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Abstract

There is a revolution going on in the way industries work. The large abundance of data and the
exponential growth of computational power have unchained Artificial Intelligence’s potential. This
new powerful tool gained popularity amidst the advent of Industry 4.0 and comes with the promise
of making factories smart, more productive and efficient. The method proposed in this thesis applies
Deep Q-Learning to create an intelligent system capable of solving the Dual Resource Constrained
Flexible Job Shop Scheduling Problem. A novel Encoder-Decoder neural network architecture with
Attention Mechanism is presented. This architecture allows the network to be fed more thorough and
meaningful problem information, as well as having more precise and powerful output commands. In
order to diminish the computational cost of this technique, the output commands are selected as in
Pointer Networks architectures. The agent developed achieved promising results, even having just been
scarcely trained. These results show that, with an optimized implementation of the method and a more
thorough training procedure, this technique holds the potential of challenging current state-of-the-art
meta-heuristic algorithms in solving this kind of problems. Finally, future work might consist in adding
additional constraints to the problem for application in the Industry. The possibility of having different
processing times for the same operation, depending on the allocated resource pair, is discussed. Also,
a redesigned concept of the proposed method is presented.
Keywords: Job-Shop Scheduling, Reinforcement Learning, Deep Q-Learning, Encoder-Decoder,
Attention Mechanism, Pointer Networks

1. Introduction

We are living amidst a revolution in the way indus-
tries work and companies do business, as Industry
4.0 is on the rise and taking its first steps. Even
though some might still dismiss it as a fancy mar-
keting buzzword, there are huge transformations
happening right now in the manufacturing processes
of some of the world leading companies, that defi-
nitely make these new systems worthy of our atten-
tion and consideration [10].

The large abundance of data and the exponen-
tial growth of computing power have unchained AI’s
potential and made its costs significantly decrease.
The evidence seems to point out that we are on
the verge of an immense upshift of the field’s devel-
opment and investment, and so a vast progress and
fierce solutions are expected in the next few decades
[12]. Areas where algorithmic problem-solving used
to be found as extremely complex are now, with the
introduction of AI, getting to consider these meth-
ods as feasible and economically viable [14]. The op-
portunities are immense and difficult to thoroughly
grasp and so are the uncertainties about the changes
it will create to our future. One thing is for sure:

AI stands out as one of the most promising tools for
companies to leverage their future. And perhaps to
lose the trail of this transformation might cause ir-
reversible damage to a company competitiveness in
the market.

1.1. Dual Resource Constrained Flexible Job Shop
Scheduling

Scheduling is the process of allocating scarce re-
sources to perform a number of competing tasks
over time [6]. It is a decision making process of
great importance in the fields of manufacturing and
production [13]. This important role derives from
the need for survival that companies find in an ex-
tremely competitive economic scenario, where profit
margins are getting smaller and smaller [6]. Opti-
mized production schedules can give an enterprise
a more efficient utilization of resources, which has
a considerable impact on their production’s capac-
ity of meeting deadlines while maximizing profits.
A study as shown that the lack of quality in plan-
ning and scheduling can reduce productivity by 5
percent [14]. Quite often, inventories are increased
to improve supply reliability and uphold stable pro-
duction, which represents an increase in production
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costs. Excellent planning and scheduling is thus a
significant competitive advantage.

As the manufacturing industry reveals an increas-
ing reliance on agility and flexibility, with the ex-
pansion of product customization, which lead to
smaller lot sizes and shorter cycle times, the differ-
ent kinds of machine and human resources must be
considered and effectively managed to assure quick
responses to the market demands. The Dual Re-
source Constrained Flexible Job Shop Scheduling
Problem (DRC-FJSSP) effectively models these dy-
namics. It consists of 2 routing optimization sub-
problems: job scheduling and resource dispatch [9].
The route that each job has to follow may not be
predetermined. For example, there may be several
machines capable of executing the exact same oper-
ation and several workers capable of operating the
same machine. The goal when solving this problem
is to optimize a certain performance criteria, like
minimizing the production cost, the makespan or
the weighted tardiness, while respecting the prob-
lem constraints. A numerical model of the DRC-
FJSSP is presented in section 3.1.

The DRC-FJSSP has been traditionally solved
using analysis and simulation approaches. How-
ever, some details of the DRC-FJSSP are difficult to
model for analysis and, being an NP-hard problem
[5], simulations have an unbearable computational
cost. Therefore, there has been a trend towards
the use of meta-heuristic methods, since they have
proved to be capable of quickly find near optimal
solutions [9].

The idea that led to this thesis was to use Deep
Q-Learning to create an intelligent system capable
of generating quality solutions to the DRC-FJSSP.
The developed agent was designed to be flexible, so
that it can solve a wide range of problems and be
suitable for applicability to the Industry. That im-
plies that the generated solutions have to be reached
in a reasonable amount of computational time. Fi-
nally, this work aimed to extend the limits of the
application of Deep Learning to the DRC-FJSSP
and pave the way for future research.

1.2. State-of-the-Art Metaheuristics

In the research conducted for this thesis a set of
meta-heuristics were found to constitute the back-
bone of state-of-the-art techniques to solve the
DRC-FJSSP. A Branch Population Genetic Algo-
rithm was used to try to minimize the makespan
and the cost of the DRC-FJSSP [9]. The nov-
elty here is in introducing a branch population to
accumulate and transfer evolutionary experience,
strengthening the population diversity and acceler-
ating convergence. A permutation-based search op-
erator is used to improve the thoroughness of global
exploration and a greedy selection of the best solu-

tions is used for local exploitation.

A Shuffled Multi-Swarm Micro-Migrating Birds
Optimizer tries to minimize the makespan of
a Multi-Resource Constrained Flexible Job Shop
Scheduling Problem [4], similar to the DRC-FJSSP
but with more than two resource constraints. The
algorithm forms a number of micro-swarms, each
of which performs its own Migrating Birds Opti-
mizer independently. It has been found that a ge-
netic algorithm with a small population of three
individuals is sufficient to converge, irrespective of
having different lengths of chromosomes involved
[7]. A random shuffle process is periodically applied
to propagate the knowledge acquired by the micro-
swarms. Also, there is a renewing process of the
population, based on the aging phenomenon of life,
that promotes the diversity of the population. Two
different types of permutation-based search opera-
tors are used that try to efficiently balance global
exploration and local exploitation.

A Knowledge Guided Fruit Fly Optimization
Algorithm (KGFOA) proved to be effective in
solving the DRC-FJSSP [17]. Two types of
permutation-based search operators were used for
exploration and optimized by being combined with
a knowledge-guided search stage. In summary,
this knowledge-guided search utilizes the experi-
ence provided by the best solutions found so far
to enhance the probabilities of choosing of opera-
tions and resource assignments that have proved to
work in the past. Finally, a greedy selection of the
best solutions takes place. This whole procedure
is applied with the goal of minimizing the solution
makespan. Since this is the method with the most
recognition from this set, it was the algorithm cho-
sen for comparison with the solution proposed in
this thesis.

The remaining of this paper is organized as
follows. Section 2 there is an introduction to
the Encoder-Decoder architecture with Attention
Mechanism and Pointer Networks. Section 3 details
a numerical implementation of a DRC-FJSSP, as
well as the steps that led to the development of the
proposed solution, regarding the usage of Deep Q-
Learning and the implemented RL algorithm. Re-
sults are presented and discussed in section 4. Sec-
tion 5 concludes the paper and presents future re-
search steps.

2. Background

In Deep Q-Learning a deep neural network is used
to approximate the Q-value function. The Encoder-
Decoder with attention mechanism was chosen as
the NN architecture. This choice will allow the
agent to receive inputs with variable sizes, a re-
quired feature for it to be able to solve problems
with any number of operations to schedule, with-
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out the need to generate a size-fixed simplified rep-
resentation of the input information. In figure 2, a
first layout of the chosen architecture is given. A
step by step presentation of it will be given in the
following sections.

Figure 1: An overview of the Encoder-Decoder with
Attention mechanism architecture.

2.1. Encoder-Decoder
The fundamental idea behind an Encoder-Decoder
architecture is to have two different RNN’s: one
which sequentially receives the input information
and summarizes it in a vector representation of
fixed dimensionality (encoder) and another which
receives this vector and sequentially generates the
output (decoder). This means that the only infor-
mation the decoder receives is the last encoder hid-
den state. A representation of this architecture is
given in figure 2.1.

Figure 2: A basic Encoder-Decoder architecture.

The problem with it is that, when the input
length gets really large, it is extremely difficult to
sufficiently summarize all the input data in a single
fixed-sized vector. In other words, this might lead
the agent to forget input information. That is why
an attention layer is introduced.

2.2. Attention Mechanism
The attention layer is an interface that allows the
Decoder to access information about all the En-
coder hidden states at all times. Moreover, it high-
lights useful parts of that input data in order to let
the model focus on those key areas and learn the
connections between them. This way, the model
can effectively remember and process long input se-
quences [8].

There are two types of attention mechanisms: one
that uses all encoder hidden states (global atten-
tion) and another that uses only a subset of them
(local attention). All throughout this thesis, global
attention was the type of mechanism used and re-
ferred to as ”attention”.

During the steps on the attention layer, a set of
attention weights is calculated, one weight for each
encoder hidden state. These attention weights are
the ones who define how relevant each input is for
the output of the current time step and so are used
to derive the context vector fed as input to the de-
coder.

One of the fields where the usage of these
Encoder-Decoder with attention mechanism archi-
tectures are popular is Neural Language Processing,
or more specifically the translation task. A repre-
sentation of the attention weights is given in figure
2.2, where the darker lines represent higher weight
values.

Figure 3: An intuitive example about the influence
of the attention weights.

The first step which takes place in the attention
layer is the calculation of a score between the cur-
rent decoder hidden state and all the encoder ones.
Different operations between the vectors can be ap-
plied to calculate this score. One option is to cal-
culate the dot product between the two vectors. In
this thesis, each of the weights udv, the attention
weight in the decoder step d relative to the v-th
encoder hidden state, was calculated according to
equation 1.

udv = wT tanh(W1ev +W2dd), v ∈ (1, ..., n) (1)

where w, W1 and W2 are learnable weights, ev
is the v-th encoder hidden state and dd is the d-th
decoder hidden state.

Then all the scores go through a softmax func-
tion, which is a generalization of the logistic func-
tion for multiple dimensions. After applying soft-
max, each score will be in the interval (0, 1) and
the components will add up to 1. After that, each
encoder hidden state is multiplied by its own soft-
maxed score. And finally, all the resulting vectors
are summed up, generating the context vector. This
set of steps ends up being a linear combination the
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encoder hidden states, where the constants that are
multiplied to the each hidden vector is its own score.
The calculations made during these steps are pre-
sented in equation 2.

adv = softmax(udv), v ∈ (1, ..., n) (2a)

d
′

d =

n∑
v=1

advev (2b)

A final step is left, during which the context vec-
tor is fed into the decoder. Although there are dif-
ferent common ways of doing this, in this thesis the
Bahdanau’s method was chosen [1]. According to
this method, the input to the next decoder step is
the concatenation between the output from the pre-
vious decoder time step and context vector from the
current time step.

Despite its complexity, this network architecture
can still be trained using Backpropagation. The al-
gorithm will change the weights in the RNNs and
in the score function in order to ensure that the
outputs will be close to the ground truth. These
weights will affect the encoder hidden states and
decoder hidden states, which in turn affect the at-
tention scores.

At last, there is one small detail still worth high-
lighting. It is possible to run as many steps of the
decoder as needes. In other words, for the trans-
lation task, the agent can output as many words
(one by one) as needed. However, the output of a
GRU is constant in size. This means, that size of
the dictionary of words that can be used is fixed. It
cannot be adapted from problem to problem. This
constitutes a limitation that Pointer Networks ar-
chitectures aim to solve.

2.3. Pointer Networks
Pointer Networks introduce a very simple modifi-
cation to the attention model that make it possible
to solve combinatorial optimization problems where
the output dictionary size depends on the number
of elements in the input sequence [15].

It does that by using the attention weights as
pointers to the input elements and taking them as
the output of each decoder step. The softmax func-
tion generates these weights such that they will add
up to 1, which means that they can be interpreted
as probabilities, just like in equation 3.

In other words, it uses the attention weights as
pointers to the input elements.

udv = wT tanh(W1ev +W2dd), v ∈ (1, ..., n) (3a)

P (Cd|C1, ..., Cd−1,P) = softmax(ud) (3b)

Here P = {P1, ..., Pn} is the input sequence and
CP = {C1, ..., Cz(P)} is the output sequence.

So Cd is the output of the d-th decoder step. It
is a vector with the attention weights of that step
(one weight for each encoder hidden state).

3. Implementation
3.1. Numerical Model
In a DRC-FJSSP there is a set of n jobs J =
{J1, J2, ..., Jn} to be processed at a set of m ma-
chines M = {M1,M2, ...,Mm} operated by a set
of w workers K = {K1,K2, ...,Kk}. Each job
has a predefined sequence of ni operations O =
{Oi,1, Oi,2, ..., Oi,ni}. Let pij be the processing time
of the operation Oi,j . Operation Oi,j can only be
processed at one machine out of a set of Mi,j eligible
machines. Each machine can process only one op-
eration at a time and there is no preemption, which
means that since an operation has started it can-
not be stopped until it is finished. Each worker Kk

can only operate a subset of M , for which Kk is an
eligible worker. Thus, there is an eligibility matrix
Emk, where the element (m,k) is a 1, if Kk is an
eligible worker for Mm, or, otherwise, it is a 0. All
jobs, machines and workers are available at time 0.
The goal is to minimise the maximum completion
time, the makespan Cmax by assigning a compatible
machine and an eligible worker to each operation as
well as arranging the processing order of operations
on each machine.

Let stij be the starting time of Oi,j , and rtmk be
the ready time of machine Mm operated by worker
Kk, and N be a large enough number. Mathemati-
cally, the DRC-FJSSP with makespan minimisation
can be formulated as follows:

Min Cmax (4)

Subject to:

sti(j+1) ≥ stij +
∑
m

∑
k

pijxijmk, Ji ∈ J,

j = 1, 2, ..., ni − 1,Mm ∈Mi,j , Emk > 0 (5)

sti’j’ + (1− ζijm−i’j’m)N ≥ sij +
∑
k

pijxijmk,

Ji ∈ J, j = 1, 2, ..., ni, Mm ∈Mi,j , Emk > 0
(6)

rtm’k + (1− ξmk−m’k)N ≥ rtmk,

Kk ∈ K, Emk, Em’k > 0 (7)

rtmk + (1− xijmk)N ≤ stij , Ji ∈ J,
j = 1, 2, ..., ni, Mm ∈Mi,j , Emk > 0 (8)∑

m

∑
k

xijmk = 1, Ji ∈ J,

j = 1, 2, ..., ni, Mm ∈Mi,j , Emk > 0 (9)
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xijmk =


1, if Oi,j is processed on Mm

operated by Kk

0, otherwise

(10)

ζijm−i’j’m =


1, if Oi,j is processed before

Oi’j’ on Mm

0, otherwise
(11)

ξmk−m’k =


1, if Mm is operated before

Mm’ by Kk

0, otherwise
(12)

where equation 5 ensures that the precedence
constraints are not violated; equation 6 guarantees
that a machine can process only one operation at
a time; equation 7 ensures that a worker can oper-
ate one machine at a time; equation 8 ensures that
an operation cannot start unless the assigned re-
sources are ready; equation 9 guarantees that each
operation is assigned to only one compatible ma-
chine operated by one eligible worker.

3.2. Proposed Solution
A great inspiration for this thesis was retrieved from
the work in [16] and in [11], regarding the use of RL
to solve the DRC-FJSSP and the RL algorithm, re-
spectively. In the following subsections, both these
aspects are discussed as the proposed solution is
presented.

3.2.1 Solve the DRC-FJSSP using RL

In [16], a novel approach, using Deep Q-Learning,
was proposed for solving the DRC-FJSSP. In their
work, they initialized a schedule according to a set
of rules and ran a step by step optimization process.
At each step, the agent would receive a representa-
tion of the current schedule, the state, as input and
output a choice between 2 possible actions: Move
and Reassign Pool. Each of them was an heuris-
tic that the agent could choose to apply in order
to update the state. Soon, they realized that a full
schedule representation, a vector with all the prob-
lem variables, could not be used as a state, since
its size would vary with the number of jobs and re-
sources of a scheduling problem and the number of
inputs of a NN has to be fixed. Therefore, a 30 fea-
ture state representation was used. This arbitrarily
chosen set of features was supposed to summarize
all the state information.

In the early research of this thesis, this was iden-
tified as a plausible source of the limited optimiza-
tion results achieved, since the agent’s intelligent

intuition had limited power and information to act
upon. Allowing the intelligent agent to analyse,
move and assign individual operations would give
it total control and thus unchain its true potential.
In order to do that, one would need to able to feed
the NN a variable number of input features and let
it choose between a variable number of possible ac-
tions. For example, consider a simple problem with
n jobs. As an input, the agent needs to receive n
input vectors, each one of them with information
regarding each individual job. Whereas, as an out-
put, it needs to be able to choose to move one job,
out of the whole set, into a new position in the
schedule. Thus, it would need to output a set of
n values, being each of those values the score of
choosing to move each job. Also, unlike in [16], the
initial schedule is randomly generated and only fea-
sible states are allowed throughout the optimization
process. This means that the initial state is feasible
and every move made by the agent needs to keep it
like that, to be allowed.

In order to do this, the encoder-decoder with at-
tention mechanism was used. It is a RNN archi-
tecture, typically used for Natural Language Pro-
cessing, that is able to receive inputs with variable
sizes, deliver outputs with variable sizes and have a
high quality memory, even for long input sequences.
These features make this architecture potentially
powerful for the DRC-FJSSP. The overview of this
proposed solution is given in figure 3.2.1.

Figure 4: Overview of the proposed RNN architec-
ture, with highlight to its inputs and outputs.

This architecture is quite complex on its own, so
there was an attempt to simplify the inputs to the
maximum. Therefore, there will be a number of
encoder steps equal to the number of operations
to schedule. At the v-th encoder step, information
about the v-th operation is submitted to the agent.
That information is composed by a 2 component
vector. The first component represents the normal-
ized processing time of that operation. Whereas,
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Table 1: Example of OSV, WAV and MAV schedule
encoding vectors.
OSV 4 1 7 9 5 10 6 2 8 3
MAV 1 3 1 2 2 3 1 1 3 3
WAV 2 1 2 2 2 1 1 2 1 1

the second component represents the normalized
position of that operation in the OSV.

The Operation Sequence Vector (OSV) is one of
three different vectors responsible for encoding the
schedule information. The other vectors are the
Machine Allocation Vector (MAV) and the Worker
Allocation Vector (WAV). This encoding scheme is
similar to the ones used in many state-of-the-art
methods and it aims to simplify schedule represen-
tation and manipulation.

All of these vectors have a number of components
equal to the number of operations to schedule. The
OSV gives us the order by which operations are put
in the schedule, which means that the v-th compo-
nent of the vector is the i-th operation to be sched-
uled. The v-th component of the MAV and the
WAV tell us what is the machine and worker allo-
cation for the operation in the v-th component of
the OSV. An example of this encoding scheme is
presented in table 1.

During the decoding process, operations are put
in the schedule one at a time, following the order
specified in the OSV. They are put at the mini-
mum feasible time, which will logically depend on
the availability of the allocated worker and machine.
For example, according to table 1, the first compo-
nent in the OSV is operation number 4. So, this
would be the first operation to be put in the sched-
ule. It would be allocated to machine number 1,
operated by worker number 2. Next, the second
component of the OSV, operation number 1, would
be put in the schedule, allocated to machine num-
ber 3, operated by worker number 1. And so on,
until operations are put in the schedule.

Finally, as can be seen in figure 3.2.1, the de-
coder outputs will not be considered as the agent
outputs. In fact, the attention weights will be con-
sidered as the output of the network, as in a Pointer
Network. This is done for 2 main reasons: compu-
tational power and intuition.

First of all, computational power. The number
of outputs our agent needs to deliver is equal to
the squared value of the number of operations to
schedule. It has n operations to choose from and
n positions in the OSV to move them to, since the
agent is allowed to ”move” an operation to the same
position it is in. So, all in all, it has n2 possible
moves to choose from. Since this number varies
with the problem dimension, the agent would need
to output the score of each of this moves one by

one in the decoder, which means it would need n2

decoder steps. At each decoder step, there are n
attention weights calculated, one for each encoder
hidden state. This means that, if they are used as
the network’s outputs, there is only the need to run
n decoder steps to find the n2 score values. This
means that decoder’s GRU is ran a much smaller
number of times, especially when the problem size
increases a lot. Therefore, a lot of computational
effort is saved.

Secondly, intuition. It was shown that the atten-
tion weights are score values that basically evaluate
the importance of each input the encoder received.
In a way, they be can pictured as the ”amount of
time” the agent would ”look” at each of these in-
puts before deciding what would be the best output
to deliver. So the word intuition is used in the sense
that it is reasonable to assume that if the agent is
concerned a lot (”looks a lot of time”) with an op-
eration, then that operation is probably the most
critical one to improve the current solution quality.
So, the operation with the highest attention weight
is probably the most suitable choice to be moved.
So, there are n decoder steps, each one with n atten-
tion weights. First, the highest attention weight of
them all is located. If it is the v-th attention weight
of the d-th decoder step, then the agent chooses to
move the v-th operation to the d-th position in the
OSV. Of course, the justification behind this rea-
soning is not rigorous, but it is an assumption that
can save a lot of computational effort and, so, it is
definitely worth testing and evaluating the results.

The simplified inputs given to the agent do not
contain any information regarding the workers and
machines available for allocation. That is why the
agent only manipulates the OSV. The allocation of
machines and workers will be made at the schedule
decoding phase, according to the Earliest Feasible
Time heuristic. This means that each operation
will be allocated to the worker-machine pair that
can process it the earliest. If there are more than a
single pair available at the same earliest time, then
the first of them is chosen. Worker-machine pairs
(Mm,Kk) are listed according to equation 13. So,
the first would be the pair with the smallest index.
This was made in order to ease programming im-
plementation.

Pair index = (m− 1)nworkers + k (13)

3.2.2 RL algorithm

In [11], a deep Q-network was presented. Using end-
to-end reinforcement learning, the agent was able
to achieve a level comparable to that of a profes-
sional human games tester across a set of 49 Atari
games, using the same algorithm, network archi-
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tecture and hyperparameters. Motivated by those
impressive results, the same reinforcement learning
algorithm was followed in this thesis, like described
in algorithm 1.

Algorithm 1: Deep Q-Learning with expe-
rience replay

Initialize replay memory D to capacity DN ;
Initialize action-value function Q with
random weights w ;

Initialize target action-value Q̂ with weights
w− = w ;
for episode = 1, ..., M do

Initialize sequence s1 = x1 and
preprocessed sequence φ1 = φ(s1) ;
for t = 1, ..., T do

With probability ε select a random
action actt ;

otherwise select
actt = argmaxactQ(φ(st), act;w) ;

Execute action at in simulation and
observe reward rt and state xt+1 ;

Set st+1 = st, actt, xt+1 and
preprocess φt+1 = φ(st+1) ;

Store transition (φt, actt, rt, φt+1) in
D ;

Sample random minibatch of
transitions (φv, actv, Rv, φv+1) from
D ;
if episode terminates at step v+1
then
targv = Rv ;

else
targv =
Rv + γ maxact′Q̂(φv+1, a

′;w−) ;

end
Perform a gradient descent step on
(targv −Q(φv, actv;w))2 with
respect to the network parameters w
;

Every C steps reset Q̂ = Q ;

end

end

All in all, during training the agent will try differ-
ent moves and save that information (initial state,
move and final state) in a memory, together with
the respective reward. Exploration and exploita-
tion are balanced according to the ε-greedy algo-
rithm. This means that the agent will take a ran-
dom action with probability ε, while the rest of the
times it will choose the action elected by the output
of the RNN. This ε value was changed linearly be-
tween 100%, in the beginning, and 10%, after 80%
of the epochs. During the rest of the epochs, the
ε is of 10%. This is a typical range of values when

applying ε-greedy.

Each epoch is composed by a number of episodes.
Every episode, the agent receives a new problem
and does 3 ∗ noperations moves, where noperations is
the number of operations to schedule for that prob-
lem. This number of moves is derived in appendix A
of the thesis, while the number of episodes is chosen
empirically.

Then, a mini-batch is generated by randomly se-
lect 32 instances from the memory. Different mini-
batch sizes were tested, but the best results were
found for that value. After that, a target value
targv is calculated for each of those instances ac-
cording to the if statement in 1. The γ value is
a parameter that is common practice to establish
as 0.99, even though it might be optimized to the
problem at hand. Finally, a gradient descent is
performed trying to minimize the squared error be-
tween the target values and the predictions (output
moves) dictated by the RNN.

The rewards play a huge part in the success of a
RL method and they usually depend and need to be
adapted to the problem at hand. In this thesis im-
plementation, some different reward combinations
were tried, until a combination was found that de-
livered good results. In the end, it was found that
to deliver strong rewards when good moves were
made was better for the algorithm to learn then
to deliver penalties for bad movements. So a re-
ward of 0.05 was given for every unit of time a
move could improve the solution makespan relative
to the best makespan found so far. Otherwise, if a
new best solution was not found, a small penalty of
0.01 was given. Furthermore, a growing penalty of
0.001 times the number of moves so far was given in
order to incentive the agent to find good solutions
fast. At last, the agent was given the possibility to
suggest moves that do not change the schedule. It
happens when the agent wants to move one oper-
ation to a position in the OSV it is already in. In
that case, it was considered that the agent is stating
that the schedule is already optimized. No penalties
are given if that is the chosen move.

After the training process, hopefully the Agent
will be ready to autonomously generate quality so-
lutions for the DRC-FJSSP. Those solutions are
generated through a step by step optimization pro-
cess. At each step the agent receives as an input in-
formation about the current solution state, just as
it did during training, and outputs the selection of
a move operation. A rule was established to put an
end to the agent’s optimization process. A sched-
ule is considered to be optimized when the agent
chooses a move that does not change the OSV.
When that happens, the best schedule found so far,
the one with the lowest makespan, is considered to
be the optimized solution. Additionally, the agent
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only has a limited number of moves to optimize the
solution, equal to 50% of the number of operations
to schedule for the problem at hand. After those
moves, the best schedule found so far, the one with
the lowest makespan, is considered to be the op-
timized solution. The 50% threshold was defined
empirically as a trade-off between the minimization
of computational time and the maximization opti-
mization performance.

4. Results

An agent was trained for application in a widely
used benchmark dataset, the MK1-10 [2]. This
benchmark has 2 big constraints that are common
in a DRC-FJSSP. The first one of them is that jobs
can have multiples operations, that need to be exe-
cuted in a precise sequence. The second one is that
only a subset of the machines is eligible to execute
each operation and only a subset of the workers is
able to operate each machine. The training set was
composed of 10 different problems, each with 10 op-
erations to schedule, with processing times between
2 and 18 units of time, randomly generated. Unlike
in the test dataset, each machine was eligible for
any operation and each worker could operate any
machine. Finally, jobs were composed by a single
operation. For the hyperparameters, a combination
that achieved faster but steady convergence during
training was used. For the same reason, a learning
rate of 0.01 was chosen, together with no target net-
work Q̂ weights update, a batch size of 32 and the
reward system described earlier. The KGFOA was
chosen as a state-of-the-art meta-heuristic for com-
parison and implemented as described in [17] for
1000 generations. Both models were implemented
in Python and ran in a Google Colab environment,
with GPU enabled. The results of the simulation
are presented in table 5.

For half of the test instances (MK’s 4, 5, 6, 8
and 10) the KGFOA performed considerably bet-
ter than the Agent. However, for the rest of them,
the results from both methods were quite competi-
tive. The Agent was even able to surpass the KG-
FOA’s performance for MK2. It is true that on
average the KGFOA had a superior performance,
but these are still impressive results given that the
Agent had not been exposed to the additional con-
straints of the MK1-10 dataset during training. In
other words, the Agent had never had to solve a
problem before where jobs had multiple operations,
with a predefined sequence of execution, or where
there were worker-machine pairs that were not el-
igible for allocation. This means that a scarcely
trained agent can still occasionally compete with a
state-of-the-art technique when solving some prob-
lems way more complex than the ones it was trained
with.

Additionally, the execution times of the Agent
were more than 60 times lower than the KGFOA.
One may point out that for a fair analysis, the
Agent and the KGFOA results should be compared
for a similar execution time. However, for the
MK1-10 instances, the KGFOA execution times,
even tough much higher than the Agent’s, were
still within a reasonable range. However, for larger
problems that probably would not be the case any-
more and so the Agent’s celerity could come as a
decisive advantage.

There is another feature of the Agent worth high-
lighting, relative to the execution time of the opti-
mization process. As mentioned in section 3.2.2,
the agent can put an end to the optimization pro-
cess if it identifies the current schedule as being fully
optimized. This skill is supposed to be acutely de-
velop at least for a fully trained agent. However,
for the scarcely trained agent being tested, it shall
not come as surprise that most of the times it fails
to recognize that a schedule is fully optimized. It
would already be remarkable if it could even achieve
such a schedule. More often than not, the agent will
finish the optimization process when it reaches the
maximum number of moves stop criterion. There-
fore, it is expected that the execution times sharply
decrease for a thoroughly trained agent.

5. Conclusions
The research conducted on this master thesis al-
lowed the development of a novel Deep Q-Learning
method for solving the DRC-FJSSP. The idea of
applying an Encoder-Decoder NN architecture with
an Attention Mechanism, typically used when solv-
ing Neural Language Processing problems, really
proved to work. Even with just a scarce number of
training cycles across a very basic training dataset,
the agent designed was able to achieve some com-
petitive results comparatively with a state-of-the-
art meta-heuristic when applied to a benchmark
dataset. The agent proved to be flexible in deal-
ing with some real-world Industry constraints and
was able to generate the solutions in a reasonable
amount of time, dozens of times faster than the KG-
FOA.

The most significant drawback of this implemen-
tation has to be the computational effort required
to train the NN. The major bottleneck of the work
developed in this thesis was indeed the lack of ade-
quate computational resources. This heavy com-
putational requirements are typical in the devel-
opment of Deep Learning systems. However, as
pointed out in the introduction of this thesis, the
computational power available in the market has
been growing exponentially. If one or two decades
ago the amount of computational power required to
train a Deep NN would only be available to the
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Table 2: Simulation results of the Agent and the KGFOA for the MK1-10.
MK1 MK2

Agent KGFOA Agent KGFOA
Job Dimension (%) 319.07 162.79 109.88 231.98
Job Difference (‰) 1577.47 804.83 666.10 1406.21

Min Finish time (units) 53 55 66 71
Max Finish time (units) 66 60 69 74

Lower Bound (units) 54 54 65 65
Distance to Bound (%) 22.22 11.11 6.15 13.85

Execution Time (s) 1.26 65.46 1.34 75.27
MK3 MK4

Agent KGFOA Agent KGFOA
Job Dimension (%) 1523.67 734.71 640.80 537.36
Job Difference (‰) 2537.50 1223.58 2463.10 2065.47

Min Finish time (units) 285 311 107 114
Max Finish time (units) 408 328 129 123

Lower Bound (units) 254 254 92 92
Distance to Bound (%) 60.63 29.13 40.22 33.70

Execution Time (s) 3.02 262.98 1.85 131.87
MK5 MK6

Agent KGFOA Agent KGFOA
Job Dimension (%) 683.17 328.45 1637.44 992.65
Job Difference (‰) 9156.44 4402.13 5347.98 3242.04

Min Finish time (units) 341 324 121 155
Max Finish time (units) 359 332 207 169

Lower Bound (units) 307 307 111 111
Distance to Bound (%) 16.94 8.14 86.49 52.25

Execution Time (s) 2.23 202.06 2.93 282.48
MK7 MK8

Agent KGFOA Agent KGFOA
Job Dimension (%) 405.03 339.85 1352.33 949.40
Job Difference (‰) 616.76 517.51 3612.11 2535.86

Min Finish time (units) 281 290 646 586
Max Finish time (units) 312 305 688 637

Lower Bound (units) 269 269 517 517
Distance to Bound (%) 15.99 13.38 33.08 23.21

Execution Time (s) 2.75 142.46 4.61 534.35
MK9 MK10

Agent KGFOA Agent KGFOA
Job Dimension (%) 1026.24 933.42 1304.43 967.27
Job Difference (‰) 3179.76 2892.14 3782.19 2804.60

Min Finish time (units) 627 636 449 465
Max Finish time (units) 667 655 528 487

Lower Bound (units) 535 535 370 370
Distance to Bound (%) 24.67 22.43 42.70 31.62

Execution Time (s) 4.84 549.72 4.74 486.88
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market’s technological giants, nowadays an aver-
age startup budget would probably be enough to
invest in those resources. Moreover, the advent of
cloud computing diminished even more the price
of access to those resources. If that would not be
enough, just recently Chinese scientists announced
a technological breakthrough, claiming that they
had developed a quantum computer capable of per-
forming certain computations nearly 100 trillion
times faster than the world’s most advanced super-
computer [3]. All in all, the rate at which the com-
putational power available for everyone is growing
does not seem to decay, so it should not be long
until it becomes easy for everyone to train a Deep
NN in their own computer. But even now the re-
quired computational power should be available at
a reasonable budget.

It was impossible to evaluate the full capabilities
of the proposed solution due to the lack of com-
putational resources. The complex neural network
architecture developed would need to be exposed
to at least hundreds of different problems and hun-
dreds of thousands of training cycles, before one
could consider it properly trained. Therefore, as
future work, before trying different approaches it
would be interesting to evaluate how well can this
model operate after a thorough training procedure
and compare the results obtained with the state-of-
the-art techniques.
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