
Game Engines for Algorithmic Design

Ricardo de Lemos Filipe
ricardo.l.filipe@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

January 2021

Abstract

With the advancements in technology and computers, new tools and techniques were developed in ar-
chitecture. Architects started using digital modeling tools, like Computer-aided Design (CAD) and Building
Information Modeling (BIM) applications. By using these tools, architects can design three dimensional
models. A new approach was also developed, an algorithmic approach. In an algorithmic approach,
the architect writes an algorithm that generates the digital model. Visualization tools are important in an
algorithmic approach, because they help the architect write the algorithm and allow architects to give a
subjective evaluation of the design aesthetic. Typical visualization tools, such as CAD and BIM applica-
tions, can only provide a low fidelity dynamic view. These applications can generate high-fidelity renders,
but they require a large amount of time to render. This wait time hinders the architect’s productivity and
thought chain. Additionally, these applications have performance issues, when they are saturated with
the geometry fed by an algorithmic description. Game engines, contrary to CAD and BIM applications,
can adapt the digital model to be visualized in real time and they also provide navigation systems. These
qualities make game engines excellent visualization tools. For this reason, we explore the use of game
engines that can generate high-fidelity renders in real time as visualization tools. This solution can gener-
ate the digital model and adapt the model for real time rendering with high fidelity. We evaluate the image
quality and performance of our solution by comparing it with another visualizer.
Keywords: Algorithmic Design, Game Engine, Interactive Visualization, High-fidelity render

1. Introduction

Architectural designs and design processes have
been influenced by the digital era. Computer-
Aided Design (CAD) and Building Information Mod-
eling (BIM) applications are digital tools used by
architects to create building designs [14], increas-
ing productivity, the quality of presentation images,
and the production of technical documentation.
Furthermore, this evolution to the digital medium
has allowed architects to develop more complex
designs.

In the digital design process, an architect uses
a set of digital tools that are capable of 2D draw-
ing, 3D modeling, analysis, optimization, and ren-
dering. The need to use various tools and make
multiple changes can be problematic when creat-
ing complex architectural designs. Algorithmic De-
sign (AD) came to mitigate this problem. AD is a
design approach based on the creation of models
through algorithms [8]. Unlike traditional architec-
tural design approaches, with AD , the architects
do not create the digital model directly. Instead,
they write the program that generates the digital
model, through a combination of geometric, math-
ematical, and symbolic representations [20]. This

allows the architect to be able to create more com-
plex geometry, automate repetitive tasks, and ex-
plore new alternative designs with low effort.

However, creating such a program is not a trivial
task. Coding complex designs demands an addi-
tional effort from the architect, who might not be
very proficient at programming. This leads not only
to additional errors, such as coding mistakes along
with geometric mistakes, but also to a disconnec-
tion between what is being written and what effec-
tively is going to be generated as a result. The
latter aspect is particularly important because of
how crucial visualization is for architecture. Only
by visualizing their designs can architects give a
subjective aesthetics evaluation on them. Unfor-
tunately, currently used visualization tools, such
as CAD (e.g., AutoCAD and Rhinoceros) and BIM
(e.g., Revit and ArchiCAD) applications, have per-
formance issues as a project grows in scale [10].

This discrepancy between code and model is
particularly severe in the case of AD, because it en-
ables the quick generation of large amounts of ge-
ometry without much effort. Moreover, AD allows
us to reconstruct designs by simply changing its
parameterization, leading to further deceleration in

1



the design workflow. This will greatly affect the de-
sign production process since, as a project starts
to grow, each change will take longer to verify and
design errors may proliferate. On later stages of
the design process, high-quality renders needs to
be generated for design presentations to clients. In
our experiments, this stage may take days, some-
times even weeks to accomplish, even on a spe-
cialized rendering workstation [15].

1.1. Goals
Our main goal with this dissertation is to overcome
the problems caused by the use of AD alongside a
CAD or BIM application, as the models generated
by these applications, most of the time, are not suit-
able for navigation or visualization because they
provide a restrictive real-time visualization and per-
form badly with complex models [17]. These ap-
plications were designed for interactive use ; how-
ever, they often become impracticable with regards
to performance with the considerable amount of
data generated by the AD approach. These appli-
cations prove to be unacceptable to an AD work-
flow, because their performance problems delay
the visualization of the generated designs, thus
making AD harder than necessary. To this end, we
will explore the use of a game engine as a high-
fidelity real-time visualization tool for AD. Our goal
in this dissertation is to use a game engine to cre-
ate high-fidelity renders rapidly and also serve as
navigation tool.

2. Related Work
In this section, we will explore existing visualization
solutions for AD and describe advantages and dis-
advantages of each solution. We will also analyse
the techniques used by game engines to achieve
high fidelity rendering.

2.1. AD Visualization Tools
Although the area of visualization is broad, this
research focus on the visualizers aimed for ar-
chitectural design and also those related to AD.
As mentioned in the goals section, we want to
achieve high-fidelity visualization, interactivity, and
real-time rendering and, as such, we will focus
more on the tool’s capabilities in these areas. All
the tools mentioned in the following subsections
are capable of receiving a set of modeling oper-
ations describing a model and generate it.

2.1.1 CAD and BIM applications

There are two paradigms for producing and visu-
alising 3D models in architecture: CAD and BIM.
Both allow the creation and modification of a de-
sign by means of a computer, and their goal is to in-
crease design productivity and quality. With these

tools, an architect can freely create, explore and
visualize their designs either in 2D or 3D space.

What makes BIM applications stand out from
CAD applications is the fact that the BIM paradigm
goes even further to complement the digital model
with various relevant metadata, such as material
costs and quantities, to support other related activ-
ities such as construction and fabrication [12]. The
BIM paradigm uses data-enhanced parametric ob-
jects that allow data and structural information to
be stored within the model. ArchiCAD and Revit
are two examples of BIM applications. Rhino3D
and SketchUp are two examples of CAD applica-
tions.

CAD and BIM applications are capable of ren-
dering visually appealing rendered results but they
have their limitations. When used for direct mod-
eling, they can be sufficiently performant. How-
ever, when used in the context of AD, they suffer
from slowdowns as a project becomes saturated
with the geometry fed by an algorithmic description
[10]. Natively, both CAD and BIM provide two main
views, one with a simplified view of the model, with
simplified materials, shadows and lighting, and an-
other view for the generation of high-quality static
renders. If the architect wants to see that view in
high-quality, he must wait for the rendered result.
This wait time hinders the architect’s productivity.

Real-time rendering with high fidelity is possible
with Twinmotion and Lumion. Twinmotion is an Un-
real visualizer capable of doing real-time rendering
with high fidelity, and supports the three naviga-
tion system that are described in section 1, as well
as synchronising with CAD and BIM applications.
However, Twinmotion does not allow any interac-
tion with objects and has limited control over qual-
ity level, like the level of detail of materials. Lumion
is a real-time visualizer capable of generating high
fidelity render for CAD and BIM applications. It in-
cludes an interactive interface, a weather systems,
and a resourceful library of Physical-Based Ren-
dering (PBR) materials and assets. Lumion does
not support Virtual Reality (VR) navigation or walk
mode, it only supports free camera. Since these
visualizers are mainly focused for high fidelity real-
time renders, they might not scale well with large
projects.

2.1.2 Luna Moth

Luna Moth is a useful web-based AD tool during
early stages of the architectural design process
,due to its ability to provide fast feedback and cre-
ate an environment where an architect can rapidly
test different variations. Luna Moth currently uses

2



Three.js, 1 a JavaScript library that uses WebGL.
Three.js supports local illumination, global illumi-
nation, shadows, and realistic materials. However,
Luna Moth only uses Three.js to do local illumi-
nation, using the Phong shading model, and only
uses a simple matte material which reduces signif-
icantly the render quality.

In terms of navigation, Luna Moth only supports
free camera movement. Moreover, adding new
navigation systems that require collision detection
is not trivial, due to the fact that Three.js does not
support collision detection. Performance is also an
issue: even though Luna Moth is more responsive
than other native desktop applications such as Au-
toCAD [3], the latter can render frames faster than
web applications [13]. Because interactivity is so
related to performance in real-time rendering, as
low frame rates ruin user experience [7], we can
conclude that Luna Moth is not a sufficiently good
visualization tool for more complex models.

2.1.3 OpenSCAD

OpenSCAD is an AD application with the goal of
reducing the architect’s waiting time for visual feed-
back of changes and providing a visual way to
help them in the programming task. Similarly to
Luna Moth, OpenSCAD uses scripts which spec-
ify geometric primitives, such as cubes, cylinders,
and spheres, and defines how they are modified
and combined through Constructive Solid Geom-
etry (CSG). OpenSCAD allows the creation of 3D
models of parametric designs that can be easily
adjusted by changing the parameters. In Open-
SCAD, a user can highlight an object and see
the part of the program that generated it, which
can help the user understand what object is being
changed.

OpenSCAD provides a view using Phong shad-
ing model, which does not provide a high-quality
view but allows to quickly generate and render the
model. Unlike Luna Moth, OpenSCAD supports
simple materials.

2.1.4 Game Engines

In architecture, game engines have been consid-
ered for visualization [4, 1]. Unlike the previous ap-
plications, game engines are optimized to generate
renders in real time. Game engines employ differ-
ent techniques to simulate reality [6]. One exam-
ple of these techniques is mipmap. This technique
uses a sequence of textures with progressively less
resolution. The selection of the texture to apply is
based on the distance between the camera and the

1Three.js Documentation, https://threejs.org/docs/. Last ac-
cessed 23 Dec 2019

object, providing a better performance while main-
taining the illusion of realism. By using these tech-
niques, game engines can perform much better in
environments with large amounts of geometry than
the previous visualization applications.

Due to advances in technology, game engines
have become more complex and sophisticated.
New techniques permit a better simulation of real-
ity, allowing games to achieve more photo-realistic
results, while only using relatively weak graph-
ics environments with textured maps and artistry
[11, 2]. This capability of creating close to photo-
realistic results in real time allows not only the
quick generation of renders, but also the capability
of real-time navigation, as well as direct interaction
with the building elements, like opening a door.

Most popular game engines nowadays are Unity
2 and Unreal Engine (UE) 3. These engines carry
all the features that make up a good visualizer,
such as: (1) they have an active community, com-
posed by developers and users that constantly im-
prove the tool; (2) they are updated on a regular
basis, to augment the game engine tool with the
latest algorithms, such as ray tracing [9]; (3) they
have high quality real-time visualizers, as they sup-
port PBR materials, lighting, shadowing and many
other effects; (4) there is a multitude of assets,
present either on each respective asset store or
user-imported; (5) they include a physics engine
to allow interactions that obey the laws of physics;

This means that game engines capabilities sat-
isfy our needs of using an application capable
of rendering in real-time with high fidelity and
also perform well with large amounts of geometry.
Therefore, they are a good candidate for our solu-
tion.

In the following subsections, we will explore the
different game engines techniques used to create
high-fidelity results.

Physical-Based Rendering
The first technique we are going to talk about is
PBR [11, 2]. Traditionally, light interactions were
done through shading models and punctual light-
ing. Even though such a process easily imple-
ments PBR, it still did not take into consideration
real life physics and provided poorer results. As
such, PBR was further developed with the main ob-
jective of simulating light by doing approximations
of the Bidirectional Reflectance Distribution Func-
tion (BRDF). BRDF [2] is a function that describes
how light interacts with opaque objects. One prob-
lem with PBR was the complexity for the artists

2https://docs.unity3d.com/Manual/index.html. Last ac-
cessed 23 Dec 2019

3https://docs.unrealengine.com/en-US/index.html. Last ac-
cessed 23 Dec 2019

3



to use it, but Disney [18, 5] developed a physics-
based shading whose main focus was to maintain
the artist’s control over the final product by sim-
plifying user controls. Following Disney’s success,
other companies started using similar approaches
to achieve the same results. One of these compa-
nies was Epic Games, owner of the Unreal Engine,
although their approach had some differences, par-
ticularly regarding the procedure to achieve real-
time performance [11].

In PBR, this function is divided into two com-
ponents: a diffuse component that represents the
amount of light that is diffused, and a specular
component that describes the specular reflection.

Materials are an essential part of PBR because
they define the physical properties of the object.
In game engines, these properties are base color,
metallic, roughness, and cavity; all these proper-
ties are described using textures.

Global Illumination
Global illumination is a set of algorithms that sim-
ulate the light coming from reflection, diffusion or
refraction. In games engines, global illumination
is achieved through lightmaps, which are textures
containing the effects of casting light sources onto
static objects. However, lightmaps can only be cal-
culated when light sources are stationary.

Reflection
Unfortunately, game engines can not create re-
flection using ligthmaps. To solve this problem,
another set of techniques is used: cube map-
ping, screen space reflection, and planar reflection.
Cube mapping is a technique used to map the en-
vironment onto faces of a cube. The environment
is projected onto each face of the cube and the in-
formation is stored in a texture, aptly called cube
map. Screen space reflection and planar reflec-
tion are techniques used to calculate reflections.
Screen space reflection uses screen space infor-
mation to calculate reflections, only being capable
of reflecting what is on the screen. Planar reflection
offers a more realistic solution by taking into con-
sideration information off-screen. However, planar
reflection requires the insertion of a special object
and rendering the scene again from the direction
of the reflection.

3. Methodology
Our goal with this research, as mentioned in the
introduction, is to develop a tool that provides a
photo-realistic view, in real time, of a complex AD
model. Real-time rendering is an important quality
for the AD workflow because delaying the visual-
ization makes AD frustrating, and it also helps the
architects share their vision. Real-time visualiza-

tion requires the use of an application capable of
real-time rendering with high quality. For this rea-
son, we decided to use UE, because it shows good
performance rendering complex models compared
to other applications. Also, UE is a game engine
capable of doing rendering in real time, something
that is not common place in typical visualizers for
AD tools.

UE stands out from other game engines, be-
cause it uses a more advanced techniques to cre-
ate materials and to calculate light interactions
than other game engines[19], like Unity. Addition-
ally, UE has already features designed for architec-
ture visualization and UE is an open source solu-
tion, making the process of adapting such tools to
architect’s needs simpler.

In the following subsections, we will delve into
the proposed architecture in more detail, specif-
ically looking at the model generation, rendering
processes and navigation systems. All tests in fol-
lowing sections are done in a machine with follow-
ing hardware: i7-4770, Nvidia 960GTX and 16GB
RAM.

3.1. Architecture
Our first step while developing this tool was to ex-
tend UE to support the AD approach. In the AD
approach, an architect does not directly describe
the digital model, specifying instead an algorithm
that describes the digital model. In our solution, we
specifically targeted the Khepri AD tool. We chose
Khepri because the tool we developed is meant
for later stages of project development. In latter
stages of development, the project already went
through the modelling and design process and the
architect requires visualizers to make aesthetics
decisions and generate renders. Khepri is capa-
ble of generating a model in different tools based
on the project’s stage.

The workflow of our solution will be the follow-
ing: (1) an architect describes the model through
an algorithm using Khepri, and (2) Khepri will then
generate the model in UE . This workflow requires
the creation of a plugin in UE , which serves as an
interface for Khepri. In figure 1, we can see the
architecture of our solution.

Figure 1: Component-and-Connector view of our solution

This tool communicates through a Transmission
Control Protocol (TCP) channel with UE and it
makes remote procedure calls to generate the dig-
ital model in the game engine. The communication

4



channel is only the first step in allowing commu-
nication between UE and Khepri. We also need
to make UE Remote Procedural Call (RPC) server,
which requires developing a set of functions that
can be called remotely. This lead us to develop
a plugin for UE . This plugin is responsible for re-
ceiving all remote calls and executing them. The
plugin is also responsible for managing and storing
information about objects requested by Khepri and
for translating this information between Khepri and
UE.

With the use of RPC communication, UE has
to wait for requests from Khepri.However, this wait
must not block UE or it would not be able to re-
spond to user inputs, like moving or rotating the
camera. This creates a conflict between our sec-
ond and third requirements. In order to allow the
user to interact with the visualization tool, while it
waits for requests from Khepri, we decided that
the communication channel should be handled in a
separate thread, different from the main thread that
handles the user interaction. This new thread will
be responsible for receiving and translating infor-
mation between Khepri and UE. This thread then
forwards all requests to the main thread. In UE,
only the main thread has permission to access
UE’s memory space, meaning only the main thread
is capable of creating new objects in the scene.
This new thread makes it possible to pause and re-
sume generating the digital model without closing
the communication channel.

In our solution, the background thread does not
directly forward the request to the main thread. In-
stead, it creates an object called operation, that
represents this request. This allow the background
thread to simplify the request, which reduces the
time it takes for the main thread to respond. For
example, when the background thread receives a
request to create an object, before creating the op-
eration, it calculates the pitch, roll and yaw. This
calculation simplifies the request because the main
thread no longer needs to do this calculation. An-
other advantage of using operations is that the
background thread can respond to some requests.
For example, if Khepri sends a request asking
how many actors are in the scene, the background
thread can respond to this request by counting how
many creation requests were done. This would be
impossible if the background thread just forwarded
the request to the main thread, because the back-
ground could not distinguish the requests and store
the state of the UE.

3.2. Model Generation
Before identifying and explaining the methods used
to generate the digital model, it is important to
know how UE represents geometric objects and
how it organizes them. The geometric objects

that collectively represent the model are polygon
meshes, composed of a set of vertices and faces.
All geometric objects are placed in a scene. In this
scene there can be multiple types of objects, and
not just geometric objects. All the objects that can
be inserted in a scene are called actors. In our
solution we are required to create different actors
based on Khepri requests.

In the following subsections we will describe two
different methods that are used in our solution to
create geometry. Furthermore, we also explain an
optimization implemented in our solution.

3.2.1 Brush

In our first method, we used brushes to generate
geometry. Brushes are special actors and they
are associated with a builder responsible for gen-
erating geometry. Builders are associated with dif-
ferent geometric primitives, which can be cubes,
cylinders, cones, pyramids, etc. Coincidentally,
Khepri primitives are also based on these geomet-
ric primitives. This means that we can develop
different builders for each geometric primitive re-
quired by Khepri and make it possible to generate
the correspondent digital model in UE. Additionally,
we can do Boolean operations between brushes,
which means we can create complex geometry by
using geometric primitives. We used this property
to build slabs. Slabs are extruded surfaces, as the
one that can be seen in figure 2.

Figure 2: Creating a slab with brushes.

In our implementation, we developed a builder
for each primitive required by Khepri. Due to the
fact that brushes perform badly in real-time ren-
dering, we converted brushes into static mesh ac-
tors. Static mesh actors are actors that are used
to represent meshes. Additionally, these meshes
cannot be manipulated in real-time because they
have to be static and they also have to be stored
in memory. In our solution, we also created a spe-
cial builder capable of converting a mesh back to a
brush. Using this builder, we can do Boolean oper-
ations between static meshes.

While using our brushes, we found a prob-
lem. Brushes cannot generate correctly non-
convex surfaces. This is a big problem, because

5



our main objective is to create a realistic represen-
tation of the digital model and the incorrect gen-
eration creates meshes with poor texture mapping
in non-convex faces. The reason why this hap-
pens is because brushes use Binary Space Par-
titioning (BSP) and BSP was not developed with
non-convex surfaces in mind, instead dividing non-
convex surfaces into multiple independent convex
surfaces. Applying a texture to a mesh requires
a two dimensional image to be projected into a
three dimensional object. This process is called
UV mapping, where U and V are the 2D axes. The
separation into multiple convex surfaces makes UV
mapping irregular, because each convex surface is
mapped separately. This problem made us look for
a different solution that provided a higher level of
control in UV mapping while generating geometry.

3.2.2 Primitive Method

r this reason, it is important that generated meshes
have the correct UV mapping. UV mapping, when
done correctly, allows textures to have the desired
appearance when applied to a mesh. To achieve
this, we took a more primitive approach where we
have more control during the mesh creation pro-
cess. The approach is based on the use of a
structure called FRawMesh. With this structure,
we can describe the vertices and polygons that
compose a face of a mesh. Furthermore, we can
also map textures correctly by providing the UV co-
ordinates for each vertex. By using this method,
we also need to calculate normals, tangents, and
cotangents for each vertex. Since the UV map-
ping is different for each primitive, we created dif-
ferent builders based on primitives, similarly to the
brush approach. All the faces of a 3D object in UE
have to be triangulated, decomposed into polygons
with three vertices. Brushes did this automatically
but, with the FRawMesh approach, we also have
more control over the triangulation process. This
allows us to use different algorithms capable of do-
ing triangulation and this means we can now use
algorithms that are capable of doing triangulation
of non-convex faces, allowing us to create objects,
such as slabs, without using Boolean operations.

This more primitive approach solves the issue
created by non-convex surfaces, because now we
can map the mesh correctly. This new approach
also shows to be faster than previous one. We cre-
ated 50 cubes using both methods. It took, on aver-
age 166 milliseconds to generate each cube while
using brushes. Meanwhile, it took, on average,
110 milliseconds to generate each cube when us-
ing the primitive method. The results show that the
more primitive approach can create meshes faster,
which results in a larger number of operations per

second. The only disadvantages of this approach
is that it is not able to do Boolean operations and
requires more effort to map textures.

Lastly, generated cylinders also look more real-
istic while using the primitive method. In UE, cylin-
ders are represented through a prism with a large
amount of sides. When using brushes, each side
is mapped independently, which makes cylinders
look unrealistic. However, when using the primitive
method, we can map the texture correctly by map-
ping all sides together. In figure 3, we can see a
cylinder created by each method.

Figure 3: In the top image, we can see a cylinder created with
brushes. In the bottom image, we can view a cylinder generated
with the primitive method

3.2.3 Optimizations

Both previous methods have to generate meshes.
This means that the same mesh can be created
multiple times, this process has significant cost in
both methods.

As we mentioned previously, we are using static
meshes to represent models and all static meshes
are kept in memory. This means that it is pos-
sible to reuse meshes that were already created.
In our solution, we created a mechanism to reuse
cuboids and cylinders. The reason why we do not
do it for the other primitives is because they have
arrays as parameters, which makes it harder to
find similar meshes because they can have differ-
ent sizes and values. Additionally, these primitives
are also less used and have smaller chances of re-
peating.

To verify the gain of our optimization in real archi-
tectural projects, we measured the time it took to
generate a digital model using the brushes and the
primitive methods with and without our optimiza-
tion. We used as an example the Isenberg Busi-
ness Innovation Hub building (designed by BIG Ar-

6



chitects). The results can be found in the table 1.
The optimization showed a significant gain in per-
formance.

Without Cache With Cache
Brushes 552.6 263,4
Primitive 323.4 121.9

Table 1: The time, in seconds, it takes to generate the Isenberg
Innovation Hub’s model when using different methods.

3.3. Generate Renders
One of our main objectives is to allow architects to
create renders. As such, it is important to explore
what UE can achieve and allow the user take ad-
vantage of its qualities. In UE, there is a tool called
sequencer that allows the users to plan and gener-
ate cinematics. The sequencer provides a timeline
and the user can change properties of actors in the
scene during this time line. These properties can
be actor position, rotation, visibility, among others.
With the use of the sequencer, architects can cre-
ate cinematics where characters interact with the
digital model. This is possible by changing the pro-
prieties of the different actors in the scene. For
example, during a cinematic we can open doors
by changing the rotation of the door’s actor across
time.

To create a simple cinematic, we only need a
name for the sequencer and an actor that repre-
sents the camera. Fortunately, Khepri also has
the same requirements. The only difference is
that Khepri expects to create a render every time
it sends a rendering request. We can solve this by
storing camera position and rotation every time this
request is sent and render the frame. This way, we
maintain the functionality Khepri expects and also
save every camera position in a sequencer. The ar-
chitects can latter edit this cinematic as they wish
through this sequencer.

In UE, creating renders is not a simple task. It re-
quires users to use a specialized view that copies
the camera’s proprieties. The properties are fo-
cal length, aperture, and focus distance. Without
this view, we would not have as much control over
image resolution. The specialized view is created
every time render request is received. Because
this specialized view takes some time to create,
we also developed another method where the cin-
ematic is only generated after receiving every cam-
era position in the sequence.

3.4. Navigation
One of our objectives with our solution is to also ex-
plore different navigation systems in UE. We devel-
oped three different navigation systems: free cam-
era, walk mode, and VR mode. The navigation sys-
tem can be changed through the game engine in-
terface.

In the next section, we evaluate our solution
in terms of image quality and performance when
compared with other visualizers.

4. Evaluation
In later stages of the development of an AD project,
architects require a view of the digital model with
high fidelity which allows to make aesthetics deci-
sions and generate renders that share their vision.
For this purpose, architects look for visualization
tools. As we mentioned in section 2, game engines
can create high-fidelity renders, provide navigation
systems that allow architects to quickly view the
model, and they can also generate multiple frames
per second.

To evaluate our solution, we compared it with an-
other AD visualization tool that is meant to be used
during the same stages of AD project development
as our solution, which is Unity[15]. Unity can gen-
erate digital models and renders faster than typi-
cal CAD and BIM visualization tools. Both of those
qualities make Unity an excellent visualization tool
for later stages of project development.

In the following section, we compare our ap-
proach using UE with the approach using Unity,
specifically comparing render image fidelity, model
generation performance, and render production
performance. To evaluate image fidelity, we com-
pare the limitations in materials and light interac-
tions that our approach and the approach using
Unity have. We do not evaluate shadows due
to both UE and Unity using the same techniques
to create shadows. To evaluate performance, we
measure the time UE and Unity take to generate
renders and the digital model. We also take in
to consideration how UE and Unity react to com-
plex models by measuring frames per second. All
of the tests in the following sections were per-
formed in a machine with the following hardware:
Intel® Core™ i7-4770, Nvidia GeForce GTX960
and 16GB RAM.

4.1. Image fidelity
As mentioned before, one of our objectives is to
provide a close-to-realistic view of the digital model
to help the architect make decisions. For this rea-
son, it is important to know the advantages and dis-
advantages that our solution has when compared
with another real-time visualizer with fidelity. We
evaluate the quality of materials and lights from our
approach and the approach used in Unity.

In this section, all the renders done in Unity and
UE used dynamic shadows to create shadows and
they did not use lightmaps. The reason why we
did not take into consideration lightmaps is be-
cause this process can take multiple hours, even
on simple models, which goes against the purpose
of tools whose goals is to provide a view of the dig-

7



ital model quickly. We only took in consideration
the appearance of the digital model right after the
model is generated. We also used an offline ren-
derer to create renders as a reference for correct
light interactions. For this purpose, we used a plu-
gin in UE that allows Octane, an offline renderer, to
render scenes from UE. For the following renders,
we used the digital model of the Isenberg Business
Innovation Hub.

4.1.1 Materials

Materials are a set of textures that define the ap-
pearance of an object. The types of a material’s
textures depends on the shaders’ inputs. In the ap-
proach used in Unity, there is a limitation on what
material shaders can be used. This happens, be-
cause the approach using in Unity does not adapt
the model’s UV, which makes Unity only able to use
shaders independent from UV mapping. This limits
the variety of shaders that can be used, which can
make some materials look less realistic, because
we cannot use the most appropriate shaders. This
problem can make some materials in Unity have
less detail than materials in Octane and UE , as
we can see in figure 4.

In UE, materials have a special property that al-
low to extend shaders through blueprints, a visual
language in UE. With the use of blueprints we can
create virtual textures that result from operations
between textures, which allow to create more com-
plex materials. For example we can do texture syn-
thesis which is a process of algorithmically gener-
ating a bigger texture image from a smaller digital
sample [16].

Unity uses a simpler approach to materials
that does not support virtual texture as input for
shaders which makes it harder or impossible to ac-
complish complex materials.

4.1.2 Light

Both Unreal and Unity have limitations with re-
flections and diffraction when compared with of-
fline rendering. However, Unreal can natively do
screen-space reflection while Unity requires the
usage of a high-end render pipeline.

Global illumination is also impossible to simulate
in game engines without using lightmaps. In sce-
narios where we have a non-directional light in the
scene, having a poor or non-existent global illumi-
nation can create low-fidelity results, as we can see
in the figure 5. In the figure, we used a source of
light to illuminate a room through a pink glass. In
the UE render, the room is completely dark due to
lack of global illumination. V-Ray simulates global
illumination and lights the entire room up.

Figure 4: Render showing material quality in Octane, Unity and
UE.

Figure 5: Scene showcasing Unreal Engine global illumination
limitations. On the right, we have the scene rendered in Unreal
Engine and on the left we have the scene rendered in V-Ray

Some of these limitations could have less im-
pact, if we used ray tracing but due to lack of sup-
port from hardware, we were unable create renders
using this technique.

4.2. Performance
One of our objectives in this research was to adapt
a game engine to support AD. In AD, it is impor-
tant for a visualization tool to be fast to allow an
architect to quickly view the digital model. For this
reason, we will measure the performance of our
solution and compare other visualization tools. We
measured the following qualities: the time it takes
to generate a digital model, the time it takes to gen-
erate a cinematic, and interactivity with the applica-

8



tion.

4.2.1 Generate Model

We compared the time it takes to generate our so-
lution with Unity, another tool that is meant to be
used in the same stages of AD project develop-
ment. We generated the digital model of the Isen-
berg Business Innovation Hub, the digital model
of the Astana National Library, and a model that
can be increased exponentially. Both the Isen-
berg Business Innovation Hub and the Astana Na-
tional Library are projects modeled using an AD
approach, and they are composed by two thousand
and twenty eight thousand primitive elements, re-
spectively.

Model Unreal Engine Unity
Isenberg BIH 00:02:01.9434 00:00:02.8436
Astana National Library 01:12:58.1964 00:00:29.3057
Exponential model (n=3) 00:00:00.1146 00:00:26.6347
Exponential model (n=4) 00:00:00.3971 00:02:02.4862

Table 2: Time Unity and Unreal take to generate the digital
model of Isenberg Business Innovation Hub (BIH), Astana Na-
tional Library, and a model that can be increased exponentially

In table 2, we can see that Unity can generate
the model much faster than UE. One of reasons
this happens is because the approach using Unity
does not generate geometry, contrary to our solu-
tion. The last model is only composed of cylinders
and cubes that are of the same size. This means
our solution will use the cache a lot and we can de-
crease the impact of generating similar geometry
multiple times unnecessarily. However, as we can
see in table 2, Unity is still much faster when insert-
ing game objects than UE is when inserting actors.
This is one of the biggest limitations of UE and it
will always make the model generation slower in
UE.

4.2.2 Generate Cinematics

We generated cinematic of Astana National Library
digital model in UE and Unity. In UE, we used our
method to render cinematics. In our method, UE

Cinemeatic Unity Unreal Engine with
our method

Tracking line 00:00:16.85 00:00:13.99
Patio entrance 00:00:18.01 00:00:08.05
Enter Patio 00:01:11.02 00:00:32.10
Library 00:01:22.20 00:00:31.83
Exterior 00:04:06.12 00:02:25.21

Table 3: Time it take to generate cinematics in Unity and Unreal
while using Khepri method and our method

stores the camera position every time Khepri send
a request and then we generate the entire cine-
matic. In this last method, we will add the time
it takes to generate the cinematic and the time it

takes for Khepri to send all of the camera posi-
tions. We generated multiple cinematics due to the
optimization techniques present in game engines.
We did so knowing different performance values
will be obtained depending on the scene viewpoint.
Therefore, pre-defined pathways in various places
of the scene will be followed to form a render se-
quence. In table 3, we can see that UE when it
uses our method is much faster than Unity.

4.2.3 Interactivity

In AD, projects can have a large amount of geom-
etry which can hinder interactivity in some visual-
ization tools. Game engines are the solution to this
problem because they use a set of techniques to
adapt the model for real-time visualization, unlike
typical CAD and BIM applications. For this reason,
we decided to evaluate how our solution reacts to
the generation of complex models with a lot of ge-
ometry. We will compare our solution with Unity.

Viewpoint Unreal Unity
Game View

Unity
Editor View

Profile view 16.34 fps 18.76 fps 7.00 fps
Top view 14.22 fps 16.44 fps 5.87 fps
Inner to Patio 32.89 fps 23.26 fps 10.18 fps
Library 99.00 fps 65.79 fps 21.69 fps
Inner view 81.30 fps 56.17 fps 18.11 fps
Stairs 59.52 fps 53.19 fps 16.03 fps

Table 4: The average number of frames per second that Un-
real and Unity have when using game view and editor view in
different viewpoints

Unity and UE provide two views: a view for scene
editing, where the user can change the geome-
try’s properties and add new objects in the scene,
but only allows navigation in free mode; and an-
other view, called game view, that does not allow
changes but allows using different navigation sys-
tems. We generated the Astana National Library
model in UE and Unity and placed the view at dif-
ferent viewpoints. In table 4, we can see the re-
sults each view has at different viewpoints. UE
shows the same level of performance in the edi-
tor view and in the game view, contrary to Unity,
where the editor view has major performance is-
sues when compared to game mode. However, UE
and Unity show similar results while using game
view. At viewpoints where a larger amount of ge-
ometry has to be rendered, like the profile view and
the top view, Unity has better performance. Mean-
while, at viewpoints where a smaller amount of ge-
ometry is rendered, UE has better performance.

4.3. Discussion
In this section, we observed that our solution can
generate higher fidelity renders than Unity, be-
cause UE can use more complex materials. Our
approach generates geometry with correct UV

9



which allows us to use a larger amount of shaders.
However, the decision of generating more faith-
ful geometry comes with the cost of slower model
generation.

When we used our approach where UE gener-
ates the entire cinematic in one go, we can gen-
erate cinematics faster than Unity. UE also allows
more creativity in cinematics by allowing the user
to animate objects in the scene.

In terms of interactivity, both UE and Unity show
similar results when generating complex models
which makes both applications good candidates
for visualization of AD projects. However, Unity is
only good when using the game view which hin-
ders Unity as a visualization tool because only in
the editor view the user can edit scenes and use
the game engines’ tools to add more details.

With these results in mind, we can conclude that
UE is the preferred tool when a user wants to have
a high-fidelity view, or wants to generate cinemat-
ics. However, Unity seems more useful for AD
projects in earlier stages of development where the
architect is still testing different designs and needs
to regenerate the digital model multiple times. The
time it takes to generate geometry in UE is a big
disadvantage and might be hinder the architect’s
productivity. Our solution, like all visualizers, has
compromises, but by using an AD approach, the
architects can select the most suitable visualization
tool to their needs.

5. Conclusions
In architecture, Algorithm Design (AD) is becoming
more commonly used. In this approach, the archi-
tect describes the model through algorithms. By
using AD, architects use visualization applications
to help them relate parts of the algorithms with
the generated geometry. Furthermore, throughout
the AD project development, the architect needs a
high-fidelity view to make design aesthetics deci-
sions.

Unfortunately, commonly used modeling appli-
cations, such as Computer Aided-Design and
Building Information Modeling, cannot fulfill archi-
tect’s needs concerning the visualization of com-
plex AD projects. These applications have per-
formance issues when saturated in geometry and
take a large amount of time to generate high fidelity
renders.

For this reason, we explore using a game en-
gines, the Unreal Engine (UE), as a high-fidelity
real-time visualization tool for AD. Game engines
use techniques that accelerate the rendering pro-
cess which allows a higher level of interaction than
other visualization applications and high-fidelity
renders in real time. Our solution is able to explore
the use of a game engine capable of high-fidelity
rendering in real time for AD. We achieve this by

extending UE with the use a plugin and a commu-
nication channel. Our solution shows more flex-
ibility that previous solutions, such as Unity, with
regards to how materials are implemented, leading
to higher image fidelity. However, our solution is
not optimal for quick view of the model due to the
time it requires for the model to be generated. Our
solution, like all AD visualization tools, has compro-
mises, but by using an AD approach, the architects
can select the most suitable visualization tool for
their needs.

5.1. Future Work

UE is constantly evolving and newer versions are
being released every few months. These newer
versions come with new features that can be in-
teresting to explore, in the context of AD. For ex-
ample, in a future version of UE, there will be a
feature that allows the user to create water bod-
ies through splines, which are already supported in
Khepri. Additionally, newer versions might depre-
cate the current application programming interface,
so our plugin might need maintenance to work in
newer versions.

We will also continue to explore newer ways to
optimize the model generation and actor creation in
UE, since quick model generation is an important
quality in an AD visualization tool. This is currently
one important limitation of UE and greatly reduces
the productivity. One possibility would be to explore
procedural mesh actors. These actors can gener-
ate geometry in run time, which might reduce the
time it takes to generate the model, but can greatly
impact the performance of UE.

Currently, Khepri is not prepared to animate the
model, but this would be an interesting extension
to add in Khepri. This feature would allow a user
to automate animations through the algorithmic de-
scription as well and generate more complex cine-
matics.

Finally, we will also explore UE’s ray tracing ca-
pabilities. These techniques will allow the genera-
tion of higher fidelity renders in real time, but since
we currently do not have compatible hardware, we
cannot test this technology.

References

[1] A Forrester Consulting Thought Leadership
Spotlight Commissioned By Epic Games
Real-Time Rendering Solutions: Unlocking
The Power Of Now. Technical report, 2018.

[2] T. Akenine-Möller, E. Haines, N. Hoffman,
A. Pesce, M. Iwanicki, and S. Hillaire. Real-
Time Rendering, Fourth Edition. CRC Press,
4th editio edition, 2018.

10



[3] P. Alfaiate and A. Leitão. Luna Moth: a web-
based programming Environment for Genera-
tive Design. eCAADe 2017, 2:511–518, 2014.

[4] A. S. Augsburg. Realtime Interactive Archi-
tectural Visualization using Unreal Engine 3 .
5 Masterarbeit Realtime Interactive Architec-
tural Visualization using Unreal Engine 3 . 5.
(March 2013), 2016.

[5] B. Burley. Physically Based Shading at Pixar.
Acm Siggraph, pages 1–27, 2012.

[6] Carlos Martinho, P. Santos, and R. Prada.
Design e Desenvolvimento de Jogos. FCA,
2013.

[7] M. Claypool and K. Claypool. Perspectives,
frame rates and resolutions: It’s all in the
game. In FDG 2009 - 4th International Con-
ference on the Foundations of Digital Games,
Proceedings, pages 42–49, New York, New
York, USA, 2009. ACM Press.

[8] D. J. Gerber and M. Ibañez. Paradigms in
Computing: Making, Machines, and Models
for Design Agency in Architecture. eVolo,
2015.

[9] E. Haines and T. Akenine-Möller. Ray trac-
ing gems: High-quality and real-time render-
ing with DXR and other APIs. Apress Media
LLC, 1st edition, feb 2019.

[10] M. Johansson. Real-time rendering of large
building information models: Current state vs.
state-of-the-art. 2012.

[11] B. Karis. Real Shading in Unreal Engine 4.
Acm Siggraph 2013, pages 1–21, 2013.

[12] K. Kensek and D. Noble. Building Information
Modeling: BIM in Current and Future Practice.
Wiley, 1 edition, 2014.

[13] M. Z. Khan and M. M. Hashem. A Compari-
son between HTML5 and OpenGL in Render-
ing Fractal. In 2nd International Conference
on Electrical, Computer and Communication
Engineering, ECCE 2019. Institute of Electri-
cal and Electronics Engineers Inc., apr 2019.

[14] B. Kolarevic. Architecture in the Digital Age:
Design and Manufacturing. Taylor Francis, 1
edition, 2003.

[15] A. Leitão, R. Castelo-Branco, and G. Santos.
Game of Renders. Intelligent and Informed -
Proceedings of the 24th International Confer-
ence on Computer-Aided Architectural Design
Research in Asia, CAADRIA 2019, 1:655–
664, 2019.

[16] L. Liang, C. Liu, Y. Q. Xu, B. Guo, and
H. Y. Shum. Real-time texture synthesis by
patch-based sampling. ACM Transactions on
Graphics, 20(3):127–150, jul 2001.

[17] A. W. Pelosi. Obstacles of utilising real-time
3D visualisation in architectural representa-
tions and documentation. New Frontiers -
Proceedings of the 15th International Con-
ference on Computer-Aided Architectural De-
sign in Asia, CAADRIA 2010, pages 391–398,
2010.

[18] I. Sadeghi, H. Pritchett, H. W. Jensen, and
R. Tamstorf. An artist friendly hair shading
system. ACM SIGGRAPH 2010 Papers, SIG-
GRAPH 2010, 29(4):1–10, 2010.

[19] A. Šmı́d. Comparison of Unity and Unreal En-
gine. (May):69, 2017.

[20] R. Woodbury. Elements of parametric design,
volume 1. Routledge, 1st editio edition, 2010.

11


