette

of a quality clustering of samples in a given space: the samples are evenly distributed across

the clusters, there are no significant differences in the silhouette scores of a cluster’s samples,

all scores are well above zero (meaning cluster samples are well separated from other clusters),

and there are no negative values (which imply wrong cluster assignments of the corresponding

samples). Due to the statistical inference nature of LDA, the lack of instances (documents), and

their short length nature, the documents are practically projected onto single dimensions on

the LDA topic space, which results in an almost perfect clustering. All other models have a far

worse silhouette for this number of clusters and topics. Even though the SeaNMF model has

the highest topic coherence score, its silhouette indicates that the majority of the documents
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Figure 5.6: Matrix M for each topic model, of dimensions c× q ,where c = 12 is the number of
clusters, and q = 7 is the number of questions. Threshold value β = 0.1. Inferior right corned
is the sparsity score of the clustering over the topic space of each model, as given by Eq. (5.3).

are put into the same cluster (and, indeed, some of these have scores close to zero), or are

poorly assigned to poorly-defined clusters (specifically observing cluster 0, with almost half of

negative scores). For the remaining models, both CluWords models have higher mean scores

than the baseline NMF. After all, CluWords builds on top of the TF-IDF representation, relying

on the same NMF model parameters and implementation to factorize the representation matrix,

albeit slightly more informative.

Finally, the sparsity score, specifically designed for our dataset and data collection protocol,

allows us to get a high-level understanding of the contents of the created clusters on the topic

space, in relation to the design of the interview. The results for each model can be observed

in Figure 5.6, with the corresponding distribution matrix. This score is designed to express

how well discriminated are the documents regarding their topics and question distribution.
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Naturally, since LDA is a generative model, rather than discriminative, its score is expected

and observed to be inferior than factorization-based approaches. By smoothing the TF-IDF

counts with semantical information from external word-embedding spaces, CluWords is also

expected to have a poor discrimination, albeit with more coherent topics than LDA. On the

other hand, NMF is designed to discriminate, and that can be observed by the increased score

when compared with the previous 3 models. Finally, the SeaNMF model exhibits the highest

sparsity score, however, connecting with its silhouette in Figure 5.5, we quickly conclude that

it is an artifact due to the poor distribution of samples per cluster (which the designed sparsity

metric does not account for).

According to the previous observations and discussion, we discard the LDA topic space,

because the extracted topics are hard to interpret, their corresponding most weighted words are

highly shared among them, and we conclude that the almost perfect clustering of fragments in

the topic space has the least relation to the interview scheme, which suggests that the obtained

topic mixtures are less meaningful in this context than the remaining. We discard the SeaNMF

topic space, as it is shown to be considerably overfit, with apparently meaningless topics, ac-

cording to their most weighted words. The remaining models are all based on the same NMF

model implementation and parameters, albeit on top of slightly different vocabulary-based rep-

resentations of the fragment collection. Based on the observed results, we decide that the topic

space given by CluWords (FastText) should be used to further characterize the population.

5.3.2 Characterization

In this section we present and discuss the results associated with the characterization of the

population on the latent semantic space, obtained via topic modeling, as defined by the results

and discussion of the previous section. In this case, it is the one extracted by CluWords (Fast-

Text), with k = 12 topics, presented before, repeated here with additional labels in Table 5.5.

A topic is a distribution of weights over the vocabulary employed by the patients. The top

most weighted words of each topic are the ones most commonly used in similar contexts by

the patients, and, thus, are expected to relate to some concept being discussed in said contexts.

This concept is not necessarily concrete nor comprehensive, and may be context dependent.

Therefore, assigning a label to a topic is both a difficult and a somewhat biased task (this may be

attenuated by having a third party perform the task, without providing information regarding
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Topic Top 10 words Label

0
começar, parar, esperar, voltar, demorar, acontecer, continuar, acabar, sair,
aguentar Activity

1
medicamento, tratamento, medicação, metotrexato, fisioterapia, reumático, po-
mada, reumatismo, cortisona, tomar Treatment

2 perna, ombro, joelho, dedo, cotovelo, tornozelo, pescoço, tendão, mão, punho Specific locations
3 conseguir, pegar, tirar, tentar, chegar, voltar, encontrar, falhar, perder, ajudar Actions

4
afetar, causar, provocar, depender, resultar, influenciar, alterar, controlar,
diminuir, aumentar Impacts (1)

5
artrite, doença, artrite reumatóide, inflamação, pericardite, reumatismo,
infeção, reumático, medicação, inflamatório Causes

6
de um lado para o outro, de vez em quando, de um momento para o outro, de
cada vez, para sempre, para trás, trabalho de casa, dia de amanhã, ter a ver, de
repente

Time intervals

7
bastante, menos, pouco, mı́nimo, mau, quase, praticamente, totalmente, ideia,
mal Intensity

8
querer, chatear, cansar, apetecer, pensar, esquecer, esforçar, incomodar, gostar,
tentar Impacts (2)

9
entender, perceber, explicar, perguntar, presumir, responder, pensar, desculpar,
falar, considerar Reflections

10
melhorar, melhora, melhoria, diminuir, aumentar, ajudar, alterar, esforçar, pio-
rar, agravar Evolution

11 osso, músculo, ilı́aco, ósseo, pescoço, cervical, costa, lombar, origem, muscular Generic locations

Table 5.5: CluWords(FastText) with topic labels.

the source of the data), which can introduce errors and questionable expectations. Having this

in mind, and because each question in the interview aims at specific aspects of the experience

of pain, using only the top 10 most weighted words of each topic, we interpret and associate

a label reminiscent of the questions in the interview script. Some topics are more concrete

and easier to interpret: treatment, specific locations, impacts (1, 2), time intervals, evolution,

and generic locations. Others were associated with the aspects in the interview that are most

related: activity, actions, causes, intensity, and reflections.

There are two important remarks regarding the assigned labels. First, each label is asso-

ciated with an idea or concept that is more embracing than the top 10 words that suggested

it in the first place. Because, from hereon, topics will be referenced by label, the top words

should be referenced when making any statements related to the underlying semantics of de-

scriptions of experiences of pain. Second, regarding the topics that apparently relate to the

same idea, specific and generic locations, and impacts (1) and (2): the fact that these were ex-

tracted into separate topics tells us that their corresponding words were commonly used in

different contexts, either because the semantical structures used to reference each sub-concept

are different (e.g. specific versus generic locations of pain may be referenced differently due to
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their specificity nature), or because they relate to actually different concepts and were poorly

interpreted. This matter may be assessed by understanding the contexts in which each topic,

or sub-concept, is used.

5.3.2.1 Overall population

Each question in the interview aims at specific aspects of the experience of pain, which are

self-explanatory. By aggregating the topic importance by question, we can both understand in

which context each topic is being used, and attempt to explain each aspect of the experience

of pain not by its theoretical attributes, but rather by the observed mixture of topics (assum-

ing the patient answers are related to the questions). The results are shown in Figure 5.7. We

start by observing the context in which each topic is used, specifically those that apparently

relate to similar concepts, or sub-concepts. There are only two contexts in which the generic

locations topic is used, when listing locations on the body that hurt (Q1) and when reflecting

on the causes of pain (Q5), both with similar percentage of importance, however with great

difference regarding the importance of specific locations. This observation tells us that, first,

there are indeed references to vague locations on the body that hurt, which may be associated

to groups of patients with similar unspecified outlooks on the pain or with specific pathologies

that manifest differently in terms of location, and, second, that some people associate cause of

pain with source of pain (the wording of question 5 may also have influenced some of the an-

swers). The topics of impacts (1,2) are apparently used interchangeably throughout the whole

interview, which makes it hard to reason on their distinction without further exploration.

Finally, we use this figure to try to explain each aspect of the experience of pain by the

observed mixture of topics. The location of pain (Q1) suggests being a listing of the locations of

the body that hurt. Pain sensation attributes (Q2) are described in many different dimensions,

with special attention to location and limiting actions. Pain intensity (Q3) is described in terms

of pain activity rather than intensity alone, heavily conditioned by treatment, even though it

wasn’t suggested in the scripted question. The impacts on the daily life (Q4) are, expectedly,

described in terms of the limiting factors, as well as attributes of time. The causes of pain

(Q5) are associated with holistic reasoning, reflections, and actual bodily sources of pain. The

evolution of pain conditioned by the treatment (Q6) is, expectedly, heavily focused on the treat-

ment. Finally, the expectations of evolution of pain (Q7) are described in terms of pain activity
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and treatment. With these observations we conclude that an experience of pain encompasses

many different aspects, with each aspect being a mixture of ideas, which further highlights the

difficulty of interpretation of our data.

In Figure 5.8a we can observe the distribution of importance of each topic in the popula-

tion. This observation allows us to understand exactly how important each topic is, and where

the majority of the population lies in each topic. If all topics were equally important, or, in

other words, none was especially important, each topic would have an importance of around

8%. For our population, we observe three distinct groups of topics, regarding their distribution

of importance over the population. The first three topics present a wide distribution, with the

largest variance and median values, and only a slight skewness to the right. The following six

topics display tighter distributions, with the median value close to that of a uniform distribu-

tion, and a heavier skewness. The final three topics, on the other hand, are completely skewed

to the right, with median values close to 0% and the third quartile lower than the 8% mark.

We also observe that no topic ever has more than 50% importance to a patient in the collection,

which adds to the idea that an experience of pain is rarely uni-dimensional.

The aspects tackled by each question are transversal to every experience of pain, and are

incentivised to be discussed in the interview. However, the relevance of each of these aspects to

each patient, and, thus, encompassing semantical topics, is what shapes their perception of the

experience and the description. In Figure 5.8b is plotted, for each topic, the mean importance

given by the population, or, in other words, the population’s mean mixture of topics, represent-

ing what, in general, is more and less important for a patient in our population describing an

experience of pain. We define that a topic is relevant for a patient if its weight is more than 8%

of the total patient mixture weights. We can observe a clear elbow for this value of importance

in both previous figures, distinguishing the topics of treatment, activity, and specific locations

from the remaining.

To explain these differences in importance, we raise the following two hypothesis: (1) the

design of the interview is such that the three first topics are more incentivised to be discussed

than the remaining, artificially suggesting that these are more relevant than the others, and

vice-versa, and (2) all aspects of the experience were equally incentivised by the interview de-

sign, but some are simply more commonly relevant, and patients discuss them even when not

prompted. We refute the first hypothesis by noting that there is exactly one question which
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Figure 5.7: Mean topic mixture by question, in percentage. Filtered out importances lower than
8%, for ease of interpretation.
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(a) Boxplot of topic importance. (b) Mean topic mixture.

Figure 5.8: Topic importance metrics for the whole population. Importance values are given as
a percentage.

prompts the treatment impacts and another that relates to evolution or expectations regarding

future developments of pain. However, the treatment topic is relevant for more than half of the

population, whilst the evolution topic is marginally relevant. On the other hand, and by refer-

ring back to Figure 5.7, we notice that, even though the locations of pain are only prompted

once, the corresponding topic is present in the answers of many other questions. The same ap-

plies to the treatment topic. This evidence suggests that, for our population, there are aspects of

the experience that patients are more commonly inclined to discuss, some without prompting.

In Figure 5.9, we observe the co-occurrence of top 5 most weighted topics of each patient.

This allows us to determine which aspects of the experience of pain are commonly discussed

together, as if it were a simplistic representation of the train of thought for describing pain. Be-

cause our observation is based on the most weighted topics of each patient, and given that a few

are overwhelmingly more weighted than others, the observed co-occurrence heat-map with fo-

cus on the first 3 topics is expected. According to this evaluation, the most co-occurring topic

is activity, especially with the topics of specific locations and treatment. Expectedly, according

to our metric, the topic that least co-occurs is the one which most patients (third quartile) find

irrelevant, the generic locations topic.
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Figure 5.9: Topic co-occurrence in the whole population (top 5).

5.3.2.2 Topic similarity clusters

We now define groups of patients that describe their experiences of pain similarly in terms of

mixtures of topics. We associate each of these groups with a type of experience, based on the

mixture of the cluster, and search for correlations with demographic and clinical parameters.

In the previous section, by analyzing the whole population in the topic space, we deter-

mined that the mean mixture of topics mainly focuses on a select few topics, with most topics

displaying a very tight distribution. By observing the topic distribution of weights over the

population, we assessed that the topics of activity, specific locations, and treatment showed

more weight variance than the remaining. This means that if we were to project the patients

along those dimensions only, we would be able to better distinguish them into groups than

if we considered any other dimension, because, in that case, the patients would be clustered

together around the same weight (as observed in the distribution plot). For these reasons, we

decide to use these specific topic dimensions to find clusters of patients, in this case with the

K-Means clustering model (Hartigan & Wong, 1979).

In Figure 5.10 we can observe the values of inertia, Silhouette Coefficient, Calinski index,

and Davies score, across a range of clusters, for this model. We evaluate all these scores because

there is no obvious arrangement of patients in well-defined clusters. The inertia value indicates
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the sum of squared distances of samples to their closest cluster center. The optimal score is

zero. However, as the number of clusters approaches the number of samples, the total sum of

distances gets closer to zero, by definition, because in the limit case every sample is its own

cluster center. Thus, the ideal number of clusters is obtained not by minimizing the inertia,

but by identifying an elbow in the inertia plot, indicating that from that point on, increasing

the number of clusters does not result in significant gain in terms of sum of distances. The

silhouette score plotted in this figure refers to the mean silhouette of all samples in the dataset,

which is calculated as defined before in Eq. (5.2). The optimal silhouette score is obtained when

a = 0, or in other words, when all samples of every cluster fall in the corresponding cluster

center. Thus, the closer the silhouette score is to one, the better organized are the samples

per cluster. The Calinski score assigns a greater score to dense and well separated clusters,

by taking into consideration the ratio of the sum of between-clusters dispersion and of inter-

cluster dispersion, for every cluster. In this case, dispersion is measured as the sum of distances

squared. Finally, the Davies score is defined as the average similarity between each cluster and

its most similar, in such a way that a score closer to zero relates to better separated, dense

clusters. All of these metrics favor convex, isotropic clusters, because they are largely based on

cluster density, mean distances to centroids and centroid separation. Given these metric plots,

we decide to cluster the patients in 7 groups, because it is both a local minimum in the Davies

score and a local maximum in the Silhouette, suggesting that this number of clusters finds an

adequate arrangement of patients into somewhat dense and well-separated clusters.

Figure 5.10: Projected documents clustering metrics for a varying number of clusters.
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The corresponding projections with PCA and t-SNE (Maaten & Hinton, 2008) can be ob-

served in Figure 5.11. Because the PCA projection tries to explain the distribution of samples

in terms of feature variance, maintaining the global structure in sacrifice of sample neighbor-

hood, when the PCA plotted clusters are clearly separated, in general, it can be taken as solid

grounds for justifying and explaining said clusters, however, because we are dealing with high-

dimensionality data, the groups may be clearly separated in a high-dimensional space and be

plotted one over the other in PCA-dimensions, possibly resulting in overlap as can be observed.

The t-SNE projection is plotted in parallel, to assess the overlaps observed in the PCA projec-

tion. The t-SNE projection tries to preserve sample neighborhood in high-dimensionality in a

lower-dimensionality, and, thus, can obtain a more informative view of the clusters behavior

in high-dimensionality. With these plots, we observe that some clusters are clearly separated

from the rest, whilst others have considerable dispersion. This is an expected observation from

the metrics discussed before. Overall, we conclude that this is an adequate arrangement of

patients in clusters, according to their projections in the topic space.

(a) PCA projection (b) t-SNE projection

Figure 5.11: Projected documents on a 2D visualization, with color codes referring to the as-
signed cluster, for a total of 7 clusters.

Observing the mean topic mixture of each cluster, we can gain insights as to what each

might represent. This is shown in Figure 5.12. Because we are assuming the mean topic mix-

ture is representative of all samples in a cluster, the following discussions disregard Cluster 5,
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since the corresponding number of samples is very reduced (3 samples), and there is no obvious

separation of these clusters from the remaining in the projection plots in Figure 5.11. Indeed,

these samples could very well be outliers of other clusters. We observe that the mean mixtures

of our clusters are characterized by a high weight given to one or two topics and small weights

scattered across other select few topics (weights below 8% are filtered out). As expected from

previous results, the topics that are most commonly assigned high weights, and are used to

somewhat easily distinguish each cluster (with the exception of Cluster 4), are the ones that

presented more variance and patient counts, the topics of activity, treatment, and specific lo-

cations. Figure 5.13 shows the distribution of all topics in each cluster. Specifically focusing

on these three topics, we can observe that each cluster assigns a specific range of importance

to each, allowing for a clear distinction between these groups of patients in this section of the

topic space. This is an expected result, since the clustering was done considering only the

dimensions of these topics.

At this point we have obtained groups of patients that have similar descriptions of their

experiences of pain, as given by their mixtures of topics. Figure 5.14 shows the distribution

of the continuous parameters, specifically, age (demographic), duration of the disease, pain

intensity, ESR, and RCP (clinical), per cluster. We do not observe any significant difference

of distribution of any parameter in different clusters (again, disregarding Cluster 5 due to its

small size). In Figure 5.15, we can observe the distribution of the categorical parameters per

cluster, specifically, pathology (clinical), whether it’s an active person professionally, level of

education, and sex (demographic). Noticeably, most patients are diagnosed with either E or

AR, the majority has a primary level of education, and most are of the feminine gender. All

other parameter categories are residual and, thus, not comparable. Again, these observations

suggest that there is no correlation between the obtained types of experiences of pain, according

to their mixtures of topics, and these parameters.

5.3.2.3 Demographic and clinical clusters

In this section we group patients by values or ranges of demographic and clinical parameters,

as given by Tables A.1 and A.2, and Figure A.2. For each group of patients, we consider the

mean topic mixture to be representative of the patients in that group. We consider a group of

patients to have a specific experience of pain if its mean mixture of topics can be well differen-
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Figure 5.12: Mean topic mixture of each cluster of patients.
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Figure 5.13: Topic importance distribution by cluster.
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Figure 5.14: Distribution of continuous demographic and clinical parameters on each cluster of
patients.

Figure 5.15: Distribution of categorical parameters per cluster (rows sum to 1).
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tiated from the mean mixture of the whole population. The results for each group are shown

in Figure 5.16, as well as the mean mixture of the whole population, repeated here for ease

of discussion. The results of the parameters that did not show relevant results for discussion,

specifically, sex, duration of the disease, ESR, and RCP, were omitted. We can observe in this

figure that all groups of patients follow, in general, the mean mixture of topics of the whole

population, with a few notable exceptions.

Starting with clinical parameters, the group of patients diagnosed with Spondylitis (E) dif-

fers from the group diagnosed with Rheumatoid Arthritis (AR) mainly on the topics regarding

the locations of pain. This observation is not unexpected, since different pathologies may have

different manifestations of pain, including different and more or less specific locations. In this

case, we observe that for pathology E specific locations of pain are less important (as given

by the weight of the topic), than generic locations. The contrary observation can be made for

pathology AR. Between these pathologies, the other relevant differences lie on the topics of

causes and impacts (2). One possible interpretation is that because AR is associated with more

specific locations of pain, the corresponding patients can more easily associate a cause to the

pain then the remaining. A similar interpretation may be applied to the patients diagnosed

with E. Because this pathology is associated with more generic locations of pain, it may have

more impacts on the daily life of the corresponding patients than the remaining. Observing

now the groups of patients as given by the levels of self-reported intensity of pain, we make

the following remarks. The very similar mean topic mixtures of the groups with pain inten-

sity [0-25] and (25-50] suggest that these patients have similar experiences of pain, which does

not apply to the remaining levels of intensity. The group which reports the highest level of

intensity is clearly distinct from the others, showing a lot of emphasis on the specific locations,

actions, and time intervals of pain activity. However, this distinction can be associated with the

unbalancing of the groups.

Now focusing on the demographic parameters, we do not observe as notable differences

as with the clinical parameters. Indeed, the patients with ages comprised in (20-40] give less

importance to the causes, intensity, and specific locations of pain, although that may be corre-

lated with the group being mainly diagnosed with E, due to the higher importance given to

the generic locations, in comparison to the other groups. The patients with the lowest level of

education (Básico) show a much higher importance in the specific locations of pain then any
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other group, and the patients with the highest level of education display a similar behavior but

for the causes topic. This difference, however, may be associated with the unbalancing of the

groups. Finally, we observe that the patients who are not professionally active (retired or on

medical leave) are more focused on the impacts of pain than the ones who are active.

Figure 5.16: Mean topic mixture by group of patients, per clinical and demographic parameters.
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5.4 Summary

In this chapter we propose to project and characterize the population in a linguistic feature

space, in order to relate semantical aspects of descriptions of pain with intrinsic qualities and

extrinsic parameters. This is done in terms of topic mixtures.

We started by evaluating different topic models on the fragmented documents, so that the

most adequate topic space could be determined. In this discussion, we have observed that

both the limited amount of documents and their short-text characteristics do not allow for

coherent topic extraction of statistical inference-based models and simple word co-occurrence

based models, as evidenced by the behaviors of both baseline models, LDA, and NMF. We have

also observed that even though the extracted topics are highly coherent according to the PPMI

metric, the resulting SeaNMF topic space has a poor distribution of documents and displays

high overfitting. We have associated this behavior with the limited amount of documents. Fi-

nally, given the interpretability and clustering metrics, we conclude that topic modeling with

CluWords (FastText), after applying the preprocessing pipeline, produces the most adequate

overall representation of the collection of documents in the topic space, which is in agreement

with the increased value of using external semantic information to deal with short-text docu-

ments, and softening the sparsity of the vocabulary space, even though this is limited by the

richness of the vocabulary (which has been shown to be very limited).

Following this evaluation, we used the CluWords (FastText) topic space to characterize the

population, under three approaches. The overall population analysis laid the foundations for

further, finer analyses, with the identification of the topics which were more relevant for the

population, and that best differentiated the population. Then, groups of similar descriptions of

pain were identified, as defined by their mixtures of topics. We inferred the semantics associ-

ated with each of these groups as representing distinct types of experiences of pain, and found

no correlation with demographic and clinical parameters. Finally, we studied the hypothesis

that the different demographic and clinical parameters influence the perception, and conse-

quent description of the experience of pain. To this end, we split the population into groups as

given by these objective parameters, and evaluated the difference between these groups in the

topic space, according to their mean topic mixture. Relevant differences were identified and

discussed, although the majority displayed similar distributions.



6Prediction of Clinical

Parameters

In this chapter we raise the hypothesis that expressions of pain, specifically, verbal descriptions

of chronic pain experiences, convey potentially useful information to aid in the assessment of

clinical parameters of rheumatologic patients. This suggests that there is a direct relation be-

tween the linguistic manifestation of pain (a description of the experience) and the clinical

parameters of the corresponding patient. The methodology employed to study this hypothesis

is that of a prediction task, with features extracted directly from documents of pain descrip-

tions. The following sections describe the setup and evaluation associated with the extraction

and use of these linguistic features from the intrinsic semantical structures of the descriptions

of pain, based on the previous chapter that characterized the population in that domain.

6.1 Task definition

The task proposed in this chapter may be performed on any parameter. In this case, we are

interested in both the diagnosed pathology and the reported intensity of pain. Both of these

parameters are directly related with the experience of pain, even though the design of the inter-

view, which is the method used to collect descriptions of pain from patients, was not directly

designed for this task. The same set of features and evaluation is used for both parameters.

6.1.1 Pathology classification

Patients are distributed per pathology as presented in Table 6.1. Given the poor distribution

across all classes, this experimental setup is only concerned with P1 (Rheumatoid Arthritis)

and P2 (Spondylitis), so that the task is defined as binary classification.

P1 P2 P3 P4 P5 P6 Total
41 45 2 2 1 3 94

Table 6.1: Distribution of patients per pathology
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6.1.2 Pain intensity classification

Patients reported pain intensity through a VAS, as presented in the data collection form in

Figure 4.1. The used visual scale is of 100 mm, where the left endpoint represents 0% pain, and

the right endpoint represents 100% pain, which is the maximum pain ever experienced by that

patient. The collected data allows for a fine regression task, on a 0-100 scale of pain intensity,

or a more coarse task, by down-sampling the values to a 0-10 scale. However, at the time of

writing, the number of instances limits these possibilities. Therefore, we define a multi-class

classification task, by separating intensity values into four levels, as defined in Table 6.2. Given

as there are more patients that report less pain, the classes are very unbalanced, and this is

expected to skew the results.

[0-25] (25-50] (50-75] (75-100] Total
29 31 18 8 94

Table 6.2: Distribution of patients per level of pain intensity.

6.2 Feature extraction

To each patient is associated a collection of 7 documents corresponding to the transcription of

each question’s answer. The linguistic features for each document are extracted as described in

Chapter 5, and summarized in Table 6.3. The first 4 features are the baselines. The vocabulary-

based representations (BoW and TF-IDF) are introduced so that the gain in using topic model-

ing may be assessed. According to these features, each patient is associated with a group of 7

vectors, either of dimension V or k. In order to represent each patient with a single vector, the

following types of aggregation are considered, fragment, patient, and single question [1-7]. These

are explained in Table 6.4.

The fragment aggregation looks independently at each of the 7 documents belonging to a

patient, as if they were not semantically related. This way, both vocabulary and topic space rep-

resentations of the collection are completely different from the other aggregations, given that

there are more independent documents, and each is much shorter in length and semantically

focused on less topics.

The patient aggregation considers that each patient has a single, long, document (the result

of concatenating beforehand all 7 fragments for each patient). This means that both vocab-
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Features Dimensions
BoW D × V

TF-IDF D × V
LDA D × k
NMF D × k

SeaNMF D × k
CluWords (FastText) D × k

CluWords (BERT) D × k
BERT (doc2vec) D × k

Table 6.3: Considered types of features to extract from a document collection. D is the number
of documents in the collection, V is the size of the vocabulary, and k is the number of extracted
topics.

Identifier Aggregation method description

fragment The 7 vectors are aggregated by their mean value in
each dimension.

patient
The 7 documents are concatenated beforehand, re-
sulting in a single document per patient which is then
transformed into a vector by the methods above.

single question [1-7] Only one of the vectors is considered (corresponding
to a single question of the interview).

Table 6.4: Possible aggregations that represent each patient by a single vector.

ulary and topic extractions are now applied on only 94 documents (equal to the number of

patients), albeit richer and longer. However, given that the number of documents is so low

(compared against the original 656), there might a loss of information, especially regarding

word co-occurrence in documents and complex topic distributions. These problems could be

solved by increasing the number of patients, which cannot be done artificially. For these rea-

sons, the results associated with this type of aggregation are expected to be inferior to that of

the fragment aggregation.

Finally, the single question [1-7] aggregation presupposes that for the current task, the pa-

tient is sufficiently, and better, represented by a single question’s answer to the entire interview,

since there is much less noise and the text is semantically focused. In this case, the number of

documents is also reduced to the number of patients, however taking a big cut off the collec-

tion’s vocabulary. If, in fact, there are question’s answers in the interview which are prejudicial

to the prediction of the associated clinical parameter, or are simply irrelevant, diluting the use-

ful information in noise, this type of aggregation is expected to produce superior results.
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Finally, in order to understand the relevance of each question in the interview for the clin-

ical parameter classification task, all experiments are done in an ablative fashion. This way,

each experiment includes all possible permutations of the considered interview questions. The

motivation for this ablative approach is the intuition that certain questions in the interview

actually provide enough information for the parameter classification, and that the use of the

answers to certain questions can introduce noise, which may negatively affect the result.

6.3 Evaluation

Given the limited size of the dataset, it is not separated in training and test sets. Rather, the

evaluation is performed following the Leave-One-Out method, so that the result of each exper-

iment is the mean accuracy score of training on every subset of n−1 patients and predicting the

clinical parameter of the remaining. All experiments are evaluated according to their accuracy.

6.4 Results and discussion

Parameter Values
Text type [natural, lemma]

Stop-words [remove, not remove]
α-CluWords (FastText) 0.55
α-CluWords (BERT) 0.98
k (number of topics) 12

Table 6.5: Text parameters of the experiments.

Type of text Stop-words
Exp. 1 natural not remove
Exp. 2 natural remove
Exp. 3 lemma not remove
Exp. 4 lemma remove

Table 6.6: Configuration of all experiments.

In this section we present and discuss the results associated with the previously presented

tasks. The type of text used for feature extraction and further analysis can have a great impact

on the results. Thus, the text parameters that we are interested in studying, specifically to

understand their influence on the quality of the prediction, are summarized in Table 6.5. Given
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these, there is a total of 4 experiments, which are all permutations of the parameters in this

table, summarized in Table 6.6. Each experiment encompasses the accuracy score of 8 feature

types, across the 9 types of feature aggregation.

The experimental setup relied on the use of 4 machine learning models. These are Support

Vector Machine (SVM), k-Nearest Neighbors (kNN), Random Forest (RF), and Logistic Regres-

sion (LR). The hyper-parameters of each model are used as defined by default in the Sci-Kit

Learn toolkit, except for the random seed, which is fixed for reproducibility. Instead of using

only one, all of these models were chosen due to this being an exploratory study, therefore in-

terested in minimizing the variability of results, especially those that are intrinsic to the design

of the models. After running the experiments for all of these models, it was determined that

the performance of all models was equal, or inferior, to that of the SVM. For this reason, all

results and considerations shown here are in regard to the SVM model with a linear kernel.

6.4.1 Pathology classification

Figure 6.1 shows the mean accuracy score per experiment configuration. It also represents the

score variance per experiment, and a red dashed line representing the threshold of random

choice (50%). This plot allows us to compare experiments in a high-level and to understand the

limitations of each aggregation type, in general. Observing this figure, we first conclude that

the variance in score for each experiment, across all aggregations, is very small, which validates

this type of aggregate observation and the following discussion about the general performance

of each experiment, irrelevant of the feature types. Indeed, there is a clear trend in mono-

tonicity across all experiments, which allows us to attribute the justification to the aggregation

types, rather than the experiment configuration. The fragment type displays higher scores than

the patient aggregation type, even though not as relevant as expected. By aggregating the 7

vectors by their mean value in each dimension, we are considering all documents to have the

same importance to the general representation of the patient, which is not necessarily true, and

might be the cause for information loss. A possible approach to overcoming this is to weight

each vector, given the importance of each question to the task of pathology classification. De-

termining these weights is not a trivial task. We can also observe a clear spike in accuracy,

for all experiments, when using the single question (1) aggregation type. This means that the

patient answer’s to the question ”Where on your body does it hurt?”, is informative enough to
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predict their pathology in our binary classification setting, with a mean accuracy score above

70%. This result is in line with the clinical literature, where Rheumatoid Arthritis is said to

typically manifest with pain on multiple, scattered, joints, more commonly on the extremities,

such as the wrists (Rindfleisch, Adam J and Muller, Daniel, 2005), opposed to (Ankylosing)

Spondylitis, which is commonly associated with inflammatory back pain (McVeigh & Cairns,

2006). Basing the prediction only on answers to questions (2), (3), (4), (6), or (7), yields results

similar, or inferior, to random binary choice. Finally, the answers to question (5) also seem to

allow for prediction results comparable to the fragment and patient aggregation types.

Figure 6.1: Mean accuracy score of each experiment in Table 6.6, over the different types of
feature aggregation in Table 6.4.

Focusing on the relevant aggregation types (fragment, patient, single question (1), single ques-

tion (5)), we can now compare the performance between experiment configurations. We con-

clude that EXP. 1 results in the poorest performance overall, which can be justified by the fact

that it is based on the most raw data (original next, no stop words removed), meaning that

important information gets diluted in noise. This is especially evident for single question (1),

which is basically a list of nouns (locations on the body), where the mere presence of syntactic

building blocks of words, such as determinants, pronouns, and conjunctions, and the syntac-
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tic variability of words, may dilute the information carried by the relevant nouns, resulting in

a performance score more than 5 percentage points inferior to the remaining experiments. Fi-

nally, even though there is some evidence that, overall, using lemmatized text (EXP. 3, 4) results

in better accuracy scores, the gain is not as large as expected. The removal of stop-words is also

reflected in the small difference between EXP. 3 and 4. The following discussion will focus only

on these two experiments.

Figures 6.2 and 6.3 dive into the actual scores, per experiment, per feature type. These

plots allow us discuss which types of features seem to be more adequate for the defined task.

In Figure 6.2, looking at the vocabulary-based baselines of feature types (BoW and TF-IDF),

we observe a significant difference when not removing (Figure 6.2a) and removing stop words

(Figure 6.2b). Specifically, by removing stop words, simple word frequency and co-occurrence

given by the BoW features is as informative as the TF-IDF features. As expected, given that the

text is already standardized (lemmatization), the TF-IDF features are capable of extracting im-

portant information, regardless of having or not removed stop words, because these are usually

assigned very low scores due to their high document frequency nature. Shifting our focus to

the baseline topic-based features (NMF and LDA), on the same experimental settings as before,

we observe a clear distinction in favor of the NMF model. In fact, LDA accuracy scores are as

good as, or worse, than random choice, in most cases. Recalling the discussion about the LDA

topic space in Chapter 5, due to the limited amount of documents and the short-text nature

of these documents, this is an expected observation. This is also in line with the observations

made about the BoW and TF-IDF features (LDA is limited by the information carried by the

BoW representation, and NMF is limited by the information carried by the TF-IDF represen-

tation). Both BoW and TF-IDF features present higher accuracy scores than NMF, overall (in

some cases, with an increase of almost 20 percentage points). However, it is important to note

that when referring to the fragment aggregation type, there is no evident distinction between

these 3 types of features. Indeed, this suggests that for the task of binary pathology classifi-

cation, a listing of pain locations is more informative than any other type of observation on

the patient’s pain manifestation. The same reasoning applies to all other topic models, which

scores are plotted against the best baselines in Figure 6.3. Their performance on this task is

not evidently different from the baseline NMF. Finally, the doc2vec features, given by a pre-

trained BERT word-embedding model, do not seem to produce interesting results. This may

be attributed to the lack of adaptability of the pre-trained model to the context of our data.
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(a) Experiment 3. (b) Experiment 4.

Figure 6.2: Accuracy score of each feature type in Table 6.3, over the different types of feature
aggregation in Table 6.4. Focused only on the baselines.

(a) Experiment 3. (b) Experiment 4.

Figure 6.3: Accuracy score of each feature type in Table 6.3, over the different types of feature
aggregation in Table 6.4. Some baseline results were omitted for ease of read.
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With this discussion, we conclude that for our setting of binary pathology classification

(specifically, between Rheumatoid Arthritis and Spondylitis), the TF-IDF features are, overall,

the best information extraction method, with an absolute score of 79% with lemmatized text

and removed stop words (EXP. 4), considering the single question (1) aggregation type. This

observation is the main motivation behind the ablative experiment.

Finally, Figure 6.4 reveals the mean accuracy score, for all experiments, in an ablative fash-

ion, regarding every permutation of excluded questions from the dataset. This extensive abla-

tive evaluation provides us with insights into how answers to each question in the interview

impact the final classification task. We observe a recurring pattern: whenever answers to ques-

tion (1) of the interview are ignored, whatever other answers are also discarded, the accuracy

score decreases significantly, with very low variance across experiment configurations (some-

times going below the random choice level, plotted by the red dashed line). We also observe a

slight increase in score as we remove more answers that are not from question (1) (higher scores

along the horizontal axis, as suggested by the orange dashed line). This is in line with the pre-

vious discussion, and can be summarized by the importance of pain location for diagnosis of

these specific pathologies.

6.4.2 Pain intensity classification

The obtained results in this task were equal, or inferior, to random choice (25% accuracy). For

this reason the results were omitted, limiting this section to the discussion on why there was no

success (results may be consulted in Appendix B). We have identified many possible reasons

to explain what was obtained. These are mainly related with data availability and the nature

of the data and task.

This task was performed on highly unbalanced classes, and, as expected, after observing

the confusion matrix, we concluded that the less favored classes (the last two levels of intensity)

were never being predicted. The unbalancing problem by itself should not have such an effect,

however, because the number of samples is so low, it can be enough to distort the model’s

reasoning. On top of this, as we have identified when characterizing the groups of patients

according to these parameters in the topic space, the first two levels of intensity, which are

also the ones with most samples, are practically indistinguishable. This suggests that the class

definition may also be faulty by nature.
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The self-reported pain intensity was obtained by means of a visual scale, where the end-

points represent, respectively from left to right, zero pain, and the most pain ever felt by that

patient. This means that if a patient were to report 100% of pain, there is no guarantee that that

is equivalent to the next patient’s maximum pain ever experienced. Even though this is the

reasoning behind the grouping of intensities in 4 broad levels, to account for subjectivity er-

ror intervals, these results may suggest that indeed the reported intensities are very disparate,

subjectively speaking.

Finally, another possible reason for the observed poor results is related with the design

of the data collection protocol. Pain intensity reports are instantaneous, meaning that they are

mainly relevant in the instant of time in which they were reported. However, the interview was

designed to accommodate for past events and evolution of pain, possibly skewing the patients

to refer aspects of the experience that are not relevant in that precise moment that they also

reported pain intensity. Indeed, there is evidence of patients stating that their description is

according to a previous moment in time, rather than the present. Therefore, there may be an

offset between the aspects discussed in the interview and the actual report of intensity.

6.5 Summary

In this chapter we have evaluated the hypothesis that the manifestation of certain clinical pa-

rameters would be reflected on the descriptions of the corresponding experiences of pain.

Specifically, for pathology classification, we analyzed and discussed which linguistic fea-

tures extract the most relevant information. Additionally, we determined which parts and

conjugations of these descriptions actually conveyed enough information for pathology classi-

fication above random choice, highlighting the TF-IDF vocabulary-based features based on the

answers to the question ”Where on your body does it hurt?”, with 79% accuracy in the binary

classification task.

Finally, we discussed the sub-optimal results associated with the classification of the level

of intensity of pain. We identified the different reasons that might be skewing the results, which

range from the data availability to the problem definition itself.
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7Conclusions and Future

Work

The present work explored the computational analysis of the language of pain descriptions,

specifically in a healthcare setting. The overview of the nature of pain in Chapter 2 allowed for

the characterization of the different experiences of pain and possible causal agents, specifically

focusing on the chronic pain experience. By exploring the cognitive process which undergoes

this experience, the main cognitive aspects that affect in some way the perception and con-

sequent expression of pain were identified, namely, the emotional state, beliefs, expectations,

behavior, and the sociocultural context of the subject. Based on these observations, in Chap-

ter 3, the methodology applied to the linguistic and paralinguistic analysis of similar problems

was explored. The method that was identified as the most adequate for the linguistic analysis

is topic modeling, tackling the various aspects of the experience of pain previously studied.

On the other hand, the paralinguistic analysis was identified to be based on speech modeling,

specifically the extraction of acoustic features, to further characterize the descriptions.

7.1 Conclusions

The following sections present final considerations on Chapters 4, 5, and 6, which dived into

the collection and preparation of the dataset, and the presentation and discussion of the exper-

imental setups comprising the analyses.

7.1.1 Data collection

The data were collected and prepared specifically for the present work. Indeed, there was

the opportunity of tailoring the collection for the intended analyses, resulting in the design of

the interview and complementary form presented in Chapter 4. Even though the interview did

guide the patients to discuss the aspects of the experience deemed most relevant for evaluation,

its strict format may have forced some patients to discuss aspects that were not relevant to
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them, or discuss them in an way that was not natural. This resulted in some answers being

very imprecise, and, in rare cases, with apparent discomfort on the part of the patient. Another

consequence of the tailored interview is the fact that it cannot be used to collected a parallel

dataset of a control group. Indeed, the very definition of a control group is very difficult.

A possible correction to our approach includes a re-wording of the questions to more

grounded terms, so that all patients are capable of understanding the aspects being discussed.

Another solution would consist of a change in the approach, designing a single, open ques-

tion, that would ask the patient to describe the experience however is found fit. This would

also encompass the possibility of having a control group, because it could be applied to the

description of any other experience. Naturally, this approach would have its own downfalls,

including the possibility of having no patient discuss any of the relevant aspects, or in a very

vague manner, possibly rendering it void.

Regarding the limitations of the paralinguistic analysis, this would require a more intricate

setup for the data collection. The proposed and implemented setup, with the data being col-

lected with a recording smartphone, was intended to, first, not overwhelm the patient, causing

further discomfort, and, second, not pressure the healthcare system by overloading the inter-

view with a complicated setup time. A possible solution consists of discarding the importance

of the collection being in a healthcare environment, having a proper setup in a location agreed

with the patients. However, this approach is expected to greatly limit the number of patients

willing to participate, given the possible limitations imposed by the disease.

Overall, even though the obtained dataset has its limitations and challenges, it was possible

to perform the intended linguistic analysis with relevant results.

7.1.2 Linguistic characterization

The linguistic characterization of the population, presented and discussed in Chapter 5, con-

sisted of the topic modeling of the collection of documents, and the identification of similar

groups and correlation with objective, external parameters.

It was decided to approach the evaluation of the different models in a fragmented way,

considering each answer, to each question of the interview, to be independent in terms of latent

semantical topics, even though belonging to the same patient in groups of 7 fragments. The
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decision was made on top of the limited availability of data. The extraction of latent topics is

mainly based on word co-occurrence, and, with only 94 documents, not only would the results

be very limited, but there could not be any significant statistical analysis. This decision encom-

passed the change of approach from the traditional topic models to short-text topic models.

The models evaluated included the ones based on both internal and external semantic in-

formation. The extraction of internal semantic information is limited by the data availability.

Results rendered this approach overfit to the documents, with almost imperceptible topics and

poor aggregation of similar fragments in the projection space. The usage of external seman-

tic information is limited by the domain adaptability and the collection’s vocabulary. Results

determined that, even though this approach showed better scores, it could not be taken to full

advantage due to the limited richness of the vocabulary employed by the patients.

The semantic characterization, obtained with the analysis of the projection of the patients

in the latent semantic space produced by the external semantic information short-text topic

model, revealed the relative importance of the many aspects encompassing the experience of

pain. Not only that, but it also reflected the engagement and outlook of each patient regarding

the interview, and the various types of experiences of pain were identified and characterized.

However, no relevant correlation was found between these types of experiences and demo-

graphic and clinical parameters. On the other hand, groups of patients given by these external

parameters revealed that some groups report slightly different experiences, which is suggested

to be related to the parameter itself.

7.1.3 Prediction of clinical parameters

The prediction of clinical parameters presented in Chapter 6, based on the characterization

obtained in previous experiments, revealed a specific application of the present study, in this

case, the classification of pathology and pain intensity level based on verbal descriptions of

pain. Even though the experimental setup only focused on these two parameters, the presented

and discussed methodology may be applied to any parameter.

The best results obtained for pathology classification were based on vocabulary features,

specifically utilizing the discussion of the aspect of the experience of pain related to the loca-

tion on the body. These observations were found to be in line with the scientific research of

the studied pathologies. The results obtained for pain intensity level classification were found
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to be sub-optimal and various possible associated problems were identified, from the num-

ber of samples, to the class definition. Notably, all results were obtained in a Leave-One-Out

validation setting due to the limited amount of samples. No result under this setting can be

confidently generalized to a broader population.

7.2 Future work

In this section is proposed future work regarding both types of analysis, linguistic and par-

alinguistic. Most of the proposal stems from work that was intended to be performed, but

could not be due to limited quality and availability of data. Thus, the following remarks ex-

pect a larger dataset, without sound and text quality limitations (or, at least, reduced to easily

removable noise by the large number of samples).

The proposed future work regarding the linguistic analysis focuses on two aspects. First,

an in-depth study of the population by question of the interview. Each question aims to discuss

a specific aspect of the experience, thus, by understanding how each patient is positioned rela-

tive to others in each aspect (question), it would be possible to find relevant groups per aspect,

and search for a more fine-grained correlation with external parameters. It was not possible to

perform such an analysis with the current dataset, because the number of patients is very lim-

ited and the existing answers are too disperse. Second, the integration with the input provided

by health professionals. This input includes the interpretation of health professionals regard-

ing the clinical state of each patient solely based on the recording of each patient (there was

no access to clinical or demographic parameters). Possible integration includes a similar topic

modeling approach and a parallelism analysis between the computationally obtained results of

the patients and the inputs provided by field professionals. This input could also help define

ground truth labels to better evaluate the characterization analysis performed in Chapter 5.

Finally, regarding the paralinguistic analysis, almost all aspects were left undone due to

the extremely poor audio quality. Emotion and speech disfluencies aspects were found to be

relevant in the literature to the assessment and management of pain, and, thus, should be

considered in future work. This includes the tasks of emotion recognition, sentiment analysis,

and the identification of the various speech disfluencies, such as hesitations, repetitions, speed

of speech, and others.
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APatient Profiling

In this appendix is made an exposition of the distribution of the population according to select

demographic and clinical parameters, as well as linguistic and paralinguistic features. This is

presented to help contextualize the core of the work. This is followed by the proposition of a

tool to automatically produce a patient profile which merges the clinical and linguistic domains

to aid with the assessment and management of the patient.

A.1 Population distribution

In this section we present a report on the distribution of the population under study. This

includes the demographic and clinical distributions, as well as the distribution of parameters

in the linguistic and paralinguistic domains, per question, and per interviewer.

A.1.1 Demographic distribution

Female Male Other Total
61 33 0 94

Active Medical leave / Retired Not specified Total
46 39 9 94

Primary High school Bachelor Master Total
64 19 7 3 94

Table A.1: Number of subjects per demographic parameter.

We are interested in understanding the demographic distribution of the population under

study, namely features such as age, level of studies and professional activity (Figure A.1). We

observe that most subjects are on the older half of the spectrum (above 50 years of age). This

is in line with the studied correlation of advanced age and chronic pain disease. Roughly

65% of the subjects belong to the feminine gender, with an age distribution varying all across

the spectrum. Again, this is in line with the studied correlation of the feminine gender and
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chronic pain disease. The majority of the population (roughly 68%) holds the primary level

of education. This group also accommodates for a wide distribution on the age spectrum.

The remaining education level groups are too small to hold any representational information.

Finally, regarding professional activity, we observe that there seems to be a similar distribution

of subjects still active and subjects under medical leave or retired. Those under medical leave

or retired include the oldest part of the population, as expected.

Figure A.1: Demographic parameters distribution over the age spectrum.

A.1.2 Clinical distribution

Rheumatoid arthritis Spondyloarthritis Other
41 45 8

Table A.2: Number of subjects per identified pathology.
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We are interested in understanding the clinical distribution of the population under study,

namely features such as pathology, pain intensity, duration of the disease, ESR (VS) and RCP

(PCR) (Figure A.2). It is also relevant to understand the variation of these features given the

age group (Figure A.3). The population is similarly distributed between the pathologies of

Rheumathoid Arthritis and Spondyloarthritis. Self-reported pain intensity (on a visual ana-

logue scale) ranges from 0 to 100, with the maximum reported intensity being 94. This param-

eter’s boxplot highlights that the subject’s reports are evenly distributed across the spectrum,

with a slight tendency to lower scores (less pain). Looking at pain intensity distribution across

age bins, the group that reports the highest pain intensities is the middle tear age group. A

study against the professional activity (omitted) did not show a significant correlation between

the professionally active group and reported pain. The duration of the disease expectedly fits

with the group’s age distribution.

Figure A.2: Distribution of the clinical parameters.

Regarding the correlation between these parameters (Table A.3), it is not possible to ob-

serve any with pain intensity, although there are some slight suggestions, especially with age

(older patients report higher pain intensities). The only notable observation at this point is the

somewhat suggestive correlation of VS and PCR.

Idade (anos) EVA dor % Dur. doença (anos) VS PCR
Idade (anos) 1.000 0.200 0.267 0.323 -0.030
EVA dor % 0.201 1.000 0.125 0.143 0.025109

Dur. doença (anos) 0.267 0.125 1.000 -0.069 -0.014
VS 0.323 0.143 -0.069 1.000 0.341687

PCR -0.031 0.025 -0.014 0.342 1.000

Table A.3: Correlation between select clinical and demographic parameters.
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Figure A.3: Distribution of the clinical parameters given age bins.

Analyzing these parameters by interviewer (Figure A.4), we observe that the sub-

populations share a similar distribution regarding the duration of the disease and the PCR

values. However, indeed the patients’ data collected by SP report less intense pain, whilst CV

and DO have very similar distributions on this dimension.

A.1.3 Linguistic and paralinguistic analysis

As it can be assessed from the interview script, the nature of each question (and consequently

the respective answer) is different. Some questions require a higher development and engage-

ment from the patient, than others, to which a direct answer usually suffices. This requires the

analysis to be both inter- and intra-questions. The following sections explore the recordings

and transcriptions through these lenses.
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Figure A.4: Distribution of the clinical parameters by interviewer.

A.1.3.1 Inter-question

Comparing questions regarding word counts (Figure A.5), indeed it is observed that specific

questions elicit more words than others. Specifically, Q4 leads with the maximum word counts.

This observation fits with the interview design expectations. Conversely, Q1 and Q5 have the

least word counts, with Q5 being slightly lower. Given that Q5 is a complex question, and

it is comparable to Q1 on this remark, which is a direct, closed answer, we conclude that it

did not elicit the expected engagement from the patients. Taking into account the size of the

population, the number of outliers cannot be disregarded.

Under the same question aggregation, textual information richness is measured by the TF-

IDF score. Expectedly, the more words present in a set of documents, the more likely it is to

have a higher cumulative TF-IDF score. Q4, again, leads with maximum values, with Q6 in a

close second maximum. Q1 and Q5 carry the least rich textual information. Q3 and Q6 have

very similar distributions, which coincides with the very similar nature of both questions.

Finally, looking at the word rate, by question (number of words per second of recorded

answer), we conclude that there is indeed some expected variability, but the distributions be-

tween questions are very similar.
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Figure A.5: In order, word count, TF-IDF, and word rate features distributions across questions.

A.1.3.2 Interviewer engagement

In an attempt to reflect the level of engagement the interviewer had with the patients, we look

at the distributions of text features aggregated by this parameter (Figure A.6). In a straightfor-

ward observation, we conclude that, on average, CV elicits more engagement than any other

interviewer. The inverse is observed for SP.

A.1.3.3 Intra-question (by interviewer)

Regarding word counts (Figure A.7), we conclude that for most questions, the interviewer

does not have an impactful bias in the distributions (attending to the fact that SP questions

are constantly a little behind). However, Q4 and Q6 both show a lot of disparity given the

interviewer. The same observation can be made for the word rate feature (Figure A.8). TF-IDF

score, on the other hand, shows greater disparity in most questions’ distributions (Figure A.9).



A.1. POPULATION DISTRIBUTION 107

Figure A.6: In order, cumulative word count, TF-IDF, and word rate features distributions
across interviewers.

A.1.3.4 Correlation with demographic and clinical features

An analysis of linguistic and paralinguistic features against demographic and clinical features

shows no concrete evidence of correlation between these domains (Table A.4).

word count TFIDF word rate audio length
Idade (anos) -0.111 -0.122 -0.090 -0.089569
EVA dor % 0.090 0.123 0.118 0.074

Dur. doença (anos) -0.040 -0.059 -0.044 -0.033
VS 0.011 0.017 0.035 -0.002

PCR 0.005 -0.001 -0.018 0.008

Table A.4: Correlation between clinical and demographic parameters with linguistic features.
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Figure A.7: Word count feature distribution by question and by interviewer.

Figure A.8: Word rate feature distribution by question and by interviewer.
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Figure A.9: TF-IDF feature distribution by question and by interviewer.
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A.2 Profiling tool

An experience of pain may be expressed through a multitude of channels, both in objective and

subjective forms. The clinical parameters, which are by themselves a manifestation of the clin-

ical situation of the patient, provide an objective, but limited, perspective on the development

of the disease and pain. On the other hand, subjective forms of pain manifestations, such as a

verbal expression, which encompasses both semantics and paralinguistics, provide useful, but

complex information, because they are, by definition, influenced by multiple layers of subjec-

tivity. Only when considering the multiple dimensions in which pain and the disease manifest,

can the health professional reliably provide a quality assessment.

In this appendix we propose a methodology to bring together multiple dimensions of pain,

specifically textual descriptions of pain and clinical parameters, in a condensed, profiling for-

mat, so that the health professional can have access to a global view of each patient regarding

their pain and disease.

The patient profile is defined by two major parts, the linguistic analysis of their interview,

and the analysis of their corresponding clinical form, denominated the clinical panel. The lin-

guistic analysis includes the distribution of semantic topics, determined by the whole collection

of documents, which were found to be the most relevant for the specific patient (as described

in the previous chapter), as well as the identification of the most important words. Addition-

ally, pain locations on the body are extracted from the text and represented on a human body

diagram. The clinical panel of a patient includes the values of pain duration, Visual Analogue

Scale (VAS) of both pain and disease, Erythrocyte Sedimentation Rate (ESR) and C-reactive

protein (CRP). The following sections describe each of these values, and how they can be rep-

resented in a meaningful way for health professionals.

A.2.1 Linguistic domain

The linguistic analysis of a patient’s description of their personal experience of pain includes

the 3 following components.

For the first component, the latent topics are extracted from the interview with each patient,

as described in Chapter 5. Each of the topics (restricted to the top 10 most weighted words) is

interpreted and labeled for ease of read. The importance given by the patient to each of these
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topics is displayed in a radar plot, so that patients with similar topic importances display a

similar map.

For the second component, a wordcloud is built, such that the words expressed by the

patient that are considered to be the most relevant given a specific metric, are highlighted by

their size. This metric is defined to be the TF-IDF metric, because it allows for a positioning of

the patient’s words in relation to the whole collection. Observing this kind of wordcloud, one

can quickly interpret the main preoccupations of that patient.

Finally, for the third component, the words in the collection’s vocabulary that relate to loca-

tions of the human body are identified (e.g. knee, leg, hand, wrist, etc.) and the corresponding

frequency values are extracted. With the help of a human body diagram, markers are placed

in their respective locations. The size of the markers reflect the frequency values, or, in other

words, the importance of those locations to the patient.

A.2.2 Clinical domain

As stated before, the patient clinical panel includes all of the pain, disease, and clinical parame-

ters provided by the complementary form. Additionally, it includes a relative value, in a 0-100

scale, obtained from the mean of all other values and scaled according to all other patients to

obtain a comparative scale. The patient which scores 100 in this comparative scale is the one

whose mean value of all other parameters is the highest in the group (which suggests that it is,

in general, the patient in worse condition, from those included in the study).

All values presented in the clinical panel are accompanied by a color scale to facilitate

their assessment. This color scale is white for neutral values, and a gradient from yellow to

red (best to worst), for values incrementally further from the values considered neutral. The

VAS of both pain and disease range from 0 to 100. Zero is considered to be the neutral value.

The duration of symptoms of pain can range from 0 to an unknown (a priori) upper limit.

Regarding the ESR parameter, the widely used rule to calculate the normal maximum ESR

value (Miller, Green, & Robinson, 1983) was used to determine, for each patient, the maximum

value considered neutral. Finally, regarding the CRP parameter, in healthy adults, the normal

values range between 0.8 mg/L and 3.0 mg/L (Pepys, Hirschfield, et al., 2003), and, thus,

values increasingly farther from the 3.0 mark are considered increasingly worse in the color
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scale. The upper limit of these features is defined as the highest value in the sample of patients,

for each feature.

A.2.3 Results

For the first component of the linguistic domain, from the 7 documents of each patient (corre-

sponding to the 7 questions in the interview) were extracted 10 semantic topics, converted into

vector form and aggregated into a single vector, obtained by the mean value of each dimension

(topic). The topic model used was CluWords with FastText. Each of the topics (restricted to the

top 10 most weighted words) was interpreted and labeled for ease of read. The labels are as

follows: (1) expectations, (2) pain location, (3) medication, (4) pain evolution, (5) body sensa-

tions, (6) effects, (7) reflections, (8) sources of pain, (9) pain location, (10) evolution/medication.

The resulting radar plot can be observed in Figure A.10a. For the second component, using the

intermediate vector representation of the collection obtained with TF-IDF (CluWords), a word-

cloud is built, such that the words expressed by the patient, considered to be the most relevant

given the TF-IDF metric, are highlighted by their size. Looking at this kind of wordcloud, one

can quickly identify the main preoccupations of the patient. Such a wordcloud can be observed

in Figure A.10b. For the third component of the linguistic domain, the words in the collection’s

vocabulary that relate to locations of the human body were identified and with the help of a

human body diagram, markers were placed in their respective locations. The size of the mark-

ers reflects the TF-IDF (CluWords) values (which is also present in the previously discussed

wordcloud). An example of this diagram can be observed in Figure A.10c. Finally, an example

of a clinical panel with color gradients over the clinical parameters can be observed in Fig-

ure A.11. All of these components are displayed side-by-side, in an easy to interpret profile, as

exemplified in Figure A.12.
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(a) Topic radar plot.
(b) Patient wordcloud.

(c) Patient pain location diagram.

Figure A.10: Patient profile example components of the linguistic domain.

Figure A.11: Example of a patient clinical panel.
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BFigures and Tables

In this appendix we present some of the results that were omitted from the main discussion, as

well as complementary tables with the actual values corresponding to these plotted results.

B.1 Pathology classification

fragment patient sq 1 sq 2 sq 3
EXP 1 0.53± 0.003 0.54± 0.003 0.54± 0.005 0.51± 0.005 0.48± 0.004
EXP 2 0.55± 0.002 0.56± 0.004 0.64± 0.003 0.43± 0.011 0.46± 0.010
EXP 3 0.62± 0.005 0.57± 0.002 0.69± 0.004 0.52± 0.001 0.51± 0.006
EXP 4 0.64± 0.005 0.60± 0.005 0.71± 0.003 0.53± 0.004 0.48± 0.009

sq 4 sq 5 sq 6 sq 7
EXP 1 0.45± 0.002 0.52± 0.002 0.47± 0.002 0.44± 0.010
EXP 2 0.49± 0.002 0.54± 0.001 0.52± 0.002 0.47± 0.001
EXP 3 0.44± 0.001 0.62± 0.004 0.48± 0.002 0.48± 0.016
EXP 4 0.48± 0.004 0.56± 0.007 0.51± 0.008 0.52± 0.007

Table B.1: Mean accuracy score of each experiment in Table 6.6, over the different types of
feature aggregation in Table 6.4. Table of values in Figure 6.1.

feature fragment patient sq 1 sq 5
BoW 0.63 0.57 0.72 0.60
tf-idf 0.67 0.66 0.78 0.63
LDA 0.51 0.56 0.60 0.60
NMF 0.72 0.56 0.72 0.71

(a) Experiment 3.

feature fragment patient sq 1 sq 5
BoW 0.67 0.62 0.77 0.57
tf-idf 0.67 0.64 0.79 0.53
LDA 0.51 0.49 0.69 0.36
NMF 0.66 0.71 0.62 0.64

(b) Experiment 4.

Table B.2: Accuracy score of each feature type in Table 6.3, over the different types of feature
aggregation in Table 6.4. Focused only on the baselines. Table of values in Figure 6.2.
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feature fragment patient sq 1 sq 5
tf-idf 0.67 0.66 0.78 0.63
NMF 0.72 0.56 0.72 0.71

SeaNMF 0.57 0.53 0.66 0.50
CluWords (FastText) 0.64 0.60 0.67 0.61

CluWords (BERT) 0.65 0.53 0.72 0.68
BERT 0.55 0.51 0.60 0.65

(a) Experiment 3.

feature fragment patient sq 1 sq 5
tf-idf 0.67 0.64 0.79 0.53
NMF 0.66 0.71 0.62 0.64

SeaNMF 0.69 0.64 0.71 0.58
CluWords (FastText) 0.70 0.60 0.70 0.58

CluWords (BERT) 0.63 0.60 0.71 0.60
BERT 0.56 0.51 0.71 0.58

(b) Experiment 4.

Table B.3: Accuracy score of each feature type in Table 6.3, over the different types of feature
aggregation in Table 6.4. Some baseline results were omitted for ease of read. Table of values
in Figure 6.3.

B.2 Pain intensity classification

fragment patient sq 1 sq 2 sq 3
EXP 1 0.34± 0.006 0.33± 0.006 0.32± 0.003 0.31± 0.006 0.37± 0.001
EXP 2 0.35± 0.006 0.33± 0.002 0.24± 0.004 0.30± 0.009 0.35± 0.003
EXP 3 0.34± 0.006 0.35± 0.000 0.27± 0.001 0.30± 0.001 0.42± 0.001
EXP 4 0.36± 0.003 0.35± 0.001 0.32± 0.001 0.33± 0.002 0.29± 0.003

sq 4 sq 5 sq 6 sq 7
EXP 1 0.36± 0.003 0.27± 0.002 0.32± 0.002 0.32± 0.003
EXP 2 0.36± 0.007 0.29± 0.005 0.28± 0.002 0.30± 0.003
EXP 3 0.35± 0.007 0.33± 0.002 0.34± 0.001 0.38± 0.001
EXP 4 0.33± 0.003 0.37± 0.004 0.33± 0.003 0.42± 0.006

Table B.4: Mean accuracy score of each experiment in Table 6.6, over the different types of
feature aggregation in Table 6.4. Table of values in Figure B.1.
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feature fragment patient sq 1 sq 2 sq 3
BoW 0.36 0.34 0.29 0.30 0.42
tf-idf 0.47 0.37 0.29 0.30 0.46
LDA 0.31 0.37 0.23 0.31 0.38
NMF 0.41 0.33 0.28 0.24 0.43

feature sq 4 sq 5 sq 6 sq 7
BoW 0.44 0.37 0.34 0.38
tf-idf 0.50 0.38 0.36 0.44
LDA 0.30 0.37 0.40 0.36
NMF 0.33 0.33 0.30 0.38

(a) Experiment 3.

feature fragment patient sq 1 sq 2 sq 3
BoW 0.34 0.41 0.33 0.32 0.25
tf-idf 0.42 0.34 0.35 0.36 0.28
LDA 0.38 0.35 0.31 0.36 0.22
NMF 0.34 0.37 0.36 0.27 0.29

feature sq 4 sq 5 sq 6 sq 7
BoW 0.36 0.36 0.37 0.44
tf-idf 0.37 0.33 0.38 0.44
LDA 0.32 0.31 0.38 0.52
NMF 0.37 0.40 0.27 0.48

(b) Experiment 4.

Table B.5: Accuracy score of each feature type in Table 6.3, over the different types of feature
aggregation in Table 6.4. Focused only on the baselines. Table of values in Figure B.2.
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feature fragment patient sq 1 sq 2 sq 3
tf-idf 0.47 0.37 0.29 0.30 0.46
LDA 0.31 0.37 0.23 0.31 0.38
NMF 0.41 0.33 0.28 0.24 0.43

SeaNMF 0.24 0.36 0.26 0.28 0.36
CluWords (FastText) 0.34 0.35 0.30 0.28 0.40

CluWords (BERT) 0.38 0.31 0.26 0.34 0.46
BERT 0.24 0.35 0.26 0.33 0.40

feature sq 4 sq 5 sq 6 sq 7
tf-idf 0.50 0.38 0.36 0.44
LDA 0.30 0.37 0.40 0.36
NMF 0.33 0.33 0.30 0.38

SeaNMF 0.31 0.31 0.36 0.34
CluWords (FastText) 0.24 0.26 0.33 0.41

CluWords (BERT) 0.35 0.29 0.28 0.42
BERT 0.31 0.33 0.36 0.34

(a) Experiment 3.

feature fragment patient sq 1 sq 2 sq 3
tf-idf 0.42 0.34 0.35 0.36 0.28
LDA 0.38 0.35 0.31 0.36 0.22
NMF 0.34 0.37 0.36 0.27 0.29

SeaNMF 0.26 0.29 0.33 0.32 0.38
CluWords (FastText) 0.34 0.36 0.26 0.33 0.35

CluWords (BERT) 0.42 0.33 0.29 0.38 0.28
BERT 0.37 0.34 0.34 0.27 0.29

feature sq 4 sq 5 sq 6 sq 7
tf-idf 0.37 0.33 0.38 0.44
LDA 0.32 0.31 0.38 0.52
NMF 0.37 0.40 0.27 0.48

SeaNMF 0.40 0.29 0.28 0.35
CluWords (FastText) 0.33 0.44 0.31 0.41

CluWords (BERT) 0.27 0.46 0.27 0.46
BERT 0.23 0.35 0.39 0.28

(b) Experiment 4.

Table B.6: Accuracy score of each feature type in Table 6.3, over the different types of feature
aggregation in Table 6.4. Some baseline results were omitted for ease of read. Table of values
in Figure B.3.
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Figure B.1: Mean accuracy score of each experiment in Table 6.6, over the different types of
feature aggregation in Table 6.4.
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(a) Experiment 3.

(b) Experiment 4.

Figure B.2: Accuracy score of each feature type in Table 6.3, over the different types of feature
aggregation in Table 6.4. Focused only on the baselines.



B.2. PAIN INTENSITY CLASSIFICATION 121

(a) Experiment 3.

(b) Experiment 4.

Figure B.3: Accuracy score of each feature type in Table 6.3, over the different types of feature
aggregation in Table 6.4. Some baseline results were omitted for ease of read.
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