
Transfer Learning Methods for Alzheimer’s Disease Diagnosis

Pedro Miguel Tavares Pereira
pedro.t.pereira@tecnico.ulisboa.pt
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Abstract

Alzheimer’s disease (AD) is the most common cause of dementia among elderly people and one
of the leading causes of death in developed countries, which is manifested by the loss of cognitive
functioning and behavioral abilities, caused by progressive neuronal degeneration. Although there is
still no practical diagnostic method available, a correct detection of the disease is crucial to slow down
it’s progression and cognitive decline. In recent years, Deep Learning methods gained popularity in
AD detection, especially in dealing with brain scan images. Despite the success of these methods, the
volume of medical images available is usually too small, which can easily lead to overfitting. At the same
time, multimodal neuroimaging approaches have shown good results in AD diagnosis. In this work, a
cross-modal Transfer Learning strategy was adopted using positron emission tomography (PET) and
magnetic resonance imaging (MRI) brain scans: Deep Learning models based on Convolutional Neural
Networks were pre-trained on one modality and fine-tuned using the other modality. The proposed
approach obtained 86.4% accuracy for the classification task of AD vs normal controls (NC), showing
improvement of around 2.5% of the classification system’s accuracy with Transfer Learning, reduc-
ing overfitting, while taking advantage of the information provided by different neuroimaging modalities.

Keywords: Alzheimer’s Disease; Transfer Learning; Convolutional Neural Network; Deep Learning;
Medical Imaging; Multi-modality

1. Introduction

Alzheimer’s Disease (AD) is the most common
cause of dementia among people over the age of 65,
affecting more than 5 million Americans [1]. It is de-
fined as the loss of cognitive functioning and behav-
ioral abilities, interfering with a person’s daily life
and activities, such as difficulty in communication,
speaking or walking. Changes in the brain may be-
gin a decade or more before memory and other cog-
nitive problems appear. These changes are related
to abnormal deposits of amyloid plaques and tau
tangles throughout the brain, killing neuron cells
and cutting connections with other neurons in an
irreversible way, eventually leading to the person’s
death.

There are 3 main stages regarding AD: mild
AD, moderate AD and severe AD. Preceding those
stages, there is a phase called Mild Cognitive Im-
pairment (MCI), in which people have more mem-
ory problems than normal for their age, but their
symptoms do not interfere with their everyday lives.
Some people with MCI may develop AD, but not
all of them do. MCI patients that are likely to
progress to AD are called MCI converters (MCI-C),
while MCI patients that will not convert to AD are

called MCI non-converters (MCI-NC). This rate of
progression differs for each patient and each person
may show different symptoms at each stage, which
makes AD a challenging task for diagnosis and prog-
nosis.

With the growth of popularity of machine learn-
ing methods and application of such strategies to
AD diagnosis, it has been suggested a general adop-
tion of computer-assisted methods for dementia di-
agnosis. Among these, it has been shown that Deep
Learning methods obtain better results [21]. Deep
learning is a specific sub field of machine learn-
ing, which consists on learning successive layers of
increasingly meaningful representations, involving
tens or even hundreds of successive layers of repre-
sentations, all learned automatically, from exposure
to training data, via neural networks [8].

The most popular deep learning model used for
image analysis is the Convolutional Neural Network
(CNN). When CNNs are trained on images, the first
layers tend to learn generic features, such as edges,
colors and textures, regardless of the cost function
or dataset, as more deep layers tend to learn more
abstract features related to particular dataset and
task (specific).
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Transfer Learning methods focus on solving one
problem in the base domain and transferring the
knowledge gained to a different but related prob-
lem, the target task. Usually, in Deep Learning,
the method is based on training a base network and
copying the first n layers to the first n layers of a
target network. Some of the layers of the previous
base task can then be fine-tuned to the new task
or left frozen [27]. Fine-tuning works by unfreez-
ing a few of the top layers of the frozen previously
trained model and jointly training these layers with
the top layers of the target network, slightly adjust-
ing the more abstract representations of the model
being reused to make them more relevant for the
problem at hand. The use of a pre-trained CNN
with adequate fine-tuning can outperform a CNN
trained from scratch, using less amount of training
data [24].

The identification of biomarkers for AD and it’s
combination with deep learning techniques that are
able to identify patterns, features and hidden repre-
sentations, contribute to the early detection of the
disease and may accelerate the development of new
therapies that can slow down the disease progres-
sion and cognitive decline, which can have huge im-
pacts in patient’s and caregivers’ life quality.

In this work, a cross-modal Transfer Learning
(TL) approach is investigated within a Deep Learn-
ing context, for AD diagnosis, using MRI and
fluorodeoxyglucose positron emission tomography
(FDG-PET) data, while studying the effects of fine-
tuning on initial and deep layers. This approach is
compared to other more common methods used to
merge two types of neuroimaging data. Two types
of CNN-based were compared and conclusions were
taken based on the performance metrics of the ap-
plied methods and the visual representations of the
features learned by the models developed, making
possible to see into the ”black box” of a deep learn-
ing model.

To date, from the information collected during
this thesis, there are no studies that use cross-modal
Transfer Learning for AD detection using PET and
MRI modalities or using the deep learning networks
that were implemented in this thesis, whereby this
work might lead to a better understanding in this
area.

2. State of the Art

In this section, different applications of Transfer
Learning for AD detection within the last 10 years
are summarized. In addition, several methods
in which multimodal neuroimaging data has been
combined are described.

2.1. Transfer Learning methods for AD de-
tection

Transfer Learning methods have been proven to be
robust even for very dissimilar domains, such as net-
works trained on a dataset containing natural im-
ages used with medical images [14, 26, 23, 13, 18,
19, 9], which is the most common application of TL
in AD detection, but there are several other ways
to apply Transfer Learning to Alzheimer’s early de-
tection problem, as detailed in this section.

[5] uses a Support Vector Machine (SVM) for
classification of MCI-C vs MCI-NC patients, based
on a related auxiliary domain, given by the task of
classifying AD vs NC patients. The same authors
extend their TL approach to use multiple auxiliary
domains - Multi-Domain Transfer Learning [4, 6].
The classification was made by SVMs and obtained
measures of performance for several tasks. Each
task used the others as auxiliary domains, for exam-
ple, in [4] the task of classifying MCI-C vs MCI-NC
patients was based on the AD vs NC and MCI vs
NC tasks, and [6] the target task MCI-C vs MCI-
NC used also AD vs MCI in the auxiliary domain.

Filipovych & Davatzikos [12] had already been
using, in 2011, AD vs NC domain to target the
MCI-C vs MCI-NC classification, using a semi-
supervised SVM to classify MCI subjects in the
absence of certain diagnostic information for some
patients in the ADNI database.

Because these methods used SVMs, there was a
necessity of performing feature extraction manually.
Regions of interest (ROIs) were labeled from each
image and for each ROI the volume of gray-matter
(GM) tissue was computed as a feature [4, 6, 12].
[5] also used average pixel intensity of each ROI for
the PET images as features and three cerebrospinal
fluid (CSF) biomarkers: CSF Aβ42, CSF t-tau, CSF
p-tau. [6] also used CSF Aβ42, CSF t-tau, CSF p-
tau as features.

Other methods used CNNs as learning algorithm,
and therefore, no manual feature extraction was
needed. [14] used MRI data from the OASIS
dataset, using VGG16 and Inception V4 architec-
tures, with pre-trained weights from ImageNet and
fine-tuning. An accuracy of 96.25% was obtained
for AD vs NC classification with the Inception ar-
chitecture, also showing that this type of Transfer
Learning achieves better results than only training
the same model from scratch. Wu et al. [26] also
compared the performance of GoogleNet and Caf-
feNet architectures using Transfer Learning from
pre-trained ImageNet (and fine-tuning), obtaining
accuracy measures of 87.78% for the three way clas-
sification of NC vs MCI-C vs MCI-NC for the Caf-
feNet architecture. Transfer Learning using pre-
trained ResNet architetures and functional MRI
scans from ADNI was used in [23] which achieved
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an average accuracy of 97.92% in the multi-class
classification of AD, NC, significant memory con-
cern (SMC) and three MCI stages, including early
MCI (EMCI), MCI, and late MCI (LMCI). The au-
thors compared this architecture with the AlexNet
architecture for Transfer Learning, concluding that
the use of residual learning (ResNet) and Transfer
Learning both improved the performance. In [13], a
pre-trained ResNet model was fine-tuned from MRI
slices, extracting slice-level features and a Long
Short-Term Memory (LSTM) layer is then used to
learn longitudinal-level features for each subject.

Lu et al. [18] also addressed this type of Transfer
Learning for classification between individuals with
brain pathology (AD among them) and NC. Using
the AlexNet architecture, pre-trained on ImageNet,
with fine-tuning, they achieved 100% accuracy for
this task. [19] also fine-tuned a pre-trained AlexNet
architecture to classify segmented GM, WM and
CSF images and unsegmented MRI images from the
OASIS dataset, in which the unsegmented images
led to better results for the multi-class classification
of the multiple stages of AD. Both of these studies
modified the original AlexNet network for the target
task, by replacing the last three layers with new lay-
ers with randomly initialized weights to learn class
specific features in the target domain. Then, the
weights of the remaining layers were adjusted dur-
ing training jointly with the replaced layers in the
case of [18], or remained fixed in [19] and only the
replaced top layers had their weights updated.

Other studies analysed the current trend of using
Transfer Learning from natural images to AD classi-
fication, specifically, using networks pre-trained on
ImageNet, such as [9], which implemented several
well-known 2D CNNs to extract discriminative fea-
tures from MRI slices and a LSTM to incorporate
spatial information across slices in the classification,
showing better results when using the pre-trained
SqueezeNet model.

A different Transfer Learning method was used
by Hosseini-Asl et al. [15], in which a 3D CNN
was built upon a stacked 3D convolutional autoen-
coder (CAE) network, which was pre-trained on
CADDementia dataset in order to capture anatom-
ical shape variations in structural MRI scans. The
3D CNN’s layers were initialized by encoding the
3D-CAE weights and the upper layers were then
fine-tuned for the specific task using data from the
ADNI dataset (target domain), achieving 100% ac-
curacy in AD vs MCI classification and more than
90% accuracy in the other evaluated tasks. Simi-
larly, Payan et al. [21] used a 3D CNN for AD diag-
nosis based on pre-training by a 3D sparse autoen-
coder (SAE). This pre-training was performed by
randomly selecting small 3D patches of MRI scans.
The trained weights of the SAE are then used for

pre-training of convolutional filters of 3D CNN. The
fully connected layers of the 3D CNN are then fine-
tuned. This method was improved by Vu et al. [25],
to combine MRI and FDG-PET.

Focusing on the Hippocampal region and in two
distinct imaging modalities: Diffusion Tensor Imag-
ing (DTI), in particular Mean Diffusivity (MD) den-
sity maps derived from DTI and sMRI, [3] proposed
a cross-modal Transfer Learning method for classi-
fication between AD, NC and MCI, in which a 2D
CNN model is trained first on the sMRI dataset and
then fine-tuned on the target MD dataset, with a
limited amount of data, for each projection (Sagit-
tal, Axial and Coronal). The results from each
projection were fused using Majority Vote. This
cross-modal Transfer Learning method showed a re-
duction of overfitting and improvement of learning
performance, and encouraged a new perspective in
Transfer Learning for Alzheimer’s disease detection,
in which each domain is represented by a different
neuroimaging modality.

2.2. Combination of neuroimaging modalities

Apart Transfer Learning, there are several ways
to fuse multimodal data, particularly neuroimag-
ing data. Imaging data can be also combined with
other available information such as cognitive mea-
sures or demographic information, and selecting the
best modality combination and fusion method is a
task that’s been studied in-depth.

Multimodal classification was compared with the
case of using only one biomarker by [28]. They com-
bined MRI, PET and CSF biomarkers using a ker-
nel combination method to train an SVM and ob-
taining an accuracy of 93.2% for the classification of
AD vs NC and 76.4% for MCI vs NC. These results
were better than using only one biomarker, empha-
sizing the benefits of having multimodal data. Simi-
lar methods based on SVMs that were mentioned in
the previous section, reported better results when
combining MRI and PET images and CSF biomark-
ers [5] and MRI and CSF biomarkers [6].

An early fusion method was used in [7], which
combined two types of PET images, FDG-PET and
18F-florbetapir (AV-45) PET, to train a 3D CNN
for the AD vs NC task, exploring both glucose
metabolism and amyloid deposit in the patient’s
brain at the same time. This network was then ap-
plied to predict between MCI-C and MCI-NC sub-
jects, showing better results when both modalities
were used simultaneously to train the model.

To predict conversion of MCI to AD, [16] used
a multimodal gated recurrent unit (GRU) net-
work, which integrated subject’s demographic infor-
mation, longitudinal CSF biomarkers, longitudinal
cognitive performance and cross-sectional MRI im-
ages obtained from ADNI. This required two steps:
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the training of a single GRU separately for each
modality of data and merging the four networks into
one. With the incorporation of several modalities
into one prediction model, while using longitudi-
nal data, the accuracy improved from 75% to 81%
for the classification between MCI-C and MCI-NC.
[10] also combined time series neuroimaging data
from MRI and PET and subject’s cognitive scores
from 15 time steps and static background knowl-
edge from the patients’ first visits, (such as age, gen-
der, CSF, symptoms, etc.) to predict disease pro-
gression and four cognitive scores at the time of pro-
gression in a multitask and multi-class deep learn-
ing framework which achieved 92.62% accuracy for
the CN vs MCI-NC vs MCI-C vs AD task. Deep
features extracted from each time series modality
and fed into a separate stacked CNN-Bidirectional
Long-short term memory (BiLSTM) pipeline and
the learned representations are fused together with
a set of dense layers. In a second fusing step, the
common features from these modalities are fused
with the baseline background data features and a
final set of dense layers are used to learn task spe-
cific features.

Using a similar concatenation method, [22] de-
signed a fusion model that obtained 92.34% accu-
racy for the AD vs NC classification problem using
MRI and florbetapir PET images from ADNI. In
this work, the authors built a 3D CNN for each
modality with three convolutional layers and three
fully connected layers. Then, to perform fusion,
the output layer of both networks is replaced by
a concatenation layer, which fuses the information
from both modalities before the final classification
is made. The improvements in performance due
to fusion of both modalities indicates that the two
modalities share complementary information useful
in this task, although the authors revealed amyloid
(AV-45) PET to be more discriminative in compar-
ison to MRI in the first study that fused and com-
pared these two modalities. A more common choice
of modalities is MRI and FDG-PET which was
fused in [25] and the authors reported improvements
in comparison to the classification of each modal-
ity separately for the AD vs NC problem, reaching
91.14%. This approach fused the outputs of two 3D
CNNs trained for each modality through a 3-layer
fully connected layer neural network. This boost-
ing of the performance is not only due to fusion,
but also the pre-training of the CNN using a SAE
trained on random 3D patches from the scans, simi-
larly to [21]. [17] achieved an accuracy of 82.93% for
discrimination between MCI-NC and MCI-NC sub-
jects, by concatenating the representations learned
from six Deep Neural Networks (DNNs), which cor-
responded to three different patch scales from FDG-
PET and GM and using another DNN to fuse these

representations.

Instead of using fully connected layers to share in-
formation between modalities, [11] achieved better
results using a Bidirectional Recurrent Neural Net-
work (BiRNN), which took as inputs the features
extracted from a 3D CNN trained on PET images
and GM density maps segmented from anatomical
MRI images.

Apart from combining modalities, different views
from brain scans (Sagittal, Axial and Coronal) from
the same modality can be combined to achieved a
global prediction score, which is done frequently us-
ing Majority Vote, as in [9] and [3].

3. Methods
3.1. Data

The data used in the experiments came from the
ADNI database [2]. A detailed description on how
the MRI and PET datasets were acquired can be
found in the public ADNI website [2].

In this study, 1.5T Magnetic Resonance images
and FDG-PET images were acquired from subjects
evaluated during a 24 month period. Evaluations
of their mental state and collection of brain scans
were performed at a baseline month, and 12 and
24 months after the first evaluation. The number
of images acquired in each evaluation period are
shown in table 1 for AD and NC subjects for each
neuroimaging modality.

It’s worth noting that there are subjects who
don’t go through the complete 24 months of obser-
vations. There are also subjects whose images are
present in only one of the modalities at a given time.
In total there are 383 PET volumes from 133 sub-
jects (58 AD and 75 NC) and 648 GM volumes from
316 subjects (144 AD and 172 NC) in the dataset.
Considering that some subjects have PET and GM
volumes, the total number of subjects evaluated is
354 from which 152 are classified with AD and 202
are NC. All the patients that were diagnosed with
AD in month 0 remain with that prognostic during
the whole 24 months and the same happens with
NC subjects.

Table 1: Number of images for different evaluation
periods and corresponding number of subjects for
both modalities.

Follow up PET GM
period AD NC AD NC

0 months 58 75 107 124
12 months 54 74 98 135
24 months 53 69 69 115

Total 165 218 274 313
Subjects 58 75 144 172
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3.2. Data Division
The training and evaluation of the models was per-
formed using 5 fold. Furthermore, a validation set
was used to perform early stopping. The data split
is performed according to each subject: In a dataset
containing PET or GM images, 20% of the sub-
jects are used for test and from the remaining 80%,
20% are used for validation and 60% for the train-
ing set, while assuring that different images from
the same subjects are stored in the same partition.
Subjects’ images from the first evaluation period
were assigned to the corresponding training or test
sets. Images from months 12 and 24 were then as-
signed to the corresponding partition to avoid an
”information leak”.

An important safeguard was in assuring that
there wouldn’t be any PET images from a patient
used in training in the base domain, that could be
used in testing in the target domain in the Transfer
Learning approach, or vice-versa. This was done
by using images from subjects that appear on both
modalities in the same partition in each fold. The
other subjects that appear on only one modality
could be used on either set. This division of data
allows the use of the same images in the same sets
for the several experiments conducted, so that the
results of each method could be compared between
each other.

3.3. Pre-Processing
PET and MR images had already been subject to
a series of preprocessing steps performed by the
ADNI researchers [2]. Furthermore, the images re-
trieved from the ADNI database were warped into
the MNI standard space as described in [20]. In
this process, to the MR images was performed skull
stripping, segmentation into GM and WM, produc-
ing gray and white-matter probability maps which
were also smoothed with a Gaussian filter. In the
same study, the resulting PET images were normal-
ized using the Yakushev normalization procedure.

3.3.1 Crop

The images from the brain scans include the area
surrounding the brain, which doesn’t present any
relevant information for the classification task. This
area was cropped, resulting in a significant reduc-
tion in the size of the feature vectors. Only the
area inside the brain was considered according to
the MNI-152 template, represented by the area in
white in figure 1. The volumes’ dimension after the
cropping was 104x122x98.

3.3.2 Feature Normalization

Besides the normalization process that had been
previously applied, as described in [20], the voxel

(a) Sagittal plane (b) Axial plane

(c) Coronal Plane

Figure 1: Representations of the MNI brain mask in
the sagittal, axial and coronal sections of the brain.

intensities in each volume slice were mapped to the
range [-1, 1].

In each fold, the maximum of the modulus of the
volumes from PET and GM in the training set was
computed. Then all the volumes in the of GM and
PET training, validation and test set were divided
by this value, which was computed separately for
each modality and after the images from months 12
and 24 were added to the training set.

3.4. Deep Learning Network

Tables 2 and 3 present the final CNN-LSTM and
3D CNN architectures used for the AD vs NC clas-
sification problem. Before these configurations were
achieved, others were tested, where parameters such
as the number of layers, number of units in each
layer, filter’s shape, dropout or batch normalization
were tested.

Each network was trained using all the available
PET and GM data, displayed in table 1, including
longitudinal data from the subjects, which achieved
better results than using only data from the first
follow up month, or only one image per subject.

3.4.1 CNN-LSTM network

As seen in table 2, each Convolution Block is made
by a TimeDistributed 2D CNN and a max-pooling
layer. The output of the three convolution blocks is
flattened, goes into the LSTM and then fed into a
densely connected classifier network, with softmax
activation, corresponding the output to the binary
classification of AD vs NC. The Keras TimeDis-
tributed wrapper allows the distribution of CNN
layers across every slice of the 3D input, applying
the same instance of the convolution layer to every
input slice. The LSTM layer is then used to detect
interslice relationships.

5



Table 2: Architecture of the CNN-LSTM network.

Layer Type Parameters Filters/Units
Convolutional Stride-2, ReLU 3x3x32
Max Pooling 2x2, Stride-2 -
Convolutional ReLU 5x5x64
Max Pooling 2x2, Stride-2 -
Convolutional ReLU 5x5x128
Max Pooling 2x2, Stride-2 -

Flatten - -
Dropout 50% Dropout -
LSTM Tanh, 50% Drop. 128
Dense Softmax 2

3.4.2 3D CNN network

The 3D CNN model is also made of three convo-
lution blocks, as shown in table 3: The first two
convolution blocks are made by a 3D CNN layer,
a 3D max-pooling layer and two batch normaliza-
tion layers. The third convolution block only has a
batch normalization layer. The output of the con-
volution blocks is then flattened and fed into a fully
connected classifier network, which results in the
classification of AD vs NC.

Table 3: Architecture of the 3D CNN network.

Layer Type Parameters Filters/Units
Convolutional ReLU 3x3x3x8
Batch Norm. - -
Max Pooling 2x2x2, Stride-2 -
Batch Norm - -

Convolutional ReLU 3x3x3x16
Batch Norm. - -
Max Pooling 2x2x2, Stride-2 -
Batch Norm. - -
Convolutional ReLU 3x3x3x32
Batch Norm. - -
Max Pooling 2x2x2, Stride-2 -

Flatten - -
Dense - 64

Batch Norm. - -
Dense - 64

Batch Norm. - -
Dense Softmax 2

3.5. Transfer Learning
Two methods were tested regarding Transfer Learn-
ing: Either pre-training a deep learning network
with GM data as the base domain and fine-tuning
using the PET dataset as the target domain (TL
GM-PET), or instead pre-training a network with

PET data and fine-tuning using the GM dataset
(TL PET-GM).

Independently of using TL GM-PET or PET-
GM, the number of fine-tuned layers and number
of top densely connected layers replaced was also
tested. For the CNN-LSTM, several configurations
were tested: replacing the top four layers (Flatten,
Dropout, LSTM and Dense) with the same layers
having new randomly initialized weights, replacing
the last Dense layer, or not replacing any layer. For
the 3D CNN, the last six layers were replaced (Flat-
ten, Dense, BatchNormalization, Dense, BatchNor-
malization and Dense), or the last Dense layer or
no layer was replaced. Choosing one of these con-
figurations, any number of the remaining layers can
then be fine-tuned.

To perform these experiments, models trained
separately with PET and GM data were used.
Then the last layers of the pre-trained network were
replaced by new layers with randomly initialized
weights. Some number of the remaining layers were
chosen to be fine-tuned and the others remained
frozen (their weights could not be adjusted) and the
unfrozen layers were trained jointly with the added
part. The images used for training and testing were
the same images used to train and test each network
from scratch.

3.6. Joint training of both modalities in the
same deep learning network

The input feature space was composed by volumes
of both modalities, which were taken as input to-
gether for training a single model (CNN-LSTM or
3D CNN), thus concatenating modalities in an early
fusion mode.

3.7. Concatenation of two deep learning mod-
els trained on separate modalities

To apply this method it was necessary to use the
same number of input samples from each modality.
From the complete set of images available, in each
time window, only subjects with both modalities
available were used, in order to concatenate infor-
mation relative to the same person. The available
number of images for each modality is shown in ta-
ble 4.

Table 4: Number of input images for different eval-
uation periods for the concatenation model.

Follow up PET GM
period AD NC AD NC

0 months 50 45 50 45
12 months 43 n 36 43 36
24 months 27 20 n 27 20

Total 120 101 120 101
Subjects 50 45 50 45
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Several topologies were tested regarding the num-
ber of layers and units in each layer, from which
the final model was chosen. For the concatena-
tion of two CNN-LSTM networks, the resulting
network concatenates the outputs of the last layer
of both CNN-LSTM networks and adds two Fully
Connected layers on top of the concatenation, to
perform the final decision. The concatenation of
two 3D CNN networks is made by concatenating
the feature representations of the penultimate layer
and adding three dense layers to perform the final
decision. Only the added layers were trained, while
the remaining layers remained frozen.

3.8. Implementation Details

The deep learning methods are implemented using
Keras with a TensorFlow 2.3.0 backend. All the
experiments were performed in Google Colab. The
networks were trained using the Adam optimizer
with a initial learning rate of 0.001, β1 = 0.9 and
β2 = 0.999. The accuracy metric was evaluated
during training and binary cross-entropy was chosen
as the loss function.

A weighted training strategy was applied, in
which samples belonging to the class with the ma-
jority of data in the training set were given a weight
equal to one and samples from the other class are
given a weight equal to N

M , where N is the num-
ber of samples from the class with most data and
N is the number of samples from the class with
less samples. Heatmaps of intermediate activations
were visualized using Jupyter notebooks.

4. Results and Discussion

In this section, the mean and standard deviation
(SD) of the accuracy (ACC) and F1 Score results
obtained using the architectures described in the
previous section are detailed. Tables 5 and 6 present
the results obtained for both Deep Learning archi-
tectures trained from scratch and the best Transfer
Learning results obtained for TL GM-PET and TL
PET-GM. The TL approach results are compared
with the joint training approach in tables 7 and 8
and with the concatenation approach in tables 9
and 10.

4.1. Transfer Learning vs training from
scratch

The results from tables 5 and 6, show that the CNN-
LSTM model outperforms the 3D CNN model for
the PET modality and the 3D CNN performs better
for GM data. These results can be explained taking
into account the number of training samples in each
modality and the complexity and number of param-
eters of each model. The 3D CNN model requires
8 times more training parameters than the CNN-
LSTM, which, on the other hand, has less ability to
capture inter-slice information than the 3D CNN.

Regarding the CNN-LSTM model, a notable per-
formance is achieved when the model is trained on
the PET modality, even having less training data
than GM, thus being PET the most discriminative
modality against AD changes in the brain. In the
3D CNN model, the best results are obtained by
training the model using GM dataset, which has
more available images.

Table 5: CNN-LSTM results using GM and PET
modalities individually and using TL PET-GM and
TL GM-PET.

Modalities ACC (SD) F1 Score (SD)
GM 0.679 (0.111) 0.695 (0.102)
PET 0.829 (0.034) 0.784 (0.023)

TL PET-GM 0.816 (0.060) 0.815 (0.065)
TL GM-PET 0.861 (0.033) 0.831 (0.025)

Table 6: 3D CNN results using GM and PET
modalities individually and using TL PET-GM and
TL GM-PET.

Modalities ACC (SD) F1 Score (SD)
GM 0.839 (0.031) 0.849 (0.034)
PET 0.761 (0.058) 0.717 (0.072)

TL PET-GM 0.864 (0.023) 0.870 (0.031)
TL GM-PET 0.851 (0.038) 0.814 (0.041)

Transfer Learning shows performance improve-
ments compared with training each model from
scratch. Using the CNN-LSTM model, fine-tuning
with PET data was more effective than using GM
data. These results were obtained by replacing the
last layer (softmax) and unfreezing all the remain-
ing layers for GM-PET or unfreezing 7 of the re-
maining layers (corresponding to the densely con-
nected classifier and the second convolution block)
for PET-GM.

Regarding the 3D CNN model, the results show
fine-tuning with GM data to be more effective. The
best results were obtained by replacing the whole
densely connected classifier and unfreezing the last
convolution block for PET-GM, while for GM-PET
there were only fine-tuned 9 layers (the densely con-
nected classifier and the top convolution block).

4.2. Transfer Learning vs joint training both
modalities in the same network

The results relative to the early fusion model are
expressed according to the nature of the testing set:
whether it contained only PET or GM images or
contained images from both modalities.

From the results shown in tables 7 and 8, it can
be observed that the models obtained results close
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Table 7: CNN-LSTM results for the early fusion
and Transfer Learning methods.

Modalities ACC (SD) F1 Score (SD)
GM 0.778 (0.042) 0.764 (0.060)
PET 0.808 (0.051) 0.762 (0.053)

PET and GM 0.821 (0.031) 0.811 (0.020)
TL PET-GM 0.816 (0.060) 0.815 (0.065)
TL GM-PET 0.861 (0.033) 0.831 (0.025)

Table 8: 3D CNN results for the early fusion and
Transfer Learning methods.

Modalities ACC (SD) F1 Score (SD)
GM 0.840 (0.028) 0.838 (0.042)
PET 0.832 (0.083) 0.806 (0.084)

PET and GM 0.852 (0.020) 0.848 (0.026)
TL PET-GM 0.864 (0.023) 0.870 (0.031)
TL GM-PET 0.851 (0.038) 0.814 (0.041)

to those of the Transfer Learning approaches. The
fact that all the available data from both modalities
was used in the training of the models, reduces the
need for Transfer Learning, by reducing overfitting
during training, although increasing in the average
training time. In Transfer Learning, the training in
the target domain doesn’t require as many training
samples and has less trainable parameters, which
makes training faster, while enabling the final model
to be well suited for the target task.

4.3. Transfer Learning vs model concatena-
tion

For a better comparison, the CNN-LSTM and 3D
CNN models trained on separate modalities were
tested using the same number of images from each
modality as this concatenated model, meaning that
the GM and PET images used in the testing set of
the concatenation model were used for testing the
models trained from scratch.

Table 9: Results for the concatenation of two CNN-
LSTM networks and Transfer Learning methods.
(1) Results for the CNN-LSTM model evaluated on
the reduced dataset.

Modalities ACC (SD) F1 Score (SD)
PET and GM 0.762 (0.075) 0.670 (0.120)
TL PET-GM 0.816 (0.060) 0.815 (0.065)
TL GM-PET 0.861 (0.033) 0.831 (0.025)

GM (1) 0.610 (0.128) 0.496 (0.162)
PET (1) 0.730 (0.075) 0.631 (0.106)

Table 10: Results for the concatenation of two 3D
CNN networks and Transfer Learning methods. (1)
Results for the 3D CNN model evaluated on the
reduced dataset.

Modalities ACC (SD) F1 Score (SD)
PET and GM 0.755 (0.049) 0.681 (0.088)
TL PET-GM 0.864 (0.023) 0.870 (0.031)
TL GM-PET 0.851 (0.038) 0.814 (0.041)

GM (1) 0.716 (0.051) 0.644 (0.092)
PET (1) 0.729 (0.163) 0.695 (0.180)

From the analysis of tables 9 and 10, it can be
concluded that the concatenation models achieve a
better performance than the models trained from
scratch, when comparing with data from the same
subjects in the test set. A downside of this approach
is that the model only accepts the same number of
images from both modalities, corresponding to the
same number of subjects, discarding relevant data
in the datasets that can be used to improve the
models, which doesn’t happen in TL.

Contrarily to the early fusion method, this con-
catenation approach allows the use of two specific
deep learning models for each neuroimaging modal-
ity, but the information shared among modalities
is reduced. Furthermore, the concatenation of two
deep learning models doesn’t solve the problem of
lack of training data: although the combination of
learned features from both modalities can improve
classification by exploring commonalities and differ-
ences between both types of data, the pre-trained
networks can suffer from overfitting, which affects
the performance of the concatenation model.

4.4. Visual comparison with biological
changes in the brain

The output filters of the last convolutional layer of
the CNN-LSTM model with TL GM-PET and the
3D CNN model with TL PET-GM are displayed in
figures 2 and 3 for two selected slices in the axial
plane.

(a) (b)

Figure 2: Heatmaps of intermediate activations for
TL GM-PET using the CNN-LSTM model.
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(a) (b)

Figure 3: Heatmaps of intermediate activations for
TL PET-GM using the 3D CNN model.

In the heatmaps relative to the PET modality,
high intensity values are located in the temporal re-
gion, as shown in figure 2 (a). In figure 2 (b), high
intensity values are located in the parietal and pos-
terior cingulate areas, which correspond to relevant
ROIs. Regarding the GM images, high intensity
values are observed in the temporal region in figure
3 (a) and the superior anterior cingulate region in
figure 3 (b).

5. Conclusions and Future Work

Regarding the achievements of this work, it can
be considered that the main objectives were ac-
complished, since the proposed Transfer Learning
method achieves classification accuracies of 86.4%
using a 3D CNN fine-tuned on GM data and 86.1%
using a CNN-LSTM network fine-tuned on PET
data, for the classification between AD vs NC sub-
jects, outperforming the other studied approaches.
Despite the fact that the 3D CNN generally outper-
formed the CNN-LSTM network, this model could
still achieve an accuracy of 86.1% with Transfer
Learning, which are satisfactory results consider-
ing this to be the first approach that applies this
particular CNN-LSTM model in AD classification.

Possible approaches to be tested in the fu-
ture could involve the combination of the Trans-
fer Learning and concatenation approaches stud-
ied. This cross-modal Transfer Learning approach
could also be extended to the classification of the
several AD stages, or to the prediction of MCI con-
version to AD. To do this, it would be interesting to
compare between other biomarkers, such as AV-45
PET. Training a model on the AD vs NC task and
fine-tuning the weights to classify also between MCI
subjects can be an interesting way to apply Transfer
Learning to the classification of several AD stages.
Furthermore, better results could be achieved us-
ing ROI-based features, instead of voxel based fea-
tures or slice-based features. Specially in the case
of the CNN-LSTM model, improvements could be
made using BiLSTM, and also exploring slices in the
sagittal and coronal views besides the axial view.

These views could be combined in order to improve
performance by capturing complementary informa-
tion.
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