
Learning Agent in the Ms. Pac-Man vs Ghosts
game

João Guerreiro
Instituto Superior Técnico

Universidade de Lisboa
Lisboa, Portugal

joao.pereira.guerreiro@tecnico.ulisboa.pt

Abstract—Due to the success of the Monte Carlo Tree Search
algorithm in several games, surged the idea to apply this method
to the Ms. Pac-Man game. There is, already, a competition for
agents playing Ms. Pac-Man. Most of the first agents back then
were rule-based, until this idea to use MCTS appeared. The idea
for this thesis consist on using the MCTS algorithm, as an auxiliar
agent that will play the game without the time restrictions and
create a dataset a priori, to then train a neural network that will
play the game in real time. These results were then compared to
an agent developed by [1], who came in second in the worldwide
competition and first in the european competition. The results
achieved were encouraging, with the MCTS agent achieving an
average score of 2749 points after thirty games, comparing to the
2871 achieved by the [1] agent. The moves chosen by the MCTS
agent, were then saved to a file and used to train two neural
networks, one through classification using as labels the action
chosen, and another by regression, using the values of each action
for each game state. The best results achieved by both neural
networks were 2103 points and 1437 points, respectively. This
can, probably, be explained due to the low number of samples
combined with a vast number of features in the dataset.

Index Terms—Ms. Pac-Man, Monte Carlo Tree Search, Neural
Networks

I. INTRODUCTION

Since the early days of Artificial Intelligence (AI) until
today, AI has evolved a lot, starting in state-machines with
simple reasoning behind it, all the way up to the famous neural
networks. AI started to appear in every kind of algorithms for
multiple purposes, such as finances, medicine, aviation.

Specifying to the scope of this thesis, video-games, also
have an use for AI, mainly to control the actions of non-
player characters (NPC’s). Let us take for instance Pac-Man,
AI controls the ghosts and a human plays with Pac-Man.

The original Pac-Man was the first game to possess what
could be called real AI, it was very rudimentary, a simple
state machine, as said by [2], that controlled the ghosts. This
was fine, but after a while people started seeing patterns in
the ghosts’ movement, the movement was predictable. In Ms
Pac-Man, however, the movement was semi-random, making
this game much more challenging from an AI standpoint.

This game became so intriguing to AI enthusiasts and
scholars that the research community created a competition.
In 2007, the first tournament was organized by [3], but it had
restrictions. The agent could only gather information about

the game in a form of screen-capture, having no access to
the game-state itself. In 2011, the organizers created a second
tournament format. In this new format, there were two types
of agents, the competitors could enter with a controller for Ms
Pac-Man that had the purpose of maximize the points, or enter
with a controller for the ghosts that had the objective of doing
the exact opposite, minimize the points of Ms Pac-Man.

While in the first iterations, the competition was dominated
by teams with ruled-based algorithms, the success of Monte-
Carlo Tree Search algorithms in other games like Go as
explained by [4], made this an attractive alternative to use in
Ms Pac-Man, this was justified by being the algorithm behind
the winning controller on the 2012 competition.

However, Monte-Carlo Tree Search has limitations when
executed in real-time, mainly in Ms. Pac-Man, where an
agent has to decide an action to take in 40 milliseconds.
This reduced time, limits the amount of simulations that the
algorithm can do. Due to that multiple agents implemented
with a MCTS in real-time have modifications made to the
algorithm, with the purpose of increasing its performance.
However, more recently, appeared a technique that uses the
MCTS as an auxiliary tool, to create data to train a neural
network, developed by [5]. This way it is possible to give the
MCTS the time it needs to do a proper assessment of the game
state and produce the best possible action. In real-time the
much faster neural network then processes the information,
and outputs an action. This method was never used in the
competition created by [3].

A. Contributions

The main purpose of this project, consist on comparing two
agents, both using MCTS. One agent will use the MCTS in
real-time, with modifications in order to improve its perfor-
mance in Ms. Pac-Man, this agent was developed by [1]. The
second agent will be created from scratch by us. It will run
the MCTS algorithm without modifications or improvements,
in offline mode, this will allow for the creation of a dataset
that will be used to train a neural network that will play the
game in real-time.

This technique used for the second agent, has already been
proven as an effective technique that can obtain excellent re-
sults in multiple games from the Atari 2600 console. However,
it was only tested in a framework that allows the capture of



images as input for the agent. The idea will be to use this same
technique but altering the input features from an image to a set
of parameters (game score, pills in the maze, ghost positions,
etc), to understand if the results obtained can be comparable
to a state of the art agent using MCTS in real-time.

With this said, the key contributions are:
• Creation of a standard MCTS agent capable of playing

Ms. Pac-Man
• Creation of two datasets capable to be used in classifica-

tion and regression.
• Analyse of an effective neural network architecture

II. BACKGROUND

The controllers of Ms. Pac-Man, started by having a rule-
based algorithm at its core. However, this technique was
quickly surpassed by the MCTS algorithms, after the success
it had in the game Go. More recently, convolutional neural
networks, started making their success in games, overall.

This section will be focused on starting by explaining the
differences between the original game, Pac-Man and Ms.
Pac-Man. After that, the MCTS algorithm will be described
followed by deep learning in general, in order to understand
the papers presented in the next chapter.

A. Ms. Pac-Man
The game Ms Pac-Man is very similar to the original one,

Pac-Man. However, there are some important differences, dif-
ferences that change everything in the aspect that is important
to this thesis.

In a Ms. Pac-Man maze the small dots represent the pellets,
the bigger dots represent the power-pellets. In the bottom, the
number of Ms.Pac-Man are the remaining lives. At the bottom,
on the right, there are the fruits, that appear throught the maze.
The score is showed at the top, together with the highest score
achieved.

In the original game, there is only one maze with one tunnel,
while the Ms Pac-Man version, has four different mazes, with
three of them having 2 tunnels and one of the mazes having
one tunnel.

The goal of the game stays the same, maximize the points
earned. For that objective, Ms. Pac-Man presents no differ-
ences to the original game, Pac-Mac. The agent has to eat the
pellets and the power pellets. Eating a power pellet allows the
player to eat the ghosts, the more ghosts eaten in a power
pellet the more points you get for each ghost eaten. The last
way to win points, is the player eating fruits. These have a
slight difference from the original game. In the original, the
fruits would appear in the center of maze, in Ms Pac-Man the
fruits wander through the maze. The fruit varies according to
the level, in the first level it is the cherry; after level 7, all
fruits can appear.

Lastly, probably the most important difference. While the
ghosts in Pac-Man follow a predefined moving pattern ac-
cording to the player movement, the movement of ghosts in
Ms Pac-Man is more random, making impossible to analyse
patterns in order to choose an action. Making it a more
challenging game, for controllers.

Fig. 1. Monte-Carlo Tree Search Steps

B. Monte-Carlo Tree Search

Monte-Carlo Tree Search, as mentioned by [6], is at its
core a rollout algorithm. Through Monte-Carlo simulations, it
is possible for the algorithm to calculate value estimates for
each trajectory, discovering the best path.

The base idea is to run multiple simulations from the same
node, extending trajectories that received a good evaluation
from a previous simulation. The more simulations ran, the
more precise and more accurate will the values of each edge
be, due to the nodes keeping track of the number of times
they were visited in the past and the results obtained. The
actions selected during the simulation, follow a simple policy,
called the rollout policy, usually this policy follows a uniform
distribution. Like others Monte-Carlo methods, the value of
each state-action pair is the average of the values returned
from the simulations.

In Figure 1, it is possible to observe the steps of the MCTS
algorithm. The circles represent the states, while the black
dots, represent the possible actions to take from that same
state. The steps are described as following:

• Selection. Begins at the root node, and starts selecting
child nodes indicated by the tree policy based on the
action values of each edge. This process will occur until
a leaf is reached.

• Expansion. When the selected leaf is reached, one or
more child nodes are created, through unexplored actions,
expanding the tree.

• Simulation. One of the child nodes is then chosen and
starting from that node, a random playout (or rollout) is
executed until a final state is reached.

• Backpropagation. The value obtained by the rollout is
then used to update the state-action values of each edge
(black dot). This values will help the tree policy to
perform a more informed decision in comparison to the
previous iterations.

MCTS will continue to execute this steps until some con-
dition is reached, it is usually either a time or computational
restriction. When the environment passes to a new state, the
MCTS will begin to run again, from the new root node,
that represents the new state. Usually the tree is completly



Fig. 2. Example of a Neural Network

discarded with the exception of the nodes that connect to the
root node.

One important aspect to have in consideration is the tree
policy. While the rollout policy is commonly a policy that is
simple, that does not require alot of computational effort. The
purpose is, the simpler the policy, the faster the simulation
runs, which allows for more simulations to be analysed. For
the tree policy, it is needed a policy that can balance efficently
between exploitation and exploration. For the MCTS, most
papers use UCT.

1) UCT - Exploration vs Exploitation: The exploration ver-
sus exploitation problem, is a dilemma between the decisions
of when to explore and when to exploit.

When the algorithm does not know the environment, by
logic it should explore, it does not have information about
anything to exploit. After some iterations, when some parts
are already known, is when the problem appears, does the
algorithm know enough to start exploiting?

To solve this problem [7], invented the UCT algorithm,
derived from a multiarmed bandit algorithm, UCB1 (Upper
Confidence Bound) by [8], modifying it to work on tree
algorithms, like MCTS.

Like said before, for MCTS to work, it requires a selection
policy during the selection step. This policy must be able to
explore the tree for nodes with a high "score", but still be
able to choose nodes from where not enough information as
been gathered, again the exploration vs exploitation problem.
The UCT algorithm allows for exactly this, a balance between
both.

C. Neural Networks

Neural networks, are somewhat inspired in the human brain
biology. A neural network possess neurons connected to each
other in layers, forming a network.

A neural network is usually, read from left to right. The
input layer receives the various features of the sample, that
the neural network is trying to predict. The hidden layers then
perform calculations and the output layer will output the result
predicted. Each neuron will perform calculations based on the
input received. As seen in Figure 2, each neuron present in
the hidden layers are connected to every other neuron present
in the previous and next layers, this is called a fully connected

Fig. 3. Example of a Neuron

neural network. The connections from neurons in the previous
layer will act as input for the neurons in the next layers. These
inputs will then be used to perform calculations on the current
neuron, with this neuron then outputing a value for the neurons
present in the next layer to use as input, and so on. The
network present in Figure 2, due to having multiple hidden
layers can be called a deep neural network.

Figure 3, shows a neuron up close. Every input is multiplied
by the corresponding "weight", this weights can be initialized
in several different ways, starting all the weights as 0 or 1
or even initialize them following a distribution. For the tests
in Chapter 5, it was used a normal distribution to initialize
the weights and the Xavier technique, that tries to keep the
variance of inputs and outputs in the same layer equal, balanc-
ing the weights accordingly. This parameter will be constantly
changed during the training phase of the network, in order to
improve the network accuracy, this accuracy is measured by
a "loss function", with the purpose of the "weights" being to
minimize the "loss function". All the inputs, already multiplied
are then summed all together and introduced in an "activation
function".

There are multiple types of activation function, but they all
have the same purpose, converting the sum to a value between
a certain range. That will be used as input in the next neurons.

There are multiple types of neural networks, this one was
just an example to introduce the concept. One type of neural
network, currently having a great deal of success are the
convolutional neural networks. This type of neural networks
have showed an incredible success in classifying images.
Some of the most recent development in the area of creating
controllers for games in general, have this technology at its
core. These networks are capable of extracting the image
displayed on the screen and classify it correctly for the agent,
allowing the agent later choose the correct action to take, with
the most notorious case probably being the Alpha Go agent,
that succeded in defeating a Go 9th Dan player, Lee Sedol.
For this feat, Alpha Go used neural networks in combination
with tree search algorithms, as explained by [9].

These networks stand out from the rest, due to the fact due
to being able to automatically perform feature extraction, the
features of the images, that are used as input. Instead of a



Fig. 4. Example of a convolutional neural network - Adapted from [10]

Fig. 5. Example of applying a convolutional filter to an image

human deciding what features are important, these layers do
that themselves.

As observed in Figure 4, the first layers are used to extract
the information from the input, in this case, an image, and
then a fully connected network, like the one mentioned above
is used to classify the image. For the feature extraction, there
are three main types of layers: convolutional, non-linear and
pooling.

Convolutional, is the main layer in terms of extracting the
features of the input image. An image can be considered as a
matrix, with each pixel representing a position of the matrix.
The operation that the convolutional layer does is applying a
filter through the matrix that represents the input. In the case,
seen in Figure 5, the filter is going through the image with a
stride of one, this means the filter moves one pixel at a time, to
the side. The filter multiples each position element wise, and
then sums all the values, and applies it to the output matrix.
The output matrix is called a feature or activation map.

Non-Linearity, is a layer that applies a type of non-linear
function in order to remove the linearity from the feature
map. This step is required due to the operation made by
the convolutional layer. The operation introduces linearity,
when most things observed in the world do not possess such
linearity, distorting the original data. One of the most common
operation used in this step is the "ReLU" function.

The function maximizes the value of each individual pixel
in the feature map. It compares the value of the pixel with
zero, and picks which value is higher, as seen in Figure 6.
For example, a ReLU function applied to the output of the
Figure 5, would change nothing. Other examples of non-linear
operations are tanh and the sigmoid functions.

Pooling, consists on reducing the dimensionality of the
feature map, basically downsampling. Pooling can be done

Fig. 6. ReLU Function Plot

Fig. 7. Example of pooling a feature map

with multiples functions, being the most commons, the max,
average or sum. In Figure 7, a filter of 2x2, with stride 2
(moving 2 pixels at each time), is selecting the max value in
that section of the feature map, producing the output matrix.

These layers can be used multiple times in a neural network,
but usually always follow this order. Convolutional layer, with
a non-linear layer after, and in the end a pooling layer.

With the features extracted, the image is now ready to be
classified by a fully connected layer.

The technologies mentioned in this chapter, are at the core
of the research papers, mentioned in the next chapter, as well,
as in the development of the agent created for this thesis.

III. RELATED WORK

There are, already, multiple agents developed for Pac-Man
and Ms. Pac-Man games, with the most diverse solutions, to
be used in competitions, that are mentioned below. This was
due to the fast increase in popularity, of the games in these
tournaments, which attracted multiple academic teams.

One of the earliest researches, investigated the use of genetic
programing, for the controller to choose one of the predefined
rules. [11] were able to use this technique to evolve the
behaviours of multiple Ms. Pac-Man agents, for multiple
variations of the original game. Further down the line, [12]
were also able, to use genetic programming to evolve heuristics
for a MCTS agent.

[13], compared the use of temporal difference learning
against evolutionary algorithms for learning behaviours of the
agent. They reached the conclusion that, for this game in
particular, the evolutionary algorithms were better than TD-
Learning.

[14], used a tree search algorithm, with the best path being
evaluated through hard-coded heuristics. Still in rule-based
systems, multiple teams also used the Dijkstra’s algorithm to
determine the way to follow.



[15], used evolved neural networks, to evaluate the best
action for the agent. [16], also used a neural network in
combination with a evolutionary algorithm, and they were able
to create agents that would learn the rules of the game, and
show a begginer level of skill in the game.

[1], were the first real team, to improve upon the current
iterations of MCTS in Ms. Pac-Man. They proposed several
enhancements and alterations, in order to improve the perfor-
mance of the agent. They ended up in second, in the WCCI’12
(World Congress on Computational Intelligence) out of 63
competitors and in first in the CIG’12 out of 36 contestants.

In this section, two main papers will be discussed. One
written by [1], which developed their agent using real-time
MCTS and the second written by [5], that focused on creating
their agent using the MCTS offline and then training a neural
network with the information retrieved from the MCTS. This
two papers were the base of the development for this thesis.

A. Real-Time Monte-Carlo Tree Search Improvements for Ms.
Pac-Man

[1], created a controller for Ms. Pac-Man based on the
MCTS algorithm that focuses on dealing with problems that
rise due to this game being run in a real-time environment.
This implementation won the CIG 2012 competition and
came in second in WCCI 2012. This paper proposed four
improvements, in relation to other controllers that also used
the MCTS algorithm. A tree with variable-depth, strategies for
the pac-man and ghosts, this strategies are derived from the
implementation of [17], long-term goals in scoring and reusing
the search trees in order to save computational time.

Trees with Variable Depths: It is possible to map the
mazes in trees, with the edges representing the paths between
junctions and nodes representing, the said junctions. Through
the tree, the agent can at the edges choose to go forward or
reverse back, and at the nodes, choose between directions.
While in the real game, it is possible for the agent to reverse
multiple times in a row, in the tree of [1] it is only possible to
reverse once, the reason for this, is to allow a bigger margin
between rewards for the available moves, otherwise it would
be necessary more simulations per move to achieve decisive
differences between moves.

The trees constructed, by these papers, are very similar
between themselves. The difference is the control of the
tree’s depth. While the others, consider the distances between
sequential junctions to be always the same. This makes the
transition from the maze to the tree to not be accurate, and
having a fixed depth rule to stop the rollout only worsens the
situation. [1], also uses the depth of the tree to stop the rollouts,
but this depth is controlled by the distance between sequential
junctions. This allows for the agent to avoid bad decisions, e.g.
when in danger choose the shortest path instead of a longer
one.

As seen in Figure 8, the distance between junction "F" and
"L" is very different from the distance between "F" and "K".

The other papers, limit the depth of the tree by counting the
number of nodes. [1], does it by a measure of distance in the

Fig. 8. Game state, and respective mapping in a tree - Adapted from [1]

maze. That is why, in Figure 8, some nodes on the last level
of depth are not reachable, the distance from the root to them
is bigger than the limit of 25.

Tactics: As defined by [17], the use of the UCT method
implies the calculation of a formula based on the winrate, but
due to Ms. Pac-Man lack of a "win" state, other arrangements
had to be made. One can say the "win" state is to maximize
the points obtained, but that means close to nothing if in the
next move, you are eaten.

[1] iterated upon this idea, but considered the tactics in
relation to the rewards. Each node would have three differ-
ent reward values, one for each tactic and instead of using
heuristics like [17], decided to use a mathematical approach.
There is a value for each tactic, that is saved at each node,
and then later used to be applied to the UCT equation. Of the
three values saved at a node, the one choosen is the one of
the current tactic, according to the equation 1.

vi =


M i

ghost ×M i
survival if tactic is pursuit

M i
pellet ×M i

survival if tactic is feeding
M i

survival if tactic is survival
(1)

This value, will later be used by the UCT to decide the
paths to take in the selection step and to calculate the new
values calculated by the backpropagation step.



The main difference between [17] and [1], is the use of
heuristics versus math. While [1], uses the value obtained as a
reward, [17] uses the rules as definitions in order to implement
restrictions and more strict decisions.

Search Tree Reuse: One of the main constraints these
types of agents need to have in consideration in real-time
environments, is the time that the agent has to decide each
move. In Ms. Pac-Man that time is 40 milliseconds.

Due to the nature of the MCTS algorithm, and how its
success depends in great part to the amount of simulations
analyzed for better approximations, this short time of decision
is far from ideal.

As an option, [1] suggested reusing the search trees. How-
ever, neither solution is perfect. Reusing a search tree may
result in bad decisions due to outdated values, making the
agent biased. Rebuilding a tree at each junction may put the
agent in a situation of going back and forth by deciding
between actions with similar values.

[1], decided to combine two techniques that allowed them
to reuse past trees, saving time in the decision process. The
first technique, decides if the game state is considerably
different, indicating that the values stored in the tree are no
longer meaningful, this technique is rule based. The second
technique decays the values stored in the tree, making them
less important in the decision process compared to more
recent values. This technique ensures that the older values still
influence the action to take, but due to the possibility of them
being outdated, their importance is lowered.

First technique, when playing the game, an action can
change the game state drastically, that was not predicted by
the current search. This makes the current tree obsolete. Three
rules were made, that if they occurred, a new tree would have
be to build, [1]:

• Pac-Man has died, or entered a new maze.
• Pac-Man ate a blue ghost or a power pill. This ensures

that the search can immediately focus on eating (the
remaining) ghosts.

• There was a global reverse. If all ghosts are forced to
reverse, values of the previously built search tree no
longer reflect the game state.

The second technique, is about decaying the values stored
at each node. [1], achieves this by multiplying all the values
stored at each node by a factor of λ at the beggining of each
turn. Other methods of decaying, have already been proposed
for UCB in multi-armed bandit problems, by [18].

However, the discount is only applied once per search,
instead of everytime the node is visited. This way, the im-
portance of the rewards further from the root is reduced, just
like in markov decision processes. Due to the reduced time the
agent has to decide on the action to take, the approximations
are far from ideal, making further rewards instable and more
abstract, and so its better to reduce their value and importance
with this technique.

Long-Term Goals: [1], adds another modification upon the
work of [17]: long-term goals. They consider two main long-
term goals, eating ghosts as fast as possible, to reduce the

risk of death, and at 10000 points, Ms. Pac-Man receives a
life. Due to MCTS, looking at short-term goals, modifications
had to be made for it to be able to calculate the rewards,
and encourage the agent to go for these specific targets. The
rewards in question are the RFeeding and RPursuit rewards.

For the RPursuit reward, in a long-term scenario, the reward
is attributed according to the remaining time that the ghost was
in an edible state. If this reward at the end is inferior to 0.5,
the RFeeding reward is zero. The objective is to "show" to the
agent, that the ghosts were too far away, and eating that power
pellet was a waste. On the other hand, if the ghost reward ends
up being above 0.5, the feeding reward is calculated as such:
RFeeding = RFeeding + RPursuit. That was the method, to
introduce a long-term reward for eating ghosts in the most
efficent way.

For the other long-term goal, maximizing the overall score.
The more lives, Ms Pac-Man has, the more safe she is, and
for that, she has to score 10000 points fast and efficently. The
game, also, has a time limit of 24000 time units, before it
passes to the next maze. For these reasons, if the agent wants
to maximize the points scored, it needs to do so in a fast
way, due to the time limit. [1], introduced an edge reward,
when all the pellets in an edge are eaten. This is beneficial,
in comparison to leave single pellets spread around the map,
making harder and risky to eat. While on one hand, longer
edges have a bigger scoring potential, they are also more risky
to clear than smaller edges.

These four improvements alongside, the creation of rules
for the simulation step, led to an increase in the score. It is
important to note that, while each improvement led to a small
increase to the score, the use of a rule-based simulation led to
the most significant increase in the points. This supports the
other papers. Due to the limited amount of time for a proper
simulation to be executed in real-time using random methods,
the results using heuristics prove to be much better.

B. Deep Learning with Monte-Carlo Tree Search Planning

[5], goal was to surpass the recent innovation that was the
DQN.

The idea to be able to use these methods, consists on using
them for creating training data, a priori, for the deep-learning
algorithm to use in real-time play. Basically, developing meth-
ods that can keep the advantages of deep learning not needing
the handcrafted rules, while being able to play in real-time,
just like using model-free reinforcement learning techniques,
but with characteristics of exploiting the data generated by
UCT-planning agents.

The first agent, the one using UCT in MCTS offline,
needs no training data. It is kept running multiple simulations
ignoring the constraint of time. This way is possible to obtain
the best possible values for a policy to train the convolutional
neural network. It was used the value of 300 as maximum-
depth and 100000 simulations, it can be expected the results
would improve if bigger values were passed, but probably
would not make a significant difference in the outcome, and
it would take a lot more time.



Variable Description
Maze Index Current Maze Index
Total Time How much time has passed
Score Current score
CurrentLevelTime How much time has passed on this level
LevelCount How many levels were completed
CurrentNodeIndex Current Ms. Pac-Man position
LastMoveMade Last move made by Ms. Pac-Man
NLivesRemaining Number of lives remaining
HasReceivedExtraLife If Ms. Pac-Man has received an extra life

TABLE I
PARAMETERS OF MS.PAC-MAN FROM GAME STATE STRING

Variable Description
CurrentNodeIndex Current Ghost position
EdibleTime Edible time left
LairTime How much until ghost leaves the lair
LastMoveMade Last move made by ghost

TABLE II
PARAMETERS OF GHOSTS FROM GAME STATE STRING

IV. IMPLEMENTATION

This section will explain how the agent was developed.
Starting on the extraction of the game state from the Ms. Pac-
Man framework, passing through the implementation of the
MCTS algorithm and concluding in the development of the
neural network used to play the game in real-time.

A. Game State

One of the aspects in analysis on this thesis is the way the
agent receives the game state. The approach implemented by
[5], used a game state consisting on frames. The agent of this
thesis, receives the game state in the form of a string from the
framework itself. The Tables I, II and III represent the game
parameters obtained from the string. An example of a game
string can be seen on Listing 1.

Listing 1. Example of a Game State String

0,0,0,0,0,978,LEFT,3,false,1292,0,40,
NEUTRAL,1292,0,60,NEUTRAL,1292,0,80,
NEUTRAL,1292,0,100,NEUTRAL,
111111111111111111111111111111111111
111111111111111111111111111111111111
111111111111111111111111111111111111
111111111111111111111111111111111111
111111111111111111111111111111111111
111111111111111111111111111111111111
1111,1111,-1,false,false,false,false,
false,false,false

Variable Description
Pill String A string of 0’s and 1’s, if the pill exists the number

will be 1, otherwise it is 0
PowerPill String Same as above but for power pills
TimeLastGlobalReverse Last time since the game reversed
PacManEaten Was Ms. Pac-Man eaten
GhostEaten (x4) Was the ghost eaten? For each ghost
PillWasTaken If a pill was eaten
PowerPillWasTaken If a power pill was eaten

TABLE III
PARAMETERS OF MAZE FROM GAME STATE STRING

With the game state is then possible to run simulations
inside the MCTS algorithm, to calculate the best possible
action. This will be further explained in the next section.

B. Monte Carlo Tree Search Algorithm

The agent created has two options, if the agent is not in a
junction, it will continue its path forward, otherwise the MCTS
algorithm is used.

The implementation of the MCTS algorithm was somewhat
straightforward. With four main methods, one central method
for the loop and the rest three methods for each step of
the algorithm (the selection and expansion methods are done
simultaneous).

while(time < timeLimit)
node = expansion(rootNode, gameState)
reward = simulation(node)
backpropagation(node, reward)
nodeChosen =

chooseBestChild(rootNode.children)return
nodeChosen.actionMove

The code snippet, above, is the central method, that per-
forms the execution of the MCTS algorithm.

1) Selection and Expansion: These two steps are done
simultaneous, because in this implementation, the selection
is done at the same time as expansion. The nodes of the tree
always represent junctions, the same way as [1]. When the
algorithm starts from the root node, it starts by selecting all
the possible moves from the root node, and from there plays a
simulated game until each direction reaches a junction. These
new junctions reached will be the children of the root node.
This simulation between two junctions also allows to obtain
a score for each junction. This way it is possible to select
the best possible action between junctions. This selection is
achieved through the UCT Equation ??, with a value of C of
1/
√
2. Starting from the node selected (junction), an expansion

is made, beggining the simulation step from the child node
chosen.

2) Simulation: The simulation step, plays simulations of
the game, starting from the game state obtained, with the Ms.
Pac-Man’s actions randomized. During the simulation, each
time that Ms. Pac-Man reached a junction, a calculation is
made to compute the reward of that path. The Equation used
was the following:

reward+ = (discountV aluejunctionDepth)∗
(CurrentScore− PreviousScore)

This formula applies a discount factor, due to the furthest
junction having less relevancy than those closest to the current
game state. When the maximum tree depth allowed is reached,
the reward is back propagated. The CurrentScore is then
subtracted to the PreviousScore, to obtain the score of that
path only.

For this step it was considered two options for how to stop
the roll-out. Since waiting for a final state (losing all lives or



eating all pills) was not a plausible solution, even with the
extended time provided to the algorithm. The first option was
simply to consider each step of Ms. Pac-Man, an increment of
tree depth until the max tree depth was reached. The second
option was only to consider a step each time the Ms. Pac-Man
reached a junction, meaning a path between junctions will
only count as one step to increase the tree depth. In chapter
V, the tests conclude that the second option was the best and
more inline with the purpose of the tree, since each node is
represented by a junction.

3) Backpropagation: The backpropagation step updates the
reward obtained, to each node, starting from the node where
the simulation step began, iterating backwards until the root
node.

C. Creation of the Dataset

It was created two datasets, one to train the neural network
through classification and the other to train through regression.
Both datasets consist on the same features, which are all the
elements of the game state string mentioned above. The differ-
ence are the labels. While the dataset used for classification has
as labels the actions chosen for each game state, the dataset
used for regression has as labels the discounted rewards of
each action possible for each game state present on the dataset.

It is important to mention, that not all features of the game
state ended up being used. This will be explained in Chapter
V.

D. Neural Network

The purpose of the thesis is to play the game in real
time with a neural network. The base is the same as using
the MCTS algorithm, meaning that the agent will only use
the neural network to pick an action, when it is on a junc-
tion, otherwise it will continue to follow its path, without
chaning direction. This neural network was created using the
Deeplearning4j 1 library.

It reads the dataset files to train itself before the game starts.
During the game, it receives a game state and outputs an
action.

The conditions on how the datasets were created and
composition of the neural network, will be further explained
in chapter V, due to the multiple variations of each for the
tests conducted.

The MCTS agent, that created the datasets, showed promise,
obtaining results equaling the agent developed by [1]. For the
Neural Network, the results were lower, but overall showed
potential. These results will be further analysed in the follow-
ing Chapter.

V. EXPERIMENTAL EVALUATION

Due to the random factor inserted in the MCTS algorithm,
each test consists on the realization of thirty games. This
allows for a more general idea of each alteration made to
the parameters of the agent, eliminating possible "lucky" or
"unlucky" games.

1https://deeplearning4j.org/

Fig. 9. Steps Limit vs Junction Limit

Fig. 10. Variation of Junction Limit and Discount Value

The same idea applies to the tests conducted for the neural
network, in the initialization of the weights several techniques
use randomness, for this reason, each test also requires the
execution of thirty games.

With thirty results per test, it was calculated a 95% confi-
dence interval. Due to sometimes the highest average score is
not enough to decide if one parameter is better or not.

A. Monte Carlo Tree Search

Beginning with the MCTS tests. The first test was to decide
which method was the best on deciding when to stop the
simulation step. Stop the simulation based on how much steps
Ms. Pac-main had walked or limiting based on many junctions
had been crossed.

Through Figure 9 it is possible to observe that the junction
limit is quite better than the step limit option. With this, the
following tests all use the junction limit method. This can be
possibly justified due to the fact that using a junction limit
better represents the tree, where each node is a junction.

The following tests try to obtain the best value for the limit
of junctions reached during the simulation step and the best
discount value for the reward, also during the simulation.

The first column, of the Figure 10, represents the agent
from [1]. This agent is the benchmark, to which the thesis’
agent is competing against. The following columns represent
all the tests realized to obtain the best possible combination
of junction limit and discount value. While the confidence



intervals here, show a high variance in all the tests, including
the control agent, it is possible to observe that agent with a
value of 20 junctions as limit and a discount value of 0.3, is the
best with the highest average score. Even with more time for
our agent to choose an action, it did not equal or surpassed
the agent developed by [1], possibly due to the alterations
made to the MCTS algorithm especifically made to increase its
performance for Ms. Pac-Man, while our agent used a standard
impletamentation of MCTS.

B. Train Dataset and Neural Network

In order to create the dataset for training, the big problem
was the amount of features, since each pill counted as a
feature. The total amount of features was 257. Two sub-
datasets were created, one with only 238 features and another
with 230.

The neural network used, was the same for both sub-
datasets. Using 1 hidden layer, with all layers having the same
number of neurons (the number of features) and varying only
the activation and loss functions, the output layer had in every
single test 4 exits, one for each action.

For the first sub-dataset, the best activation function, using
Negative Log Likelihood as a loss function, was the Random
RELU for the hidden layers and Softmax for the output layer.
The best loss function being the Negative Log Likelihood,
using the Random RELU as activation function with an
average score of 1818. While, the results are far below the
MCTS impletamentation, it is important to remember that a
dataset with 238 features and with only 2361 instances, is quite
small for a neural network. This limitation is due to the fact
that each test ran on the MCTS algorithm, with 20 seconds per
action took almost more than 9 hours to complete. It was opted
to perform more tests, in order to have a better understanding
of the parameters, than running more games of the same test
for a bigger dataset.

In the second sub-dataset, even more features were removed
and the results were somewhat better. The best combination of
Relu with Negative Log Likelihood, achieved an average score
of 2103 points. To remember that this sub-dataset is exactly
equal to the previous one with the exception of features that
were not used, as well as the neural network used.

With this version of the sub-dataset being the best, further
tests were realized. Varying the amount of hidden layers
and neurons per layer. The results however were not better
than the one presented above, of 2103 average points. These
previous tests were conducted training the neural network with
classification, which corresponds to using as labels the action
to make. The tests for regression only used the second sub-
dataset, the one with the smallest amount of features.

For the neural network trained through regression, the best
architecture was a Xavier initialization, with Nesterovs as a
solver and two hidden layers. Although this configuration still
only managed an average score of 1437 points.

To summarize, both neural networks presented results below
what was expected, atleast when comparing to the MCTS
agent, this can, maybe, be explained due to the small size of

both sub-datasets and the huge amount of features. While the
classification neural networks managed to pass the 2000 points
mark, the best regression neural network not even passed the
1500 points. This can be explained, due to the small amount
of samples in the both sub-datasets.

VI. CONCLUSIONS

The idea for this thesis, surged on analysing the papers [1]
and [5]. While [1] used the MCTS with modifications, in order
to play Ms. Pac-Man in real-time competitively, [5] suggested
that it is possible to take advantage of a completly normal
MCTS implementation and create a dataset to train a neural
network to play in real-time. For this thesis, the idea was to
analyse if that hypothesis, would be able to go against the
agent developed by [1], who managed to win the european
competition, while using a game state obtained from a string
instead of a frame like [5].

For the first part, the MCTS agent, the results obtained were
very encouraging, when the technique to limit the simulations
was altered, from a step based option to a junction limit. The
agent even managed to equal the agent developed by [1], when
given 20 seconds to decide an action, with an average score
of 2749 points against 2871 points achieved by the [1] agent,
although this agent only had 40 milliseconds to choose an
action. Even that when limiting the time per action to the
40 milliseconds used in real-time, the agent was not that far
off. The variation in parameters, of both, junction limit and
discount value made almost no significant differences in the
results obtained.

Passing to the second part of the thesis, the neural networks.
Analysing the datasets used, can easily concluded that a
dataset with less features, in this case, with few samples,
obtained better results. Even looking at the features, one can
say that some features like, current level time, level count,
etc. will not help the neural network choosing an action. The
neural network trained with classification obtained satisfatory
results. With the best result being an average of 2103 points
after thirty games. While the neural network trained through
regression only a managed an average score of 1437 points on
the best test.

To conclude, the results may not be ideal, but are encour-
aging, especially the fact that a MCTS algorithm without
modifications can play a game well, given enough time. This
makes it a prime candidate, when creating an agent to play
different games. The neural network with all things considered
did not behave that badly, considering the small dataset used
to train them, leaving the door open to the viability of using
this technique.

A. System Limitations and Future Work

For future work, the focus should be on the neural networks.
While the MCTS algorithm already proved its value, the neural
networks can also be viable. With further time, one could
mainly expand the dataset and use feature engineering to
reduce the amount of features, while also analising a better



architecture of a neural network that can achieve a good result,
playing Ms. Pac-Man in real time.

REFERENCES

[1] T. Pepels, M. H. Winands, and M. Lanctot, “Real-time monte carlo
tree search in ms pac-man,” IEEE Transactions on Computational
Intelligence and AI in games, vol. 6, no. 3, pp. 245–257, 2014.

[2] I. Millington, AI for Games. CRC Press, 2019.
[3] S. M. Lucas, “Ms pac-man competition,” ACM SIGEVOlution, vol. 2,

no. 4, pp. 37–38, 2007.
[4] S. Gelly and D. Silver, “Monte-carlo tree search and rapid action value

estimation in computer go,” Artificial Intelligence, vol. 175, no. 11, pp.
1856–1875, 2011.

[5] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep learning for
real-time atari game play using offline monte-carlo tree search planning,”
in Advances in neural information processing systems, 2014, pp. 3338–
3346.

[6] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[7] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European conference on machine learning. Springer, 2006, pp. 282–
293.

[8] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[9] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[10] S. Saha, “A comprehensive guide to convolutional neu-
ral networks - the eli5 way,” Dec 2018. [Online].
Available: https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[11] A. M. Alhejali and S. M. Lucas, “Evolving diverse ms. pac-man
playing agents using genetic programming,” in 2010 UK Workshop on
Computational Intelligence (UKCI). IEEE, 2010, pp. 1–6.

[12] ——, “Using genetic programming to evolve heuristics for a monte
carlo tree search ms pac-man agent,” in 2013 IEEE Conference on
Computational Inteligence in Games (CIG). IEEE, 2013, pp. 1–8.

[13] P. Burrow and S. M. Lucas, “Evolution versus temporal difference
learning for learning to play ms. pac-man,” in 2009 IEEE Symposium
on Computational Intelligence and Games. IEEE, 2009, pp. 53–60.

[14] D. Robles and S. M. Lucas, “A simple tree search method for playing
ms. pac-man,” in 2009 IEEE Symposium on Computational Intelligence
and Games. IEEE, 2009, pp. 249–255.

[15] S. M. Lucas, “Evolving a neural network location evaluator to play ms.
pac-man.” in CIG. Citeseer, 2005.

[16] M. Gallagher and M. Ledwich, “Evolving pac-man players: Can we
learn from raw input?” in 2007 IEEE Symposium on Computational
Intelligence and Games. IEEE, 2007, pp. 282–287.

[17] N. Ikehata and T. Ito, “Monte-carlo tree search in ms. pac-man,” in 2011
IEEE Conference on Computational Intelligence and Games (CIG’11).
IEEE, 2011, pp. 39–46.

[18] L. Kocsis and C. Szepesvári, “Discounted ucb,” in 2nd PASCAL Chal-
lenges Workshop, vol. 2, 2006.


