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Resumo

Hoje em dia, os dimensionadores de circuitos analógicos enfrentam problemas devido à continua

diminuição dos tamanhos dos dispositivos, que resulta numa redução contı́nua da tensão de alimentação

do sistema. Esta redução provoca, entre outros problemas, uma redução no alcance de tensão de en-

trada e em limitações de linearidade. Por outro lado, esta redução do tamanho dos dispositivos leva a

que células digitais, tais como portas lógicas ou osciladores, apresentem tempos de propagação cada

vez mais rápidos. Então, surge uma nova abordagem no dimensionamento de circuitos analógicos,

na qual a quantificação clássica do sinal analógico de entrada no domı́nio da tensão é substituı́da por

quantificação no domı́nio temporal. Esta substituição pode ser feita de duas formas: utilizar um Os-

cilador Controlado por Tensão para converter a amplitude analógica de entrada, no domı́nio da tensão,

em frequência e posteriormente quantificar esta frequência; utilizar um Conversor Tensão Tempo para

produzir dois sinais digitais cujo intervalo de tempo entre estes é proporcional à amplitude do sinal de

entrada e um Convertor Tempo Digital para quantificar esse intervalo de tempo. Nesta dissertação,

descreve-se um Conversor Analógico Digital, com quantificação no Domı́nio Temporal baseada em in-

tervalo de tempo, através de uma abordagem de dobragem no domı́nio temporal. Este conversor tem

uma resolução de 7 bits, funciona a 2.5 GS/s e apresenta 6.32 ENOB, em condições tı́picas. Este ADC

consome 33.6 mW atingindo assim uma Figura de Mérito de Walden de FOMW = 168.1fJ/conv−step.

Palavras-chave: Conversor Analógico Digital, Quantificação no Domı́nio Temporal, Os-

cilador Controlado por Tensao, Conversor Tensao Tempo, Conversor Tempo Digital
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Abstract

Nowadays, the designers of analog circuits face problems due to the ever-decreasing device sizes, which

require the system voltage to decrease. Among other limitations, this leads to a reduced input voltage

swings and linearity problems. On the other side of the coin, technology scaling allows the digital cells,

such as logic gates and oscillators, to show faster propagation times. Therefore, in the analog design

arises a new approach, in which a Time-Domain Quantization replaces the classical Voltage Domain

Quantization. There are two different ways to implement Time-Domain Quantization: one way uses a

Voltage Controlled Oscillator to convert the input signal from the voltage domain to the frequency and

then quantify that frequency; the other uses a Voltage-to-Time Converter to produce two digital signals.

The time difference between the digital signals is proportional to the input signal amplitude. Then, a Time

to Digital Converter quantifies that time interval. In this dissertation, an Analog-to-Digital Converter was

designed, with time interval based Time Domain Quantization, through a time-domain folding approach.

It has a 7 bit resolution, operates at 2.5GS/s, and features 6.32 ENOB in typical conditions. This ADC

consumes 33.6 mW, leading to a Walden Figure of Merit of FOMW = 168.fJ/conv − step.

Keywords: Analog to Digital Converter, Time Domain Quantization, Voltage Controlled Oscilla-

tor, Voltage to Time Converter, Time to Digital Converter
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Nomenclature
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Chapter 1

Introduction

We live in an analog world, as there is an infinite amount of colors, tones, smells we can smell. These

are examples of analog signals. The common theme among them is their infinity of different values that

can assume. On the other hand, the digital signals and objects are discrete or finite, meaning there is a

limited set of values they can have. Electronic systems have to interact with the real analog world, but

most microprocessors, computers, and logic units are purely digital components.

An Analog-to-Digital Converter (ADC) converts an analog input signal, such as the sound picked up

by a microphone or light entering a digital camera, into a digital signal. Typically, the digital output is

a number proportional to the input. The resolution of the ADC defines the quantization levels that can

differentiate the analog input. In this dissertation, it is going to describe a converter for the Internet of

Things (IoT) systems.

The IoT is a system of interrelated computing devices, mechanical and digital machines, objects,

animals, or people with unique identifiers and the ability to transfer data over a network without requiring

human-to-human or human-to-computer interaction.

1.1 Motivation

There are many types of ADCs, such as SAR, FLASH, Pipeline. Each has its advantages and disadvan-

tages. The designer of an ADC always tries to make it faster, smaller and more reliable than the State of

the Art. However, the improvement of technology leads to a new concern among analog design, related

to the ever-decreasing size of the devices. The reduction in transistor gate-oxide thickness forces the

system voltage to decrease, making analog design hard to do. It results from weak bias point operation,

gate leakage, reduced input voltage swings, and linearity problems. Therefore, this dissertation offsets

some of the design challenges imposed by digitally-driven deep-submicrometer CMOS processes by

analyzing time-based or time-mode signal processing (TMSP), [1]. It is a novel approach to manipulate

and process analog sample information using digital blocks. In this methodology, conventional volt-

age and current variables are replaced by time-domain variables such as the time differences between

two rising edges, or by the frequency of an oscillator, and logic circuits substitute the large-sized and
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power-hungry analog blocks. Moreover, adopting digital elements as the base of analog circuits enables

digital synthesis and test methods to be used. It is an important step forward in bridging the design gap

between analog and digital design.

1.2 Topic Overview

The analog signals are more frequently in the voltage domain. Therefore, there must have a conversion

of the analog input information from the voltage domain to the time-domain. The time-domain variables

can either be a change in the frequency of a periodic signal or a time difference between the rise of two

different digital signals. In figure 1.1 are shown these two examples.

Figure 1.1: Time based Quantization Signals.

Figure 1.1 shows the two types of conversion of the input analog signal, from the voltage domain to

time-domain variables. The clock signal, the differential input signal, and the sample and hold signal are

common to the two approaches. The Sample and Hold signal follows the input when the clock signal is

HIGH, and when the clock signal is LOW, it holds, allowing that the following blocks of the converter be

able to quantify the amplitude. The conversion type, in which the time domain variable is frequency, uses

a Voltage Controlled Oscillator (VCO). When the clock signal is HIGH, the VCO is at the free-running

frequency, and when the clock signal is LOW, the VCO frequency is controlled by the amplitude of the

Sample and Hold signal.

In the time interval based conversion type, the time interval between the rising edge time instant of

the START and STOP signals is proportional to the differential input’s amplitude. If the differential input

amplitude is positive, the START signal’s rising edge occurs sooner than the STOP signal’s rising edge.

Otherwise, the STOP signal is the first to rise. When the clock signal is HIGH, these digital signals are

LOW.
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After converting the input analog signal to time-domain variables, there is a Time-to-Digital Converter

(TDC) that quantifies the time-domain information.

1.3 Objectives

One of the objectives of this dissertation is to demonstrate that ADCs using quantization of the input

information in the time domain are a viable solution to the problems faced in advanced CMOS technolo-

gies, featuring low voltage supply, by taking advantage of the increased speed of digital cells.

A Time Interval Based ADC is designed and simulated, with a TDC based in a Time Domain Folding

approach, in Synopsys software. The specifications of the ADC are in the table 1.1.

Resolution 7 bit
Sampling Frequency 2.5GS/s

Input Full Scale 0.5 VPP,diff
INL +

− 0.5 LSB
DNL +

− 0.5 LSB
ENOB 6

Output Amplitude Variation +
−20 %

Table 1.1: ADC Specification.

1.4 Thesis Outline

This dissertation is organized as follows. Section 2 describes Time Domain Quantization based ADC

types and architectures. Section 3 describes the Time Interval Based ADC, with Folding TDC implemen-

tation chosen to design the proposed ADC described in this thesis. Section 4 shows the implementation

of each block with pre-layout simulations and results. Section 5 show the ADC pre-layout simulation

results. Section 6 concludes this dissertation, evaluating the main achievements and describing future

work.
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Chapter 2

General Time Based Quantization

ADC Architectures

The different types of Time Domain Quantization ADCs are categorized in figure 2.1.

Figure 2.1: Time based ADC Architectures.

Time Domain ADCs convert the analog input in two different ways: by using the amplitude of the

analog input to define the frequency of an oscillator (Frequency Based) or by producing two digital

signals, where the time interval between the rising edge of both is proportional to the amplitude of

the analog input (Time Interval Based). As shown in figure 2.1, Time Interval Based ADCs have two

subtypes of Time Interval Based ADCs, based on the number of Voltage to Time Converters (VTCs)

used.

The following subsections will describe different implementations of these ADC types.

2.1 Frequency Based Quantization

The Frequency Based Quantization type of ADC is represented in figure 2.2, [2].
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(a) Circuit.

(b) Block diagram.

Figure 2.2: Frequency based ADC.

Figure 2.2(a) shows the architecture of a conventional Frequency Based Quantization ADC, where it

consists of a VCO, a Counter, and a differentiator. The VCO converts the analog input signal from the

voltage domain to the phase domain. It generates an output signal whose frequency is proportional to

the amplitude of the analog input signal. The input voltage signal is converted to a time-based signal.

The Counter counts the number of rising (or falling) edges in the VCO’s output during the sampling

period, thereby quantizing the VCO’s phase, Φ(t), by 2π. In the general case, Φ(t) is quantized to

multiple values of 2π/NΦ with NΦ the number of output phases of the VCO. By sampling the quantized

output Φq(t) at sampling rate fs = 1/Ts to Φq[k] and taking the first-order difference, the digital output

y[k] is obtained. The quantized phase Φq(t) at the end of the sampling period, is the number of the

total rising (or falling) edges that the Counter counted. The output signal is proportional to the VCO’s

frequency, which is proportional to the input’s amplitude. Figure 2.3 shows the phase’s quantization.

6



Figure 2.3: Phase’s Quantization.

The example of figure 2.3 shows the phase’s quantization, using a differential VCO. The VCO’s output

signal and its complement are used to quantify the phase once the Counter only counts the rising edges

of those signals. As two outputs of the VCO are used, the phase is quantified in 2π/2 = π because

NΦ = 2. If the Counter can count the rising and falling edges, only one phase would be necessary,

but it would still be NΦ = 2 because there are two different information sources. In the first sampling

period of the example on figure 2.3, there are two rising edges and so Φ[k] = 2 × π. However, a phase

signal is periodic with a period equal to 2π. So, 2 × π = 0. In the second sampling period, there is one

rising edge, and so Φ[k] = π. It is possible to understand that to increase the resolution is necessary to

increase the number of VCO output signals used, decreasing the size of the phase quantization step. As

seen in figure 2.3, the quantization error in a sampling period becomes the initial phase at the following

sampling period.

There are two types of quantization to quantify the phase of each VCO output, [3].

(a) One Bit Quantization,fV CO = 2
3
× fclk. (b) Multi Bit Quantization, fV CO = 2× fclk.

Figure 2.4: Quantization Types.

On the one hand, if the maximum frequency of the VCO is lower than the sampling frequency,fmax <

fs, figure 2.4(a), each VCO’s output can have zero or one rising (or falling) edge at every sampling

period, and so the quantization is done by detecting this edge. It is called one-bit quantization once

each VCO’s output only needs one bit to count the rising (or falling) edges that occur in one sampling
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period. It quantifies the phase in 2π steps. If multiple VCO outputs are used, Nφ > 1, the phase can be

quantified in 2π
Nφ

.

On the other hand, if the maximum frequency of the VCO is higher than the sampling frequency,

fmax > fs, figure 2.4(b), each VCO’s output can have multiple rising (or falling) edges at every sampling

period and so it is needed a multi-bit counter to count those edges. It is called multi-bit quantization and

can quantify phase differences higher than 2π.

The one-bit quantization minimizes the VCO tuning range (ftune = fmax,vco − fmin,vco) since the

sampling frequency limits the maximum frequency of the VCO but maximizes the VCO’s outputs used

to quantify the phase since in this quantization the usage of all VCO’s output phases is viable. The

multi-bit quantization maximizes the tuning range but reduces the VCO outputs used (usually, this type

of quantization only uses one VCO output).

In figure 2.2(a), the analog input, u(t), is presented to an oscillator and will define its frequency. This

oscillator converts the analog input into frequency. If the VCO is ideal, the transfer function between the

VCO’s input signal and its frequency Ψ(t) is

Ψ(t) = 2π(Kou(t) + fo), (2.1)

where Ko is the VCO gain ([Hz/V]) and fo is the free-running frequency of the oscillator, [2, 4].

The phase signal, Φ[k], at every sampling period, [5], is described by

Φ[k] =

∫ (k+1)Ts

kTs

Ψ(τ)dτ + pi[k], (2.2)

where Φ[k] is the VCO’s phase signal, Ψ(t) is the VCO’s frequency signal, and pi[k] is the initial phase

at t = kTs. As seen in figure 2.3, the initial phase is equivalent to the previous quantization error,

pi(kTs) = e((k−1)Ts). The phase is then the previous phase quantization error plus the phase variation,

Φx(t) =
∫ (k+1)Ts
kTs

Ψ(τ)dτ , during the sampling period.

At the output of the counter, there is a flip flop (FF), to quantify phase signal at every instant t = kTs,

Φq[k] =
NΦ

2Π
(Φ[k]− e[k]), (2.3)

where Φq[k] is the phase quantified, Φ[k] is the phase, and e[k] is the phase quantization error. The

phase quantified, Φq[k], is an integer given by the counting of the Counter, and so there is the factor NΦ

2π

in (2.3) to translate the phase value to an integer.

The last block of this ADC type, figure 2.2(b), is a differentiator between the actual output phase

quantified and the previous one. By differentiating phase with respect to time yields frequency. Since

VCO’s frequency is proportional to the input signal, the output of this differentiator is proportional to the

input signal, described by

y[k] =
NΦ

2π
(Φq[k]− Φq[k − 1]) =

NΦ

2π
[Φ[k]− Φ[k − 1]− (Φε[k]− Φε[k − 1])] , (2.4)

where NΦ is the number of VCO’s output phases.
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When the analog input, u(t), is directly the input signal of the VCO, assumed to be a sine wave, with

frequency win = 2πfin[rad.s−1], u(t) = Asin(wint), [2], (2.4) becomes

y[k] = Gu(kTs − Ts/2) +B + e[k] (2.5)

where

G = NΦKoTssinc(finTs),

B = NΦfoTs and

e[k] = −NΦ

2π
(Φε[k]− Φε[k − 1]).

The derivation of this expression is provided on Annex B. Ts is the sampling period, fo is the free

running frequency of the VCO, Ko is the VCO’s gain, and fin is the input signal’s frequency. The output

signal, described by (2.5), has an offset voltage due to the free-running frequency of the VCO. It is

directly related to the input, u(kTs − Ts/2). It can be seen that the input-signal amplitude in the phase

domain is a sinc function of the input frequency, where sinc(x) is defined as sinc(πx)/πx. This sinc

relation shows that when the input signal is directly applied to the VCO, it has an inherent low pass filter

that limits the input bandwidth.

When the input is first sampled, the analog signal presented to the VCO is u(t) = vin(t)xa(t)⊗ p(t),

where vin(t) is the ADC input analog signal, xa(t) is a sequence of equispaced Dirac impulses (xa(t) =∑∞
n=−∞ δ(t− nTs)) and p(t) is a square wave, with period Ts and with duty cycle of τ . The operation ⊗

is a convolution. Then, (2.4) becomes

y[k] = Hvin(kTs) +B + e[k] (2.6)

where

H = NΦKoτ,

B = NΦfoTs and

e[k] = −NΦ

2π
(Φε[k]− Φε[k − 1]).

The derivation of this expression is provided on Annex B. Equation (2.6) shows that when the input

signal is first sampled, the output signal has a linear relation with the input signal, vin(kTs), and the gain

between the input signal and the output signal is related to the number of output phase, NΦ, the VCO

gain, K0, and the duty cycle factor, τ =]0, 1[.

The output signal, y[k] in (2.4) has a term that is propotional to the analog input and a terma that

shapes the error, NΦ

2π (Φε[k]− Φε[k − 1]). It is important to analyze the frequency response of the output

signal, to analyze the error’s shape.
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2.1.1 Frequency Response

In this section, the previous equations are analyzed in the frequency domain. Taking the z transform of

(2.4) yields

Y (z) =
NΦ

2π
(1− z−1)(Φ(z)− Φε(z)). (2.7)

From (2.7), it is possible to take the noise transfer function, NTF =
(
Y (z)
Φε(z)

)
|Φ(z)=0, and the signal

transfer function, [2], STF =
(
Y (z)
Ψ(z)

)
|Φe=0, described by

NTF (z) ≈ NΦ

2π (1− z−1)

STF (z) ≈ NΦ

2π
(1+z−1)

2 .

(2.8)

The NTF describes the relation between the output and the phase error if there is no input signal,

and the STF describes the relation between the output and the frequency of the VCO if there is no

phase error.

The STF shows that the output signal is just an average between consecutive samples. This leads

to some problems. Analysing a sinusoidal input signal with period Tin and correspondent frequency

fin, as seen in the figure 2.5, it has symmetric values at time instants t = Tin( 1
2 + k), i.e, vin(t) =

−vin(t+ Tin( 1
2 + k)).

Figure 2.5: Input signal and samples at every t = kT in/4.

Since samples are taken at every Ts, if Ts = Tin( 1
2 + k), the samples will always be symmetric. It

means that if fin = fs(
1
2 + k), the ADC’s output signal will have no information about the input signal

because the consecutive samples cancel each other due to the averaging. The cancellation is not a

particularly bad thing once this frequency is the well known Nyquist frequency, fnyq = fs/2, which is

the maximum bandwidth of an ADC. Figure 2.6 shows two examples, one with an input signal with low

frequency (fin = 0.1fs) and other with a high frequency (fin = 0.48fs).
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Figure 2.6: Sample Averaging and Error.

As seen in the figure 2.6, for a fixed sampling period, Ts, if the input frequency is low (for example,

fin = 0.1× fs) two consecutive samples have similar values, the average between them near results in

a value close to the samples’ value leading a small error. As the input frequency increases to near fs
2 ,

the average of the consecutive samples converge to zero since they become near symmetric, and the

error increases. For this reason, this type of ADC requires an oversampled input signal, which means

that the maximum frequency of the input signal is much smaller than the sampling frequency. As the

error increases with the increase of the input frequency, the ADC has a high pass characteristic.

To prevent the high pass characteristic and increase the input bandwidth there is possibility of time

interleaving N identical ADCs. The sampling period of each ADC becomes T ′s = N×Ts. The cancellation

of samples, due to the averaging, now happens when T ′s = NTs = Tin(k+ 1
2 ). It shows that with N time-

interleaved ADC blocks if the input frequency is fin = fs
N (k + 1

2 ) the output does not have information

of the input signal, and the error is maximum. However, due to periodicity the input signal, is the smae

at t = kTin. Then, if T ′s = NTs = Tink, the samples will be equal, for each ADC. So if fin = fs
N k,

the output signal does not have an error due to the averaging, which means that the signal transfer

function is maximum and the error is null. Therefore, the high pass characteristic becomes a bandpass

characteristic.

These results can be demonstrated mathematically. Generalizing (2.8) for an implementation of N

Interleaved ADCs, where the transformation between the z plane and the frequency domain is made by

z = esT
′
s = ejwT

′
s = ejwNTs . It leads to
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NTF (ω) ≈ NΦ

2π

(
1− e−jωNTs

)
= NΦ

2π

(
2je−jωN

Ts
2 sin(ωN Ts

2 )
)

STF (ω) ≈ NΦ

2π

(1+e−jωNTs)
2 = NΦ

2π e
−jωN Ts

2 cos(ωN Ts
2 ).

(2.9)

From (2.9) is possible calculate the frequencies that correspond to the maximum and zeros of the

NTF and STF :

|NTF (ω)| = 0↔ ω =
i

N
ωs,

,

|NTF (ω)|max → ω =
ωs
N

(
1

2
+ i

)
,

|STF (ω)| = 0↔ ω =
ωs
N

(
1

2
+ i

)
and

|STF (ω)|max → ω =
i

N
ωs

which is consistent to what was discussed before.

The fact that the STF has zeros for frequencies in the range of [0, fs2 ] makes this type of ADC unable

to produce an output that has information of the analog input signal for those frequencies.

In [6] is shown that increasing factor N increases the NTF but also increases the ADC’s resolution and

they cancel each other in the SNR calculation. Hence, a Frequency Based Quantization ADC is suitable

for time-interleaving. Moreover, each time-interleaved ADC operates at 1/Nth the sampling frequency,

relaxing the requirements for CMOS operating speeds. It should be also noted that for the zeros not at

ω == and ω = π, the center frequency of the input can be placed exactly at the zero of the NTF. In those

cases, the noise power is twice that of the half-bandwidth case since the noise is integrated over. Thus,

placing the signal center frequency on the zero of the NTF results in an SNR increase of 6 dB, which is

equivalent to 1 bit of ENOB.

2.1.2 ADC Design

When using a VCO and a counter, the resolution of the quantization block, [4–6] is

Resolution = log2

(
fmax − fmin

fs

)
+ log2(Nφ). (2.10)

As seen in (2.10), the resolution of this type of ADC depends on the sampling frequency (fs), on the

tuning frequency range of the VCO (ftune = fmax − fmin) and on the number of outputs of the VCO

(NΦ).

By analyzing (2.10), the resolution increases with the increase of the number of outputs of the VCO,

NΦ. The maximum number of VCO’s outputs is the number of delay cells, Nd. As, the maximum and

minimum frequencies of the VCO are given by
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fmax = 1
2×Nd×Td,min

fmin = 1
2×Nd×Td,max ,

(2.11)

where Td,min is the minimum delay of a single delay cell in the oscillator and Nd is the number of delay

stages, (2.10) becomes

Resolution = log2

[
1

fs
× 1

2×Nd
×
(

1

Td,min
− 1

Td,max

)]
+ log2(Nφ). (2.12)

In (2.12) is possible to see that if the number of delay stages,Nd, increases, the resolution decreases.

Then, there is a trade-off between the tuning range and the number of output phases of the VCO to get

the resolution desired.

2.2 Time Interval Based Quantization

Another time-domain quantization is based on the time interval between two digital signals. These

digital signals are the outputs of Voltage-to-Time Converters (VTCs). VTCs converts the amplitude of

the analog input from the voltage domain to a time interval between the rising edge of two digital signals.

For higher input signal amplitude, the higher is the time difference between the digital signals. A VTC

type (CSI Based) is represented in figure 2.7, [1, 7].
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(a) VTC basic circuit.

(b) Signals.

Figure 2.7: CSI Based VTC.

The working process, [1, 7], of the circuit represented in figure 2.7(a), is shown in the figure 2.7(b).

When the clock signal Φc = 0, the capacitor, CD, is charged to the supply voltage, i.e, VA = VDD.

Then, when Φc = 1, the capacitor is discharged at a rate proportional to the corresponding analog input

voltage, since this voltage controls the current flowing in transistor MD.

Then, there is a threshold cross detector (TCD), whose output goes to the level logic High when

the voltage VA is lower than the threshold voltage (VTH ). Usually, this threshold voltage is half of the

supply voltage (VTH ≈ VDD/2). M1 and M2 are designed to not enter the triode region after the rising

edge of the output signal, [8]. The input analog signal, assumed to be a sinusoidal signal defined by

vIN = Asin(ωt), is used as a differential signal,i.e, vin = vin,+ − vin,−, where vin,+ = A
2 sin(ωt) and

vin,− = −A
2 sin(ωt). Then, vin,+ has a corresponding digital signal at the output of the VTC, tout,+ and

so does vin,−, tout,−. As seen in figure 2.7, the VTC is composed of two parallel blocks, represented by

the dash lines. These blocks are named Voltage Controlled Delay Unit (VCDU), [1].

The time-domain quantization ADCs based on time interval can either use one VTC or multiple VTCs.

If there is just one VTC, it is used to make the conversion between the voltage domain to time-domain
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and then the quantization is all made in the time domain by a Time-to-Digital Converter (TDC). However,

if there are multiple VTCs the conversion and the quantization are made simultaneously.

2.2.1 Single VTC

As said before, using a single VTC leads to all quantization of the analog signal be done in the time

domain. To perform the quantization, there is a TDC, as represented in figure 2.8.

Figure 2.8: Time interval Based ADC, with a single VTC and a TDC.

This type of architecture is mainly used to replace traditional Flash architecture with Flash TDCs.

Figure 2.9 represents a Flash TDC.

Figure 2.9: Flash TDC.

Comparing the Flash TDC of the figure 2.9 with the traditional Flash ADC, a delay cell ladder replaces

the resistive ladder, and Flip Flops(FFs) replace the comparators. So, there are 2bits − 1 delay cells and

2bits Flip Flops, where bits is the ADC’s resolution. In this type of architecture, the negative output of the

VTC tout,−, is usually labeled as STOP, and the positive output of the VTC, tout,+, is labeled as START.

As represented in figure 2.9, the thermometer code at the output of the Flip Flops represents the time

interval between the rising edge of the START and the STOP signal, by time delays (TD).

To ensure that TD is known reasonably accurately, [1], the delay chain is often implemented and
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stabilized by a delay-locked loop (DLL), figure 2.10.

Figure 2.10: Flash TDC with DLL.

The delay chain is used to delay the clock signal. The delayed signal is compared with itself, and

the phase difference is obtained. Then, there is a phase detector that controls the input voltage of the

VCDUs, through negative feedback. The time delay (TD) is controlled by controlling the input voltage

of the VCDUs. The drawback of this implementation is the temporal resolution can be no higher than

the delay through a single gate in the semiconductor technology used. To achieve a sub gate temporal

resolution the flash converter can implement a Vernier delay line, as shown in figure 2.11.
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Figure 2.11: Flash TDC with Vernier Line.

The architecture achieves a resolution of τ1-τ2, where τ1 is the time delay defined by the reference

voltage V 1, τ2 is the time delay defined by the reference voltage voltage V 2, and τ1 > τ2. Again, two

individual DLLs should be implemented for each delay chain to make them reasonably accurate.

In this implementation, with Vernier lines, it is easy to see that there are 2bits Flip Flops that act as

time comparators and 2× (2bits − 1) delay cells. So, to reduce the amount of Flip Flops and the number

of delay cells, it is analyzed a folding approach, [7].

Time Domain Folding

The main idea of Folding is to quantify the most significant bits (MSBs) by a coarse quantizer, and the

least significant bits (LSBs), by a fine quantizer, simultaneously, as seen in figure 2.12. This approach

needs an auxiliary ring oscillator, which is part of the fine quantizer.
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Figure 2.12: Basic time domain folding block diagram.

The operation of the folding circuit is illustrated in figure 2.13, where the transfer function of the

folding circuit is given.

Figure 2.13: Transfer curve of folding circuit in comparison with transfer curve of a full ADC’s output.

As seen in figure 2.13, the folding circuit folds the input range into 2n folds, each with 2N−n levels,

where N is the full ADC’s resolution, and n is the coarse quantizer resolution. In the example of figure

2.13, N = 6 and n = 2. The Folding codes correspond to the least significant bits (LSBs) of the ADC’s

output code. The n-bit coarse quantizer is required to identify to which fold the input voltage corresponds,

generating the n most significant bits (MSBs). The coarse quantizer and the fine quantizer generate the

n MSBs and the N − n LSBs synchronously. The concept of time-domain folding is illustrated in figure

2.14, [7].
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(a) Three stage Ring Oscillator. (b) Fine Quantifier Transfer Function.

Figure 2.14: Concept of time-domain folding.

Let us take a three-stage RO as an example. The RO is free running, and periodic oscillatory

waveforms appear on the three internal nodes, φ0, φ1, and φ2. If we record φ0, φ1 (the inversion of

φ1) and φ2 collectively for some time, we can observe a thermometer-like digital code (represented

together by φ0, φ1 and φ2) circulating among six codes per RO period. The repeating nature of the

oscillation gives rise to the folding operation in the time domain. The time-lapse between two consecutive

thermometer codes corresponds to exactly one inverter delay. Therefore, it represents the LSB size of

the quantizer. Thus, RO provides a compact realization of signal folding and quantization in the time

domain. Compared to voltage-domain folding operations, time-domain folding provides two distinctive

advantages. First, voltage-domain folding is quite non-linear, while time-domain folding using RO results

in an inherently linear operation. Secondly, time-domain folding, given enough conversion time, yields

an infinite folding factor, whereas it is limited by the number of folding amplifiers in the voltage domain.

Thus, time-domain folding is also very efficient.

As seen in figure 2.12, the ADC’s architecture uses a VTC to convert the input signal from the voltage

domain to the time domain, and a TDC that includes the folding circuit, with the coarse quantizer and

the fine quantizer, and also includes the Encoder. The VTC generates two digital signals (START and

STOP) and the time interval between them is proportional to the input signal amplitude. Each digital

signal will sample a state of the folding circuit and the ADC’s output signal is given by the difference

between the two states. The ADC’s output code is the variation of the folding codes between the rise of

the digital signals at the VTC’s output. Thanks to the free-running RO, the start and stop points of each

quantization event are randomized from sample to sample, resulting in an inherent DEM operation. The

DEM does not eliminate mismatch errors but converts them into white noise.

As said before, the coarse quantizer has the function to identify in each fold the amplitude of the

analog input resides on. So, in the time-domain, a one-time quantization step in the coarse quantizer

must be equal to the period of the fine transfer function characteristic, as illustrated in figure 2.15.
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Figure 2.15: Fold identification by the coarse quantizer.

However, a mismatch between the coarse quantizer and the period of the fine’s transfer function

characteristic leads to an error in the output code. To prevent errors due to the mismatch usually is

added a bit (redundancy bit) to the coarse quantizer. This bit allows the coarse quantizer to identify

which slope corresponds to the input.

Figure 2.16: Fold identification by the coarse quantizer, with redundancy bit.

With a redundancy bit, is easier to identify mismatches between the coarse and the fine quantizer.

This bit does not belong to the coarse quantizer resolution, once it is only used to prevent errors from

the mismatch between the coarse and the fine quantizer. Therefore, in a Ncoarse bits’ coarse quantizer

with a redundancy bit, the slope identification is done with Ncoarse + 1 bits.

In ADCs that implement this folding approach, the input voltage full scale, VFS , is limited by the

maximum time interval that the TDC can process. If the total N bits of the ADC are divided into Ncoarse

bits to the coarse quantizer and Nfine bits to the fine quantizer, there are 2Ncoarse folds and in each fold

there are 2Nfine quantization steps, due to 2Nfine−1 delay cells in the RO. So, the maximum time interval

that the TDC can quantify is ∆tmax = 2Ncoarse × (2× 2Nfine−1×TD), where 2× 2Nfine−1×TD is the time

interval of a single fold. The resulting resolution of this ADC is N = Ncoarse +Nfine + 1, once the MSB

can be determined by computation of the states’ difference.
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2.2.2 Flash ADC with Multiple VTCs

It is also possible to implement a Flash ADC in the Time Domain, with multiple VTCs as represented in

figure 2.17, [9–13].

Figure 2.17: Flash ADC using VTCs.

The architecture of figure 2.17 is quite similar to most common Flash architectures in the voltage

domain, but in this case, VTCs replace the comparators and latches make the decisions, acting as time

comparators. If the amplitude of the positive input of a VTC is higher than the negative, the positive

output will rise sooner. Consequently, as the Set input of the corresponding VTC’s Latch has a rising

edge sooner than the Reset input, it stores the logic level ’1’.

As seen in figure 2.17, this flash ADC architecture needs 2N VTCs and 2N Latches for an N bit

resolution ADC. It leads to a big area ADC with high consumption. On the one hand, a Time Domain

Interpolation technique can reduce the number of needed VTCs and Latches. On the other hand, a

Time Domain Folding can improve the area’s efficiency and power consumption by reducing the number

of Latches.

Time Domain Interpolation Flash ADC

The Flash ADCs are the fastest type. However, they have high energy consumption and high area oc-

cupation because, for an N bit resolution, they need 2N VTCs and 2N Latches in the Time-Domain.

However, implementing interpolation in Flash ADCs reduces the amount of VTCs needed by an interpo-

lation factor (IF), keeping the Flash ADC’s speed. A Time-Domain Interpolation technique can reduce

the number of VTCs and Latches, as illustrated in figure 2.18.
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Figure 2.18: Basic block diagram of time domain interpolation Flash ADC.

As seen in figure 2.18, when implementing an interpolation approach, the number of VTCs reduces to

2bits/IF . In this example IF = 4. Interpolating the output of the existing VTCs generates the information

of the eliminated VTCs. In the time domain, Time Domain Interpolators (TDI) perform the interpolation.

The TDI circuit is in figure 2.19.

Figure 2.19: TDI Circuit, adapted from [9].

The TDI cell, shown in figure 2.19, is composed of two-phase interpolators. The interpolators are

composed of two inverters with the outputs connected. If the input DK 0 rises from Low to High at time

instant t1 and DK 1 does it at t2, the output of the phase interpolator falls from High to Low at t = t1+t2
2 .

22



Time Domain Folding

In figure 2.20 is shown the transfer function characteristic of the folding approach with multiple VTCs.

The horizontal axis is the differential amplitude of the analog input, vIN . The vertical axis is the time

instant the rises of the VTC’s digital output signals occur.

Figure 2.20: Dependence of the VTC’s outputs with respect to the amplitude of the analog input.

In figure 2.20, the blue lines correspond to the signals of the positive output of the VTCs, t+, and the

grey lines to the negative output, t−. Parallel lines correspond to different VTCs, with different differential

amplitude inputs. The differential amplitude of the analog input (VIN ) relates with the inputs of the VTC

by VIN = vin,+ − vin,−. So, if VIN is increased by vd, vin,+ is increased by vd
2 and vin,− is decreased

by vd
2 . Then, when VIN increases, the rise of tout,+ will happen sooner, due to the increase of vin,+ and

the rise of tout,− will happen later, due to the decrease of vin,−.

From a visual view, the folding approach combines different transfer functions (blue and grey lines) to

produce a ”zig-zag” shaped transfer function. For that, digital cells are used, OR and AND gates. Figure

2.21 represents the output of the logic gates for two input digital signals tout,1 and tout,2.

Figure 2.21: AND and OR gates as time selectors.

As seen in figure 2.21, the OR gate selects the signal, the one who has the rising edge that occurs

first, and the AND gate selects the slower signal, the one who rises later. The usage of these digital
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cells to create the transfer function is shown in figure 2.22.

Figure 2.22: Folding result.

As illustrated in 2.22, first is made an OR operation between a negative output and a positive output

of different VTCs, to define the peaks. Then, it is made an AND operation to define the minimums.

As seen in figure 2.22, the output of the OR gate selects the signal that is below the cross of two

signals, and the AND the above one. One more AND operation produces periodic triangular waves,

figure 2.23(a). Four triangular waves compose a fold, as illustrated in figure 2.23(b).

(a) Periodic Triangular Waves. (b) Fold.

Figure 2.23: Folding with Digital Cells.

To produce quantization steps per fold, four triangular waves are interpolated two-by-two, as shown

in figure 2.24.
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Figure 2.24: Interpolation to Produce Steps.

. One bit interpolation is shown in figure 2.24. The cross between the signals DF1 : DF4 and

DF2 : DF3 divide the fold in two quantization steps, [14]. As seen in the figure, if the amplitude of the

analog input is A, the rise of the signal DF2 : DF3 occurs sooner then the rise of DF1 : DF4, but if

the amplitude of the analog input is B, the rise of the signal DF1 : DF4 occurs first then the rise of

DF2 : DF3. Using an SR Latch, where the Set input is DF2 : DF3 and the Reset input is DF1 : DF4, if

the amplitude of the analog input is A, the Latch will store the logic level HIGH, and if the amplitude of

the analog input is B, the Latch will store the logic level LOW. To increase the number of quantization

steps the interpolation must be multi-bit, once there are 2n quantization steps in each fold with an n bit

interpolation.

2.3 Two Step

Each of the previous ADC types can implement a two-step approach. Figure 2.25 shows the implemen-

tation of an ADC in a two-step approach, [8, 15, 16].

Figure 2.25: Two Step ADC.

In figure 2.25 there is a coarse quantizer and a fine quantizer. The coarse quantizer output is the

input of a Digital to Analog Converter (DAC). The output of the DAC subtracts the analog input of the

ADC. The fine quantizer quantifies the result of the subtraction. The overall resolution is the sum of

25



the coarse resolution and the fine resolution, where the resulting bits of the coarse quantizer is the

MSB (Most Significant Bits), and the resulting bits of the fine quantizer are the LSB (Least Significant

Bits). The usage of this type of ADC allows reducing the resolution requirements of each quantizer.

For example, the resolution in a frequency-based ADC is N = log2( fmax−fminfs
= log2(∆f

fs
, where ∆f

is the VCO frequency interval where its transfer function is linear. If the resolution drops to N/2 and

the sampling frequency (fs) remains constant, the VCO frequency interval drops to ∆f/2, which leads

to an easier design of the VCO. In another example, an N bit resolution Flash ADC, without folding

or interpolation in the time-domain needs 2N VTCs and Latches. However, if the ADC implements a

two-step approach, where each quantizer is responsible for N/2 bits, it only needs 2N/2 of both to each

quantizer. Then, the number of VTCs and Latches reduces to 2× 2N/2. However, this approach leads to

a conversion that needs two clock periods, one for each quantizer. In conclusion, a two-step N bit ADC

has half of the conversion rate of a single N bit ADC, with the same quantization type.

2.4 State of Art

Figures of Merit allow comparing ADCs with different resolutions, power consumption, and sampling

rates. The one used in this dissertation is the Walden Figure of Merit that yields the energy consumption

by each conversion step, defined by

FOMwalden =
P

2ENOBfs
[J/conv.step], (2.13)

where P is the total power consumption, ENOB is the effective number of bits and fs is the sampling

rate of the ADC.This Figure of Merit assumes, on the one hand, that the power consumption increase

must be proportional to the sampling frequency (fs), and on the other hand, each extra bit of ENOB

must double the power consumption. These assumptions are not always accurate, and it does not take

additional factors as the technology used. Table 2.1 resumes all Time Domain Quantization ADCs the

architectures analyzed. The table identifies the ADCs’ technology, once the decrease of the devices’

size increases the velocity of logic gates and circuits that use time information. So, comparing the same

architecture for different technologies allows seeing this evolution.
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Except for the Two-Step Time Interval Based ADC, for each ADC type, the lower FOM is achieved by

an architecture implemented in the most recent technology, with the smaller transistor sizes. This fact

shows that time-domain quantization ADCs benefit indeed with the decrease of the transistor sizes.

Between the frequency-based quantization ADCs, it is possible to see that the single ADC achieves

a higher resolution, but the Time-Interleaved approach achieves a higher sampling frequency.

In the Time Interval Based Quantization ADCs, the resolution is between five and seven bits. The

linearity of both folding approaches [7, 14] show more than one bit of difference between the resolution

and the ENOB. It does not happen for any interpolation approach [9–14] (9-14), showing that the interpo-

lation architectures have better linearity than the folding architectures. Except for [11], the interpolation

flash ADCs have lower consumption than the folding architectures.

On the one hand, comparing the two step-time interval-based ADC with the single-step approaches

[7, 9–14], the two-step can achieve higher resolution, lower consumption, and lower Figure of Merit. On

the other hand, the two-step frequency-based ADC has a lower sampling frequency when compared

with the single-step architectures [3–5, 17–19], except for [18]. The Time Domain Folding ADC is the

one that has the worst FOM, but this implementation shows a linear folding and a DEM operation, which

are features that can translate ADCs with good linearity.
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Chapter 3

Time Interval Based ADC, with Folding

TDC Implementation

The implementation chosen for this master dissertation is a 7 bit Time Interval Based ADC, with a TDC

that implements a folding approach. The Time-Based ADC uses a VTC, an Asynchronous Counter, a

Ring Oscillator, and a Decoder as seen in figure 3.1.

Figure 3.1: General Circuit of the ADC.

As seen in figure 3.1, the first block of the implemented ADC is a VTC. As the analog input signals

are more frequently in the voltage domain, the VTC is an auxiliary circuit that translates the information

in the voltage domain to the time domain by converting the input voltage amplitude to a time difference

between the rising edges of two digital signals. The sample and hold circuit, responsible for sampling

the input signal, is embedded in the VTC, as shown in the following section.

The next major block of the ADC represented in figure 3.1 is the TDC. The TDC quantifies the

information coming from the VTC. It implements a folding approach, where Ring Oscillator signals make

the fine quantization, and Counter signals make coarse quantization.

29



Figure 3.2: Fine, Coarse and State Codification.

The folding approach uses the periodic behavior of the RO output signals, as described in section

2.2.1. The implementation of this work uses an eighth-stage differential RO. So, the RO has sixteen

outputs, Φi, i = 1, 2, ..., 8 and Φi, i = 1, 2, ..., 8 and the corresponding RO’s code is an eight-bit code

defined by the concatenation of Φj , j = 1, 3, 5, 7 and Φk, k = 2, 4, 6, 8. In figure 3.2, the vertical axis of

the transfer function’s fine codes is the total number of logic ”1” at the RO’s outputs. The output signal

Φ1 defines if the RO transfer function is increasing (Φ1 = 0) or decreasing (Φ1 = 1). The time instant that

each digital signal at the output of the VTC occurs is the analog information to be quantized. As seen

in figure 3.2, as this time instant occurs later, due to the periodic behavior of the RO’s code, the transfer

function between them and the time instant folds the analog amplitude in the time domain. Each fold is

a RO period, and each fold has quantization steps, where a propagation time in a single delay cell in the

RO defines each step variation. The fine quantization stores the RO code when the rise of the digital

input signal occurred. However, this code can correspond to multiple folds. Then, the coarse quantizer

identifies which fold corresponds to the input signal. After decoding the RO code in a 4-bit word and the

coarse code in a 2-bit word, the state code aggregates the information, where the least significant bits

of it are given by the RO code and the most significant bits by the coarse code.

As said before, the VTC converts the amplitude of the analog input signal in the time difference

between the rising edge of the two output digital signal. If the input differential amplitude is positive,

the positive output of the VTC, t+, rises sooner than the negative output, t−, and if the input differential

amplitude is negative, t− rises sooner. So, the TDC must quantize the time interval between them.

Then, each digital signal at the output of the VTC defines a state code, and the difference between

the states defines the TDC’s quantization. The positive output of the VTC, t+, defines the state EP by

EP [3 : 0] = FineP and EP [5 : 4] = CoarseP , where FineP is the corresponding fine code given by the

RO code and CoarseP is the counter code. Similarly, the negative output of the VTC defines the state

EN EN [3 : 0] = FineN and EN [5 : 4] = CoarseN . Each state has a quantization error, eP and eN with
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maximum value equal to half of the quantization step’s size, |e| < 1
2LSB. Mathematically, the states are

given by

EP = TD × (16× CoarseP + FineP ) + eP

EN = TD × (16× CoarseN + FineN ) + eN .

(3.1)

The state difference is then given by EN − EP = TD × [(FineN − FineP ) + 16 × (CoarseN −

CoarseP )] + eN − eP , where |eN − eP | < 1LSB. If the t+ rises sooner than t− when the input differential

amplitude is positive, the state difference must be positive, and if t− rises sooner, the state difference

must be negative. Due to the double quantization error, the ADC’s linearity is limited, as will be explained

deeply in the section 4.2.2, once there is a 3 dB degradation of the SNR, and so the maximum linearity

of the ADC is 6.5 ENOB.

This ADC implementation does not reset the RO nor the Counter at any time. Then, the state

defined by each digital signal is always random. On the one hand, this allows having an inherent DEM

operation, in which the LSB is not given by the propagation time of one single delay cell in the RO, but

by the average between all of the propagation cells in the delay cells. The differences between those

propagation times do not generate non-linearity but white noise. On the other hand, the codes generated

from the folding approach are crescent and periodic. It means that the following code of the higher state

value is the lower state value, as seen in figure 3.2. The example in figure 3.3 shows what can happen

when there is a small-time difference between the output digital signals of the VTC.

Figure 3.3: States generation example.

As the first state to occur is always random, the one defined by the t+ can be a high-value state,

close to the maximum value state. For the time interval of the example of the figure 3.3, EN, generated

by the t−, has a low value. The difference between the two, EN-EP, is negative, suggesting that the

input differential amplitude is negative. As seen in figure 3.3, the negative state difference is wrong once

the rise of the t+ signal occurs sooner than the t− signal. It is corrected by adding a bit to the counter,
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redundancy bit, that defines if the states generated are from the same folding period. In this example,

if the redundancy bit of the state N is ’0’, the redundancy bit of the state P is ’1’, or vice versa. This

information will treat the result of the state difference as a positive value. This implementation allows the

rising edges of the t+ and t− do not need to occur in a specific order.

The ADC implemented has a pipeline structure, where two clock periods are needed to compute the

output code. In the first period, the VTC output digital signals are generated and used to sample the RO

and Counter signals. In the second period, the RO and Counter signals are decodes and aggregated

into the State values, and then the state difference is computed. Consequently, the ADC has latency.

3.1 ADC Linearity

The SNR evaluates the ADC’s linearity. By definition, the signal to noise ratio in the time domain is given

by

SNR = 20Log

(
tmax√
2σADC

)
(3.2)

where tmax is the maximum time interval between the digital signals at the output of the VTC that the

TDC can quantify, defined by

tmax =
2N × tLSB

2
(3.3)

where N is the ADC resolution and tLSB is the size of the Least Significant bit in the time domain and

σ2
ADC is the total jitter of the ADC.

To SNR be the relation between the RMS value of the maximum time interval and the RMS time

noise, tmax is divided by
√

(2) once it is considered a sinusoidal input.

The total jitter of the ADC, given by

σ2
ADC = σ2

V TC + σ2
TDC , (3.4)

where σ2
V TC is the output jitter of the VTC and σ2

TDC is the input-referred TDC jitter. The total jitter is the

addition of those two terms, once the two terms are assumed to be independents.
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Chapter 4

Block Implementation and Simulation

Results

4.1 TDC

The TDC quantifies the time interval between the two digital signals at the output of the VTC by a folding

approach. As seen in figure 3.1, the TDC is composed of a RO, an asynchronous Counter, and FFs.

4.1.1 RO Implementation

As seen before, the RO is responsible for a 4bit periodic code. To do so, it needs eight delay differential

stages, using the negative and the output of the delay stage, consecutively, as seen in figure 4.1.

Figure 4.1: Differential RO.

The RO implemented has a main oscillator and a sub-oscillator, as seen in figure 4.2, [20].
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Figure 4.2: Main and Sub Oscillator.

The main oscillator is a conventional differential inverter, while the sub-oscillator has two inverters

and a NAND gate. The MC signal controls if the sub-oscillator is active, MC = 1, or not, MC = 0. This

control signal has the starting value of LOW then rises to HIGH to help the oscillator to begin to oscillate.

The transistors’ sizes composing the main and sub-oscillator inverters assure that the RO oscillate

at mode N+1. The oscillation mode translates the relation between the order of the waveform sequence

and the delay stages’ physical order. For example, in a RO with eight simple delay stages, there are

eight nodes, n1 − n8, and eight corresponding waveforms, W1 −W8. Defining the oscillation mode 3,

and assuming that the first signal is W1, the waveform of n1, the next waveform to appear is W4, the

waveform of n4, followed by W7, the waveform of n7. On a differential RO composed by N delay stages,

there are 2 × N waveforms, where Wi is the positive output waveform of the node ni and Wi+N is the

negative output waveform of the same node. Therefore, the oscillation mode in an N delay stages’ RO

must be N+1, to use a positive and negative output of consecutive nodes, consecutively.[20] shows

that to have an N+1 oscillation mode, the inverters of the main oscillator and the sub-oscillator can not

have the same dimensions. At least, the sub oscillator’s inverters must have twice the size of the main

oscillator’s ones. In [20] it is also shown that by increasing the sub oscillator’s inverters, the oscillation

frequency increases. As the counter must accept signals with at least the same frequency as the RO

oscillation frequency, the inverters’ sizes have the 2× relation so that the RO frequency is not too high

for the counter.

To reduce the charge effect of the rest of the ADC in the propagation time of the delay stages, the

output phases of the RO go through buffers, figure 4.3.
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Figure 4.3: RO Output Buffers.

As the RO’s output signal Φ8 goes to the input of the counter and the input of a FF, while all the others

only go to the FFs, the buffers are composed of four inverters, generating two different paths. Each path

is composed of three inverters. One leads to the sampling FFs and the other leads to the input of

the counter. The implementation assures the same charge in all stages sampled by the FFs, allowing

that the propagation time of each become similar as possible. As seen in figure 4.3, each inverter’s

size is 3× bigger than the previous one. There is an optimum size between consecutive inverters that

minimizes the charge effect between them and the added delay. This optimum size is the neper number,

e ≈ 2.71828. The 3× relation is a thumb rule used among analog designers.

There is a trade-off due to the inverters’ size (RO inverters plus buffer inverters), between the mis-

match and power consumption. In [7] is shown that as the inverters’ size increases, the mismatch

between the propagation times of each delay cell decreases with an exponential relation, but the power

consumption increases linearly. Then, to assure the linearity specification of DNL, the RO’s inverters

are large, and then the consumption of this block becomes a concern.

RO Specification

As the RO is responsible for the fine quantization, a step-change in the RO leads to a step-change

in the output code. It means that the RO defines the LSB, where a propagation time of a RO’s delay

stage differentiates consecutive codes. The propagation times of the RO’s stages are all different due

to variations in the carriers’ concentration on the ADC layout. Due to the inherent DEM operation, the

LSB is the average of those propagation times. However, as the ADC limitation due to the DNL is +
−0.5

LSB, the maximum variation between the average propagation time, TD, and each propagation time is

|TDi − TD| = 0.5LSB, which leads to a RO specification TDi = (1+
−0.5)LSB.

The RO is responsible for two contributions to the linearity degradation: time noise due to the DEM
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operation and periodic Jitter noise. The different propagation times of the RO stages translate time

noise due to the DEM operation, where the mismatch between the delay stages converts to white noise.

Smaller is the mismatch, so is the time noise. The other contribution is defined by

The time noise contribution of the RO is defined by, [7]:

σ2
RO =

tin
TRO

J2
c (4.1)

where tin is the time interval between the digital signals at the output of the VTC, TRO is the RO period,

and J2
C is the period jitter of the RO. These two-time noise contributions can not lead to a degradation of

the TDC linearity bellow 37.88 dB of SNR, equivalent to 6ENOB.

4.1.2 RO Simulation Results

Start-up Precede

The figure 4.4 shows the startup precede where the signal v(r) is used as the RO supply voltage, per-

forming as an enable signal, where it is OFF for the first 12.5ps and ON for the rest of the simulation. The

RO takes some time to start oscillating and takes around 1ns to adjust the propagation times between

cells. As the RO takes around 1ns to start oscillating with stable delay times between output phases,

the ADC output signals will only be valid after this initial time interval.

Figure 4.4: Startup Process.

In figure 4.4 the signals R* are the outputs of the RO, and the signals V* are the buffers’ outputs.

The signal r is an enable signal. In the figure 4.4 is possible to verify that the oscillation mode is 9 (N+1)

after stabilization, as required, once the R* even signals (Ri, i = 1, 3, 5, 7) are the positive outputs of the

nodes i and the R* odd signals (Rj , j = 2, 4, 6, 8) are the negative outputs of the nodes j. It is possible

to see, in figure 4.4, that the sub oscillators start to oscillate later than the main oscillator, and only after

the sub oscillators start to oscillate is that when the RO achieves the oscillation mode of N + 1. It is also
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possible to see that the R1-R8 signals translate a thermometer type code, where the first code is every

R* signals with logic level 0, the following code is every R* signals except the R1 signal that has logic

level 1, in the following code, the R2 signal has logic level 1, and so on. When the R8 signal changes

from HIGH to LOW, it marks the beginning of the folding codes. So, this signal is the output phase that

is going to the input of the Counter.

Oscillation Stabilization

Figure 4.5(a) shows the RO’s output and the buffers’ outputs after stabilization.

(a) RO and Buffer Output Signals.

(b) Decision Levels.

Figure 4.5: Stable Oscillation Signals.

In figure 4.5(a) is shown the output signals of the RO (v(RX)) and the same signals after going

through the buffers (v(vx)). In figure 4.5(b) is shown the output RO’s signal Φ1 v(r1) and the same signal

at the output of the buffer. As seen in 4.5(b). the complementary signal of Φ1 and Φ1 himself cross

at around 460mV (VDD2 ) and the same signals at the output of the buffer cross around 650mV. At those

voltages, the signals of figure 4.5(a) have the same time delay between consecutive signals. It is the

reason why the signals at the output of the RO seam symmetric to a horizontal axis at VDD
2 and the

outputs of the buffers do not look symmetric to that axis. This feature can lead to misdirection that

sampling the signals at the buffers’ outputs leads to additional quantization errors. However, it does not

happen because the FFs that sample these signals compare the input with its complement, as will be

demonstrated in section 4.2.

PVT Frequency Variation

Figure 4.6 shows the oscillation frequency for the different corners. The corners vary the supply voltage

by +
−10% (Vddmax and Vdd min), with nominal value of 0.9V, vary the temperature from T = −40◦C

(Tmin) to T = 125◦C (Tmax), with nominal value of T = 25◦C and vary the transistors, Process variations

(Typ,SS,FF,SF,FS).
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Figure 4.6: Frequency PVT Variation.

As seen in figure 4.6, the RO frequency is 25.91 GHz in typical conditions. As can be predicted,

the higher frequencies happen for the FF (Fast Fast) process variation. The frequency is more supply

voltage dependent than temperature-dependent. The oscillation frequency increases with the increase

of the supply voltage. This result is justified once for higher supply voltage faster are the digital cells.

The frequency variation goes from 17.86GHz to 33.56GHz, which leads to a TDC maximum interval

from 119.2 ps to 224 ps. It shows that the time interval maximum between the two digital signals at the

output of the VTC is 224 ps. As the sampling clock period is 400 ps, it can be divided into 100 ps to

sample the input and 300 ps to produce those digital signals, and the sampler FFs have enough time to

store the values from the oscillator and the counter.

RO Mismatch

The difference between propagation times of the delay cells is important to analyze to check the DNL

specification and evaluate the noise that the RO produces that degrades the ADC’s linearity. It is done

Monte Carlo Simulations, with 1000 runs. The standard deviation of the propagation time of each delay

stage results are in the figures 4.7 - 4.11.

38



Figure 4.7: Typical Conditions.

Figure 4.8: SS Process. Figure 4.9: FF Process.

Figure 4.10: SF Process. Figure 4.11: FS Process.
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As seen in the results of the figures 4.7 - 4.11, the mismatch of the propagation times of the single

delay cells of the RO is very low (< 3%LSB), which shows that the implementation meets the RO

specification for all the corners. It also shows that the inherent DEM operation does not create much

white noise from this mismatch. This result is achieved due to the large size of the inverters of the RO

output buffer. By simulation, if those inverters reduce their size, the counter will have a high charge effect

on the RO and will not let it oscillate. In conclusion, there is almost no mismatch, but these buffers have

high consumption.

4.1.3 Counter Implementation

The Counter identifies in which fold the time difference between the digital outputs of the VTC resides.

To do so, it counts the number of periods of the RO, with a divide-by-four structure, [17]. Figure 4.12(a)

shows the divide-by-four structure and the latch schematic circuit is in figure 4.12(b). To understand how

the circuit works, figure 4.13 shows the signals.

(a) Divide-by-four structure. (b) Latch Schematic Circuit.

Figure 4.12: Counter.
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Figure 4.13: Counter Signals.

As seen in figure 4.13, the divide-by-four structure outputs four signals, L0-L3. Each has the same

frequency, which is 1/4 of the RO signal frequency, and they are a half period of the RO signal shifted

between each other. At each half period of the RO signal, there is a variation in one of the counter

output signals. Those variations are consecutive and periodic: first changes L0, then L1, then L2, then

L3, then L0, and so on. Assuming that each variation takes a whole half RO period, each signal is stable

for three half periods. If the even signals (L0 and L2) are sensitive to the half periods where the RO

signal is HIGH, and the odd signals (L1 and L3) are to the half periods where the RO signal is LOW,

the even are stable when the RO signal is HIGH, and the even ones are stable when the RO signal is

LOW. The signals L0-L3 and Φ8 RO’s signal are sampled and decoded to compute the 2-bit word of the

coarse code. In figure 4.14 is shown the counter’s signals decoder.

(a) Two Least Significant Bits. (b) Most Significant Bit.

Figure 4.14: Counter Decoder.

In figure 4.14(a), C00-C11 are the sampled signals of L0-L3, and P8 is the sampled RO’s signal Φ8.

As L1 and L3 are stable when Φ8 = 0 and L0 and L2 are stable when Φ8 = 1, to compute the coarse
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code, P8 is the selection bit of two multiplexers, L0 and L2 are the LOW inputs, and L1 and L3 are

the HIGH inputs. L1 and L3 are guaranteed to be stable when P8=1, and so the multiplexers choose

stabilized signals. L0 and L2 are guaranteed to be stable when P8=0 and the multiplexers also choose

stabilized signals. Both multiplexers’ inputs are guaranteed to be stable when P8 is metastable, and so

the multiplexers can choose either one.

The redundancy bit’s generation uses the same approach to, figure 4.14(b). There is a divide-by-two

block in which the signal that controls the velocity is the L3 signal of the previous block, and then the

selection bit is the selected signal between L2 and L3, which is the output signal C1 of the divide-by-four

block.

As seen in figure 4.3, the outputs of each RO’s stage go through buffers. Each buffer creates two

paths. All of the RO’s output signals only need to use one to go to the FFs’ input, except for Φ8. This

phase uses both. One connects it with the FF(v8) and the other with the counter (v81). The v8 signal

computes the counter’s output signal, which is controlled by v81. So, V8 and V81 can not differ too much

because it leads to a mismatch between the decoded counter signal and the actual counting value. An

error on this codification leads to an output error of 24 or 25. So, let us check figure 4.15.

Figure 4.15: Time Difference Between the Φ8 Signals that goes to the Counter, v81, and that goes to

the FF, v8.

In figure 4.15, the signal v8 is the RO’s phase 8 that is the FF’s input, and the signal v81 is the

counter’s input signal. This figure analyzes the maximum time that the two can be apart and does not

lead to quantization errors. As the selection bit, v8, does the codification of the counter’s signal, selecting

L0 and L2 when it is LOW and selecting L1 and L3 when it is HIGH, the implementation of this counter

works if L0 and L2 are stable when V8 is LOW, and L1 and L3 are stable when v8 is HIGH. Figure 4.15

shows that the decisions are correct if the variations of L0 and L1 are fast enough so that those signals

are stable before the edges of the v8. Then, if the L signals take tLc to change between stable values

and if the RO period is TR0, the two signals can differ by

∆t = TRO/2− tLc. (4.2)

In the figure 4.15, the L signals take a quarter of the RO period to change, so the two signals can be
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displaced in time by ∆t = TRO/2− TRO/4 = TRO/4.

Counter Specification

This ADC uses an asynchronous Counter composed of two different blocks. The first one has to operate

at the RO frequency. At every half period of the RO’s signal, there is a variation in one of the four output

signals, leading to the frequency of each be 1/4 of the RO’s frequency. The second block must operate

at the frequency of the previous block frequency. The variations of the two output signals of the second

block occur at every half period of the first block signals, which leads to the frequency of each be 1/8

of the RO’s frequency. Therefore, the counter’s specification is related to the maximum input frequency,

which must be higher than the RO frequency.

As the counter also works as an oscillator, the time noise contribution of the counter is given by

σ2
Counter =

tin
TCounter

J2
c (4.3)

where the TCounter is the period of the Counter. The Counter degrades the SNR through the time

interval that a period of the Counter varies from its nominal value, and so it also can not lead to an SNR

degradation bellow 37.88 dB.

4.1.4 Counter Simulation Results

Maximum Input Frequency

To assure that the counter works well with the output of the RO in its input first is evaluated the PVT

variations maximum input frequency, figure 4.16.

Figure 4.16: Maximum Input Frequency Vs RO Frequency.

As seen in figure 4.16, the counting of the RO’s periods operation is assured once the RO frequency

is always lower than the maximum frequency allowed in the counter’s input. Furthermore, the results
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showed in figure 4.16 suggest that the RO’s frequency could be higher by increasing the sub-oscillator

inverters’ sizes. However, simulation results showed that increasing those sizes would, for some corners’

variations, make the oscillator start to oscillate in a different mode than N+1 and, for other variations, the

RO’s frequency would become higher than the maximum frequency allowed in the counter’s input. For

those reasons, the inverters’ size can not increase.

Counter Operation

Figure 4.17 shows counter’s signals, COO-C11, and the two signals corresponding to phase 8 that goes

to the counter and that goes to the DFF, v81, and v8 respectively of the RO.

Figure 4.17: Counter Signals.

As can be seen in the figure 4.17, the period of the counter signals, C00-C11, is TC = 154ps and the

period of the RO signal is TR0 = 38.5ps which leads to TC = 4 × TRO confirming the good operation of

the divide-by-four block. By its time, the period of the most significant signals of the counter signals, C20

and C21, is TC2 = 308ps, which leads to TC2 = 2 × TC = 8 × TRO, also confirming a good operation of

the divide-by-two block.

In figure 4.17 is seen that, although the signals v8 and v81 are different, v8 is stabilized at HIGH

when C01 and C11, corresponding to L1 and L3 in 4.13, are stable, and it is stable at LOW when C00

and C10, corresponding to L0 and L2 in 4.13, are stable.
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Figure 4.18: Demonstration of the Good Relation Between Signals.

As said before, on the one hand, the buffers’ output signals (V*) cross with their complement at

around 650mV and so assumes that it is stable at HIGH if V ∗ > 650mV and it is stable at LOW if

V ∗ < 650mV . On the other hand, the counter’s output signals (C*) cross with their complement at

around 450mV, and so they are stable at HIGH if C∗ > 450mV and stable at LOW if V ∗ < 450mV .

Then, to the V8 decisions as selection bit of the multiplexers do not select not stabilized signals, the C*

signals’ transitions by 450mV must occur sooner than the V8 by 650mV. The results in figure 4.18 confirm

this operation by showing the time instants that the transitions of V8 by 650mV and the transitions of C*

by 450 mV to calculate the maximum time interval between V8 and V81 allowed.

Figure 4.19: Propagation time of C* Signals.

As seen in the figure 4.19, the maximum propagation time of the C* signals is tLC ≈ 14.3ps. So, the

maximum time interval between V8 and V81 is ∆t ≈ 4.95ps. The figure 4.20 shows that this time interval

is ∆t ≈ 2.33ps, which is less than the maximum allowed.
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Figure 4.20: Time Interval between V8 and V81.

4.2 Sampler FF

A regular DFF based on logic gates can not be used to sample the RO’s and the Counter’s signals

because it can not be assured a setup time. Then, to sample those signals is used a sense-amplifier-

based FF consisting of a strong-arm comparator and an SR latch, as seen if the figure 4.21, [21].

Figure 4.21: Strong Arm Latch Based FF.

The FF shown in the figure 4.21 samples the value of D at the rising edge of the CLK signal, which

is going to be one of the digital outputs of the VTC, by comparing the D signal with its complement, D. If

D > D the output, Q, stores the logic level HIGH. As this FF needs the input and its complement, there

is an advantage in implementing a differential RO because it outputs the signals and their complement

46



without adding logic, which would translate to a higher consumption but can lead to quantization errors

that degrade the ADC’s linearity. The counter implemented also allows to access the output signals and

their complement.

The process of this sense-amplifier-based FF has four phases, figure 4.22.

Figure 4.22: FF main signals.

As seen in figure 4.22, the FF process begins with the clock signal LOW. In the first phase, M1 and

M2 transistors are OFF, and the voltages at the nodes X and Y are charged to VDD, as the voltages at the

nodes P and N. The rising edge of the clock signal begins the second phase, where the switches S1 and

S2 turn OFF. In this phase, the transistors M1 and M2 turn ON and produce a current proportional to the

input D −D. As the M3-M6 transistor is initially OFF, the current flows through the parasitic capacitors

of M1 and M2, CP and CN , respectively, allowing that |VP − VN | grows and exceeds |D −D|. There is

a voltage gain, and so this is called the amplification mode phase. As VP and VN fall to VDD − VTH , M3

and M4 transistors turn ON, allowing that part of the drain current of M1 and M2 flow from X and Y. VX

and VY keep falling until one of them reaches VDD − |VTH | turning ON M5 and M6. At this moment, the

last phase begins where the positive feedback set VX or VY to VDD and the other to the ground.

In figure 4.21, the M3 and M4 transistors cut off the DC path between VDD and ground in the last

phase, avoiding static power drain, translating an advantage of this implementation. The M5 and M6

transistors restore the output’s HIGH level to VDD. Without them, the common-mode discharge in X and

Y would lead to a degraded high level if the differential input |D −D| is small. The switches, S1 and S2,

pre-charge the voltages at X and Y to VDD assuring that the M5 and M6 remain OFF during the initial

amplification and neglect the offset effect.

As the Strong Arm Latch generates invalid output during almost half of the clock cycle, a NAND

based latch produces the output by detecting falls from VX or VY . The NAND based latch has the truth

table 4.1.
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S R Output

1 1 No change

1 0 Q = 1

0 1 Q = 0

0 0 Invalid State

Table 4.1: Nand Based Latch Truth Table.

The input-referred noise of the sampler FF is computed as in [21]. The switches S1 and S2, in figure

4.21, allow reducing this noise with their pre-charge action. Most of the input-referred noise is generated

by M1 and M2 and by the kT
C noise deposited by S1 and S2 comes into play only after significant gain has

accrued. The circuit acts as an integrator in the amplification mode, generating an output noise from M1

and M2. The amplification model lasts t =
CP,Q
ICM

VTH,N , where CP,Q = CP = CQ, CP is the capacitance

of the node P, CQ is the capacitance of the node Q and ICM is the common-mode current. Summing

the noise from S1 and S2, dividing the result by the square root of the voltage gain, the input-referred

noise is given by

σ2
FF =

VGS − VTH,N
VTH,N

(
4KTγ

CP,Q
+
VGS − VTH,N

VTH,N
× kT

2CP,Q

)
(4.4)

where 4KTγ
CP,Q

is the noise from M1 and M2.

4.2.1 Simulation Results

In figure 4.23, is shown the simulation result signals of the FF.
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Figure 4.23: FF Signals Simulation.

Comparing the signals of figure 4.23 with the signals of figure 4.22, the signals V(x) and V(y) of

figure 4.22 are the signals V(ns) and V(nr), respectively, of figure 4.23. As seen in figure 4.23, after the

positive feedback set v(ns) to VDD and set v(nr) to ground, it takes some time for the output, Q, to store

the correct logic level. This time is the propagation time of the NAND-based Latch, and phase 4 only

ends when the output is stable. It is important to evaluate the propagation time PVT variations, to assure

that there is enough time to generate the signals at the output of the VTC and sample the signals from

RO and the Counter. Monte Carlo Simulation is done, with 1000 runs, to evaluate the propagation time

of the FFs, and the results are in figure 4.24.

Figure 4.24: FF Propagation Time.
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The results in figure 4.24 show that the FF’s slower propagation time is 54ps. In the corner of the

slower propagation time, the maximum time that the TDC can quantify is 224ps. Adding these two results

leads to 278 ps, which is too close to 300 ps. It can lead to some problems because after 300ps from

the beginning of the generation of the output VTC signals, the values stored in the FFs’ will be sampled

by other FFs to perform a pipeline approach. The new FFs’ outputs decode the RO’s and Counter’s

signals, the state values, and consequently the state difference. To solve this problem, the clock signal

of the last FFs will not be the clock signal, but its complement, allowing to have additional 100 ps to the

first FFs store the correct values and not lose information from the RO nor the counter.
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4.2.2 TDC Linearity

The input-referred TDC jitter is given by

σ2
TDC = 2× (σ2

q + σ2
FF ) + σ2

RO + σ2
Counter + σ2

DEM , (4.5)

where σq is the RMS value of the quantization noise, σFF is the input-referred jitter of the DFF, σ2
RO is

the RO jitter, σ2
Counter is the counter jitter, and σ2

DEM is the white noise converted from the mismatch, of

the RO delay stages, due to the inherent DEM operation. Due to the quantization of the two states, the

contribution of the quantization error, σq, and the input-referred RMS noise of the FF, σFF , are doubled,

[22]. It leads to a limitation on the ADC linearity. If all blocks are ideal and do not presently jitter, the

signal to noise ratio becomes

SNR = 20Log

(
tmax√

2σq

)
(4.6)

where the quantization error, σq, is defined by

σq =
tLSB√

12
. (4.7)

The SNR becomes SNR ≈ 6.02(N−1)+4.77dB, showing that there is a 3dB degradation due to the

double sampling, corresponding to a 0.5-bit degradation in the ENOB. Then, the maximum linearity of

this ADC is 6.5 ENOB. To check the linearity specification of the ADC, the linearity of the TDC, imposed

by the quantization error and by the contributions of the RO jitter noise, the Counter jitter noise, the DEM

white noise converted by the RO delay cells mismatch and by the input-referred noise of the FFs, should

show an SNR above 37.88 dB, corresponding to 6ENOB.

4.2.3 TDC Simulation Results

The total noise of the TDC, (4.5), evaluates the TDC’s linearity. To compute the RO jitter (σRO) and the

counter jitter (σCounter), Monte Carlo Simulations are used to evaluate the RO period and the Counter

period variation results. The RO jitter (σRO) is 3× the standard deviation of the Monte Carlo Simulation

results of the RO period, and the Counter jitter (σCounter) is 3× the standard deviation of the Monte Carlo

Simulation results of the Counter period. To evaluate the white noise converted from the mismatch, σD,

it is performed Monte Carlo Simulations evaluating the propagation time of the RO delay cells, and is

computed the average, which is the LSB size in the time domain (tLSB), and the standard deviation

is computed (σ). The white noise converted from the mismatch, σDEM , is 3 × σ. All these noise

contributions are combined by

σnoise =
√

2× σ2
FF + σ2

RO + σ2
Counter + σ2

DEM (4.8)
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Process Supply Voltage Temperature tLSB [ps] σq[ps] σnoise,TDC [ps] SNR[dB] ENOB

typ 2.41 0.696 0.387 40.3 6.40

ss

MAX
MAX 2.47 0.712 0.374 40.3 6.41

MIN 2.32 0.670 0.284 40.5 6.44

MIN
MAX 3.25 0.938 0.507 40.3 6.40

MIN 3.50 1.010 0.902 39.4 6.26

ff

MAX
MAX 2.00 0.576 0.395 40.0 6.35

MIN 1.86 0.537 0.264 40.4 6.42

MIN
MAX 2.43 0.701 0.479 40.0 6.35

MIN 2.47 0.712 0.371 40.3 6.41

sf

MAX
MAX 2.21 0.638 0.454 39.9 6.34

MIN 2.99 0.862 0.289 40.7 6.46

MIN
MAX 2.82 0.814 0.565 40.0 6.34

MIN 2.91 0.839 0.571 40.0 6.35

fs

MAX
MAX 2.21 0.637 0.416 40.1 6.36

MIN 2.08 0.601 0.082 40.9 6.49

MIN
MAX 2.81 0.811 0.499 40.1 6.38

MIN 2.99 0.862 0.467 40.3 6.40

Table 4.2: TDC Noise.

As seen in table 4.2, the TDC linearity is always higher than the 6 ENOB specification. It is also

possible to see that the quantization noise degrades the most TDC’s linearity. The simulation results

show that the TDC’s linearity is robust about process variation, variations on the supply voltage, and

temperature variations.

The TDC’s linearity is almost independent of the input signal, once the blocks that implement the

folding approach of the TDC (RO and Counter) are not dependent on the input signal, once the RO

oscillates at a free-running frequency, which is independent of the input signal, and the Counter works

at the RO frequency. It shows that only the VTC’s linearity dependence on the input frequency limits the

full ADC’s linearity dependence on the input frequency.

Finally, the TDC’s results allow concluding that on the contrary of the folding approach on the voltage

domain, which is nonlinear and to improve linearity it must use multiple architectures, increasing the

folding architecture area and consumption, folding on the time domain is linear. It is an advantage

because benefits with the decrease of the technology, once the digital cells, RO and Counter, become

faster and so is possible to achieve smaller LSB size, which can lead to design higher resolution ADCs

with the folding approach.

52



4.3 VTC

The input analog signals are more frequently in the voltage domain. Then, there must be an auxiliary

circuit that converts the voltage domain’s amplitude into a time variable, which is the time difference

between the rising edge of two digital signals. The VTC used is represented in figure 4.25(a), [23, 24].

In figure 4.25(a), φ2 = φ1. To understand how this VTC works, figure 4.25(b) shows the main signals.

(a) Schematic Circuit.

(b) Main Signals.

Figure 4.25: Implemented VTC.

The VTC implemented, shown in figure 4.25(a), is composed of four switches, a capacitor, a ref-

erence current source, and a Threshold Cross Detector (TCD). The TCD is composed of two simple

inverters and a true phase inverter. As seen in figure 4.25(b), the process begin with the left terminal of

the capacitor Cs follows the input signal, VT = vIN , while φ1 is HIGH and the right terminal of the capac-

itor is charged to the supply voltage, VB = VDD. Then, as the left terminal of the capacitor discharges to

the ground, the right terminal must discharge the same amount, once the differential potential between

the two terminals of the capacitor can not change instantaneously, and so VB = VDD − vIN . Then, the

node VB discharges by a constant current. When VB crosses the threshold voltage of the first inverter,

the output digital signal becomes HIGH.
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As seen in figure 4.25(b), the time that takes the output signal, t, to rises is longer for a small

amplitude signal of the input sample. Assuming an ideal capacitor, which current-voltage relation is

iC = C dV
dT , results:

∆t =

∫
C

iC
dV. (4.9)

In (4.9) C is positive and constant and ic is negative and constant. From (4.9) results:

∆t(tk) = − C

|iC |
(vf − vi), (4.10)

where vf is the threshold voltage of the cross detector, vTH and vi = VB(tk) = VDD − vIN (tk). Then:

∆t(tk) =
C

|iC |
(VDD − vTH)− C

|iC |
vIN (tk), (4.11)

which translates a linear relationship between the input signal and the rising time instant and shows

that higher input amplitude, vIN (tk), results in a higher time interval. However, the VTC generates two

output digital signals that translate the differential input amplitude through the time difference between

their rising edges. So, if the positive input is defined by vin,+ = VC + vd
2 cos(2πfint), where VC is the

common-mode voltage, vd is the differential input amplitude and fin is the input frequency, the negative

input is defined by vin,− = VC − vd
2 cos(2πfint), the time interval between the outputs of the VTC is

defined by

∆tV TC(tk) = t− − t+− =
C

|ic|
vdcos(2πfintk). (4.12)

The time interval between the outputs of the VTC is linear in respect to the input signal, and the gain

of the VTC is C
|iC | [s/V ], which translates the relation between the input voltage amplitude and the time

interval between the rising edges of the two digital signals at the output of the VTC.

There are some difficulties when implementing a linear VTC. The first one is that the current must

remain constant for VB > VTH . It happens if by ensuring that the transistor used as the current source

remains in saturation, neglecting the channel length modulation. The channel length of this transistor

is large to reduce this channel length modulation. In this case, it is used the maximum length possible,

but it still is possible to see the channel length modulation effect. Other difficulty is that the threshold

voltage of the cross detector, vTH , must be lower than the minimum VB voltage at the beginning of each

discharge, i.e, vTH < VB,init,min = VDD − vIN,max(tk) = VDD − VC − vd
2 . This threshold voltage is

not constant for the process, temperature, and supply voltage variations, and then the input common

voltage, VC , must be chosen to guarantee the previous condition. The last difficulty is that the discharge

current of the VTC must be high enough to generate the digital outputs of the VTC that take more time

before the next clock period. As the gain is defined by C
|iC | , increasing the current will decrease the gain.

Then, to assure that the VTC always produces two digital signals at the output of the VTC, the maximum

time interval between the two digital signals can be lower than the maximum time interval that the TDC

can quantify, which results in a reduction in the output amplitude.
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There are some advantages that this type of VTC has when compared with the CSI based VTC,

shown in figure 2.7. The first one is that the VTC used does the sampling of the input voltage, while the

CSI based VTC needs an auxiliary Sample and Hold circuit. The second one is that the time interval

between the output signals of the VTC implemented has a linear relation to the input voltage. Although

the time interval between the output signals of the VTC is also given by ∆tCSI = t− − t+, and the

time interval that takes to each output signal to rise is also (4.10), the discharging current is the major

difference between the two implementations. In the CSI based VTC, neglecting the channel length

modulation, the discharging currents of each VCDU is given by Ix = 1
2µnCox

W
L (VGS,x − Vt)

2, where

VGS,1 = vin,+ and VGS,2 = vin,− for the two VCDUs. Then, the time interval is given by

∆tCSI = −C(VDD − VTH)

(
1

I1
− 1

I2

)
= −C(VDD − VTH)

I2 − I1
I1 × I2

, (4.13)

where VDD is the supply voltage, VTH is the threshold voltage of the detector, and C is the capacitor.

The current difference is given by

I2 − I1 =
1

2
µnCox

W

L
2× (VC − Vt)vdcos(2πfintk), (4.14)

which translates a linear relation between the current difference and the input signal. However, the

current multiplication is given by

I1 × I2 =

(
1

2
µnCox

W

L

)2 [
(Vc − Vt)2 −

(vd
2
cos(2πfin)

)2
]2

, (4.15)

which translates a nonlinear relation and so (4.13) does not translate a linear relationship between the

input signal and the time interval between the output signals of the VTC.

The last advantage of the VTC used is that it has higher freedom to control the gain, to follow the

PVT variations of the maximum time interval that the TDC can quantify, by controlling the discharging

current PVT variations.

4.3.1 Current Reference

As seen in (4.12), the current defines the VTC’s gain. The VTC’s gain must align with the maximum time

interval that the TDC can quantify. So, the current is the variable that assures it. The TDC’s full scale is

given by 4 × TRO, where TRO is the inverse of RO’s frequency. The circuit used as current reference is

represented in figure 4.26, [25].
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Figure 4.26: Current Reference Circuit.

The current that flows the transistor M5 is the bias current reference, which then is mirrored to

the VTC. The current is the difference between the one that flows thought M1 and M2, ID1 and ID2

respectively. Neglecting the channel length modulation, these currents are defined by:

ID1 = 1
2µnCox

W1

L1
(VDD − VB − VTH)2

ID2 = 1
2µnCox

W1

L1
(VDD − VA − VTH)2.

(4.16)

To the currents be defined by (4.16), the channel length of the transistors M1 and M2 must be high

enough to neglect channel length modulation. It is used L1 = L2 = L = Lmax The voltages VA and VB

are defined by

VDD − VB =
(

1 + R2

R1

)
VTH

VDD − VA =
(

1 + R4

R3

)
VTH

(4.17)

Assuming R1 = R3 = R, the output current is then defined by

iOUT =
1

2
µnCox

(
VTH
R

)2(
R2

2W1 −R2
4W2

L

)
(4.18)

The output current (4.18) is dependent on the carrier’s mobility (µn) and the threshold voltage (VTH ).

The carrier mobility is roughly proportional to T−1.5, where T is the absolute temperature, and the

threshold voltage also decreases with the increase of the temperature. In this technology, the resistors

do not change significantly with the temperature. So, it results in a temperature negative coefficient

current.

56



Current Reference Results

The current reference is the principal responsible circuit to control the VTC gain. As said before, the

generated current has a negative temperature coefficient. This result is in figure 4.27.

(a) Temperature Variation.

(b) Voltage Supply Variation.

Figure 4.27: Current Simulation.

The results in figure 4.27 show that the current reference has a negative temperature coefficient,

once as the temperature increases, the current decreases, and a positive supply voltage coefficient,

once as the supply voltage increases, increases. These results show that the current has the required

behavior to match the PVT variations of the RO frequency, which control the TDC’s full scale, with the

VTC’s gain.

4.3.2 VTC Linearity

The VTC voltage noise is given by, [7]:
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V 2
n,V TC =

kT

Cs

(
1 + 2γ

gm
IC

)
(4.19)

where k is the Boltzmann constant, T is the absolute temperature, CS is the VTC capacitor, γ is the

thermal coefficient of the transistor that operates as current source, gm is its transconductance and IC

is the discharging current. The VTC output jitter is defined by the noise voltage divided by the slew rate,

SRV TC , at the threshold-crossing point,

σ2
V TC =

2V 2
n,V TC

SR2
V TC

=

2kT
CS

(
1 + 2γ gmID

)
(
IC
CS

)2 . (4.20)

The VTC output jitter described by (4.20) show that the sampling capacitor, CS , must be as small as

possible to reduce the jitter, the discharging current and the IC must be as high as possible. As the VTC

gain is C
|iC | [s/V ], it must be as low as possible to improve the VTC linearity by reducing the output jitter.

4.3.3 VTC Specification

The VTC is the auxiliary circuit that converts the input analog signal from the voltage domain to the time

domain, and so it should not limit the ADC linearity. As this is a 7-bit resolution ADC, the VTC linearity

should be higher than 7 ENOB. As the signal to noise ratio of the VTC is given by

SNRV TC = 20Log

(
tmax√

2tn,V TC

)
(4.21)

where tmax is the maximum time interval between the two digital signals on the VTC output and tnoise

is the RMS jitter noise of the VTC, tn,V TC , given by the jitter of the two rising edges of the signals at its

output.

4.3.4 VTC Interfaces

VTC-TDC

The VTC, as said before, translates the input analog signal into a time interval. However, the TDC is

the block that defines the maximum time interval that can be quantified. So, the amplitude of the output

signal depends on the tuning between the maximum time interval between the digital signals at the

VTC’s output (tmax,V TC) and the time interval that the TDC can quantify (tmax,TDC).

The maximum time interval that the TDC can quantify is the time interval that takes four folds to occur.

As each fold is a RO period, the maximum time interval that the TDC can quantify is tmax,TDC = 4×TRO,

where TRO is the inverse of the RO’s frequency.

On the one hand, if the VTC has a high enough gain so that the maximum time interval between

the two digital signals (tmax,V TC) is higher than tmax,TDC , the output code will saturate. On the other

hand, if the VTC gain gives a maximum time interval lower than tmax,TDC , the output code will not be
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fully scaled. Due do the specs, table 1.1, the VTC gain must be controlled so that the amplitude of the

output signal does not vary (in corners) more than 20%.

VTC-FF

The VTC has another specification which relates to the time interval that the FF clock signal must be

HIGH to finish the last three phases, figure 4.22. It is equivalent to the FF propagation time. To assure it,

the minimum time interval that the output digital signals of the VTC must be high after their rising edge

is equal to the propagation time of the FF.

4.3.5 VTC Results

Operation

To analyze the VTC’s operation, it is used a low-frequency input signal, to consecutive time intervals

between the digital outputs of the VTC do not vary too much, allowing to verify the maximum time

interval of the VTC.

Figure 4.28, shows the signals in each VCDU block of the VTC.

Figure 4.28: VCDU Signals.

The operation of the VCDU signals is in figure 4.28. The signal VT has enough time to follow the input

signal (VT = vin). The node of the signal VB is first charged to the supply voltage and then discharges

at a constant rate. The threshold voltage is lower than the VB voltage at the beginning of the discharge

and is high enough that the discharge rate of VB remains constant when the digital signal rises. Figure

4.28 shows that (4.12) is the equation that translates the time interval between the two digital signals at

the output of the VTC.
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Linearity

A block is created with Verilog-A code to test the linearity of the VTC. The clock signal and the two

digital signals at the output of the VTC are the three inputs of this block. At each clock period, this

block registers the time instant that the VTC’s output signals cross 50% of the supply voltage in a rising

edge and compute the time difference between those time instants. At the output of the block, there

is a signal that behaves as the input signal. At each clock period, the block outputs the time interval,

in picoseconds, between the two VTC’s digital signals. A sinusoidal signal at the ADC’s input, with

frequency fin, leads to the signal generated also be a sinusoidal signal with the same frequency, figure

4.29.

Figure 4.29: Verilog-A Signal Generated with Sinusoidal Input.

The simulator takes the Verilog-A generated signal and evaluates its linearity through the FFT and

the SNR computation. The linearity given by the simulation can be predicted by the relation between

the amplitude of the signal generated by the Verilog-A block and by the time noise, jitter, related to the

time interval that the same digital signal at the output of the VTC can occur. Monte Carlo simulations are

used to quantify the time noise. As the linearity of the VTC is (4.21), the maximum time interval and the

time noise are composed to compute the predicted SNR, and then it is compared with the given SNR

from the simulator.
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Process VDD] Temperature tmax[ps] tnoise[ps] SNRcalc [dB] SNRsim [dB] ENOB

typ 123 18.11 64.1 61.7 9.96

ss

MAX
MAX 116 13.41 66.2 57.8 9.31

MIN 103 14.93 64.2 54.4 8.74

MIN
MAX 154 11.00 70.4 51.7 8.30

MIN 143 38.28 58.9 51.5 8.27

ff

MAX
MAX 98 8.48 68.7 56.4 9.08

MIN 101 13.67 64.8 64.9 10.48

MIN
MAX 146 19.33 65.0 54.6 8.78

MIN 127 17.28 64.8 40.9 6.50

sf

MAX
MAX 111 16.39 64.1 56.4 9.07

MIN 107 18.61 62.6 59.6 9.60

MIN
MAX 153 7.46 73.7 46.5 7.44

MIN 129 36.13 58.5 37.0 5.85

fs

MAX
MAX 105 14.97 64.4 56.2 9.04

MIN 97 12.10 65.5 58.0 9.33

MIN
MAX 145 26.11 62.3 56.4 9.07

MIN 132 38.08 58.2 47.6 7.61

Table 4.3: VTC Linearity.

As seen in table 4.3, the linearity, translated by the SNR, computed is always higher than the linearity

given by the simulator. It happens for mainly two reasons. The first reason is that there are other noise

sources in this circuit, such as the clock signal or the current reference. The second reason is the

channel length modulation on the transistor that behaves as a current source, which increases the VTC’s

non-linearity. The channel length modulation generates variations in the current during the discharging

processes, and so the relation between the input signal and the time interval between the digital signals

is not exactly (4.12). The channel length affects more the corners where the threshold voltage of the

cross detector is lower (minimum temperature and minimum supply voltage) because the vDS voltage of

the current reference transistor is not high enough to assure that this transistor remains in the saturation

for all the discharging process.

There two cases that the VTC’s linearity did not meet the specification (minimum temperature and

supply voltage, processes FF and SF). In those cases, for high amplitude voltage, the threshold voltage

of the VTC is lower than the initial voltage VB , so the output of the corresponding VCDU instantaneously

rises, then this rise time is not defined by (4.11). For those cases, the relation between the input voltage

and the time interval at the VTC’s output is not (4.12), for all the amplitude of the input signal, justifying

the degradation of the VTC linearity. The threshold voltage of the cross detector could increase to solve

the limitation, by increasing the size of the PMOS transistor of the first inverter. However, it leads to an

increase in the threshold voltage of the cross detector of every corner, and for some of them, when the

input voltage is small, the VCDU would have not enough time to generate the output digital signal. The
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discharging current could increase to solve the problem. However, increasing the current will lead to a

lower gain and, consequently, the maximum time interval between the two digital signals, which leads

to a reduction of the ADC output amplitude. So, the decision was to assume the nonlinearity of those

corners, keeping the good results of the other ones.

VTC-TDC

Another aspect studied is the maximum time interval at the output of the VTC and the maximum time

interval that can be quantified by the TDC. The figure 4.30 show the amplitude of the time interval

between the digital signals at the output of the VTC and the maximum time interval that the TDC can

quantify.

Figure 4.30: TDC and VTC Maximum Time Intervals.

In figure 4.30, the maximum time interval at the VTC’s output is always lower than the maximum time

interval the TDC can quantify, showing that there is no saturation. It also shows that the amplitude of

the ADC’s output will not be fully scaled. In figure 4.30, the maximum amplitude is 57, ≈ 94% of the

maximum, and the minimum amplitude is ≈ 82%. Then, there is 12% variation between the maximum

and the minimum amplitude, confirming the specification.

This result also allows for the evaluation of the SNR values. To better describe the linearity of the

VTC, the SNR value must scale for the maximum time interval allowed at each corner. So, the linearity

is now computed by

SNRV TC = 20Log(
tLSB × 2N

2
√

2tnoise
), (4.22)
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where tLSB×2N

2 is the maximum time interval that the TDC can quantify.

Process VDD Temperature tmax[ps] SNRsim[dB] ENOB SNRcor[dB] ENOB

typ 123 61.7 9.96 63.7 10.29

ss

MAX
MAX 116 57.8 9.31 60.5 9.75

MIN 103 54.4 8.74 57.5 9.26

MIN
MAX 154 51.7 8.30 54.3 8.73

MIN 143 51.5 8.27 55.4 8.91

ff

MAX
MAX 98 56.4 9.08 58.7 9.46

MIN 101 64.9 10.48 66.3 10.72

MIN
MAX 146 54.6 8.78 55.1 8.87

MIN 127 40.9 6.50 42.8 6.81

sf

MAX
MAX 111 56.4 9.07 58.5 9.42

MIN 107 59.6 9.60 64.6 10.44

MIN
MAX 153 46.5 7.44 48.0 7.68

MIN 129 37.0 5.85 40.1 6.38

fs

MAX
MAX 105 56.2 9.04 58.7 9.47

MIN 97 58.0 9.33 60.7 9.79

MIN
MAX 145 56.4 9.07 58.2 9.38

MIN 132 47.6 7.61 50.8 8.14

Table 4.4: VTC Linearity Correction.

The results of table 4.4 allow concluding that the VTC does not limit the ADC linearity bellow the 6

ENOB specification.

VTC-FF Interface

In figure 4.31 it is compared the FF propagation time with the minimum width of the digital signal at the

output of the VTC.
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Figure 4.31: FF propagation time VS minimum width of the digital signal at the output of the VTC.

As seen in figure 4.31, the VTC-FF specification meets for all the corners. However, there is a corner

that FF’s propagation time and the width of the digital signal are close. In this corner, on the digital

signals that translate the maximum time interval, the first signal occurs too late, and the second signal

occurs almost at the end of the clock period. Then, when it happens, VB is already being pre-charged

at VDD and so the output signal (t) only has the propagation time of the threshold cross detector to keep

the logic level HIGH. If the first rise occurs sooner, there would be no issue, but it could lead to one out

of two things: either a reduction of the VTC gain, which would lead to a reduction of the amplitude of

the output ADC signal; either an increase of the threshold voltage of the cross detector, which would

lead to in some corners, more than those that already happens, the threshold voltage becomes higher

than the initial VB at the beginning of the discharge and so the digital signal, t, is not related to the input

amplitude, but it rises right after the initiation of the discharging, and it leads to nonlinearities on the

VTC.
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4.4 Decoder

The decoder decodes the state sampled by the signals t+ and t− and then compute the difference

between those two states. Each state has two bits from the Counter, which are the most significant, and

four bits from the ring oscillator. The Counter signal’s decoder is in figure 4.14. C0 and C1 are the two

signals that also are the two most significant bits of the state, and V is the redundancy bit that helps to

identify the folding period of each state. The RO decoder is in figure 4.32.

Figure 4.32: RO Decoder.

In figure 4.32, the signals P1 to P8 are the sampled signals of the RO output phases.

The implementation uses a 6-bit Ripple Carry Adder to compute the difference between the two

states, defined by t+ and t−, figure 4.33(a).

Figure 4.33: State Differentiation and MSB Generation.

The ripple carry adder is composed of six full adder structures, shown in figure 4.34.
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Figure 4.34: Ripple Carry Adder.

To compute the difference between the state defined by t−, EN, and the state defined by t+, EP, it is

computed EN + EP + 1, as seen in figure 4.35.

Figure 4.35: State Differentiation and MSB Generation.

In figure 4.35, the MSB of each state, EP [5] and EN [5], are the redundancy bit of the Counter that

identify if the two stages belong to the same period of the folding codes or not.
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Ex. 1st Same Carry MSB

State Cycle Out

(0 = yes)

A EP 0 1 1

B EN 0 0 0

C EP 1 0 1

D EN 1 1 0

Figure 4.36: MSB Generation.

As shown in figure 4.36, to define the output MSB, first is checked if the states belong to the same

folding period with an XOR operation. If the XOR is HIGH, it means that they belong to different periods.

Then it is used the carry out of the adder that identifies if the resulting signal of the subtraction between

EN and EP is positive or negative. If the carry out is HIGH, the subtraction result is positive. Then,

another XOR operation combines these two pieces of information, defining the output MSB.

The MSB is a result of the computation of the difference between states. Therefore the ”0” code has

double the size of the remaining ones. It happens because the ”0” code results when EN and EP are

equal, and they are equal if t+ and t− differs one LSB. However, this difference can happen if t− occurs

first or t+ occurs first. It can be corrected if at each quantifier is added a negative offset of half LSB.
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Chapter 5

Pre Layout Simulation Results

5.1 Linearity

In order to evaluate the ADC’s linearity in typical conditions, it is evaluated the output for a sinusoidal

input, with two different frequencies, fin = 31.738MHz figure 5.1(a) and fin = 1242.676MHz figure

5.1(b). The frequency 1242.676MHz is the higher frequency close to the Nyquist frequency that assures

a coherent sampling for a 1024 point simulation.

(a) fin = 31.738MHz.

(b) fin = 1242.676MHz.

Figure 5.1: Linearity Simulation.

As seen in the results of the figure 5.1, the harmonic distortion is very low, translated by the THD

results, confirming that the VTC linearity is high enough to assure a high-resolution ADC.

In figure 5.1, the FFTs show that the degradation of the ADC linearity is mainly from the noise floor

and not from the harmonic distortion. On the one hand, there is harmonic distortion if the mathematical

relations between the input and the output of ADC’s blocks show components of a high order, which

does not exist. On the other hand, the noise floor is justified by the quantization error, which has the

same amplitude among the full frequency bandwidth as white noise. These FFTs also show that the

SNDR and the ENOB results are almost constant for all input frequency signals, once there are almost

none harmonic components that degrade the ADC linearity. The inherent DEM operation leads to good

linearity results once the SFDR is very high for all the frequency bandwidth.
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To evaluate the robustness of the linearity, it is performed the same simulation for PVT variations.The

proccess variation simulation results are in the figure 5.2, the supply voltage variation (+−10%) simulation

results are in the figure 5.3(a) and the temperature variation (−40◦C/125◦C) simulation results are in the

figure 5.3(b)

Figure 5.2: Process Variations.

(a) Supply Voltage Variation. (b) Temperature Variation.

Figure 5.3: VT Variation Simulation Results.

The results of figure 5.2, show that, in terms of process, the SNDR varies about 0.62dB, and conse-

quently that the ADC is robust in those terms. The results of figure 5.3 show that variations on the supply

voltage lead to a variation of 1.03 dB on the SNDR, and the temperature’s leads to 1.47 dB, which allows

concluding that the ADC is robust in terms of those variations.

5.2 INL DNL

To evaluate the INL and DNL, the input of the ADC has generated a ramp signal. As the sampling

frequency is fs = 2.5GHz, the ADC outputs a new value every 0.4ns. As it is a 7 bit ADC, there are 128

output codes. Performing a 2048 point simulation allows that at each code there are 16 samples. The

ramp signal takes 0.4× 128× 16 = 819.2 ns to rise to evaluate the INL and DNL, figure 5.4.
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(a) INL. (b) DNL.

Figure 5.4: INL and DNL Simulation.

As seen in figure 5.4, DNL= −0.151/0.249 LSB and INL= −0.182/0.329 LSB, for the 2048 point

simulation. The results show that the inherent DEM operation of the folding architecture translates to

highly linear ADC.

5.3 Consumption

Running at Nyquist Frequency, the overall power consumption is 33.6mW. Figure 5.5 represents the

power consumption breakdown.

Figure 5.5: Power Breakdown.

The power consumption shown in figure 5.5 shows that output buffers of the RO and the RO are the

blocks with higher consumption. The power consumption of an oscillator is given by

P = fosc × CL × V 2
DD (5.1)

where fosc is the oscillation frequency, CL is the oscillation capacitance, and VDD is the supply voltage.

The capacitance is a function, among other things, of the transistor sizes. So, for a high-frequency

oscillator, power consumption is inevitably high. The power consumption described by (5.1) show why

the buffer output has higher power consumption than the RO once the oscillation frequency is the same,
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the power supply of each circuit is also the same, but the transistors of the buffer are larger than the

transistors of the RO.

The results in figure 5.5 also show that the VTC has low consumption, and so the main voltage

domain-dependent block of this ADC is the one with lower power consumption. This fact allows con-

cluding that it can be designed a Time Domain Quantization ADC, based on Time Interval quantization,

with low power consumption and become more competitive with the State of the Art in terms of Walden

Figure of Merit.

5.4 Bandwidth

To evaluate the Bandwidth of the ADC and its PVT variation, the SNR is evaluated for six different

frequencies, figure 5.6.

Figure 5.6: Bandwidth Evaluation.

The frequencies assure a coherent sampling for 1024 points simulations. The higher frequency is

higher than the Nyquist frequency (= fs/2 = 1.25GHz). As seen in figure 5.6, the ADC’s bandwidth

does not change in with PVT variation, and the 3dB bandwidth is higher than the Nyquist frequency.

This result can also be predicted evaluating the FFT of the output signals, figures 5.7-5.11.

Figure 5.7: FFTs Typ Simulation.
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Figure 5.8: FFTs SS Simulation. Figure 5.9: FFTs FF Simulation.

Figure 5.10: FFTs SF Simulation. Figure 5.11: FFTs FS Simulation.

As seen in 5.7-5.11, the FFTs show that the signal to noise ratio is degraded mostly by the ground

noise and not by the harmonics power. It leads to an SNR almost constant all over the Nyquist band.

The results allow concluding that the ADC’s bandwidth is independent of the process variation, con-

firming the ADC’s robustness. The results show that the Nyquist frequency is not the frequency with 3dB

degradation of the SNR. It means that this is a Nyquist ADC, once it can be used any input frequency

from 0Hz up to fs/2 and the linearity remains almost constant.

73



5.4.1 Output Signal

In figures , there are two signals. A Verilog-a module generates signal v(out−analiser). At each period

of the clock, the signal v(out−analiser) has the value of the time difference between the time instant that

two signals at the output of the VTC rise. The signal D2Av(d) is the output of the ADC.

Figure 5.12: Typical and SS Simulation. Figure 5.13: FF Simulation.

Figure 5.14: SF Simulation. Figure 5.15: FS Simulation.

The figures show that the output of the ADC track the time interval amplitudes, displaced in time

due to the pipeline operation, in which the output signal is related to the time interval of the previous

clock signal. However, it is also possible to see that sometimes, the output signal has more changes

than the changes on the time interval between the rising edges at the output of the VTC. It happens,

once to have an output variation, there must be a variation of one LSB on the time interval between the

digital signals. However, the signal computed (by the Verilog-A code) allows to show any change, and

so there are variations smaller than one LSB. In other words, the signal computed is not affected by the

quantization error, but the output of the ADC is, which justifies some differences between the two.
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Chapter 6

Conclusions

The results of this dissertation show that Time Quantization ADCs are a solution to fight the problems

due to the ever-decreasing size of the technology’s devices, but they have some limitations. The first

limitation is due to the conversion of the analog information from the voltage domain to the time do-

main, which needs to use an auxiliary VCO, converting it to frequency, or an (or multi) auxiliary VTC(s),

converting it to a time interval between digital signals. These auxiliary circuits are voltage dependents,

which is almost paradoxical once the point of this type of ADC is to be voltage-independent.

When the option is to quantify the frequency, which uses a VCO, the ADC will never have a Nyquist

Bandwidth, as the input frequency will never be able to vary from fin = 0Hz to fin = fs/2. There are two

options when choosing to quantify the frequency. The first option is to use one single channel ADC, and,

inevitably, presenting a high pass first-order error shape, in which the quantization noise is amplified,

for frequencies near the Nyquist frequency. This type of ADC has a lower input bandwidth. The other

option is to use multiple channels of this ADC, where the first-order error shaping becomes a bandpass

type, but there are some frequencies that the ADC’s output does not have any information about the

input signal.

Otherwise, when the option is to quantify the analog information by quantifying a time interval be-

tween two digital signals, if the implementation chosen is FLASH type, there will be a need for 2N VTCs

and 2N FF, keeping the same area and consumption limitation of the traditional FLASH architectures

of the voltage domain. It is possible to implement an interpolation approach to avoid having too many

VTCs, but the area efficiency will still below, and the information about the analog information will be in

only two out of the 2N FFs.

Finally, when the decision is to use only a VTC, it is necessary to think out an architecture that the

final result is not given by the difference between two quantifications, once it leads to an ADC linearity

limitation of N−1
2 ENOB. The results of this work allow concluding that it is possible to design a highly

linear VTC with a higher resolution than 7 bit and a TDC with sufficiently good linearity that shows

linearity close to the ideal.
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6.1 Achievements

The results of the ADC are shown in table 6.1.

Specification Result

INL +
−0.5LSB = −0.151/0.249 LSB

DNL +
−0.5LSB −0.182/0.329 LSB

ENOB 6 6.32 (@ fs/2)
Output Amplitude Variation +

−20% +
−18%

Table 6.1: ADC Specification VS Results.

This work presents a 2.5 GS/s 7 bit time-domain folding ADC. It achieves highly competitive area

efficiency among all recent ADC works of similar sample rate and resolution. The VTC presents high

linearity and has low consumption, allowing an ADC design of high linearity for a 7-bit resolution. The

RO-based folding TDC achieves high area efficiency and high speed simultaneously. The inherent

DEM of the RO-based TDC is also highly linear, manifested by DNL of -0.151/–0.249 LSBs, INL of -

0.182/+0.329 LSBs. Due to the double sampling limitation linearity of 6.5 ENOB for a 7-bit resolution

ADC, the ADC achieves high linearity of 6.32 ENOB at Nyquist input frequency, (fin = fs/2), with a

33.6mW power consumption, leading to a Walden Figure of Merit FOMW = 168.1fJ/step, which is an

improvement when comparing with the architectures that implement time domain folding, [7, 14].

6.2 Future Work

The next step to implement this ADC is to design the layout. The total area should be small due to the

area efficient folding approach.

However, for this ADC to be more competitive with the State of the Art, the consumption should be

decreased, maybe abdicating of some linearity. Another improvement in this ADC should be the better

control of the current PVT’s variations to improve the scaling of the output signal’s amplitude.
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Appendix A

Derivation of Equations

A.1 Derivation from (2.4) to (2.5)

Φ[k] =

∫ kTs

−∞
Ψ(τ)dτ

Φ[k]− Φ[k − 1] =

∫ kTs

−(k−1)Ts

Ψ(τ)dτ

= 2πfoTs + 2πKo

∫ kTs

−(k−1)Ts

Asen(wτ)dτ

= 2πfoTs + 2πKoA
sen(wkTs)− sen(wkTs − wTs)

w

2j(sen(wkTs)− sen(wTs(k − 1)) = ejwkTs − e−jwkTs − ejwkTs−jwTs + e−jwkTs+jwTs

= ejwkTs(1− e−jwTs)− e−jwkTs(1− e−jwTs) = (1− e−jwTs)(ejwkTs − e−jwkTs)

= e−jw
Ts
2 (ejw

Ts
2 − e−jw

Ts
2 )(ejwkTs − e−jwkTs)

= (ejw
Ts
2 − e−jw

Ts
2 )(ejwTs)K−

1
2 − e−jwTs)K− 1

2 )

= 2jsen(w
Ts
2

)2jsen(jwTs)K −
1

2
)

2πKoA
sen(w Ts

2 )2jsen(jwTs)K − 1
2 )

w

= 2πKoATs
sen(πfTs)

π2fTs
2sen(wTs)K −

1

2
)

= 2πKoATssinc(fTs)u(Ts(k −
1

2
))

y[k] = NφKoATssinc(fTs)u(Ts(k −
1

2
)) +NΦfoTs + ∆Φε

81



A.2 Derivation from (2.4) to (2.6)

Φ[k] =

∫ kTs

−∞
Ψ(τ)dτ

Φ[k]− Φ[k − 1] =

∫ kTs

−(k−1)Ts

Ψ(τ)dτ

= 2πfoTs + 2πKo

∫ kTs

−(k−1)Ts

u(t)dτ

In figure A.1 is shown the input signal of the ADC, vin(t), and the signal after the sampling block,

u(t), which is the input signal of the VCO.

Figure A.1: Sampling a sinusoidal wave with retention.

From A.1 it can be seen that

∫ kTs

−(k−1)Ts

u(τ)dτ = τu((k − 1)Ts)

Φ[k]− Φ[k − 1] = 2πfoTs + 2πKoτu((k − 1)Ts)

y[k] = NΦfoTs +NΦKoτu((k − 1)Ts) + ∆Φε
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