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Resumo

Está a decorrer uma revolução na forma como as indústrias funcionam. A grande abundância de dados e

o crescimento exponencial do poder computacional desencadearam o potencial da Inteligência Artificial. Esta

nova ferramenta poderosa ganhou popularidade com o aparecimento da Indústria 4.0 e promete tornar as fábricas

inteligentes, mais produtivas e eficientes.

O método proposto nesta tese aplica Deep Q-Learning para criar um sistema inteligente capaz de resolver o

Dual Resource Constrained Flexible Job Shop Scheduling Problem. Uma nova arquitetura de rede neural Encoder-

Decoder com Mecanismo de Atenção é apresentada. Esta arquitetura permite que a rede seja alimentada com in-

formações de problemas mais completas e significativas, além de ter comandos de saída mais precisos e poderosos.

Para diminuir o custo computacional desta técnica, os comandos de saída são selecionados como nas arquiteturas

Pointer Networks.

O agente desenvolvido alcançou resultados promissores, mesmo tendo sido treinado limitadamente. Estes re-

sultados mostram que, com uma implementação otimizada do método e um procedimento de treino mais completo,

esta técnica tem o potencial de competir com os atuais algoritmos meta-heurísticos de última geração na solução

deste tipo de problema.

Finalmente, o trabalho futuro a desenvolver pode consistir em colocar restrições adicionais ao problema para

aplicação na indústria. A possibilidade de haver tempos de processamento diferentes para a mesma operação,

dependendo do par de recursos alocado, é discutida. Além disso, um conceito redesenhado do método proposto é

apresentado.

Palavras-chave: Job-Shop Scheduling, Aprendizagem por Reforço, Deep Q-Learning, Encoder-Decoder,

Mecanismo de Atenção, Pointer Networks
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Abstract

There is a revolution going on in the way industries work. The large abundance of data and the exponential

growth of computational power have unchained Artificial Intelligence’s potential. This new powerful tool gained

popularity amidst the advent of Industry 4.0 and comes with the promise of making factories smart, more produc-

tive and efficient.

The method proposed in this thesis applies Deep Q-Learning to create an intelligent system capable of solving

the Dual Resource Constrained Flexible Job Shop Scheduling Problem. A novel Encoder-Decoder neural network

architecture with Attention Mechanism is presented. This architecture allows the network to be fed more thorough

and meaningful problem information, as well as having more precise and powerful output commands. In order

to diminish the computational cost of this technique, the output commands are selected as in Pointer Networks

architectures.

The agent developed achieved promising results, even having just been scarcely trained. These results show

that, with an optimized implementation of the method and a more thorough training procedure, this technique holds

the potential of challenging current state-of-the-art meta-heuristic algorithms in solving this kind of problems.

Finally, future work might consist in adding additional constraints to the problem for application in the Industry.

The possibility of having different processing times for the same operation, depending on the allocated resource

pair, is discussed. Also, a redesigned concept of the proposed method is presented.

Keywords: Job-Shop Scheduling, Reinforcement Learning, Deep Q-Learning, Encoder-Decoder, Atten-

tion Mechanism, Pointer Networks
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Industry 4.0

We are living amidst a revolution in the way industries work and companies do business, as Industry 4.0 is on

the rise and taking its first steps. Even though some might still dismiss it as a fancy marketing buzzword, there are

huge transformations happening right now in the manufacturing processes of some of the world leading companies,

that definitely make these new systems worthy of our attention and consideration [1].

Industry 4.0 is constituted by a set of production management frameworks which are powered by a network

of intelligent machines, where data can be shared and processed, using technologies like Artificial Intelligence,

Machine Learning and the Internet of Things. It is this interconnection and communication between computers,

sensors and machines, that can give our factories the label of smart and ultimately allow them to be more efficient,

productive and flexible, as well as less wasteful [1].

1.1.2 Artificial Intelligence

Artificial intelligence (AI) is a wide-ranging branch of computer science. This field’s work and research is

related with building smart machines capable of performing tasks that typically require human intelligence. AI

is an interdisciplinary science with multiple approaches, but recent advancements in machine learning and deep

learning are creating a paradigm shift in virtually every sector of the tech industry [2].

The large abundance of data and the exponential growth of computing power have unchained AI’s potential

and made its costs significantly decrease. The evidence seems to point out that we are on the verge of an immense

upshift of the field’s development and investment, and so a vast progress and fierce solutions are expected in

the next few decades [3]. Areas where algorithmic problem-solving used to be found as extremely complex are

now, with the introduction of AI, getting to consider these methods as feasible and economically viable [4]. The

opportunities are immense and difficult to thoroughly grasp and so are the uncertainties about the changes it will

create to our future. One thing is for sure: AI stands out as one of the most promising tools for companies to

leverage their future. And perhaps to lose the trail of this transformation might cause irreversible damage to a

1



company competitiveness in the market.

1.2 Scheduling in Production Systems

Scheduling is the process of allocating scarce resources to perform a number of competing tasks over time [5].

It is a decision making process of great importance in the fields of manufacturing and production [6]. This impor-

tant role derives from the need for survival that companies find in an extremely competitive economic scenario,

where profit margins are getting smaller and smaller [5]. Optimized production schedules can give an enterprise a

more efficient utilization of resources, which has a considerable impact on their production’s capacity of meeting

deadlines while maximizing profits.

Resources in manufacturing systems may include material storage, transportation and processing equipment,

manpower and utilities (such as water, electricity and oil). Whereas, processing operations, transportation and

maintenance may be considered as tasks [5]. In a production system the most critical resources typically are

manpower and processing equipment, whereas the processing operations are the most critical tasks. Therefore,

production scheduling problems are usually simplified according to manufacturing models. In these models, re-

sources are typically boiled down to machines and tasks are known as jobs. Jobs may be composed by a single

operation or by a collection of them to be done in several different machines, following a predefined sequence. One

of the most well known manufacturing models is the Job Shop, because of its flexibility, room for customization

and adaptability to change. The Job Shop optimization problem is presented in section 1.3.

Flexible multipurpose plants are able to produce a large variety of different products using a set of production

routes. This feature makes such plants particularly effective for the manufacturing of products that exhibit a large

degree of diversity and which are subject to fast-varying demands. Due to their inherent flexibility, the scheduling

of such plants is a problem of high complexity. Compared to other parts of the supply chain management, such as

distribution management and inventory control, the production scheduling is often by far the most computationally

demanding part [5].

Optimization-based methods for scheduling were subject of a huge variety of research works published by the

scientific community over the last 30 years. However, despite all this effort, the practical implementation of these

methods in industrial real-life applications is still limited. Most optimization tasks of production scheduling are

seen as extremely complex. Therefore, most schedulers end up using a simulation-based software or even making

manual decisions, which result in suboptimal solutions [5].

A study as shown that the lack of quality in planning and scheduling can reduce productivity by 5 percent [4].

Quite often, inventories are increased to improve supply reliability and uphold stable production, which represents

an increase in production costs. Excellent planning and scheduling is thus a significant competitive advantage.

1.3 Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) stands out as one of the most important combinatorial optimization

problems in manufacturing systems. It models a problem where one wishes to determine the ideal sequence of

jobs on every machine, given that each operation can only be done in one specified machine. This means that each

2



job has its own predetermined route to follow. The JSSP has been widely studied for decades not only because

of its significance and applicability in real manufacturing systems but also because it is a NP-hard problem [7].

NP stands for Non-Deterministic Polynomial problem, which means that the computation time is not a polynomial

function of the size of the problem, but rather exponential or factorial. This means that as the size of the problem

gets bigger (e.g. more jobs to schedule) it gets impossible for a simple algorithm to find optimal solutions in a

limited amount of computing time.

Flexible Job Shop In real manufacturing systems the route that each job has to follow may not be predetermined.

For example, there may be several machines capable of executing the exact same operation. That’s where the

Flexible Job Shop Scheduling problem (FJSSP) comes has an extension of the traditional JSSP. It introduces a new

decision dimension, as it takes charge not only of the sequence of operations but also of their machine allocation

(job routes) [8].

1.4 Dual-Resource Constrained Flexible Job Shop

In the FJSSP, the resources required for the machines to process their assigned tasks, like manpower, main-

tenance equipment and tooling, are still assumed to be plentiful. However, quite frequently some of these are

in fact expensive or limited in abundance [9]. Usually, both machines and workers represent decisive capacity

constraints. The Dual-Resource Constrained Flexible Job Shop Scheduling problem (DRC-FJSSP) comes as an

attempt to better incorporate the real manufacturing process dynamics and constraints, which will hopefully gen-

erate more relevant and valuable solutions to the industry. It consists of 2 routing sub-problems: job scheduling

and resource dispatch [10].

As the manufacturing industry reveals an increasing reliance on agility and flexibility, with the expansion of

product customization, which lead to smaller lot sizes and shorter cycle times, the different kinds of machine and

human resources must be considered and effectively managed to assure quick responses to the market demands.

Previous works have been released addressing the relevance of the workforce specificities in the final solution,

such as cross-training staffing levels, worker allocation, worker fatigue and recovery, learning and forgetting levels

[10].

The DRC-FJSSP has been traditionally solved using analysis and simulation approaches. However, some

details of the DRC-FJSSP are difficult to model for analysis and, being an NP-hard problem, simulations have an

unbearable computational cost. Therefore, there has been a trend towards the use of meta-heuristic methods, since

they have proved to be capable of quickly find near optimal solutions [10].

1.5 Thesis Contribution

The state-of-the-art collection of methodologies regarding the optimization of DRC-FJSSP is composed al-

most exclusively by heuristic or meta-heuristic algorithms that aim to outperform all the others at minimizing the

makespan, which will be presented in section 2.1.4. However, no matter how good they can turn out to be (and

there are many really good ones), they are hopelessly captive of a truly intelligent intuition. They can achieve a
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high level of smartness, depending on the way these algorithms are designed, but there is always a high level of

randomness on the optimization process. And randomness is not intelligence, intuition is [11]. The work described

in this thesis was developed from the belief that a level of truly intelligent (not random) intuition on the optimiza-

tion of DRC-FJSSP can be achieved using AI. And that this differentiating ability holds the potential of surpassing

state-of-the-art results.

Additionally, there are other disadvantages that come with the use of meta-heuristics for combinatorial op-

timization problems. First of all, they are non-deterministic. This means that if you give them the same input

twice, they will not most likely generate the same output. Because most meta-heuristics employ random choices,

the computing time, as well as the solution quality, are actually uncertain. The stochastic nature of most meta-

heuristics makes their rigorous analysis difficult. Given these considerations, researchers have been led to take into

account empirical methods to measure the performance of a meta-heuristic and to compare meta-heuristics with

each other. The approach is essentially based on standard statistical methods and the goal is to be able to ensure

that the results are statistically significant.

Other than that, except for rescheduling tasks, which are outside of the scope of this work, every time there is

a change in the problem at hand, like a new job arrives or there is a machine breakdown, the meta-heuristic needs

to be ran again. In other words, any current good solutions are dismissed to consider the introduction of this new

information. Consequently, even for small changes in the schedule, the algorithm will take as much time to find

a new solution as it did when no good solution was known. Other algorithms can use knowledge from previously

found solutions and quickly derive a new solution, with respect to the new problem information.

The solution proposed in this thesis was inspired in two different works that applied Q-Learning and Neural

Networks (NN) to create an intelligent system capable of solving the DRC-FJSSP. In this thesis, the NN architech-

ture used in these works was completely redesigned, as explained in section 3.2.1, in order to be able to feed

the network thorough and meaningful problem information and allow it to perform more complex and powerful

changes to the solutions. In the end, the proposed approach stands out as a deterministic method, problem indepen-

dent and capable of giving fast and prolific results, if fully trained. The proposed method proves to be competitive

with the current state-of-the-art scheduling meta-heuristics.

All in all, the work on this thesis was conducted with the following goals in mind:

- Use Deep Q-Learning to create an intelligent system capable of generating quality solutions to the DRC-

FJSSP;

- Design a flexible agent, with direct applicability to the Industry and able to deal with complex real-world

constraints;

- Verify the efficiency of the proposed method and compare it with other state-of-the-art approaches;

- Introduce new performance metrics to evaluate the quality of the DRC-FJSSP solution;

- Generate solutions in a reasonable amount of computational time, so that this method can be used in the

Industry;

- Extend the limits of the application of Deep Learning to the DRC-FJSSP and pave the way for future research.
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1.6 Thesis Outline

This thesis consists of six chapters. In the first one, Introduction, the motivation behind the research on this sub-

ject is approached, as well as a reflection on why is there a window of opportunity. An introduction to scheduling in

production systems and to the DRC-FJSSP model is given. In the second chapter, Background, a small overview of

commonly used Scheduling Algorithms is given and some state-of-the-art metaheuristics are highlighted. It is fol-

lowed by a presentation of some fundamental Machine Learning concepts for this work, such as Neural Networks,

Reinforcement Learning and the Encoder-Decoder architecture with Attention Mechanism. Chapter 3, Implemen-

tation, starts with a numerical model of the DRC-FJSSP. Then, the proposed solution is explained, and so are the

steps that led to its development, regarding the usage of Deep Q-Learning and the implemented RL algorithm. At

last, two novel performance metrics for evaluating the solutions of a DRC-FJSSP are defined. In the forth chapter

a first quickly trained Agent is tested against some very basic heuristic algorithms. The fifth chapter has detailed

results and discussion of the application of the proposed method to a Benchmark dataset. The obtained solutions

are compared with the ones generated by a state-of-the-art metaheuristic. Chapter 6, Conclusions, contains a sum-

mary of the overall quality of the solutions obtained and a thorough conceptual development of future work to be

done based on this thesis. In Appendix A, the ideal number number of move operations per episode during training

is deducted. And finally, in Appendix B, the full results of the simulations in Chapter 4 are presented.
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Chapter 2

Background

2.1 Scheduling Algorithms

2.1.1 Exact Algorithms

Exact algorithms provide solutions that are always guaranteed to be optimal. Furthermore, for a finite size

instance of a combinatorial optimization problem that solution can be found in finite time. Nevertheless, for NP-

Hard problems, like the JSSP, there are no exact algorithms capable of solving these problems in polynomial time.

This means that the computational time of these methods grows exponentially with the problem dimension and

quickly becomes unbearable [12]. Branch and bound algorithms [13] and mixed integer programming [14] are the

most popular exact methods used to solve scheduling problems.

2.1.2 Heuristics

A heuristic method is a practical problem solving method whose solution is not guaranteed to be optimal. For

problems where finding an optimal solution is impossible or impractical, heuristic methods offer a quick way to

find a satisfactory solution. Some of the most simple heuristics used in production scheduling include the Earliest

Due Date, Longest Processing Time and the Shifting Bottleneck heuristics [6]. Examples of other heuristics used

to solve the DRC-FJSSP are given in [15].

Heuristics are problem-dependent techniques, which means they are usually adapted to the problem at hand,

taking full advantage of the problem specificities and expert knowledge. Also, they are often too greedy and get

frequently trapped in local optima, unable to find the global optimum solution [16].

2.1.3 Meta-heuristics

Meta-heuristics serve quite the same purpose as heuristics but they are problem independent, even though some

fine-tuning of its parameters is often needed in order to achieve good results for the problem at hand. Generally,

in order for them to explore the solution space more thoroughly, there is a temporary deterioration of the solution.

This way, they can eventually find a better solution by exploring beyond local optima [16].

Today, a wide variety of optimization problems are solved using meta-heuristics. They are a powerful tool
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that makes it possible to solve NP-hard problems by taking a black box approach. In other words, by using these

techniques a good enough solution can be quickly reached for a problem one may not know much about how to

solve.

Popular meta-heuristics used in production scheduling include genetic/evolutionary algorithms, simulated an-

nealing, variable neighborhood search and particle swarm optimization, although many more exist [15]. There are

even some hybrid techniques which get together some of best features of these individual meta-heuristics into a

novel and more proficient method.

2.1.4 State-of-the-art Meta-heuristics

In the research conducted for this thesis a set of meta-heuristics were found to constitute the backbone of state-

of-the-art techniques to solve the DRC-FJSSP. The biggest challenge for a meta-heuristic is always to moderate its

greediness, so that it does not get stuck in a local optima, while keeping a top performing speed of convergence.

The search for the optimal point of the solution space can be divided in two different phases: 1) the identification

of regions of interest (global exploration) and 2) finding the local optima (local exploitation). All in all, the goal of

these meta-heuristics is to reach an optimal balance between these two. The following list is organized by number

of citations in ascending order.

Hybrid Genetic Algorithm A Hybrid Genetic Algorithm was successfully used to minimize the DRC-FJSSP

makespan, with consideration of worker’s learning ability [17]. Because of the learning ability, the worker’s

processing efficiency will increase with the accumulation of processing time but it cannot be improved indefinitely,

it will stop at a given highest level. A genetic algorithm was utilized to run the global exploration and it was

integrated with a variable neighbourhood search, responsible for the local exploitation. During the first, greedy

selection operations are executed together with two different types of permutation-based search operators. During

the later, three other types of permutation-based search operators are used.

Hybrid Discrete Particle Swarm Optimization A Hybrid Discrete Particle Swarm Optimization provided good

results in minimizing the makespan for the DRC-FJSSP [18]. A Discrete Particle Swarm optimization was used

to conduct the global exploration. An improved Simulated Annealing with a Variable Neighbourhood structure

was used for the local exploration. Like specified before, Particle Swarm Optimization, Simulated Annealing

and Variable Neighbourhood Search are meta-heuristics themselves. Thus, we call this algorithm a hybrid meta-

heuristic, since it combines different components from various meta-heuristics [19].

Branch Population Genetic Algorithm A Branch Population Genetic Algorithm was used to try to minimize

the makespan and the cost of the DRC-FJSSP [10]. The novelty here is in introducing a branch population to

accumulate and transfer evolutionary experience, strengthening the population diversity and accelerating conver-

gence. A permutation-based search operator is used to improve the thoroughness of global exploration and a greedy

selection of the best solutions is used for local exploitation.

Shuffled Multi-Swarm Micro-Migrating Birds Optimizer A Shuffled Multi-Swarm Micro-Migrating Birds

Optimizer tries to minimize the makespan of a Multi-Resource Constrained Flexible Job Shop Scheduling Problem

8



[9], similar to the DRC-FJSSP but with more than two resource constraints. The algorithm forms a number of

micro-swarms, each of which performs its own Migrating Birds Optimizer independently. It has been found that

a genetic algorithm with a small population of three individuals is sufficient to converge, irrespective of having

different lengths of chromosomes involved [20]. A random shuffle process is periodically applied to propagate the

knowledge acquired by the micro-swarms. Also, there is a renewing process of the population, based on the aging

phenomenon of life, that promotes the diversity of the population. Two different types of permutation-based search

operators are used that try to efficiently balance global exploration and local exploitation.

Knowledge Guided Fruit Fly Optimization Algorithm A Knowledge Guided Fruit Fly Optimization Algo-

rithm (KGFOA) proved to be effective in solving the DRC-FJSSP [21]. Two types of permutation-based search

operators were used for exploration and optimized by being combined with a knowledge-guided search stage. In

summary, this knowledge-guided search utilizes the experience provided by the best solutions found so far to en-

hance the probabilities of choosing of operations and resource assignments that have proved to work in the past.

Finally, a greedy selection of the best solutions takes place. This whole procedure is applied with the goal of

minimizing the solution makespan. Since this is the method with the most recognition from this set, it was the

algorithm chosen for comparison with the solution proposed in this thesis.

2.2 Machine Learning

Machine Learning (ML) is the field of science that studies how to make computers learn from data. There is,

however, a more precise definition which may prove to be useful to improve our understanding when working on

engineering projects. According to Tom Mitchell, a computer program is said to learn from experience E with

respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with

experience E [22].

There are so many different ML techniques that it can be useful to divide them into different categories, ac-

cording to a specific criterion. The most common division considers 3 main branches, depending on whether or

not they are trained with human supervision: Supervised Learning, Unsupervised Learning and Reinforcement

Learning.

In Supervised Learning (SL), the training data you feed to the algorithm includes the desired solutions, called

labels. It is the task of learning from labeled data and a human is needed to decide which data to collect and how

to label it. A program can then be created to identify bananas in an image (classification) or to estimate car prices

given their brand, model, age and miles (regression). The idea is to generate a model that can look at the given

data and learn to generalize for unseen examples.

In Unsupervised Learning (UL), the goal is to learn from unlabeled data. The program can learn without a

teacher how to divide the data into meaningful clusters or apply dimensionality reduction.

Reinforcement Learning (RL) constitutes a whole different ML technique. In RL, a software agent makes

observations of an environment and takes actions within it. In return, it receives rewards and its objective is to

learn to act in a way that will maximize its expected long-term rewards [23]. Many impressive applications have

been created implementing RL algorithms. RL is part of this thesis backbone, so a more thorough explanation of
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this technique will be provided in section 2.2.3.

2.2.1 Neural Networks

Just like birds inspired us to fly and the velcro technology idea came from the burdock plants, nature has

inspired many other human inventions. From here it is not a big stretch to understand that the human brain’s

architecture can provide tremendous insights on how to build an intelligent system. And that is where the idea that

inspired artificial neural networks (NN) came from [23]. Before getting in touch with a simple NN architecture,

one should first have an elementary understanding of its basic inner structure.

2.2.1.1 Perceptron

The perceptron is the most simple unit in a neural network, just like a neuron in the human brain. Understanding

what a perceptron is and how it works helps to undercover what is going on inside a neural network. It consists

of 4 parts: the input layer, the weights and biases, the net sum and the activation function. A representation of a

perceptron is given in figure 2.1.

Figure 2.1: A representation of a perceptron.

The weight w0 in figure 2.1 represents the bias. The weights and the bias are used to calculate the input

weighted sum, which is then passed through an activation function, the step function, giving a binary number as

the output. Equation 2.1 rules the output of a perceptron. It is worth noticing that the weights and the bias have

different roles. The weights show the strength of a particular node, whereas the bias shifts the activation function

up and down [24].

out put =

 0 i f ∑v wvxv ≤ threshold

1 i f ∑ j wvxv > threshold
(2.1)

∑v wvxv ≤ threshold can be simplified to wv · xv +b≤ 0, with b≡−threshold being the bias.

Perceptrons can work as Linear Binary Classifiers, dividing the data into two parts. Additionally, they can be

used to compute elementary logical functions, such as AND, OR and NAND. And since these functions are so

simple, a set of weights and biases can be easily devised without the need for any sort of training and exploration.

But suppose there is a need to compute a more complex function, one that can no longer be trivially derived. In

that case, training is needed. However, as we will see in section 2.2.1.4, it is impossible to train a perceptron with
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a binary output. In order to train the perceptron, it would be needed that small changes in the net’s weights and

biases would provoke a small change in the output. For a binary output that cannot happen, since only two values

can be expelled from the NN. This situation originated a stalemate that lasted for decades in the field, when at last

the rediscovery of the backpropagation algorithm reignited the interest in studying NN [25].

2.2.1.2 Activation functions

An activation function maps the result of wv · xv +b to a number between 0 and 1. To be fair, the binary output

of the original perceptrons was itself an activation function. A step function, more specifically. The problem was

that that specific branch function was not continuous, and so it was not differentiable. The activation function

differentiability is required so that the backpropagation algorithm can be applied for training, as explained in

section 2.2.1.4.

Different activation functions are used that make it possible to train a NN. The most popular one is by any

means the (logistic) sigmoid function, which is defined by equation 2.2 and whose shape can be seen in figure 2.2.

σ(z)≡ 1
1+ e−z (2.2)

where z = wv · xv +b.

Figure 2.2: Sigmoid function and its derivative.

The sigmoid function possesses all the good mathematical properties of being fully differentiable and continu-

ous, keeping the output values between 0 and 1.

Another popular activation function is the tanh, which is defined by equation 2.3 and whose shape can be seen

in figure 2.3. Actually, evidence points out that tanh activation functions are superior to sigmoid functions when

it comes to train a NN [26]. When having sigmoid as the activation function of the previous layer, since the input

values are all positive or null, it is not possible for some weights of a node to increase while some others decrease.

In other words, the weights of a node can either all increase or all decrease in a single step of the gradient descent.

If the weight vector needs to change direction, it can only do so by adding and removing different amounts to

the weights until the change in direction is completed. This is highly inefficient. For tanh, on the other hand, the
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direction of the weight updates are independent of one another, since the input values can now also be negative.

This allows the weight vector to change direction more easily.

tanh(z)≡ ez− e−z

ez + e−z (2.3)

where z = wv · xv +b.

Figure 2.3: tanh function and its derivative.

The tanh function also possesses all the good mathematical properties of being fully differentiable and contin-

uous, but keeps the output values between -1 and 1. Additionally, the tanh derivative is tendentiously much higher

than the sigmoid derivative, which will accelerate training when applying the backpropagation.

Like it was previously pointed out, the perceptron (with an activation function) is the basic unit of a NN. Having

already been introduced to both of them, one is ready to observe and comprehend a NN basic architecture.

2.2.1.3 Basic Neural Network architecture

An example of a simple NN is presented in figure 2.4:

Figure 2.4: NN with an input layer, an output layer and 2 hidden layers.

Each circle in the image represents a neuron: a perceptron with an activation function. The left side column

is called the input layer and it is made of the input neurons. This is the layer that receives the input data and first
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processes it before propagating it to the following layers. The right side column is called the output layer and

its neurons are called the output neurons, whose outputs constitute the output of the NN. The middle layers are

called the hidden layers. The inputs of each neuron in an hidden layer are the outputs from the previous layer and

the outputs of an hidden layer are the inputs of the following layer’s neurons. Having understood all the basic

components of a NN and their interconnections, one can finally understand how it is trained.

2.2.1.4 Backpropagation

Backpropagation is the method by which the fine-tuning of the weights and biases of a NN is done in order to

reduce the error rate obtained at each learning step. In other words, it is how the model learns. The backpropagation

method for updating a NN weights and biases has 2 different stages: the forward propagation and the backward

propagation.

During the forward propagation phase, the inputs of the training samples are fed into the NN and this informa-

tion is then processed and propagated throughout the network until it generates an output. A loss function needs

to be defined, so that the error between the output and the training sample target output can be computed. A

commonly used loss function is the sum squared error (used throughout the rest of this explanation).

Next, the second stage begins. During the backward propagation, the gradient descent weight update rule is

used [27]. In other words, the weights and biases are adjusted in the most effective way such that the activation

of the neurons throughout the layers will produce the desired output. In order to do so, the goal is to compute the

partial derivatives δC
δwl

f g
and δC

δbl
f
. And for that there is a need to define δ l

f as the error in the f -th neuron in the l-th

layer. The backpropagation method will compute the error δ l
f and then define δC

δwl
f g

and δC
δbl

f
as functions of it.

If there is a sigmoid as the activation function, the activation of a neuron is computed by equation 2.2. This

means that the greater the values of wl
f g, zl

f and bl
f the more activated is the neuron. It is worth highlighting that

zl
f represents the output of the previous network layer (the input of the NN, if the neuron is in the input layer) and

that only wl
f g and bl

f are adjustable. zl
f can also be adjusted, but only by changing the weights and biases of the

previous layers.

Let al
f be the output of the activation function of the f -th neuron in the l-th layer. The components of the error

vector in the output layer δ L, where L represents the last layer l, the output layer, can be computed according to

equation 2.4 [28].

δ
l
f =

δC
δaL

f
σ
′(zL

f ) (2.4)

where δC
δaL

f
calculates how much the cost function changes as a function of the f -th output activation and σ ′(zL

f )

measures how much the activation function σ is changing with zL
f . For example, δC

δaL
f

shows that if C does not

depend a lot on a particular output neuron, f , then δ L will be small. Next, there is a need to calculate the error δ l

in terms of the error in the next layer, δ l+1, according to equation 2.5.

δ
l = ((wl+1)T

δ
l+1)�σ

′(zl) (2.5)

where (wl+1)T is the transpose of the weight matrix wl+1 for the (l+1)-th layer.

When (wl+1)T is multiplied by the error δ l+1 at the (l+1)-th layer, the error is kind of moving backwards in
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the network, which creates an estimate of the error at the l-th layer. Then, when the element-wise multiplication of

this error with the derivative of the activation function is applied, the error is once more being moved backwards

through the activation function in layer l, computing an estimation of the error δ l in the weighted input to layer l.

By combining 2.4 and 2.5 it is now possible to compute the error δ l for any layer in the network. Now, only the

need to relate it with the weights and biases of the network is left. Starting with the biases, it is possible to compute

the rate of change of the cost with respect to any bias in the network, according to equation 2.6.

δC
δbl

f
= δ

l
f (2.6)

Finally, equation 2.7 can be derived for the rate of change of the cost with respect to any weight in the network.

δC
δwl

f g
= al−1

g δ
l
f (2.7)

All in all, the gradient descent method finds out how much these parameters earlier in the network influence the

output neurons activation. It does that by calculating the composite partial derivatives for each these variables. In

the end, the sum of this contributions shows how much each of the weights and biases influence the output neurons

activation and how they should be adjusted.

2.2.2 Deep Learning

Deep learning methods usually consist in using a neural network architecture with a great number of hidden

layers, quite commonly dozens of them, where normally would be 2 or 3 in a more traditional and simple architec-

ture. This complexity can give models the ability of learning features directly from the data, without the need for

manual feature extraction [29].

This additional complexity comes at the cost that deep learning methods need large sets of data to train the

model. For example, at least a few thousand images might be needed to get reliable results in a classification

task. Moreover, training a deep NN usually takes a lot of time. Having an high-performance GPU is of critical

importance in order to obtain results from deep learning methods in a reasonable amount of time. All in all, there

are some important constraints to training, such as the availability of the data and computational power to analyse

and process it.

Benefiting from the arise of big data and the development of more powerful computation, new algorithmic

techniques, mature software packages and strong financial support some outstanding results were achieved [30].

Some of them are being carried in peoples’ pockets, like Google Translate and Apple’s bot Siri. Other examples

are given in section 2.2.3.2.

2.2.3 Reinforcement Learning

Humans learn through trial and error. Every decision and action taken makes a person experience either pain

and failure or reward and success. Throughout the learning process people tend to find a way to minimize the first

two and maximize the last. This should be enough to gain a proper insight on how RL works. In RL an agent (the

machine) gets to learn how to execute a specific task through an interaction cycle with the environment.
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Figure 2.5: A Reinforcement Learning cycle.

As Morales did [3], it is useful to think about how one would train a dog to sit. The dog likes treats and would

like to have more of them, so a person can give them as rewards for every time it sits. But the dog does not know

that (at least yet), so it tries to interact with you through many different actions. It can run, bark, sit, play dead or

even try a combination of them. How can it find out which action or set of actions led to the treat? He received

a treat a minute after he ran, so maybe running was the action leading to the reward. Or was it the fact that he

barked and sat down after it? In order to figure it out, the dog needs to assign credit to every action that might have

possibly led to the reward. But not only that. What if there is an action or set of actions that makes the person

give it 10 treats instead of 1? Maybe it is worth exploring different interactions to find that out. This means that,

in order to learn how to maximize its rewards, the dog needs to balance exploring new actions and retrying the

actions that have worked best so far. Otherwise, it could spend the rest of its life getting only a tenth of the treats

it could have.

In this example, the dog was the agent and the person was the environment. Like it was pointed out in figure 2.5,

the cycle begins with the agent observing the environment (step 1). Then, the agent does some internal processing

of the observation and reward, analyses it and attempts to learn something from it, trying to improve at the task

(step 2). After that, the agent takes an action (step 3). This interaction with the environment promotes some

changes in its internal state, as a consequence of the previous state and the agent’s action (step 4). This may cause

the environment to externally react in a way that the agent can see. However, some of those internal changes may

only manifest further away in time, so the external reaction that they promote can be delayed. The whole cycle -

observation, processing, action, responses from the environment - then repeats.

It is relevant to highlight that RL is concerned with sequential decision-making. This means that the decisions

you are making may impact all possible feedback signals you are going to get in the future, not only the immediate

one. It is not effective to simply choose the action with the highest immediate reward for the current system state

because at each decision the environment is being changed. Thus, one should also take into account the changes

to the environment that the action will bring, in order to maximize all future rewards.

Additionally, it is important to grasp the complexity of Evaluative feedback. Unlike Supervised Learning,

whose feedback is plain and simple (you either classify an image correctly or incorrectly), in RL it can be quite

hard and complex to classify a feedback as good or bad. Going back to the earlier example, the dog may have felt

great when it understood that sitting down was the action that led to the reward. It does not look that difficult to
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get that 1 treat anymore. But, like it was said before, what if there was a way to get 10 treats at once? Does that

accomplishment still look great? Probably not. This is what makes evaluative feedback so complex. One can only

make comparisons once data was gathered first. But one shall keep in mind that there could always be some other

data that has not been seen yet, which would change the meaning of the current data.

2.2.3.1 Important Reinforcement Learning Concepts

There are some important RL concepts worth highlighting and introducing. They are the policy, the discounted

rewards, the value function and the Q-function.

The goal of an agent is to pick the set of actions that will allow it to maximize the total rewards received

from the environment [31]. The total reward received by the agent in response to the selected actions is given by

equation 2.8.

TotalReward =
H

∑
h=1

Rh (2.8)

where h represents the number of the iteration of the RL cycle.

However, it is common to use a small discount factor γ to give higher weights to rewards closer in time than to

rewards received further in the future. This way, the total discounted reward is defined and can be calculate using

equation 2.9.

TotalDiscountedReward =
H

∑
h=1

γ
h−1Rh (2.9)

where H is the episode length and 0 ≤ γ ≤ 1. The reason for using the discount factor is to prevent the total

reward from going to infinity. Moreover, it models the agent behavior. It dictates if the agent prefers immediate

rewards over rewards that are potentially received far away in the future, or the other way around.

The value function V (s) represents how good is a state for an agent to be in. It is equal to the expected total

discounted reward for an agent starting from state s. The value function depends on the policy by which the agent

picks actions to perform. So, if the agent uses a given policy π to select actions, the corresponding value function

is given by equation 2.10. The policy π is a function that takes the current environment state s as an input and

returns an action.

V π(s) = E[
H

∑
h=1

γ
h−1Rh] ∀s ∈ S (2.10)

Among all possible value-functions, there exist an optimal value function that has higher value than other

functions for all states, which is given by equation 2.12.

V ∗(s) = max
π

V π(s) ∀s ∈ S (2.11)

The optimal policy π∗ is the policy that corresponds to optimal value function.

π
∗ = arg max

π
V π(s) ∀s ∈ S (2.12)
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2.2.3.2 Deep Reinforcement Learning

A method is considered to be Deep Reinforcement Learning every time a deep neural network is used to

approximate any of the following components of RL: value function V (s,a;w), policy π(a|s;w) and model (state

transition function and reward function). Here, the parameter a is the action, s is the state and w are the weights of

the deep neural network [30]. Some remarkable results using Deep RL were achieved, especially in games (Alpha

GO [32] and Atari games [33]) and robotics [34].

2.2.3.3 Q-Learning

The Q-learning algorithm approximates the policy function π(a|s;w), by using a table (the Q-table) which

maps all environment states to all agent actions. Each element of the table Q(s,a) is the score value of choosing

action a during the environment state s. The agent chooses the action with the highest score value for the current

state.

The table values can be randomly initialized and are updated according to the Bellman’s equation:

Qnew(st ,at)≡ (1−α) ·Q(st ,at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·
learned value︷ ︸︸ ︷

( Rt︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

· max
a

Q(st+1,a)︸ ︷︷ ︸
estimate of optimal future value

) (2.13)

There are two parameters in the Bellman equation worth highlighting. The first of them is the learning rate, α ,

which takes control of how fast the Q-table values are changed [35]. Lower learning rates lead to a slower but more

stable learning convergence. The α value can be varied throughout the training. It is common to start training with

a higher learning rate, in order to allow fast initial changes, and then progressively lower it.

The second is the discount factor, γ , already presented in section 2.2.3.1. It is responsible for stating how much

the agent should care about future rewards. It is a real value between 0 and 1, where γ = 0 means that it only cares

about the current reward, whereas γ = 1 means that it takes into consideration all future rewards equally.

A final aspect needs to be taken into account when applying algorithm 1. As previously mentioned, we can

select the action to take using the Q-table, but during training it is useful to introduce an exploration factor, ε ,

with values between 0 and 1. It represents the probability of choosing a random action, rather than using the Q-

table. The ε value decays over training, so that the agent progressively behaves more autonomously. However, the

Q-table is always updated, no matter how the action was chosen.

Algorithm 1: Q-Learning Algorithm
Result: Trained Q-table

Initialize Q-table;

while epoch ≤ nepochs do

Pick an action;

Evaluate the action;

Measure the reward;

Update Q-table;

end
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Q-Learning works well for a simple environment, but when the number of actions and states gets computa-

tionally too high, it is possible to use neural networks to approximate the Q-value function. That is called Deep

Q-Learning.

Figure 2.6: Q-value gathering in Q-Learning.

Figure 2.7: Q-value gathering in Deep Q-Learning.

2.2.4 Recurrent Neural Networks

Unlike the classical NN, Recurrent Neural Networks (RNN) receive not only the input xt at the input layer, but

also its output from the previous time step yt−1. They are usually used for applications dealing with sequences

of data. To perceive how they work, one can either picture a NN feeding itself backwards (from the output to the

input) or can unroll the network through time and take a look at the interconnections between different time steps

[23].

Figure 2.8: A representation of a RNN.
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Figure 2.9: A representation of a RNN unrolled through time.

Each recurrent neuron has one set of weights wx for the inputs xt and another set wy for the outputs yt−1 of the

previous time step. Consider a RNN composed by one single recurrent neuron. The output of the recurrent neuron

is given in equation 2.14.

yt = φ(xT
t ·wx + yT

t−1 ·wy +b), (2.14a)

yt = φ([xT
t yT

t−1] ·W +b), with W =

wx

wy

 , (2.14b)

2.2.4.1 Memory Cells

A recurrent neuron has a form of memory, since its output at time t is a function of all inputs from previous

time steps. A memory cell is a part of a neural network that preserves some state across time steps. Once again, a

single recurrent neuron is an example of a very basic cell.

The state of the memory cell at time step t is called the hidden state ht . ht is a function of the input xt and of

the hidden state of the previous time step ht−1. Its output yt is a function of the previous hidden state ht−1 and the

current input xt . These interconnections are more clearly visible in figures 2.10 and 2.11.

Figure 2.10: A representation of a memory cell.

Figure 2.11: A representation of a memory cell unrolled through time.
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2.2.4.2 The Vanishing Gradient Problem

The Vanishing Gradient Problem is a problem caused by certain activation functions when using gradient based

methods (such as the backpropagation) for training a NN. It makes it really hard to learn and tune the parameters

of the earlier layers in the network [36].

Some activation functions (like the sigmoid and tanh) squash the output values into a range ∈ [0,1]. The

function is extremely flat close to the range limits, therefore there are large regions of the input space that are

mapped into a tiny range in the output. This means that gradients are very small, that even large changes in the

input values only produce small changes in the output [36].

This problem definitely worsens when we concatenate multiple layers of this functions, since the first layer

would squash its input values into a much smaller output range, which would then be mapped to a much smaller

region by the second and so on. In the end, huge changes in the parameters of the first layer would not end up in a

relevant change in the output [36].

In practice, this means that the network has a hard time memorising inputs from far away in the sequence.

RNN’s can solve a variety of problems, which include speech recognition, language modeling, translation and

image captioning. As a small example, you can teach a RNN to predict the last word in a sentence. One can

sequentially give it the words in the sentence "My mother’s daughter is my..." and expect it to output the word

"sister". This works really well for small sentences.

However, there are cases for which more context is needed. Consider the text "I’ve studied in Spain for 6

months (...) I can now speak a bit of Spanish". Although the most recent inputs suggest there is a name of a

language coming, it is impossible to figure out which one is it without taking into consideration the information

at the beginning of the text [37]. RNN’s might struggle to connect these dots when they become too far apart

from each other. In other words, there is an observable degradation in the long-term memory capabilities of these

networks.

To avoid this problem, many people try to choose a different activation function that does not squash the input

values. One popular example is the Rectified Linear Unit, which maps x to max(0,x) [36].

Moreover, there are some RNN architectures which can tackle this problem and achieve great long-term mem-

ory results, with LSTM’s and GRU’s being the two most popular ones. In this thesis, the RNN architecture chosen

was the GRU. Therefore, a more thorough explanation of this network is given in section 2.2.4.3.

2.2.4.3 GRU

The Gated Recurrent Unit aims to solve the vanishing gradient problem. It is an improved version of a standard

recurrent neural network. The incorporation of two different features (the update gate and the reset gate) allow the

agent to be trained to keep information from long ago. These gates are two vectors that decide which information

should be passed to the output [38].

In figure 2.12, there is an overlook of how a GRU works. A more detailed and step by step explanation follows.

The update gate shown in figure 2.13 is responsible for determining how much of the past information should

be propagated in the future. This solves the vanishing gradient problem, since it allows the agent to propagate all

information from the past if it wants to.
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Figure 2.12: A GRU representation.

Figure 2.13: The update gate of a GRU.

The update gate zt for time step t is calculated using equation 2.15.

zt = σ(W (z)xt +U (z)ht−1) (2.15)

When xt enters the GRU, it is multiplied by its own weight W(z). Also, ht−1, which holds the information for

the previous t-1 units, is multiplied by its own weight U(z) when it enters the network. Both results are added

together and a sigmoid activation function is applied to squash the result between 0 and 1.

The reset gate illustrated in figure 2.14 serves the purpose of allowing the model to decide how much of the

past information should be forgotten. The reset gate rt for time step t is calculated using equation 2.16.

rt = σ(W (r)xt +U (r)ht−1) (2.16)

This formula is similar to the one for the update gate, but the weights are different. Then, the reset gate output
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Figure 2.14: The reset gate of a GRU.

is used to select the relevant information from the past, which should be stored in the current memory h
′
t , according

to equation 2.17.

h
′
t = tanh(Wxt + rt �Uht−1) (2.17)

This process is shown in figure 2.15. The input xt is multiplied with a weight W and the hidden state ht−1 is

multiplied with a weight U. After that, an element-wise product is calculated between the reset gate rt and Uht−1.

This will remove the information from the previous time steps that is not relevant for the output. An rt value of

0 means that the information from the past is not relevant, whereas a value of 1 would mean that all information

from the past is relevant. Finally, the sum the left and the right side is done before the tanh is applied in order to

get ht−1.

Figure 2.15: The calculation of the current memory in a GRU.
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At last, it is time to calculate the output hidden vector ht , which passes the information from the current GRU

unit to the following one. This calculation is done according to equation 2.18, which is illustrated in figure 2.16.

ht = zt �ht−1 +(1− zt)�h
′
t (2.18)

Figure 2.16: The calculation of the output in a GRU.

2.2.5 Encoder-Decoder with attention mechanism

In this thesis, a Deep Q-Learning approach is used to train an intelligent agent to solve the DRC-FJSSP. The NN

architecture chosen to approximate the Q-value function was the Encoder-Decoder with attention mechanism. This

choice will allow the agent to receive inputs with variable sizes, a required feature for it to be able to solve problems

with any number of operations to schedule, without the need to generate a size-fixed simplified representation of

the input information. In figure 2.17, a first layout of the chosen architecture is given. A step by step presentation

of it will be given in the following sections.

2.2.5.1 Encoder-Decoder

The fundamental idea behind an Encoder-Decoder architecture is to have two different RNN’s: one which

sequentially receives the input information and summarizes it in a vector representation of fixed dimensionality

(encoder) and another which receives this vector and sequentially generates the output (decoder). This means that

the only information the decoder receives is the last encoder hidden state. A representation of this architecture is

given in figure 2.18.

The problem with it is that, when the input length gets really large, it is extremely difficult to sufficiently

summarize all the input data in a single fixed-sized vector. In other words, this might lead the agent to forget input

information. That is why an attention layer is introduced.
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Figure 2.17: An overview of the Encoder-Decoder with Attention mechanism architecture.

Figure 2.18: A basic Encoder-Decoder architecture.

2.2.5.2 Attention Mechanism

The attention layer is an interface that allows the Decoder to access information about all the Encoder hidden

states at all times. Moreover, it highlights useful parts of that input data in order to let the model focus on those

key areas and learn the connections between them. This way, the model can effectively remember and process long

input sequences [39].

There are two types of attention mechanisms: one that uses all encoder hidden states (global attention) and

another that uses only a subset of them (local attention). All throughout this thesis, global attention was the type

of mechanism used and referred to as "attention".

During the steps on the attention layer, a set of attention weights is calculated, one weight for each encoder

hidden state. These attention weights are the ones who define how relevant each input is for the output of the

current time step and so are used to derive the context vector fed as input to the decoder.

One of the fields where the usage of these Encoder-Decoder with attention mechanism architectures are popular

is Neural Language Processing, or more specifically the translation task. A representation of the attention weights

is given in figure 2.19, where the darker lines represent higher weight values.
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Figure 2.19: An intuitive example about the influence of the attention weights.

The first step which takes place in the attention layer is the calculation of a score between the current decoder

hidden state and all the encoder ones, with exception of the one in purple (see figure 2.20), fed as an input to the

first decoder step.

Figure 2.20: Hidden state score calculation in the attention layer.

Different operations between the vectors can be applied to calculate this score. One option is to calculate the

dot product between the two vectors. In this thesis, each of the weights ud
v , the attention weight in the decoder step

d relative to the v-th encoder hidden state, was calculated according to equation 2.19.

ud
v = wT tanh(W1ev +W2dd), v ∈ (1, ...,n) (2.19)

where w, W1 and W2 are learnable weights, ev is the v-th encoder hidden state and dd is the d-th decoder hidden

state.
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Then all the scores go through a softmax function, which is a generalization of the logistic function for multiple

dimensions. After applying softmax, each score will be in the interval (0,1) and the components will add up to 1.

After that, each encoder hidden state is multiplied by its own softmaxed score. And finally, all the resulting vectors

are summed up, generating the context vector. This set of steps ends up being a linear combination the encoder

hidden states, where the constants that are multiplied to the each hidden vector is its own score. The calculations

made during these steps are presented in equation 2.20 and their representation is given in figure 2.21.

ad
v = so f tmax(ud

v ), v ∈ (1, ...,n) (2.20a)

d
′
d =

n

∑
v=1

ad
v ev (2.20b)

Figure 2.21: Context vector derivation through a linear combination of the encoder hidden state vectors.

A final step is left, during which the context vector is fed into the decoder. Although there are different common

ways of doing this, in this thesis the Bahdanau’s method was chosen [40]. According to this method, as represented

in figure 2.22, the input to the next decoder step is the concatenation between the output from the previous decoder

time step (dark red) and context vector from the current time step (pink).

Despite its complexity, this network architecture can still be trained using Backpropagation. The algorithm will

change the weights in the RNNs and in the score function in order to ensure that the outputs will be close to the

ground truth. These weights will affect the encoder hidden states and decoder hidden states, which in turn affect

the attention scores.

At last, there is one small detail still worth highlighting. It is possible to run as many steps of the decoder

as needes. In other words, for the translation task, the agent can output as many words (one by one) as needed.

However, the output of a GRU is constant in size. This means, that size of the dictionary of words that can be
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Figure 2.22: The concatenation of the context vector with the output of the previous decoder time step.

used is fixed. It cannot be adapted from problem to problem. This constitutes a limitation that Pointer Networks

architectures aim to solve.

2.2.6 Pointer Networks

Pointer Networks introduce a very simple modification to the attention model that make it possible to solve

combinatorial optimization problems where the output dictionary size depends on the number of elements in the

input sequence [41].

It does that by using the attention weights as pointers to the input elements and taking them as the output of

each decoder step. The softmax function generates these weights such that they will add up to 1, which means that

they can be interpreted as probabilities, just like in equation 2.21.

In other words, it uses the attention weights as pointers to the input elements.

ud
v = wT tanh(W1ev +W2dd), v ∈ (1, ...,n) (2.21a)

P(Cd |C1, ...,Cd−1,P) = so f tmax(ud) (2.21b)

Here P = {P1, ...,Pn} is the input sequence and CP = {C1, ...,Cz(P)} is the output sequence.

So Cd is the output of the d-th decoder step. It is a vector with the attention weights of that step (one weight

for each encoder hidden state).
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Chapter 3

Implementation

3.1 Numerical Model

In a DRC-FJSSP there is a set of n jobs J = {J1,J2, ...,Jn} to be processed at a set of m machines M =

{M1,M2, ...,Mm} operated by a set of w workers K = {K1,K2, ...,Kk}. Each job has a predefined sequence of ni

operations O = {Oi,1,Oi,2, ...,Oi,ni}. Let pi j be the processing time of the operation Oi, j. Operation Oi, j can only

be processed at one machine out of a set of Mi, j eligible machines. Each machine can process only one operation

at a time and there is no preemption, which means that since an operation has started it cannot be stopped until it

is finished. Each worker Kk can only operate a subset of M, for which Kk is an eligible worker. Thus, there is an

eligibility matrix Emk, where the element (m,k) is a 1, if Kk is an eligible worker for Mm, or, otherwise, it is a 0. All

jobs, machines and workers are available at time 0. The goal is to minimise the maximum completion time, the

makespan Cmax by assigning a compatible machine and an eligible worker to each operation as well as arranging

the processing order of operations on each machine.

Let sti j be the starting time of Oi, j, and rtmk be the ready time of machine Mm operated by worker Kk, and N

be a large enough number. Mathematically, the DRC-FJSSP with makespan minimisation can be formulated as

follows:

Min Cmax (3.1)

Subject to:

sti( j+1) ≥ sti j +∑
m

∑
k

pi jxi jmk, Ji ∈ J, j = 1,2, ...,ni−1, Mm ∈Mi, j, Emk > 0 (3.2)

sti’ j’ +(1−ζi jm−i’ j’m)N ≥ si j +∑
k

pi jxi jmk, Ji ∈ J, j = 1,2, ...,ni, Mm ∈Mi, j, Emk > 0 (3.3)

rtm’k +(1−ξmk−m’k)N ≥ rtmk, Kk ∈ K, Emk, Em’k > 0 (3.4)
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rtmk +(1− xi jmk)N ≤ sti j, Ji ∈ J, j = 1,2, ...,ni, Mm ∈Mi, j, Emk > 0 (3.5)

∑
m

∑
k

xi jmk = 1, Ji ∈ J, j = 1,2, ...,ni, Mm ∈Mi, j, Emk > 0 (3.6)

xi jmk =

 1, if Oi, j is processed on Mm operated by Kk

0, otherwise
(3.7)

ζi jm−i’ j’m =

 1, if Oi, j is processed before Oi’ j’ on Mm

0, otherwise
(3.8)

ξmk−m’k =

 1, if Mm is operated before Mm’ by Kk

0, otherwise
(3.9)

where equation 3.2 ensures that the precedence constraints are not violated; equation 3.3 guarantees that a

machine can process only one operation at a time; equation 3.4 ensures that a worker can operate one machine at

a time; equation 3.5 ensures that an operation cannot start unless the assigned resources are ready; equation 3.6

guarantees that each operation is assigned to only one compatible machine operated by one eligible worker.

3.2 Proposed Solution

A great inspiration for this thesis was retrieved from the work in [42] and in [33], regarding the use of RL

to solve the DRC-FJSSP and the RL algorithm, respectively. In the following subsections, both these aspects are

discussed as the proposed solution is presented.

3.2.1 Solve the DRC-FJSSP using RL

In [42], a novel approach, using Deep Q-Learning, was proposed for solving the DRC-FJSSP. In their work,

they initialized a schedule according to a set of rules and ran a step by step optimization process. At each step,

the agent would receive a representation of the current schedule, the state, as input and output a choice between

2 possible actions: Move and Reassign Pool. Each of them was an heuristic that the agent could choose to apply

in order to update the state. Soon, they realized that a full schedule representation, a vector with all the problem

variables, could not be used as a state, since its size would vary with the number of jobs and resources of a

scheduling problem and the number of inputs of a NN has to be fixed. Therefore, a 30 feature state representation

was used. This arbitrarily chosen set of features was supposed to summarize all the state information.

In the early research of this thesis, this was identified as a plausible source of the limited optimization results

achieved, since the agent’s intelligent intuition had limited power and information to act upon. Allowing the

intelligent agent to analyse, move and assign individual operations would give it total control and thus unchain its

true potential. In order to do that, one would need to able to feed the NN a variable number of input features and let

it choose between a variable number of possible actions. For example, consider a simple problem with n jobs. As
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an input, the agent needs to receive n input vectors, each one of them with information regarding each individual

job. Whereas, as an output, it needs to be able to choose to move one job, out of the whole set, into a new position

in the schedule. Thus, it would need to output a set of n values, being each of those values the score of choosing to

move each job. Also, unlike in [42], the initial schedule is randomly generated and only feasible states are allowed

throughout the optimization process. This means that the initial state is feasible and every move made by the agent

needs to keep it like that, to be allowed.

In order to do this, the encoder-decoder with attention mechanism was used. It is a RNN architecture, typically

used for Natural Language Processing, that is able to receive inputs with variable sizes, deliver outputs with

variable sizes and have a high quality memory, even for long input sequences. These features make this architecture

potentially powerful for the DRC-FJSSP. The overview of this proposed solution is given in figure 3.1.

Figure 3.1: Overview of the proposed RNN architecture, with highlight to its inputs and outputs.

This architecture is quite complex on its own, so there was an attempt to simplify the inputs to the maximum.

Therefore, there will be a number of encoder steps equal to the number of operations to schedule. At the v-th

encoder step, information about the v-th operation is submitted to the agent. That information is composed by a 2

component vector. The first component represents the normalized processing time of that operation. Whereas, the

second component represents the normalized position of that operation in the OSV.

The Operation Sequence Vector (OSV) is one of three different vectors responsible for encoding the sched-

ule information. The other vectors are the Machine Allocation Vector (MAV) and the Worker Allocation Vector

(WAV). This encoding scheme is similar to the ones used in many state-of-the-art methods and it aims to simplify

schedule representation and manipulation.

All of these vectors have a number of components equal to the number of operations to schedule. The OSV

gives us the order by which operations are put in the schedule, which means that the v-th component of the vector
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Table 3.1: Example of OSV, WAV and MAV schedule encoding vectors.
OSV 4 1 7 9 5 10 6 2 8 3
MAV 1 3 1 2 2 3 1 1 3 3
WAV 2 1 2 2 2 1 1 2 1 1

is the i-th operation to be scheduled. The v-th component of the MAV and the WAV tell us what is the machine

and worker allocation for the operation in the v-th component of the OSV. An example of this encoding scheme is

presented in table 3.1.

During the decoding process, operations are put in the schedule one at a time, following the order specified in

the OSV. They are put at the minimum feasible time, which will logically depend on the availability of the allocated

worker and machine. For example, according to table 3.1, the first component in the OSV is operation number 4.

So, this would be the first operation to be put in the schedule. It would be allocated to machine number 1, operated

by worker number 2. Next, the second component of the OSV, operation number 1, would be put in the schedule,

allocated to machine number 3, operated by worker number 1. And so on, until operations are put in the schedule.

This procedure is represented in figure 3.2.

Finally, as can be seen in figure 3.1, the decoder outputs will not be considered as the agent outputs. In fact,

the attention weights will be considered as the output of the network, as in a Pointer Network. This is done for 2

main reasons: computational power and intuition.

First of all, computational power. The number of outputs our agent needs to deliver is equal to the squared

value of the number of operations to schedule. It has n operations to choose from and n positions in the OSV to

move them to, since the agent is allowed to "move" an operation to the same position it is in. So, all in all, it has

noperations
2 possible moves to choose from. Since this number varies with the problem dimension, the agent would

need to output the score of each of this moves one by one in the decoder, which means it would need noperations
2

decoder steps. At each decoder step, there are n attention weights calculated, one for each encoder hidden state.

This means that, if they are used as the network’s outputs, there is only the need to run n decoder steps to find the

noperations
2 score values. This means that decoder’s GRU is ran a much smaller number of times, especially when

the problem size increases a lot. Therefore, a lot of computational effort is saved.

Secondly, intuition. It was shown that the attention weights are score values that basically evaluate the impor-

tance of each input the encoder received. In a way, they be can pictured as the "amount of time" the agent would

"look" at each of these inputs before deciding what would be the best output to deliver. So the word intuition is

used in the sense that it is reasonable to assume that if the agent is concerned a lot ("looks a lot of time") with

an operation, then that operation is probably the most critical one to improve the current solution quality. So,

the operation with the highest attention weight is probably the most suitable choice to be moved. So, there are n

decoder steps, each one with n attention weights. First, the highest attention weight of them all is located. If it is

the v-th attention weight of the d-th decoder step, then the agent chooses to move the v-th operation to the d-th

position in the OSV. Of course, the justification behind this reasoning is not rigorous, but it is an assumption that

can save a lot of computational effort and, so, it is definitely worth testing and evaluating the results.
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Figure 3.2: Schedule decoding procedure steps.
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The simplified inputs given to the agent do not contain any information regarding the workers and machines

available for allocation. That is why the agent only manipulates the OSV. The allocation of machines and workers

will be made at the schedule decoding phase, according to the Earliest Feasible Time heuristic. This means that

each operation will be allocated to the worker-machine pair that can process it the earliest. If there are more than a

single pair available at the same earliest time, then the first of them is chosen. Worker-machine pairs (Mm,Kk) are

listed according to equation 3.10. So, the first would be the pair with the smallest index. This was made in order

to ease programming implementation.

Pair index = (m−1)nworkers + k (3.10)

3.2.2 RL algorithm

In [33], a deep Q-network was presented. Using end-to-end reinforcement learning, the agent was able to

achieve a level comparable to that of a professional human games tester across a set of 49 Atari games, using

the same algorithm, network architecture and hyperparameters. Motivated by those impressive results, the same

reinforcement learning algorithm was followed in this thesis, like described in algorithm 2.

Algorithm 2: Deep Q-Learning with experience replay

Initialize replay memory D to capacity DN ;

Initialize action-value function Q with random weights w ;

Initialize target action-value Q̂ with weights w− = w ;

for episode = 1, ..., M do

Initialize sequence s1 = x1 and preprocessed sequence φ1 = φ(s1) ;

for t = 1, ..., T do

With probability ε select a random action actt ;

otherwise select actt = argmaxactQ(φ(st),act;w) ;

Execute action at in simulation and observe reward rt and state xt+1 ;

Set st+1 = st ,actt ,xt+1 and preprocess φt+1 = φ(st+1) ;

Store transition (φt ,actt ,rt ,φt+1) in D ;

Sample random minibatch of transitions (φv,actv,Rv,φv+1) from D ;

if episode terminates at step v+1 then

targv = Rv ;

else

targv = Rv + γ maxact ′Q̂(φv+1,a′;w−) ;

end

Perform a gradient descent step on (targv−Q(φv,actv;w))2 with respect to the network

parameters w ;

Every C steps reset Q̂ = Q ;

end

end

All in all, during training the agent will try different moves and save that information (initial state, move and
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final state) in a memory, together with the respective reward. Exploration and exploitation are balanced according

to the ε-greedy algorithm. This means that the agent will take a random action with probability ε , while the rest

of the times it will choose the action elected by the output of the RNN. This ε value was changed linearly between

100%, in the beginning, and 10%, after 80% of the training cycles. During the rest of the training cycles, the ε is

of 10%. This is a typical range of values when applying ε-greedy.

Each training cycle is composed by a number of episodes. Every episode, the agent receives a new problem and

does 3∗noperations moves, where noperations is the number of operations to schedule for that problem. This number

of moves is justified in appendix A, while the number of episodes is chosen empirically.

Then, a mini-batch is generated by randomly select 32 instances from the memory. Different mini-batch sizes

were tested, but the best results were found for that value. After that, a target value targv is calculated for each of

those instances according to the if statement in 2. The γ value is a parameter that is common practice to establish

as 0.99, even though it might be optimized to the problem at hand. Finally, a gradient descent is performed trying

to minimize the squared error between the target values and the predictions (output moves) dictated by the RNN.

The rewards play a huge part in the success of a RL method and they usually depend and need to be adapted

to the problem at hand. In this thesis implementation, some different reward combinations were tried, until a

combination was found that delivered good results. In the end, it was found that to deliver strong rewards when

good moves were made was better for the algorithm to learn then to deliver penalties for bad movements. So

a reward of 0.05 was given for every unit of time a move could improve the solution makespan relative to the

best makespan found so far. Otherwise, if a new best solution was not found, a small penalty of 0.01 was given.

Furthermore, a growing penalty of 0.001 times the number of moves so far was given in order to incentive the

agent to find good solutions fast. At last, the agent was given the possibility to suggest moves that do not change

the schedule. It happens when the agent wants to move one operation to a position in the OSV it is already in. In

that case, it was considered that the agent is stating that the schedule is already optimized. No penalties are given

if that is the chosen move.

After the training process, hopefully the Agent will be ready to autonomously generate quality solutions for

the DRC-FJSSP. Those solutions are generated through a step by step optimization process. At each step the agent

receives as an input information about the current solution state, just as it did during training, and outputs the

selection of a move operation. A rule was established to put an end to the agent’s optimization process. A schedule

is considered to be optimized when the agent chooses a move that does not change the OSV. When that happens,

the best schedule found so far, the one with the lowest makespan, is considered to be the optimized solution.

Additionally, the agent only has a limited number of moves to optimize the solution, equal to 50% of the number

of operations to schedule for the problem at hand. After those moves, the best schedule found so far, the one with

the lowest makespan, is considered to be the optimized solution. The 50% threshold was defined empirically as a

trade-off between the minimization of computational time and the maximization optimization performance.

3.3 Performance Metrics

In order to evaluate the quality of the solutions generated by the agent, a performance metric is needed. How-

ever, there is a lack of good performance metrics in the literature, with many of the most successful papers evaluat-
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ing its proposed models by comparing their solution’s makespan with the ones from solutions of another state-of-

the-art techniques. In this work, it was considered that it would be useful to have a performance metric that would

evaluate the model’s performance independently of other methods.

The goal was to develop a performance metric whose value would give a perception about the quality of the

solution and which would be independent of the problem’s dimension. For example, the optimal makespan is

extremely variable from problem to problem. Therefore, the makespan by itself is not sufficiently enlightening,

since it does not state how far we are from an optimal solution. In the end, two new performance metrics are

proposed: the Job Dimension Percentage and the Job Difference Per-mille, calculated according to equations 3.11

and 3.12, respectively.

Aiming to minimize the makespan of the DRC-FJSSP is equivalent to minimizing the idle time of the resources,

which is the time during which the resources are not being used. More specifically, having considered that in every

problem the number of available workers is always smaller than the number of available machines, something

common in the DRC-FJSSP, the number of workers becomes the bottleneck of the production system. So, both

performance metrics developed evaluate the idle time of the critical resource, the workers or other, if that is the

case.

The Job Dimension Percentage gives the ratio between average idle time per worker and the average dimension

of the operations to schedule. The intuition behind this metric is that an idle time of 10 units of time should have

the same meaning for a problem with an optimal makespan of 40 units of time and for another of 80 units of time.

Relatively, that idle time is undoubtfully better for the problem with 80 units of time. However, if the dimension of

operations in the schedule is similar and the only difference from one case to another is the number of operations

to schedule, then that relative improvement is not necessarily reflected in a better scheduling capability. Consider

a problem with 16 operations and another with 32 operations, all of them with 5 units of time and to be distributed

between 2 workers.

In both problems one worker will be assigned two more operations than the other worker. Assuming that all

operations can be performed consecutively by workers, without idle times in between, then in the end one worker

will work more 10 units of time than the other. Relatively, the solution to the problem of 32 operations seems

better, because there is an idle time of 10 units of time for a makespan of 85, instead of 45 for the 16 operations.

However, the scheduling error was the same: assigning 2 more operations to one worker than to the other. Despite

of that, the proposed metric would give the same score to both solutions.

av_worker_idle_time =
∑

K
k=1 idle_timek

K
(3.11a)

av_proc_time =
∑

noperations
i=1 proc_timei

noperations
(3.11b)

Job Dim(%) = 100× av_worker_idle_time
av_proc_time

(3.11c)

The Job Difference Permille gives the ratio between the average idle time per worker and the average difference

between the dimensions of the operations to be scheduled. This metric was developed based on the intuition that, in

order to eliminate idle times, the person responsible for optimizing the scheduling looks at the difference between
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the processing times of operations. Consider again a case with 2 workers. We assume that one of them ends his

operations 4 units of time before the other. One of the operations under the responsibility of that worker had 15

units of time, while one of the operations for which the other (more busy) worker was responsible had 17 units of

time. In this case, if the worker assignment of these two operations is switched, then both workers will be left with

the same workload, since the first (less busy) will be occupied for another 2 units of time and the second will be

occupied for less 2 units of time. Added together, they cancel the 4 units of time difference there was initially. In

this example, the influence of the difference in processing times of operations in the optimization of a scheduling

was noticeable.

av_worker_idle_time =
∑

K
k=1 idle_timek

K
(3.12a)

av_proc_time_di f f =
∑

noperations−1
i=1 ∑

noperations
v=i+1 (proc_timei− proc_timev)

2

∑
noperations−1
i=1 ∑

noperations
v=i+1 1

(3.12b)

Job Di f f (o/oo) = 1000× av_worker_idle_time
av_proc_time_di f f

(3.12c)
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Chapter 4

Applying the model to a DRC-FJSSP: A

Proof of Concept Example

In order to start to verify the above mentioned model, it was considered that by tackling a basic version of

the DRC-FJSSP it would be possible to quickly assure the model’s feasibility and convergence. Therefore, a set

of assumptions were used to simplify the DRC-FJSSP. First of all, there were no release or due dates considered.

Secondly, it was defined that each machine is eligible for any operation and that each worker can operate any

machine. Finally, jobs were only allowed to have a single operation, so that no operation set would need to be

scheduled in a precise sequence. This effectively reduced the number of constraints in the problem and eased the

model’s implementation.

4.1 Solution Quality Comparison

Both performance metrics presented in section 3.3 will evaluate by themselves the quality of the generated

solutions for the DRC-FJSSP. However, it would still be useful to compare the results of the agent with the ones

generated by other methods. For the basic DRC-FJSSP tackled first, some very basic heuristics were considered

to be efficient for comparison. Namely, the Longest Processing Time (LPT) and the Best Fit Decreasing (BFD)

heuristics were chosen for their simplicity. The LPT is an heuristic that is commonly applied to Job Shop problems,

whereas the BFD is normally used to solve bin packing problems. With the limited number of constraints left in

the problem, the DRC-FJSSP becomes sort of a bin packing problem, when giving emphasis to the bottleneck

resource. One starts by considering that it is possible to pack all operations in a number of bins equal to the

number of workers and with a size equal to the lower bound. The lower bound is calculated according to equation

4.1 and is always less or equal to the optimal makespan.

LowerBound = ceil(
∑

noperations
i=1 proc_timei

nworkers
) (4.1)

where the ceil function rounds the input to the nearest higher integer.

If the BFD cannot fit all the operations in these bins, it tries to apply the algorithm again, now with bins with
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one unit of time larger. The heuristic keeps doing that until a feasible schedule is found. This adaptation to the

BFD is needed since in the bin packing problem the variable is the number of bins, not the size of them. Whereas,

in the Job Shop problem the variable is the makespan, not the number of workers.

4.2 Agent Training

This first agent was trained with only 25 training cycles, which means only 25 updates were made to the original

randomly generated network weights. Of course, this amount of training cycles is by far insufficient to thoroughly

train a NN, independently of its architecture, especially when RL is being used. Nevertheless, the goal of this

first agent was to find out if the proposed architecture would be able to learn how to optimize the DRC-FJSSP,

so at this point the aim was to notice if the agent was learning. The weights that during training gave the lowest

Job Dim Percentage for the training instances were used. Since only 25 training cycles were executed, there is no

danger of over-fitting. So, there is no problem in using the training set for validation. For the hyperparameters, a

combination that achieved faster but steady convergence during training was used. For the same reason, a learning

rate of 0.01 was chosen, together with no target network Q̂ weights update, a batch size of 32 and the reward system

described earlier. The training set was composed of 10 different problems, each with 10 operations to schedule,

with processing times between 2 and 18 units of time, randomly generated.

4.3 Simulation Description and Results

The 3 methods (Agent, LPT and BFD) were applied to 25 different problems, divided in 5 different subsets.

Each subset had 5 problems with the same number of operations to schedule. The number of operations to schedule

in each of the subsets was 10, 30, 100, 300 and 1000, with 3, 10, 25, 50 and 100 machines and 2, 5, 10, 20 and 35

workers, respectively. All the above mentioned methods were implemented in Python and ran on a laptop with a

2.60GHz Intel i7-4720HQ CPU. The average results of the simulations are presented in table 4.1. The full results

are listed in appendix B.

The Min Finish time refers to the unit of time at which a worker first finished all its assigned operations,

whereas the Max Finish time refers to the unit of time at which the last worker finished all its assigned operations.

Logically, by definition, the makespan of a solution is always equal to the Max Finish Time.

4.4 Discussion of Results

4.4.1 Performance

Looking at the results, it is noticeable that the agent achieves really good solutions, even for problems of high

dimensionality. The makespans obtained using the agent are on average less than 2 time units away from the Lower

Bound of the problems, a distance that corresponds to an average of 1.32% of the problem’s makespan on the worst

subset. Comparatively with the other methods used, for problems with 10 operations to schedule, the dimensions

for which the agent was trained, the agent’s performance is superior to the performance of both heuristics, like

one can see, for example, from the average Distance to Bound. As the dimensionality of the problem grows, the
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Table 4.1: Averaged results and standard deviation from the Proof of Concept simulation.
Agent LPT BFDProb Size: 10 jobs Avg Std Avg Std Avg Std

Job Dimension (%) 4.18 3.72 4.48 4.17 14.37 8.92
Job Difference (‰) 15.42 17.42 10.83 9.58 40.77 22.80

Min Finish time 48.00 5.14 48.00 5.40 47.00 4.94
Max Finish time 48.80 5.11 48.80 4.83 49.80 5.42

Lower Bound 48.60 4.96 48.60 4.96 48.60 4.96
Distance to Bound (%) 0.38 0.77 0.44 0.89 2.41 1.45

Execution Time (s) 1.06 0.08 0.01 0.01 0.01 0.01
Agent LPT BFDProb Size: 30 jobs Avg Std Avg Std Avg Std

Job Dimension (%) 10.73 5.02 8.86 4.05 9.21 2.58
Job Difference (‰) 29.93 13.52 24.73 10.77 26.11 8.32

Min Finish time 59.40 4.22 60.00 4.20 59.40 4.13
Max Finish time 62.20 4.83 62.00 4.69 62.00 4.20

Lower Bound 61.40 4.59 61.40 4.59 61.40 4.59
Distance to Bound (%) 1.28 0.65 0.97 0.80 1.03 0.85

Execution Time (s) 9.35 0.07 0.01 0.01 0.02 0.01
Agent LPT BFDProb Size: 100 jobs Avg Std Avg Std Avg Std

Job Dimension (%) 16.96 3.66 5.22 2.55 7.19 3.03
Job Difference (‰) 51.07 10.89 16.23 8.89 21.87 9.33

Min Finish time 99.60 2.58 102.00 2.53 280.80 2.67
Max Finish time 104.40 2.80 103.20 2.93 103.40 2.87

Lower Bound 103.20 2.93 103.20 2.93 103.20 2.93
Distance to Bound (%) 1.17 0.41 0.00 0.00 0.20 0.39

Execution Time (s) 111.17 0.09 0.06 0.00 0.05 0.00
Agent LPT BFDProb Size: 300 jobs Avg Std Avg Std Avg Std

Job Dimension (%) 22.73 5.16 6.95 3.60 4.97 3.03
Job Difference (‰) 62.18 12.07 18.92 9.56 13.42 7.60

Min Finish time 149.40 2.42 151.40 2.42 150.20 2.79
Max Finish time 154.40 2.06 152.80 2.04 152.60 2.06

Lower Bound 152.40 2.42 152.40 2.42 152.40 2.42
Distance to Bound (%) 1.32 0.43 0.27 0.33 0.14 0.27

Execution Time (s) 1219.10 0.51 0.28 0.00 0.28 0.00
Agent LPT BFDProb Size: 1000 jobs Avg Std Avg Std Avg Std

Job Dimension (%) 24.28 1.99 14.35 2.01 6.40 3.00
Job Difference (‰) 69.67 5.70 41.17 5.71 18.28 8.45

Min Finish time 285.20 2.23 286.60 2.15 285.00 2.19
Max Finish time 290.20 2.23 289.20 2.23 288.40 2.33

Lower Bound 288.20 2.23 288.20 2.23 288.20 2.23
Distance to Bound (%) 0.69 0.01 0.35 0.00 0.07 0.14

Execution Time (s) 22272.31 13.68 2.32 0.01 2.31 0.02
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heuristics achieve a slightly better performance, but since the quality of the agent’s solution is still very good,

it is fair to say that, having just trained for really small problems, the agent generalizes well its knowledge for

much higher problem dimensionalities. These are extremely promising results as this means that one can train the

agent much faster, using only low dimensionality problems and then expect it to apply that gained knowledge in

proficiently solving high dimensional problems.

4.4.2 Execution Time

The big disadvantage of the agent, compared with the heuristics, lies on the execution time used to solve the

problems. For the heuristics, being such simple rules, it is with no surprise that the execution times are extremely

low. However, it is important to notice that the execution time the agent is taking is still quite fast in an industrial

context, so these results are quite promising. Note that the heuristics used for comparison for these simple problems

will not be able to solve complex problems. In those situations we will need more complex methods to solve the

DRC-FJSSP, which will take more time for execution, just like the agent.

4.4.3 Performance Metrics

Regarding the performance metrics, it is noticeable that for the same lower bound there is a positive correlation

between their values and the distance to bound, especially for the Job Dimension Percentage. Although this was

expected from the way they were designed, it is positive to confirm this feature. On top of that, one can tell from

the higher values in the mean and standard deviation values for the Job Difference Per-mille that this performance

metric is more sensitive than the Job Dimension Percentage. However, since this last one has a higher correlation

with the distance to bound, it feels more reliable and still sensitive enough to give a proper insight about the

solution quality.

Both the performance metrics are not as insightful as the Distance to Bound if one wants to perceive how

far we are from an optimal solution. However, the Distance to Bound can also be misleading, since the Lower

Bound can be lower than the optimal makespan for the problem at hand. The main advantage of the proposed

performance metrics is that their values are not dependent on the number of operations to schedule, but only on

their processing times. In other words, they are not dependent on the size of the problem at hand. That is why one

can tell from the data on the table that optimal or at least nearly optimal solutions will have Job Dim Percentages

below 10 and that very good solutions will still score below 30. The same estimation can be done for the Job

Difference Permille. All in all, these performance metrics cannot by themselves provide a thorough intuition about

the solution quality, but they are definitely helpful, together with other metrics, like the Distance to Bound, into

deepening one’s understanding of it.

4.4.4 Worker Machine Allocation

Finally, one shall have a look at an example of schedule created by each method. These examples are given in

figures 4.1, 4.2 and 4.3, where the worker allocation is represented on top and the machine allocation is represented

below.
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First of all, looking at the worker allocation, the bottleneck resource, all the solutions look very good quality-

wise. Nevertheless, there are two interesting features noticeable from the machine allocation representation. The

first of them is the distribution of operations that looks much like a wave propagation. This comes from the way

the resource allocation was design. All the used methods, only deal with the sequence by which the operations are

scheduled. They do not work with the resource allocation. Therefore, for all of them a Minimum Feasible Time

heuristic was used to assign each operation to a machine-worker pair. Because of the way it was programmed, the

heuristic will allocate an operation into the machine-worker pair that was available earlier. In case of a draw, the

machine selected is the one that was available the earliest. Finally, if a draw still persists, the machine chosen for

allocation is the one with the lowest index. These rules are the ones who originated that distribution of operations

one can see in the machine allocation figures. Additionally, the LPT solution stands out from the other two. The

operations seem much more cleanly organized. This results from the way the algorithms work and manipulate the

operation sequence for scheduling. It is also the main reason why the wave propagation like shape of the machine

allocation figures seems to transform into noise further away in time, for the agent and BFD solutions. Whereas,

for the LPT this shape seems to be held until the end.

One final comment, relative to the machine allocation. It is possible to change the way the resource allocation

was programmed, especially regarding the rules to break ties. One interesting configuration would be to continue

using the Minimum Feasible Time heuristic but to always choose the machine with the smallest index, when

breaking ties. This way, the solution generated would use the minimum required machines to ensure that the

makespan is minimum. These different machine allocations are possible because the bottleneck resource, because

of its scarcity, are the workers that operate the machines. This allows the machine allocation flexibility, that was

just discussed.

Figure 4.1: An example of a schedule created by the agent.
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Figure 4.2: An example of a schedule created by LPT.

Figure 4.3: An example of a schedule created by BFD.
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Chapter 5

Applying the model to a DRC-FJSSP:

Benchmark Dataset

The successful simulations in chapter 4 proved that the agent was able to quickly and effectively learn how to

solve a very basic version of a DRC-FJSSP. With that confidence in mind, a new agent was trained more extensively

for application in a widely used benchmark dataset, the MK1-10 [43]. This benchmark adds 2 additional layers of

complexity comparatively to the problems solved before. The first one of them is that jobs can now have multiples

operations, that need to be executed in a precise sequence. The second one is that only a subset of the machines is

eligible to execute each operation and only a subset of the workers is able to operate each machine. The KGFOA

was chosen as a state-of-the-art metaheuristic for comparison.

5.1 Simulation Description and Results

The new agent was trained using the same set of parameters as before, but now it was given a higher number

of training cycles for learning. The training set was kept the same but instead of the original 25, now the agent

was given 1000 training cycles and the set of weights that during training achieved the lowest Job Dimension

Percentage for the training instances were selected. Once again, this is an extremely low number of training cycles

for training. So low that there is still no danger of overfitting. That is why the training set can still be used for

validation. The ideal number of training cycles could not be computed due to a lack of computational resources.

The output selection was adapted to account with the new constraints imposed by the test dataset. Since now

there are jobs with multiple operations that are required to be processed in a specific order, some moves that were

previously available for the agent to choose from will now result in unfeasible solutions. It was decided that the

best way to approach the situation was to avoid creating unfeasible schedules in the first place. So, the agent

outputs noperations
2 attention weights as before. It then evaluates if the highest attention weight represents a move

that will result in feasible solution. If that is not the case, the agent moves on to the second attention weight and so

on, until a feasible move is found. It is as if the agent orders all the moves according to preference and chooses the

best eligible one. This by itself is not enough to ensure this constraint is respect. During the decoding process of

the OSV, as the schedule is being built, the Earliest Feasible Time of an operation depends not only on the worker
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and machine availability, but also on the completion time of its preceding operations. The worker and machine

eligibility constraint did not result in any changes to the agent’s structure. It is during the schedule construction

that it is taken into account. Now only the eligible worker-machine pairs are available for allocation.

The changes made to the output selection constrain the freedom of the agent to look for optimal solutions. For

example, suppose that job 1 has 2 operations. Operation 1 is in the 9-th position of the OSV, whereas operation 2

is in the 13-th position. Suppose that in an optimal configuration, operations 1 and 2 would need to be in the 2-nd

and 7-th positions of the OSV. With the restriction added to the moves the agent can make, it would need to first

move operation 1 to the 2-nd position and only after it would be allowed to move operation 2 to the 7-th position.

If the agent would try to do it the other way around, during the intermediate step an unfeasible solution would be

generated, so the agent would not be allowed to do it. Logically, a perfectly intelligent agent would be aware of this

restriction and would understand that that configuration would not be allowed as a final solution. However, asking

for a perfectly intelligent agent, especially for the extremely low number of training cycles computed, would be

unrealistic. Also, it would need this information about the operation precedence to be fed as an input so that it

could process it and make decisions from it. The input structure was not changed to keep the computational cost

low. In chapter 6.2.1, a potential adaptation is discussed. All in all, for simplicity, it was considered better to not

allow the agent to generate unfeasible configurations throughout the whole optimization process. The agent choice

freedom will be more limited, but there will be no need to execute any arbitrary schedule repair operations.

The KGFOA algorithm was implemented as described in [21] for 1000 generations. All the above mentioned

models were implemented in Python and ran in a Google Colab environment, with GPU enabled. The results of

the simulation are presented in table 5.1.

5.2 Discussion of Results

5.2.1 Performance

The results are interesting. For half of the test instances (MK’s 4, 5, 6, 8 and 10) the KGFOA performed

considerably better than the Agent. However, for the rest of them, the results from both methods were quite

competitive. The Agent was even able to surpass the KGFOA’s performance for MK2. It is true that on average

the KGFOA had a superior performance, but these are still impressive results given that the Agent had not been

exposed to the additional constraints of the MK1-10 dataset during training. In other words, the Agent had never

had to solve a problem before where jobs had multiple operations, with a predefined sequence of execution, or

where there were worker-machine pairs that were not eligible for allocation. This means that a scarcely trained

agent can still occasionally compete with a state-of-the-art technique when solving some problems way more

complex than the ones it was trained with.

5.2.2 Execution Time

Additionally, the execution times of the Agent were more than 60 times lower than the KGFOA. One may point

out that for a fair analysis, the Agent and the KGFOA results should be compared for a similar execution time.

However, for the MK1-10 instances, the KGFOA execution times, even tough much higher than the Agent’s, were
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Table 5.1: Simulation results of the Agent and the KGFOA for the MK1-10.
MK1 MK2

Agent KGFOA Agent KGFOA
Job Dimension (%) 319.07 162.79 109.88 231.98
Job Difference (‰) 1577.47 804.83 666.10 1406.21

Min Finish time (units) 53 55 66 71
Max Finish time (units) 66 60 69 74

Lower Bound (units) 54 54 65 65
Distance to Bound (%) 22.22 11.11 6.15 13.85

Execution Time (s) 1.26 65.46 1.34 75.27
MK3 MK4

Agent KGFOA Agent KGFOA
Job Dimension (%) 1523.67 734.71 640.80 537.36
Job Difference (‰) 2537.50 1223.58 2463.10 2065.47

Min Finish time (units) 285 311 107 114
Max Finish time (units) 408 328 129 123

Lower Bound (units) 254 254 92 92
Distance to Bound (%) 60.63 29.13 40.22 33.70

Execution Time (s) 3.02 262.98 1.85 131.87
MK5 MK6

Agent KGFOA Agent KGFOA
Job Dimension (%) 683.17 328.45 1637.44 992.65
Job Difference (‰) 9156.44 4402.13 5347.98 3242.04

Min Finish time (units) 341 324 121 155
Max Finish time (units) 359 332 207 169

Lower Bound (units) 307 307 111 111
Distance to Bound (%) 16.94 8.14 86.49 52.25

Execution Time (s) 2.23 202.06 2.93 282.48
MK7 MK8

Agent KGFOA Agent KGFOA
Job Dimension (%) 405.03 339.85 1352.33 949.40
Job Difference (‰) 616.76 517.51 3612.11 2535.86

Min Finish time (units) 281 290 646 586
Max Finish time (units) 312 305 688 637

Lower Bound (units) 269 269 517 517
Distance to Bound (%) 15.99 13.38 33.08 23.21

Execution Time (s) 2.75 142.46 4.61 534.35
MK9 MK10

Agent KGFOA Agent KGFOA
Job Dimension (%) 1026.24 933.42 1304.43 967.27
Job Difference (‰) 3179.76 2892.14 3782.19 2804.60

Min Finish time (units) 627 636 449 465
Max Finish time (units) 667 655 528 487

Lower Bound (units) 535 535 370 370
Distance to Bound (%) 24.67 22.43 42.70 31.62

Execution Time (s) 4.84 549.72 4.74 486.88
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still within a reasonable range. However, for larger problems, like the ones in chapter 4, that probably would not

be the case anymore and so the Agent’s celerity could come as a decisive advantage.

There is another feature of the Agent worth highlighting, relative to the execution time of the optimization

process. As mentioned in section 3.2.2, the agent can put an end to the optimization process if it identifies the

current schedule as being fully optimized. This skill is supposed to be acutely develop at least for a fully trained

agent. However, for the scarcely trained agent being tested, it shall not come as surprise that most of the times it

fails to recognize that a schedule is fully optimized. It would already be remarkable if it could even achieve such a

schedule. More often than not, the agent will finish the optimization process when it reaches the maximum number

of moves stop criterion. Therefore, it is expected that the execution times sharply decrease for a thoroughly trained

agent.

5.2.3 Performance Metrics

A final word about the performance metrics proposed in this thesis. Both the Job Dimension Percentage and

the Job Difference Per-mille value ranges rose a lot, just as it happened for the Distance to Bound. That is natural

to happen due to the additional constraints that these solutions are subject to, comparatively with the ones from

chapter 4. The Job Difference Per-mille shows some instability, as it sometimes escalates a bit to much. Take MK5

as an example, where this metric overwhelming values suggest that incredibly bad solutions were produced by both

methods when in fact they were quite acceptable, if compared to the other instances results. The Job Dimension

Percentage behaviour seems to be much more coherent with the quality of the solutions being evaluated. Once

again, there seems to exist a positive correlation between the Job Dimension Percentage and the Distance to Bound,

but a much weaker one than observed in chapter 4. For example, a similar Job Dimension Percentage evaluation

of the KGFOA performance for MK6 and MK9 is matched with extremely different Distance to Bound results.

All in all, the absolute and relative Distance to Bound metrics seem to give more acute intuition and evaluation

of the solution quality than the Job Dimension Percentage and the Job Difference Per-mille. Nevertheless, the

Job Dimension Percentage still looks accurate at evaluating the quality of solutions, particularly when comparing

different solutions of the same problem. The Job Difference Per-mille instability reduces the confidence on its

measurements, but it is still useful most of the times.

5.2.4 Worker Machine Allocation

At last, an example of schedule created by each method is given in figures 5.1 and 5.2, where the worker

allocation is represented on top and the machine allocation is represented below.

Looking at the figures, one can confirm that both methods produce good quality results and that the KGFOA

performs sightly better. Both this conclusions were already evident in the results at table 5.1. There is however

a considerable difference at the machine allocation figures, comparing with the ones at figures 4.1 and 4.2. Back

then, it was pointed out that those results were achieved using the Minimum Feasible Time heuristic to manage

the resource allocation. It was said that in case of a draw different rules could be applied for breaking the tie.

That time the preference was to allocate operations to the machines that had been idle for a longer time. This

time, in order to point out the difference, the operations were allocated to the earliest available machine with the
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Figure 5.1: The schedule created by the Agent for MK1.

Figure 5.2: The schedule created by KGFOA for MK1.

smallest index number. The biggest benefit of this rule is that one only uses the minimum number of machines

required to achieve the solution’s makespan. The biggest drawback is that some machines are being much more

used than others and this unbalance can originate breakdown problems. It is advisable to balance the workload of

the available machines. So, the tiebreak rules used in chapter 4 are more appropriate for application in the industry.

However, for simulation purposes, if the factory is being designed or one is considering buying new machines, the

tiebreak rules used in this chapter will be very helpful to estimate how many machines are needed to optimally

solve the problem at hand, for a specified number of workers. For the problems in chapter 4, the usage of this

tiebreak rules would generate trivial machine allocation figures. If any machine-worker pair is eligible for every

operation, it is with no surprise that the machine allocation figure is equal to the worker allocation figure. However,

in this chapter that is not the case, and the generated solutions prove that all the available machines are required in

order to achieve this makespan results.
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Chapter 6

Conclusions

6.1 Achievements

The research conducted on this master thesis allowed the development of a novel Deep Q-Learning method for

solving the DRC-FJSSP. The idea of applying an Encoder-Decoder NN architecture with an Attention Mechanism,

typically used when solving Neural Language Processing problems, really proved to work. Even with just a

scarce number of training cycles across a very basic training dataset, the agent designed was able to achieve some

competitive results comparatively with a state-of-the-art meta-heuristic when applied to a benchmark dataset. The

agent proved to be flexible in dealing with some real-world Industry constraints and was able to generate the

solutions in a reasonable amount of time, dozens of times faster than the KGFOA.

The most significant drawback of this implementation has to be the computational effort required to train the

NN. The major bottleneck of the work developed in this thesis was indeed the lack of adequate computational

resources. This heavy computational requirements are typical in the development of Deep Learning systems.

However, as pointed out in the introduction of this thesis, the computational power available in the market has

been growing exponentially. If one or two decades ago the amount of computational power required to train a

Deep NN would only be available to the market’s technological giants, nowadays an average startup budget would

probably be enough to invest in those resources. Moreover, the advent of cloud computing diminished even more

the price of access to those resources. If that would not be enough, just recently Chinese scientists announced a

technological breakthrough, claiming that they had developed a quantum computer capable of performing certain

computations nearly 100 trillion times faster than the world’s most advanced supercomputer [44]. All in all, the

rate at which the computational power available for everyone is growing does not seem to decay, so it should not

be long until it becomes easy for everyone to train a Deep NN in their own computer. But even now the required

computational power should be available at a reasonable budget.

The two performance metrics proposed for evaluating the solution quality of a DRC-FJSSP proved to be in-

sighful. Nevertheless, they were not found to be suitable for replacing any of the existing metrics like the makespan

and the absolute and relative Distance to Bound. They still proved to be nice to have in addition to those metrics,

especially the Job Dimension Percentage. On the other hand, the Job Difference Per-mille was found to be a bit

unstable, which ends up reducing the confidence on its measurements.
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6.2 Future Work

6.2.1 In depth Agent training and additional features

It was impossible to evaluate the full capabilities of the proposed solution due to the lack of computational

resources. The complex neural network architecture developed would need to be exposed to at least hundreds of

different problems and hundreds of thousands of training cycles, before one could consider it properly trained.

Therefore, before trying different approaches it would be interesting to evaluate how well can this model operate

after a thorough training procedure and compare the results obtained with the state-of-the-art techniques.

For the application in the Industry to be possible, it is possible that some additional constraints need to be taken

into consideration. One common example is for the processing times of the operations to vary with the allocated

resource pair. The input given to the agent in the proposed method are insufficient to take that into consideration.

The only way the current agent could solve these problems would be to consider a standard processing time for

each operation, independent of the allocated resource pair. This processing time would then be switched by the

correct one during the vector decoding and schedule building procedure, but it would be impossible for the agent

to somehow interpret what was happening, since it would be possible for 2 problems with the same input and

output to generate different rewards. It is true that the same happened when jobs with multiple operations and

machine and worker eligibility constraints were added. The agent proved to be capable of still delivering partially

optimized solutions, but their quality was clearly deprecated. In order to unleash the agent from this limitation,

more information about the problem needs to be given as an input.

Additionally, the proposed method only deals with the optimization of the operation sequencing for scheduling.

The resource allocation is not dealt with by the agent and was solved using the Earliest Feasible Time heuristic.

This can also come as a limitation in the agent’s optimization capabilities. It would be possible to address the

machine and worker allocation by redesigning the network’s output.

In order to fulfil these 2 needs, a different approach to the input and output of the neural network was con-

ceptualized and could be developed in future research. Regarding the input, the goal is to provide not only the

processing time and position in the OSV, but also the worker and machine eligibility and allocation information.

This new information can be summarized in a (nmachines×nworkers) by noperations matrix, like shown in figure 6.1.

The input vector dimension as to be constant for every encoder step. The dimensions of all the information

matrices and vectors shown in figure 6.1 vary from problem to problem. Therefore, the only way to sequentially

feed this input information in constant sized vectors is by feeding these values one by one. The information is fed
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Figure 6.1: Processing Time, OSV position and Worker-Machine eligibility and allocation input information.

according to algorithm 3, as represented in figure 6.2.

Algorithm 3: Network input information feeding process algorithm.

Processing Time vector, proc_time ;

OSV position vector, OSV _pos ;

Worker-Machine Eligibility matrix, Work_Mach_Elig ;

Worker-Machine Allocation matrix, Work_Mach_Alloc ;

for i = 1, ..., nmachines×nworkers do

for j = 1, ..., noperations do
input(i, j) = [proc_time( j),OSV _pos( j),Work_Mach_Elig(i, j),Work_Mach_Alloc(i, j)]

end

end

Figure 6.2: Network input information feeding process representation.

What is happening is that the agent first receives the operation information regarding the first resource pair.

For the first operation: what is its processing time? What is its position in the OSV? Is this operation eligible to

be allocated to this resource pair? Is this operation allocated to this resource pair? Then, it proceeds until this was
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done for every operation. At the end of this loop, it moves on to the next resource pair. It then reads once again one

by one the operation information for this resource pair. And it continues until the information of all the operations

regarding every resource pair was read.

It is worth highlighting that both the processing times and the OSV positions are vectors, whose information

is being repeatedly fed to the network. This repetition comes from the fact that the Worker-Machine Eligibility

and the Worker-Machine Allocation information are matrices with a number of elements nmachines×nworkers times

larger than the aforementioned vectors. Also, if the processing times of the operations vary according to the

resource allocation, it becomes a (nmachines× nworkers) by noperations matrix itself and, so, that information is not

repeatedly fed.

Another aspect important to refer is that it was considered that when a worker is not eligible to operate a

machine, then that resource pair is not eligible to execute any operation. Trivially, if a machine is not eligible to

execute an operation, then the any resource pair with that machine is not eligible to execute that operation.

All in all, the agent can now receive the current OSV, MAV and WAV together with the processing times and

Worker-Machine Eligibility information. It has now all the inputs it needs to make an informed decision regarding

the operation sequencing and resource allocation optimization. However, the output structure still needs to be

adapted to incorporate the resource allocation commands.

With the changes made to the input structure, the intuition that led to the use the attention weights as outputs,

like in a Pointer Network, is lost, since the inputs are no longer single operations. This way, the decoder outputs

will be used for the move operation and resource allocation selection. The number of operations and resource pairs

varies from problem to problem. Therefore, the only way that the output vector can have a constant dimension

is by being composed of a single element. All in all, there will be n2
operations× nmachines× nworkers decoder steps.

Each one of them outputs a score and the highest score of them all is selected. Considering idx as the index of the

highest score, the output command is given by equation 6.1.

ResourcePair_num = f loor(
idx−1

nmachines×nworkers
)+1, (6.1a)

Position_num = f loor(
idx− (ResourcePair_num×nmachines×nworkers)−1

noperations
)+1 (6.1b)

Operation_num = idx− (ResourcePair_num×nmachines×nworkers)− (Position_num×noperations) (6.1c)

where the floor function rounds the its input to the closest smaller integer. The agent moves operation number

Operation_num to position number Position_num in the OSV. Additionally, it allocates that operation to resource

pair number ResourcePair_num.

6.2.2 Redesigned Implementation

The adaptations made in section 6.2.1 lead to a very computationally demanding technique. The major reason

for that is that the number of encoder and decoder steps escalated with the changes made to the input and output

structure. So, with the knowledge acquired throughout the work in this thesis, is there anything that could have

been done differently and, perhaps, more effectively?
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Like discussed in chapter 6.2.1, in order to fully autonomously solve the DRC-FJSSP, the agent needs to receive

information regarding the processing times of operations and the worker-machine eligibility. Additionally, since a

step by step optimization approach was taken, it also needs to receive information about the current OSV, MAV and

WAV states. Looking back on why this approach was taken, the justification lied on the assumption that it would

be probably to optimistic to design an intelligent agent capable of optimizing a DRC-FJSSP at one go. However,

the only way to find it out is by actually trying it. And looking at the computational advantages that reducing the

number of inputs would have, it looks worth a shot.

So a new input structure for the Encoder-Decoder architecture was conceptualized that contemplated only one

(nmachines× nworkers) by noperations matrix to be fed as an input. That matrix carried the processing times of each

operation if allocated to each of the available resource pairs. The processing time would be 0 if that combination

of operation and resource pair is not eligible. The elements of this matrix would be fed one by one at each encoder

step.

The information would then go through the network and the output would be once again defined by the attention

weights as in a Pointer Network. However, this time a Local Attention Mechanism would be used. The difference

between Local and Global Attention is that for Global Attention all attention weights are calculated, whereas in

Local Attention only the relevant ones are calculated. The relevant weights would be the ones pointing towards

eligible operation-resource elements in the input. An eligible operation-resource element is one with a processing

time greater than 0 and whose preceding operations have all been selected.

The OSV, MAV and WAV are sequentially built along the decoder steps. At each decoder step, the highest

local attention weight is select, which defines the operation chosen to be added to the OSV, as well as the machine

and worker (resource) allocation, stored in the MAV and the WAV, respectfully. In the end, all 3 vectors all fully

constructed and the solution schedule can be decoded from them.
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Appendix A

Move Operation

The move operation and the necessary number of moves at each episode is detailed in this appendix. The

proposed solution in this thesis for solving the DRC-FJSSP is based in elementary move operations on the OSV.

An unknown number of these moves is done, until the schedule is finally optimized. As mentioned in section 3.2.2,

a rule was established to put an end to the agent’s optimization process. A schedule is considered to be optimized

when the agent chooses a move that does not change the OSV. When that happens, the best schedule found so

far, the one with the lowest makespan, is considered to be the optimized solution. Additionally, the agent only

has a limited number of moves to optimize the solution, equal to 50% of the number of operations to schedule

for the problem at hand. After those moves, the best schedule found so far, the one with the lowest makespan, is

considered to be the optimized solution.

However, during training the main goal is not to find an optimized solution, but rather for the agent to learn.

Since the ε-greedy algorithm was used, a random move is done with probability ε . The probability ε decays

throughout the training cycles. All in all, during a training episode the agent shall not stop when the solution is

optimized. Another rule shall be established to finalize the episode.

First of all, one should have a look at how the move operation works. In figure A.1 there is an example of

this operation. The letters A to E represent different operations and the OSV_pos numbers represent their position

in the OSV. The green arrow represents the move operation. The changes in the OSV instigated by the move

operation are done according to algorithm 4.

Figure A.1: Move operation and its impacts on the OSV.
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Algorithm 4: The OSV manipulation algorithm for the move operation.

Read the current operation sequence, OSVt ;

Read i, the operation selected to be moved ;

Read j, the new position of the operation i in OSVt+1 ;

if OSVt(i) = j then

OSVt+1 = OSVt ;

else if OSVt(i)> j then

for operation = 1, ..., n do

if operation = i then

OSVt+1(operation) = j ;

else if j ≤ OSVt(operation)< OSVt(i) then

OSVt+1(operation) = OSVt(operation)+1 ;

else

OSVt+1(operation) = OSVt(operation) ;

end

end

else if OSVt(i)< j then

for operation = 1, ..., n do

if operation = i then

OSVt+1(operation) = j ;

else if OSVt(i)< OSVt(operation)≤ j then

OSVt+1(operation) = OSVt(operation)−1 ;

else

OSVt+1(operation) = OSVt(operation) ;

end

end

end

Even though algorithm 4 is quite trivial, its dynamics, especially after a few moves, can become extremely

complex. This happens because moved operations do not become locked in a position for all future moves. In

figure A.1 for example, in the first move operation A goes to position number 1 in OSV. However, because in

the second move operation C goes from position 0 to position 3, operation A is brought to position 0. When

one operation is moved, there is a whole set of other operations that are relocated as well. And that is where the

complexity comes from.

The goal when calculating the necessary number of moves per episode is to allow that during the episode

any possible configuration can be reached, despite of what the original one was. In order to be able to make this

calculation, one shall first get comfortable with how the OSV changes when multiple move operations are applied.

Consider a simple example where there are 3 operations to schedule: A, B and C. Consider A-B-C as the initial

configuration. In figures A.2 to A.5 all the possible configurations with 2 moves are presented. The arrow letters
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represent which operations have been moved. Additionally, an overview of this process is presented in figure A.6.

Figure A.2: Possible operation sequence configurations after 1 move.

Figure A.3: Possible operation sequence configurations after 2 moves, knowing that operation A was moved before.
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Figure A.4: Possible operation sequence configurations after 2 moves, knowing that operation B was moved before.

Figure A.5: Possible operation sequence configurations after 2 moves, knowing that operation C was moved before.
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Figure A.6: An overview of the move operation for a problem with 3 operations.

From this, one can conclude that, for 3 operations, at least 2 moves are needed in order to achieve any possible

configuration. In fact, as shown in table A.1, the minimum number of moves necessary to arrive at any possible

configuration, #M, as a function of the number of operations to schedule, #O, is always n−1. Also, the probability

of ending up on each configuration starting from A-B-C can be calculated and is given in figure A.7.

Table A.1: The minimum number of moves to arrive at any possible configuration.
#O #M
1 0
2 1
3 2
4 3
... ...
n n-1

Figure A.7: Probability of ending up on each state after 2 moves, having started as A-B-C.

As one can see, these probabilities are clearly unbalanced, which means that any random moves selected by

the agent would be affected by a strong bias. Intuitively one can understand, that when the number of moves grows

the initial state becomes less influential in the randomly selected output, which means that this probabilities are

expected to get balanced as the number of moves grows. The number of moves that balances these probabilities
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is expected to be positively correlated with the number of operations to schedule. For simplicity, it was supposed

that there is approximately a linear proportionality between this values, as exposed in equation A.1. The k value

represents the proportionality constant and needs to be estimated.

nmoves = k× (noperations−1) (A.1)

The probabilities in figure A.7 were calculated mathematically. Due to the law of large numbers, one could

have estimated this probability using a simulation where this random choice is executed thousands of times. This

will be especially useful for larger problems, for which the number of possibilities grows exponentially. These

simulations were ran for problems with 3 and 4 operations to schedule and for a natural number k between 1 and

5. For each of these, 1000× (n2)
n−1× (n− 1)× k experiences were made. n2 is the number of possible moves

and (n2)
n−1 is the number of possible routes for n-1 moves. This means that each route is followed on average

1000× (n−1)×k times, ignoring that the number of routes varies with the number of moves. The results of these

simulations are presented in table A.2.

Table A.2: Maximum probability percentage deviation between states, for two move operations.
noperations
3 4

k

1 13.45 7.44
2 2.48 1.57
3 0.87 0.35
4 0.10 0.10
5 0.10 0.00

The result obtained for k = 1 and noperations = 3 is according to what was mathematically calculated before. The

idea is to choose the lowest possible number of moves that sufficiently approximate the probabilities of arriving

at each possible configuration, since the higher the number of moves the more expensive the computational effort

for training becomes. From the results in A.2, it was considered that, with a maximum probability percentage

deviation lower than 1%, 3× (noperations−1) moves would be sufficient for removing the bias in the random move

choice selection. However, for simplicity, the number of moves per episode implemented was 3×noperations.
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Appendix B

Full Simulation Results

The full results from the chapter 4 simulation are presented in the following tables.
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Table B.1: Simulation results for the problems with 10 jobs to schedule.

Sample 1 Agent LPT BFD

Job Dimension (%) 0.00 11.11 0.00
Job Difference (‰) 0.00 24.73 0.00

Min Finish time (units) 45 44 45
Max Finish time (units) 45 46 45

Lower Bound (units) 45 45 45
Distance to Bound (%) 0.00 2.22 0.00

Execution Time (s) 1.22 0.00 0.00

Sample 2 Agent LPT BFD

Job Dimension (%) 6.02 6.02 18.07
Job Difference (‰) 15.40 15.40 46.20

Min Finish time (units) 41 41 40
Max Finish time (units) 42 42 43

Lower Bound (units) 42 42 42
Distance to Bound (%) 0.00 0.00 2.38

Execution Time (s) 1.02 0.00 0.02

Sample 3 Agent LPT BFD

Job Dimension (%) 0.00 0.00 17.86
Job Difference (‰) 0.00 0.00 39.89

Min Finish time (units) 56 56 54
Max Finish time (units) 56 56 58

Lower Bound (units) 56 56 56
Distance to Bound (%) 0.00 0.00 3.57

Execution Time (s) 1.02 0.02 0.00

Sample 4 Agent LPT BFD

Job Dimension (%) 9.62 0.00 9.62
Job Difference (‰) 47.67 0.00 47.67

Min Finish time (units) 51 52 51
Max Finish time (units) 53 52 53

Lower Bound (units) 52 52 52
Distance to Bound (%) 1.92 0.00 1.92

Execution Time (s) 1.02 0.00 0.02

Sample 5 Agent LPT BFD

Job Dimension (%) 5.26 5.26 26.32
Job Difference (‰) 14.02 14.02 70.09

Min Finish time (units) 47 47 45
Max Finish time (units) 48 48 50

Lower Bound (units) 48 48 48
Distance to Bound (%) 0.00 0.00 4.17

Execution Time (s) 1.00 0.02 0.00
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Table B.2: Simulation results for the problems with 30 jobs to schedule.

Sample 1 Agent LPT BFD

Job Dimension (%) 10.71 10.71 10.71
Job Difference (‰) 28.62 28.62 28.62

Min Finish time (units) 54 55 54
Max Finish time (units) 57 57 57

Lower Bound (units) 56 56 56
Distance to Bound (%) 1.79 1.79 1.79

Execution Time (s) 9.48 0.00 0.02

Sample 2 Agent LPT BFD

Job Dimension (%) 9.52 9.52 9.52
Job Difference (‰) 34.73 34.73 34.73

Min Finish time (units) 62 62 61
Max Finish time (units) 64 64 64

Lower Bound (units) 63 63 63
Distance to Bound (%) 1.59 1.59 1.59

Execution Time (s) 9.36 0.02 0.02

Sample 3 Agent LPT BFD

Job Dimension (%) 2.15 2.15 12.90
Job Difference (‰) 5.62 5.62 33.70

Min Finish time (units) 55 55 55
Max Finish time (units) 56 56 57

Lower Bound (units) 56 56 56
Distance to Bound (%) 0.00 0.00 1.79

Execution Time (s) 9.31 0.02 0.00

Sample 4 Agent LPT BFD

Job Dimension (%) 14.46 14.46 5.42
Job Difference (‰) 33.92 33.92 12.72

Min Finish time (units) 65 65 64
Max Finish time (units) 68 68 67

Lower Bound (units) 67 67 67
Distance to Bound (%) 1.49 1.49 0.00

Execution Time (s) 9.31 0.00 0.02

Sample 5 Agent LPT BFD

Job Dimension (%) 16.82 7.48 7.48
Job Difference (‰) 46.75 20.78 20.78

Min Finish time (units) 61 63 63
Max Finish time (units) 66 65 65

Lower Bound (units) 65 65 65
Distance to Bound (%) 1.54 0.00 0.00

Execution Time (s) 9.27 0.02 0.02
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Table B.3: Simulation results for the problems with 100 jobs to schedule.

Sample 1 Agent LPT BFD

Job Dimension (%) 22.84 2.98 2.98
Job Difference (‰) 60.87 7.94 7.94

Min Finish time (units) 96 100 99
Max Finish time (units) 103 101 101

Lower Bound (units) 101 101 101
Distance to Bound (%) 1.98 0.00 0.00

Execution Time (s) 111.26 0.05 0.05

Sample 2 Agent LPT BFD

Job Dimension (%) 17.79 7.91 7.91
Job Difference (‰) 45.35 20.16 20.16

Min Finish time (units) 99 101 100
Max Finish time (units) 103 102 102

Lower Bound (units) 102 102 102
Distance to Bound (%) 0.98 0.00 0.00

Execution Time (s) 111.29 0.06 0.05

Sample 3 Agent LPT BFD

Job Dimension (%) 17.58 8.33 8.33
Job Difference (‰) 64.01 30.32 30.32

Min Finish time (units) 104 107 106
Max Finish time (units) 110 109 109

Lower Bound (units) 109 109 109
Distance to Bound (%) 0.92 0.00 0.00

Execution Time (s) 111.12 0.06 0.05

Sample 4 Agent LPT BFD

Job Dimension (%) 14.78 4.93 4.93
Job Difference (‰) 51.25 17.08 17.08

Min Finish time (units) 99 101 1000
Max Finish time (units) 103 102 102

Lower Bound (units) 102 102 102
Distance to Bound (%) 0.98 0.00 0.00

Execution Time (s) 111.11 0.05 0.06

Sample 5 Agent LPT BFD

Job Dimension (%) 11.79 1.96 11.79
Job Difference (‰) 33.85 5.64 33.85

Min Finish time (units) 100 101 99
Max Finish time (units) 103 102 103

Lower Bound (units) 102 102 102
Distance to Bound (%) 0.98 0.00 0.98

Execution Time (s) 111.06 0.06 0.05
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Table B.4: Simulation results for the problems with 300 jobs to schedule.

Sample 1 Agent LPT BFD

Job Dimension (%) 30.92 10.65 10.65
Job Difference (‰) 79.89 27.50 27.50

Min Finish time (units) 145 147 145
Max Finish time (units) 151 149 149

Lower Bound (units) 148 148 148
Distance to Bound (%) 2.03 0.68 0.68

Execution Time (s) 1219.76 0.28 0.28

Sample 2 Agent LPT BFD

Job Dimension (%) 23.93 4.40 4.40
Job Difference (‰) 61.58 11.31 11.31

Min Finish time (units) 151 153 152
Max Finish time (units) 156 154 154

Lower Bound (units) 154 154 154
Distance to Bound (%) 1.30 0.00 0.00

Execution Time (s) 1218.45 0.28 0.28

Sample 3 Agent LPT BFD

Job Dimension (%) 21.74 11.86 1.98
Job Difference (‰) 60.44 32.97 5.49

Min Finish time (units) 149 151 150
Max Finish time (units) 154 153 152

Lower Bound (units) 152 152 152
Distance to Bound (%) 1.32 0.66 0.00

Execution Time (s) 1219.63 0.28 0.28

Sample 4 Agent LPT BFD

Job Dimension (%) 14.75 4.92 4.92
Job Difference (‰) 42.39 14.13 14.13

Min Finish time (units) 150 152 151
Max Finish time (units) 154 153 153

Lower Bound (units) 153 153 153
Distance to Bound (%) 0.65 0.00 0.00

Execution Time (s) 1218.84 0.28 0.27

Sample 5 Agent LPT BFD

Job Dimension (%) 22.30 2.91 2.91
Job Difference (‰) 66.58 8.68 8.68

Min Finish time (units) 152 154 153
Max Finish time (units) 157 155 155

Lower Bound (units) 155 155 155
Distance to Bound (%) 1.29 0.00 0.00

Execution Time (s) 1218.81 0.28 0.28
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Table B.5: Simulation results for the problems with 1000 jobs to schedule.

Sample 1 Agent LPT BFD

Job Dimension (%) 26.91 17.10 7.29
Job Difference (‰) 77.84 49.46 21.08

Min Finish time (units) 289 290 288
Max Finish time (units) 294 293 292

Lower Bound (units) 292 292 292
Distance to Bound (%) 0.68 0.34 0.00

Execution Time (s) 22252.59 2.33 2.30

Sample 2 Agent LPT BFD

Job Dimension (%) 22.86 12.86 2.86
Job Difference (‰) 68.22 38.37 8.53

Min Finish time (units) 283 285 283
Max Finish time (units) 288 287 286

Lower Bound (units) 286 286 286
Distance to Bound (%) 0.70 0.35 0.00

Execution Time (s) 22266.13 2.33 2.31

Sample 3 Agent LPT BFD

Job Dimension (%) 21.48 11.59 11.59
Job Difference (‰) 60.93 32.87 32.87

Min Finish time (units) 286 288 286
Max Finish time (units) 291 290 290

Lower Bound (units) 289 289 289
Distance to Bound (%) 0.69 0.35 0.35

Execution Time (s) 22267.28 2.31 2.28

Sample 4 Agent LPT BFD

Job Dimension (%) 26.03 16.02 6.01
Job Difference (‰) 73.44 45.19 16.95

Min Finish time (units) 283 284 282
Max Finish time (units) 288 287 286

Lower Bound (units) 286 286 286
Distance to Bound (%) 0.70 0.35 0.00

Execution Time (s) 22289.44 2.34 2.33

Sample 5 Agent LPT BFD

Job Dimension (%) 24.13 14.19 4.26
Job Difference (‰) 67.93 39.96 11.99

Min Finish time (units) 285 286 286
Max Finish time (units) 290 289 288

Lower Bound (units) 288 288 288
Distance to Bound (%) 0.69 0.35 0.00

Execution Time (s) 22286.11 2.31 2.33
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